glsl: store uniform slot id in var location field
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "glsl/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_system_value
92 } nir_variable_mode;
93
94 /**
95 * Data stored in an nir_constant
96 */
97 union nir_constant_data {
98 unsigned u[16];
99 int i[16];
100 float f[16];
101 bool b[16];
102 };
103
104 typedef struct nir_constant {
105 /**
106 * Value of the constant.
107 *
108 * The field used to back the values supplied by the constant is determined
109 * by the type associated with the \c nir_variable. Constants may be
110 * scalars, vectors, or matrices.
111 */
112 union nir_constant_data value;
113
114 /* Array elements / Structure Fields */
115 struct nir_constant **elements;
116 } nir_constant;
117
118 /**
119 * \brief Layout qualifiers for gl_FragDepth.
120 *
121 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
122 * with a layout qualifier.
123 */
124 typedef enum {
125 nir_depth_layout_none, /**< No depth layout is specified. */
126 nir_depth_layout_any,
127 nir_depth_layout_greater,
128 nir_depth_layout_less,
129 nir_depth_layout_unchanged
130 } nir_depth_layout;
131
132 /**
133 * Either a uniform, global variable, shader input, or shader output. Based on
134 * ir_variable - it should be easy to translate between the two.
135 */
136
137 typedef struct {
138 struct exec_node node;
139
140 /**
141 * Declared type of the variable
142 */
143 const struct glsl_type *type;
144
145 /**
146 * Declared name of the variable
147 */
148 char *name;
149
150 /**
151 * For variables which satisfy the is_interface_instance() predicate, this
152 * points to an array of integers such that if the ith member of the
153 * interface block is an array, max_ifc_array_access[i] is the maximum
154 * array element of that member that has been accessed. If the ith member
155 * of the interface block is not an array, max_ifc_array_access[i] is
156 * unused.
157 *
158 * For variables whose type is not an interface block, this pointer is
159 * NULL.
160 */
161 unsigned *max_ifc_array_access;
162
163 struct nir_variable_data {
164
165 /**
166 * Is the variable read-only?
167 *
168 * This is set for variables declared as \c const, shader inputs,
169 * and uniforms.
170 */
171 unsigned read_only:1;
172 unsigned centroid:1;
173 unsigned sample:1;
174 unsigned invariant:1;
175
176 /**
177 * Storage class of the variable.
178 *
179 * \sa nir_variable_mode
180 */
181 nir_variable_mode mode:4;
182
183 /**
184 * Interpolation mode for shader inputs / outputs
185 *
186 * \sa glsl_interp_qualifier
187 */
188 unsigned interpolation:2;
189
190 /**
191 * \name ARB_fragment_coord_conventions
192 * @{
193 */
194 unsigned origin_upper_left:1;
195 unsigned pixel_center_integer:1;
196 /*@}*/
197
198 /**
199 * Was the location explicitly set in the shader?
200 *
201 * If the location is explicitly set in the shader, it \b cannot be changed
202 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
203 * no effect).
204 */
205 unsigned explicit_location:1;
206 unsigned explicit_index:1;
207
208 /**
209 * Was an initial binding explicitly set in the shader?
210 *
211 * If so, constant_initializer contains an integer nir_constant
212 * representing the initial binding point.
213 */
214 unsigned explicit_binding:1;
215
216 /**
217 * Does this variable have an initializer?
218 *
219 * This is used by the linker to cross-validiate initializers of global
220 * variables.
221 */
222 unsigned has_initializer:1;
223
224 /**
225 * Is this variable a generic output or input that has not yet been matched
226 * up to a variable in another stage of the pipeline?
227 *
228 * This is used by the linker as scratch storage while assigning locations
229 * to generic inputs and outputs.
230 */
231 unsigned is_unmatched_generic_inout:1;
232
233 /**
234 * If non-zero, then this variable may be packed along with other variables
235 * into a single varying slot, so this offset should be applied when
236 * accessing components. For example, an offset of 1 means that the x
237 * component of this variable is actually stored in component y of the
238 * location specified by \c location.
239 */
240 unsigned location_frac:2;
241
242 /**
243 * Non-zero if this variable was created by lowering a named interface
244 * block which was not an array.
245 *
246 * Note that this variable and \c from_named_ifc_block_array will never
247 * both be non-zero.
248 */
249 unsigned from_named_ifc_block_nonarray:1;
250
251 /**
252 * Non-zero if this variable was created by lowering a named interface
253 * block which was an array.
254 *
255 * Note that this variable and \c from_named_ifc_block_nonarray will never
256 * both be non-zero.
257 */
258 unsigned from_named_ifc_block_array:1;
259
260 /**
261 * \brief Layout qualifier for gl_FragDepth.
262 *
263 * This is not equal to \c ir_depth_layout_none if and only if this
264 * variable is \c gl_FragDepth and a layout qualifier is specified.
265 */
266 nir_depth_layout depth_layout;
267
268 /**
269 * Storage location of the base of this variable
270 *
271 * The precise meaning of this field depends on the nature of the variable.
272 *
273 * - Vertex shader input: one of the values from \c gl_vert_attrib.
274 * - Vertex shader output: one of the values from \c gl_varying_slot.
275 * - Geometry shader input: one of the values from \c gl_varying_slot.
276 * - Geometry shader output: one of the values from \c gl_varying_slot.
277 * - Fragment shader input: one of the values from \c gl_varying_slot.
278 * - Fragment shader output: one of the values from \c gl_frag_result.
279 * - Uniforms: Per-stage uniform slot number for default uniform block.
280 * - Uniforms: Index within the uniform block definition for UBO members.
281 * - Non-UBO Uniforms: uniform slot number.
282 * - Other: This field is not currently used.
283 *
284 * If the variable is a uniform, shader input, or shader output, and the
285 * slot has not been assigned, the value will be -1.
286 */
287 int location;
288
289 /**
290 * The actual location of the variable in the IR. Only valid for inputs
291 * and outputs.
292 */
293 unsigned int driver_location;
294
295 /**
296 * output index for dual source blending.
297 */
298 int index;
299
300 /**
301 * Initial binding point for a sampler or UBO.
302 *
303 * For array types, this represents the binding point for the first element.
304 */
305 int binding;
306
307 /**
308 * Location an atomic counter is stored at.
309 */
310 struct {
311 unsigned buffer_index;
312 unsigned offset;
313 } atomic;
314
315 /**
316 * ARB_shader_image_load_store qualifiers.
317 */
318 struct {
319 bool read_only; /**< "readonly" qualifier. */
320 bool write_only; /**< "writeonly" qualifier. */
321 bool coherent;
322 bool _volatile;
323 bool restrict_flag;
324
325 /** Image internal format if specified explicitly, otherwise GL_NONE. */
326 GLenum format;
327 } image;
328
329 /**
330 * Highest element accessed with a constant expression array index
331 *
332 * Not used for non-array variables.
333 */
334 unsigned max_array_access;
335
336 } data;
337
338 /**
339 * Built-in state that backs this uniform
340 *
341 * Once set at variable creation, \c state_slots must remain invariant.
342 * This is because, ideally, this array would be shared by all clones of
343 * this variable in the IR tree. In other words, we'd really like for it
344 * to be a fly-weight.
345 *
346 * If the variable is not a uniform, \c num_state_slots will be zero and
347 * \c state_slots will be \c NULL.
348 */
349 /*@{*/
350 unsigned num_state_slots; /**< Number of state slots used */
351 nir_state_slot *state_slots; /**< State descriptors. */
352 /*@}*/
353
354 /**
355 * Constant expression assigned in the initializer of the variable
356 */
357 nir_constant *constant_initializer;
358
359 /**
360 * For variables that are in an interface block or are an instance of an
361 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
362 *
363 * \sa ir_variable::location
364 */
365 const struct glsl_type *interface_type;
366 } nir_variable;
367
368 typedef struct {
369 struct exec_node node;
370
371 unsigned num_components; /** < number of vector components */
372 unsigned num_array_elems; /** < size of array (0 for no array) */
373
374 /** generic register index. */
375 unsigned index;
376
377 /** only for debug purposes, can be NULL */
378 const char *name;
379
380 /** whether this register is local (per-function) or global (per-shader) */
381 bool is_global;
382
383 /**
384 * If this flag is set to true, then accessing channels >= num_components
385 * is well-defined, and simply spills over to the next array element. This
386 * is useful for backends that can do per-component accessing, in
387 * particular scalar backends. By setting this flag and making
388 * num_components equal to 1, structures can be packed tightly into
389 * registers and then registers can be accessed per-component to get to
390 * each structure member, even if it crosses vec4 boundaries.
391 */
392 bool is_packed;
393
394 /** set of nir_instr's where this register is used (read from) */
395 struct list_head uses;
396
397 /** set of nir_instr's where this register is defined (written to) */
398 struct list_head defs;
399
400 /** set of nir_if's where this register is used as a condition */
401 struct list_head if_uses;
402 } nir_register;
403
404 typedef enum {
405 nir_instr_type_alu,
406 nir_instr_type_call,
407 nir_instr_type_tex,
408 nir_instr_type_intrinsic,
409 nir_instr_type_load_const,
410 nir_instr_type_jump,
411 nir_instr_type_ssa_undef,
412 nir_instr_type_phi,
413 nir_instr_type_parallel_copy,
414 } nir_instr_type;
415
416 typedef struct nir_instr {
417 struct exec_node node;
418 nir_instr_type type;
419 struct nir_block *block;
420
421 /* A temporary for optimization and analysis passes to use for storing
422 * flags. For instance, DCE uses this to store the "dead/live" info.
423 */
424 uint8_t pass_flags;
425 } nir_instr;
426
427 static inline nir_instr *
428 nir_instr_next(nir_instr *instr)
429 {
430 struct exec_node *next = exec_node_get_next(&instr->node);
431 if (exec_node_is_tail_sentinel(next))
432 return NULL;
433 else
434 return exec_node_data(nir_instr, next, node);
435 }
436
437 static inline nir_instr *
438 nir_instr_prev(nir_instr *instr)
439 {
440 struct exec_node *prev = exec_node_get_prev(&instr->node);
441 if (exec_node_is_head_sentinel(prev))
442 return NULL;
443 else
444 return exec_node_data(nir_instr, prev, node);
445 }
446
447 static inline bool
448 nir_instr_is_first(nir_instr *instr)
449 {
450 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
451 }
452
453 static inline bool
454 nir_instr_is_last(nir_instr *instr)
455 {
456 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
457 }
458
459 typedef struct {
460 /** for debugging only, can be NULL */
461 const char* name;
462
463 /** generic SSA definition index. */
464 unsigned index;
465
466 /** Index into the live_in and live_out bitfields */
467 unsigned live_index;
468
469 nir_instr *parent_instr;
470
471 /** set of nir_instr's where this register is used (read from) */
472 struct list_head uses;
473
474 /** set of nir_if's where this register is used as a condition */
475 struct list_head if_uses;
476
477 uint8_t num_components;
478 } nir_ssa_def;
479
480 struct nir_src;
481
482 typedef struct {
483 nir_register *reg;
484 struct nir_src *indirect; /** < NULL for no indirect offset */
485 unsigned base_offset;
486
487 /* TODO use-def chain goes here */
488 } nir_reg_src;
489
490 typedef struct {
491 nir_instr *parent_instr;
492 struct list_head def_link;
493
494 nir_register *reg;
495 struct nir_src *indirect; /** < NULL for no indirect offset */
496 unsigned base_offset;
497
498 /* TODO def-use chain goes here */
499 } nir_reg_dest;
500
501 struct nir_if;
502
503 typedef struct nir_src {
504 union {
505 nir_instr *parent_instr;
506 struct nir_if *parent_if;
507 };
508
509 struct list_head use_link;
510
511 union {
512 nir_reg_src reg;
513 nir_ssa_def *ssa;
514 };
515
516 bool is_ssa;
517 } nir_src;
518
519 #define NIR_SRC_INIT (nir_src) { { NULL } }
520
521 #define nir_foreach_use(reg_or_ssa_def, src) \
522 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
523
524 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
525 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
526
527 #define nir_foreach_if_use(reg_or_ssa_def, src) \
528 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
529
530 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
531 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
532
533 typedef struct {
534 union {
535 nir_reg_dest reg;
536 nir_ssa_def ssa;
537 };
538
539 bool is_ssa;
540 } nir_dest;
541
542 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
543
544 #define nir_foreach_def(reg, dest) \
545 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
546
547 #define nir_foreach_def_safe(reg, dest) \
548 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
549
550 static inline nir_src
551 nir_src_for_ssa(nir_ssa_def *def)
552 {
553 nir_src src = NIR_SRC_INIT;
554
555 src.is_ssa = true;
556 src.ssa = def;
557
558 return src;
559 }
560
561 static inline nir_src
562 nir_src_for_reg(nir_register *reg)
563 {
564 nir_src src = NIR_SRC_INIT;
565
566 src.is_ssa = false;
567 src.reg.reg = reg;
568 src.reg.indirect = NULL;
569 src.reg.base_offset = 0;
570
571 return src;
572 }
573
574 static inline nir_dest
575 nir_dest_for_reg(nir_register *reg)
576 {
577 nir_dest dest = NIR_DEST_INIT;
578
579 dest.reg.reg = reg;
580
581 return dest;
582 }
583
584 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
585 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
586
587 typedef struct {
588 nir_src src;
589
590 /**
591 * \name input modifiers
592 */
593 /*@{*/
594 /**
595 * For inputs interpreted as floating point, flips the sign bit. For
596 * inputs interpreted as integers, performs the two's complement negation.
597 */
598 bool negate;
599
600 /**
601 * Clears the sign bit for floating point values, and computes the integer
602 * absolute value for integers. Note that the negate modifier acts after
603 * the absolute value modifier, therefore if both are set then all inputs
604 * will become negative.
605 */
606 bool abs;
607 /*@}*/
608
609 /**
610 * For each input component, says which component of the register it is
611 * chosen from. Note that which elements of the swizzle are used and which
612 * are ignored are based on the write mask for most opcodes - for example,
613 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
614 * a swizzle of {2, x, 1, 0} where x means "don't care."
615 */
616 uint8_t swizzle[4];
617 } nir_alu_src;
618
619 typedef struct {
620 nir_dest dest;
621
622 /**
623 * \name saturate output modifier
624 *
625 * Only valid for opcodes that output floating-point numbers. Clamps the
626 * output to between 0.0 and 1.0 inclusive.
627 */
628
629 bool saturate;
630
631 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
632 } nir_alu_dest;
633
634 typedef enum {
635 nir_type_invalid = 0, /* Not a valid type */
636 nir_type_float,
637 nir_type_int,
638 nir_type_unsigned,
639 nir_type_bool
640 } nir_alu_type;
641
642 typedef enum {
643 NIR_OP_IS_COMMUTATIVE = (1 << 0),
644 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
645 } nir_op_algebraic_property;
646
647 typedef struct {
648 const char *name;
649
650 unsigned num_inputs;
651
652 /**
653 * The number of components in the output
654 *
655 * If non-zero, this is the size of the output and input sizes are
656 * explicitly given; swizzle and writemask are still in effect, but if
657 * the output component is masked out, then the input component may
658 * still be in use.
659 *
660 * If zero, the opcode acts in the standard, per-component manner; the
661 * operation is performed on each component (except the ones that are
662 * masked out) with the input being taken from the input swizzle for
663 * that component.
664 *
665 * The size of some of the inputs may be given (i.e. non-zero) even
666 * though output_size is zero; in that case, the inputs with a zero
667 * size act per-component, while the inputs with non-zero size don't.
668 */
669 unsigned output_size;
670
671 /**
672 * The type of vector that the instruction outputs. Note that the
673 * staurate modifier is only allowed on outputs with the float type.
674 */
675
676 nir_alu_type output_type;
677
678 /**
679 * The number of components in each input
680 */
681 unsigned input_sizes[4];
682
683 /**
684 * The type of vector that each input takes. Note that negate and
685 * absolute value are only allowed on inputs with int or float type and
686 * behave differently on the two.
687 */
688 nir_alu_type input_types[4];
689
690 nir_op_algebraic_property algebraic_properties;
691 } nir_op_info;
692
693 extern const nir_op_info nir_op_infos[nir_num_opcodes];
694
695 typedef struct nir_alu_instr {
696 nir_instr instr;
697 nir_op op;
698 nir_alu_dest dest;
699 nir_alu_src src[];
700 } nir_alu_instr;
701
702 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
703 nir_alu_instr *instr);
704 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
705 nir_alu_instr *instr);
706
707 /* is this source channel used? */
708 static inline bool
709 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
710 {
711 if (nir_op_infos[instr->op].input_sizes[src] > 0)
712 return channel < nir_op_infos[instr->op].input_sizes[src];
713
714 return (instr->dest.write_mask >> channel) & 1;
715 }
716
717 /*
718 * For instructions whose destinations are SSA, get the number of channels
719 * used for a source
720 */
721 static inline unsigned
722 nir_ssa_alu_instr_src_components(nir_alu_instr *instr, unsigned src)
723 {
724 assert(instr->dest.dest.is_ssa);
725
726 if (nir_op_infos[instr->op].input_sizes[src] > 0)
727 return nir_op_infos[instr->op].input_sizes[src];
728
729 return instr->dest.dest.ssa.num_components;
730 }
731
732 typedef enum {
733 nir_deref_type_var,
734 nir_deref_type_array,
735 nir_deref_type_struct
736 } nir_deref_type;
737
738 typedef struct nir_deref {
739 nir_deref_type deref_type;
740 struct nir_deref *child;
741 const struct glsl_type *type;
742 } nir_deref;
743
744 typedef struct {
745 nir_deref deref;
746
747 nir_variable *var;
748 } nir_deref_var;
749
750 /* This enum describes how the array is referenced. If the deref is
751 * direct then the base_offset is used. If the deref is indirect then then
752 * offset is given by base_offset + indirect. If the deref is a wildcard
753 * then the deref refers to all of the elements of the array at the same
754 * time. Wildcard dereferences are only ever allowed in copy_var
755 * intrinsics and the source and destination derefs must have matching
756 * wildcards.
757 */
758 typedef enum {
759 nir_deref_array_type_direct,
760 nir_deref_array_type_indirect,
761 nir_deref_array_type_wildcard,
762 } nir_deref_array_type;
763
764 typedef struct {
765 nir_deref deref;
766
767 nir_deref_array_type deref_array_type;
768 unsigned base_offset;
769 nir_src indirect;
770 } nir_deref_array;
771
772 typedef struct {
773 nir_deref deref;
774
775 unsigned index;
776 } nir_deref_struct;
777
778 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
779 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
780 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
781
782 typedef struct {
783 nir_instr instr;
784
785 unsigned num_params;
786 nir_deref_var **params;
787 nir_deref_var *return_deref;
788
789 struct nir_function_overload *callee;
790 } nir_call_instr;
791
792 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
793 num_variables, num_indices, flags) \
794 nir_intrinsic_##name,
795
796 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
797
798 typedef enum {
799 #include "nir_intrinsics.h"
800 nir_num_intrinsics = nir_last_intrinsic + 1
801 } nir_intrinsic_op;
802
803 #undef INTRINSIC
804 #undef LAST_INTRINSIC
805
806 /** Represents an intrinsic
807 *
808 * An intrinsic is an instruction type for handling things that are
809 * more-or-less regular operations but don't just consume and produce SSA
810 * values like ALU operations do. Intrinsics are not for things that have
811 * special semantic meaning such as phi nodes and parallel copies.
812 * Examples of intrinsics include variable load/store operations, system
813 * value loads, and the like. Even though texturing more-or-less falls
814 * under this category, texturing is its own instruction type because
815 * trying to represent texturing with intrinsics would lead to a
816 * combinatorial explosion of intrinsic opcodes.
817 *
818 * By having a single instruction type for handling a lot of different
819 * cases, optimization passes can look for intrinsics and, for the most
820 * part, completely ignore them. Each intrinsic type also has a few
821 * possible flags that govern whether or not they can be reordered or
822 * eliminated. That way passes like dead code elimination can still work
823 * on intrisics without understanding the meaning of each.
824 *
825 * Each intrinsic has some number of constant indices, some number of
826 * variables, and some number of sources. What these sources, variables,
827 * and indices mean depends on the intrinsic and is documented with the
828 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
829 * instructions are the only types of instruction that can operate on
830 * variables.
831 */
832 typedef struct {
833 nir_instr instr;
834
835 nir_intrinsic_op intrinsic;
836
837 nir_dest dest;
838
839 /** number of components if this is a vectorized intrinsic
840 *
841 * Similarly to ALU operations, some intrinsics are vectorized.
842 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
843 * For vectorized intrinsics, the num_components field specifies the
844 * number of destination components and the number of source components
845 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
846 */
847 uint8_t num_components;
848
849 int const_index[3];
850
851 nir_deref_var *variables[2];
852
853 nir_src src[];
854 } nir_intrinsic_instr;
855
856 /**
857 * \name NIR intrinsics semantic flags
858 *
859 * information about what the compiler can do with the intrinsics.
860 *
861 * \sa nir_intrinsic_info::flags
862 */
863 typedef enum {
864 /**
865 * whether the intrinsic can be safely eliminated if none of its output
866 * value is not being used.
867 */
868 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
869
870 /**
871 * Whether the intrinsic can be reordered with respect to any other
872 * intrinsic, i.e. whether the only reordering dependencies of the
873 * intrinsic are due to the register reads/writes.
874 */
875 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
876 } nir_intrinsic_semantic_flag;
877
878 #define NIR_INTRINSIC_MAX_INPUTS 4
879
880 typedef struct {
881 const char *name;
882
883 unsigned num_srcs; /** < number of register/SSA inputs */
884
885 /** number of components of each input register
886 *
887 * If this value is 0, the number of components is given by the
888 * num_components field of nir_intrinsic_instr.
889 */
890 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
891
892 bool has_dest;
893
894 /** number of components of the output register
895 *
896 * If this value is 0, the number of components is given by the
897 * num_components field of nir_intrinsic_instr.
898 */
899 unsigned dest_components;
900
901 /** the number of inputs/outputs that are variables */
902 unsigned num_variables;
903
904 /** the number of constant indices used by the intrinsic */
905 unsigned num_indices;
906
907 /** semantic flags for calls to this intrinsic */
908 nir_intrinsic_semantic_flag flags;
909 } nir_intrinsic_info;
910
911 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
912
913 /**
914 * \group texture information
915 *
916 * This gives semantic information about textures which is useful to the
917 * frontend, the backend, and lowering passes, but not the optimizer.
918 */
919
920 typedef enum {
921 nir_tex_src_coord,
922 nir_tex_src_projector,
923 nir_tex_src_comparitor, /* shadow comparitor */
924 nir_tex_src_offset,
925 nir_tex_src_bias,
926 nir_tex_src_lod,
927 nir_tex_src_ms_index, /* MSAA sample index */
928 nir_tex_src_ddx,
929 nir_tex_src_ddy,
930 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
931 nir_num_tex_src_types
932 } nir_tex_src_type;
933
934 typedef struct {
935 nir_src src;
936 nir_tex_src_type src_type;
937 } nir_tex_src;
938
939 typedef enum {
940 nir_texop_tex, /**< Regular texture look-up */
941 nir_texop_txb, /**< Texture look-up with LOD bias */
942 nir_texop_txl, /**< Texture look-up with explicit LOD */
943 nir_texop_txd, /**< Texture look-up with partial derivatvies */
944 nir_texop_txf, /**< Texel fetch with explicit LOD */
945 nir_texop_txf_ms, /**< Multisample texture fetch */
946 nir_texop_txs, /**< Texture size */
947 nir_texop_lod, /**< Texture lod query */
948 nir_texop_tg4, /**< Texture gather */
949 nir_texop_query_levels, /**< Texture levels query */
950 nir_texop_texture_samples, /**< Texture samples query */
951 } nir_texop;
952
953 typedef struct {
954 nir_instr instr;
955
956 enum glsl_sampler_dim sampler_dim;
957 nir_alu_type dest_type;
958
959 nir_texop op;
960 nir_dest dest;
961 nir_tex_src *src;
962 unsigned num_srcs, coord_components;
963 bool is_array, is_shadow;
964
965 /**
966 * If is_shadow is true, whether this is the old-style shadow that outputs 4
967 * components or the new-style shadow that outputs 1 component.
968 */
969 bool is_new_style_shadow;
970
971 /* constant offset - must be 0 if the offset source is used */
972 int const_offset[4];
973
974 /* gather component selector */
975 unsigned component : 2;
976
977 /** The sampler index
978 *
979 * If this texture instruction has a nir_tex_src_sampler_offset source,
980 * then the sampler index is given by sampler_index + sampler_offset.
981 */
982 unsigned sampler_index;
983
984 /** The size of the sampler array or 0 if it's not an array */
985 unsigned sampler_array_size;
986
987 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
988 } nir_tex_instr;
989
990 static inline unsigned
991 nir_tex_instr_dest_size(nir_tex_instr *instr)
992 {
993 switch (instr->op) {
994 case nir_texop_txs: {
995 unsigned ret;
996 switch (instr->sampler_dim) {
997 case GLSL_SAMPLER_DIM_1D:
998 case GLSL_SAMPLER_DIM_BUF:
999 ret = 1;
1000 break;
1001 case GLSL_SAMPLER_DIM_2D:
1002 case GLSL_SAMPLER_DIM_CUBE:
1003 case GLSL_SAMPLER_DIM_MS:
1004 case GLSL_SAMPLER_DIM_RECT:
1005 case GLSL_SAMPLER_DIM_EXTERNAL:
1006 ret = 2;
1007 break;
1008 case GLSL_SAMPLER_DIM_3D:
1009 ret = 3;
1010 break;
1011 default:
1012 unreachable("not reached");
1013 }
1014 if (instr->is_array)
1015 ret++;
1016 return ret;
1017 }
1018
1019 case nir_texop_lod:
1020 return 2;
1021
1022 case nir_texop_texture_samples:
1023 case nir_texop_query_levels:
1024 return 1;
1025
1026 default:
1027 if (instr->is_shadow && instr->is_new_style_shadow)
1028 return 1;
1029
1030 return 4;
1031 }
1032 }
1033
1034 static inline unsigned
1035 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1036 {
1037 if (instr->src[src].src_type == nir_tex_src_coord)
1038 return instr->coord_components;
1039
1040
1041 if (instr->src[src].src_type == nir_tex_src_offset ||
1042 instr->src[src].src_type == nir_tex_src_ddx ||
1043 instr->src[src].src_type == nir_tex_src_ddy) {
1044 if (instr->is_array)
1045 return instr->coord_components - 1;
1046 else
1047 return instr->coord_components;
1048 }
1049
1050 return 1;
1051 }
1052
1053 static inline int
1054 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1055 {
1056 for (unsigned i = 0; i < instr->num_srcs; i++)
1057 if (instr->src[i].src_type == type)
1058 return (int) i;
1059
1060 return -1;
1061 }
1062
1063 typedef struct {
1064 union {
1065 float f[4];
1066 int32_t i[4];
1067 uint32_t u[4];
1068 };
1069 } nir_const_value;
1070
1071 typedef struct {
1072 nir_instr instr;
1073
1074 nir_const_value value;
1075
1076 nir_ssa_def def;
1077 } nir_load_const_instr;
1078
1079 typedef enum {
1080 nir_jump_return,
1081 nir_jump_break,
1082 nir_jump_continue,
1083 } nir_jump_type;
1084
1085 typedef struct {
1086 nir_instr instr;
1087 nir_jump_type type;
1088 } nir_jump_instr;
1089
1090 /* creates a new SSA variable in an undefined state */
1091
1092 typedef struct {
1093 nir_instr instr;
1094 nir_ssa_def def;
1095 } nir_ssa_undef_instr;
1096
1097 typedef struct {
1098 struct exec_node node;
1099
1100 /* The predecessor block corresponding to this source */
1101 struct nir_block *pred;
1102
1103 nir_src src;
1104 } nir_phi_src;
1105
1106 #define nir_foreach_phi_src(phi, entry) \
1107 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1108 #define nir_foreach_phi_src_safe(phi, entry) \
1109 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1110
1111 typedef struct {
1112 nir_instr instr;
1113
1114 struct exec_list srcs; /** < list of nir_phi_src */
1115
1116 nir_dest dest;
1117 } nir_phi_instr;
1118
1119 typedef struct {
1120 struct exec_node node;
1121 nir_src src;
1122 nir_dest dest;
1123 } nir_parallel_copy_entry;
1124
1125 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1126 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1127
1128 typedef struct {
1129 nir_instr instr;
1130
1131 /* A list of nir_parallel_copy_entry's. The sources of all of the
1132 * entries are copied to the corresponding destinations "in parallel".
1133 * In other words, if we have two entries: a -> b and b -> a, the values
1134 * get swapped.
1135 */
1136 struct exec_list entries;
1137 } nir_parallel_copy_instr;
1138
1139 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1140 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1141 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1142 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1143 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1144 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1145 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1146 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1147 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1148 nir_parallel_copy_instr, instr)
1149
1150 /*
1151 * Control flow
1152 *
1153 * Control flow consists of a tree of control flow nodes, which include
1154 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1155 * instructions that always run start-to-finish. Each basic block also keeps
1156 * track of its successors (blocks which may run immediately after the current
1157 * block) and predecessors (blocks which could have run immediately before the
1158 * current block). Each function also has a start block and an end block which
1159 * all return statements point to (which is always empty). Together, all the
1160 * blocks with their predecessors and successors make up the control flow
1161 * graph (CFG) of the function. There are helpers that modify the tree of
1162 * control flow nodes while modifying the CFG appropriately; these should be
1163 * used instead of modifying the tree directly.
1164 */
1165
1166 typedef enum {
1167 nir_cf_node_block,
1168 nir_cf_node_if,
1169 nir_cf_node_loop,
1170 nir_cf_node_function
1171 } nir_cf_node_type;
1172
1173 typedef struct nir_cf_node {
1174 struct exec_node node;
1175 nir_cf_node_type type;
1176 struct nir_cf_node *parent;
1177 } nir_cf_node;
1178
1179 typedef struct nir_block {
1180 nir_cf_node cf_node;
1181
1182 struct exec_list instr_list; /** < list of nir_instr */
1183
1184 /** generic block index; generated by nir_index_blocks */
1185 unsigned index;
1186
1187 /*
1188 * Each block can only have up to 2 successors, so we put them in a simple
1189 * array - no need for anything more complicated.
1190 */
1191 struct nir_block *successors[2];
1192
1193 /* Set of nir_block predecessors in the CFG */
1194 struct set *predecessors;
1195
1196 /*
1197 * this node's immediate dominator in the dominance tree - set to NULL for
1198 * the start block.
1199 */
1200 struct nir_block *imm_dom;
1201
1202 /* This node's children in the dominance tree */
1203 unsigned num_dom_children;
1204 struct nir_block **dom_children;
1205
1206 /* Set of nir_block's on the dominance frontier of this block */
1207 struct set *dom_frontier;
1208
1209 /*
1210 * These two indices have the property that dom_{pre,post}_index for each
1211 * child of this block in the dominance tree will always be between
1212 * dom_pre_index and dom_post_index for this block, which makes testing if
1213 * a given block is dominated by another block an O(1) operation.
1214 */
1215 unsigned dom_pre_index, dom_post_index;
1216
1217 /* live in and out for this block; used for liveness analysis */
1218 BITSET_WORD *live_in;
1219 BITSET_WORD *live_out;
1220 } nir_block;
1221
1222 static inline nir_instr *
1223 nir_block_first_instr(nir_block *block)
1224 {
1225 struct exec_node *head = exec_list_get_head(&block->instr_list);
1226 return exec_node_data(nir_instr, head, node);
1227 }
1228
1229 static inline nir_instr *
1230 nir_block_last_instr(nir_block *block)
1231 {
1232 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1233 return exec_node_data(nir_instr, tail, node);
1234 }
1235
1236 #define nir_foreach_instr(block, instr) \
1237 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1238 #define nir_foreach_instr_reverse(block, instr) \
1239 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1240 #define nir_foreach_instr_safe(block, instr) \
1241 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1242 #define nir_foreach_instr_safe_reverse(block, instr) \
1243 foreach_list_typed_safe_reverse(nir_instr, instr, node, &(block)->instr_list)
1244
1245 typedef struct nir_if {
1246 nir_cf_node cf_node;
1247 nir_src condition;
1248
1249 struct exec_list then_list; /** < list of nir_cf_node */
1250 struct exec_list else_list; /** < list of nir_cf_node */
1251 } nir_if;
1252
1253 static inline nir_cf_node *
1254 nir_if_first_then_node(nir_if *if_stmt)
1255 {
1256 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1257 return exec_node_data(nir_cf_node, head, node);
1258 }
1259
1260 static inline nir_cf_node *
1261 nir_if_last_then_node(nir_if *if_stmt)
1262 {
1263 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1264 return exec_node_data(nir_cf_node, tail, node);
1265 }
1266
1267 static inline nir_cf_node *
1268 nir_if_first_else_node(nir_if *if_stmt)
1269 {
1270 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1271 return exec_node_data(nir_cf_node, head, node);
1272 }
1273
1274 static inline nir_cf_node *
1275 nir_if_last_else_node(nir_if *if_stmt)
1276 {
1277 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1278 return exec_node_data(nir_cf_node, tail, node);
1279 }
1280
1281 typedef struct {
1282 nir_cf_node cf_node;
1283
1284 struct exec_list body; /** < list of nir_cf_node */
1285 } nir_loop;
1286
1287 static inline nir_cf_node *
1288 nir_loop_first_cf_node(nir_loop *loop)
1289 {
1290 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1291 }
1292
1293 static inline nir_cf_node *
1294 nir_loop_last_cf_node(nir_loop *loop)
1295 {
1296 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1297 }
1298
1299 /**
1300 * Various bits of metadata that can may be created or required by
1301 * optimization and analysis passes
1302 */
1303 typedef enum {
1304 nir_metadata_none = 0x0,
1305 nir_metadata_block_index = 0x1,
1306 nir_metadata_dominance = 0x2,
1307 nir_metadata_live_variables = 0x4,
1308 } nir_metadata;
1309
1310 typedef struct {
1311 nir_cf_node cf_node;
1312
1313 /** pointer to the overload of which this is an implementation */
1314 struct nir_function_overload *overload;
1315
1316 struct exec_list body; /** < list of nir_cf_node */
1317
1318 nir_block *end_block;
1319
1320 /** list for all local variables in the function */
1321 struct exec_list locals;
1322
1323 /** array of variables used as parameters */
1324 unsigned num_params;
1325 nir_variable **params;
1326
1327 /** variable used to hold the result of the function */
1328 nir_variable *return_var;
1329
1330 /** list of local registers in the function */
1331 struct exec_list registers;
1332
1333 /** next available local register index */
1334 unsigned reg_alloc;
1335
1336 /** next available SSA value index */
1337 unsigned ssa_alloc;
1338
1339 /* total number of basic blocks, only valid when block_index_dirty = false */
1340 unsigned num_blocks;
1341
1342 nir_metadata valid_metadata;
1343 } nir_function_impl;
1344
1345 static inline nir_block *
1346 nir_start_block(nir_function_impl *impl)
1347 {
1348 return (nir_block *) exec_list_get_head(&impl->body);
1349 }
1350
1351 static inline nir_cf_node *
1352 nir_cf_node_next(nir_cf_node *node)
1353 {
1354 struct exec_node *next = exec_node_get_next(&node->node);
1355 if (exec_node_is_tail_sentinel(next))
1356 return NULL;
1357 else
1358 return exec_node_data(nir_cf_node, next, node);
1359 }
1360
1361 static inline nir_cf_node *
1362 nir_cf_node_prev(nir_cf_node *node)
1363 {
1364 struct exec_node *prev = exec_node_get_prev(&node->node);
1365 if (exec_node_is_head_sentinel(prev))
1366 return NULL;
1367 else
1368 return exec_node_data(nir_cf_node, prev, node);
1369 }
1370
1371 static inline bool
1372 nir_cf_node_is_first(const nir_cf_node *node)
1373 {
1374 return exec_node_is_head_sentinel(node->node.prev);
1375 }
1376
1377 static inline bool
1378 nir_cf_node_is_last(const nir_cf_node *node)
1379 {
1380 return exec_node_is_tail_sentinel(node->node.next);
1381 }
1382
1383 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1384 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1385 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1386 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1387
1388 typedef enum {
1389 nir_parameter_in,
1390 nir_parameter_out,
1391 nir_parameter_inout,
1392 } nir_parameter_type;
1393
1394 typedef struct {
1395 nir_parameter_type param_type;
1396 const struct glsl_type *type;
1397 } nir_parameter;
1398
1399 typedef struct nir_function_overload {
1400 struct exec_node node;
1401
1402 unsigned num_params;
1403 nir_parameter *params;
1404 const struct glsl_type *return_type;
1405
1406 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1407
1408 /** pointer to the function of which this is an overload */
1409 struct nir_function *function;
1410 } nir_function_overload;
1411
1412 typedef struct nir_function {
1413 struct exec_node node;
1414
1415 struct exec_list overload_list; /** < list of nir_function_overload */
1416 const char *name;
1417 struct nir_shader *shader;
1418 } nir_function;
1419
1420 #define nir_function_first_overload(func) \
1421 exec_node_data(nir_function_overload, \
1422 exec_list_get_head(&(func)->overload_list), node)
1423
1424 typedef struct nir_shader_compiler_options {
1425 bool lower_ffma;
1426 bool lower_flrp;
1427 bool lower_fpow;
1428 bool lower_fsat;
1429 bool lower_fsqrt;
1430 /** lowers fneg and ineg to fsub and isub. */
1431 bool lower_negate;
1432 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1433 bool lower_sub;
1434
1435 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1436 bool lower_scmp;
1437
1438 /* Does the native fdot instruction replicate its result for four
1439 * components? If so, then opt_algebraic_late will turn all fdotN
1440 * instructions into fdot_replicatedN instructions.
1441 */
1442 bool fdot_replicates;
1443
1444 /** lowers ffract to fsub+ffloor: */
1445 bool lower_ffract;
1446
1447 /**
1448 * Does the driver support real 32-bit integers? (Otherwise, integers
1449 * are simulated by floats.)
1450 */
1451 bool native_integers;
1452 } nir_shader_compiler_options;
1453
1454 typedef struct nir_shader {
1455 /** hash table of name -> uniform nir_variable */
1456 struct exec_list uniforms;
1457
1458 /** hash table of name -> input nir_variable */
1459 struct exec_list inputs;
1460
1461 /** hash table of name -> output nir_variable */
1462 struct exec_list outputs;
1463
1464 /** Set of driver-specific options for the shader.
1465 *
1466 * The memory for the options is expected to be kept in a single static
1467 * copy by the driver.
1468 */
1469 const struct nir_shader_compiler_options *options;
1470
1471 /** list of global variables in the shader */
1472 struct exec_list globals;
1473
1474 /** list of system value variables in the shader */
1475 struct exec_list system_values;
1476
1477 struct exec_list functions; /** < list of nir_function */
1478
1479 /** list of global register in the shader */
1480 struct exec_list registers;
1481
1482 /** next available global register index */
1483 unsigned reg_alloc;
1484
1485 /**
1486 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1487 * access plus one
1488 */
1489 unsigned num_inputs, num_uniforms, num_outputs;
1490
1491 /** The shader stage, such as MESA_SHADER_VERTEX. */
1492 gl_shader_stage stage;
1493
1494 struct {
1495 /** The maximum number of vertices the geometry shader might write. */
1496 unsigned vertices_out;
1497
1498 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1499 unsigned invocations;
1500 } gs;
1501 } nir_shader;
1502
1503 #define nir_foreach_overload(shader, overload) \
1504 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1505 foreach_list_typed(nir_function_overload, overload, node, \
1506 &(func)->overload_list)
1507
1508 nir_shader *nir_shader_create(void *mem_ctx,
1509 gl_shader_stage stage,
1510 const nir_shader_compiler_options *options);
1511
1512 /** creates a register, including assigning it an index and adding it to the list */
1513 nir_register *nir_global_reg_create(nir_shader *shader);
1514
1515 nir_register *nir_local_reg_create(nir_function_impl *impl);
1516
1517 void nir_reg_remove(nir_register *reg);
1518
1519 /** creates a function and adds it to the shader's list of functions */
1520 nir_function *nir_function_create(nir_shader *shader, const char *name);
1521
1522 /** creates a null function returning null */
1523 nir_function_overload *nir_function_overload_create(nir_function *func);
1524
1525 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1526
1527 nir_block *nir_block_create(void *mem_ctx);
1528 nir_if *nir_if_create(void *mem_ctx);
1529 nir_loop *nir_loop_create(void *mem_ctx);
1530
1531 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1532
1533 /** requests that the given pieces of metadata be generated */
1534 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1535 /** dirties all but the preserved metadata */
1536 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1537
1538 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1539 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1540
1541 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1542
1543 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1544 unsigned num_components);
1545
1546 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1547 nir_intrinsic_op op);
1548
1549 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1550 nir_function_overload *callee);
1551
1552 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1553
1554 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1555
1556 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1557
1558 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1559 unsigned num_components);
1560
1561 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1562 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1563 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1564
1565 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1566
1567 nir_load_const_instr *
1568 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1569
1570 /**
1571 * NIR Cursors and Instruction Insertion API
1572 * @{
1573 *
1574 * A tiny struct representing a point to insert/extract instructions or
1575 * control flow nodes. Helps reduce the combinatorial explosion of possible
1576 * points to insert/extract.
1577 *
1578 * \sa nir_control_flow.h
1579 */
1580 typedef enum {
1581 nir_cursor_before_block,
1582 nir_cursor_after_block,
1583 nir_cursor_before_instr,
1584 nir_cursor_after_instr,
1585 } nir_cursor_option;
1586
1587 typedef struct {
1588 nir_cursor_option option;
1589 union {
1590 nir_block *block;
1591 nir_instr *instr;
1592 };
1593 } nir_cursor;
1594
1595 static inline nir_cursor
1596 nir_before_block(nir_block *block)
1597 {
1598 nir_cursor cursor;
1599 cursor.option = nir_cursor_before_block;
1600 cursor.block = block;
1601 return cursor;
1602 }
1603
1604 static inline nir_cursor
1605 nir_after_block(nir_block *block)
1606 {
1607 nir_cursor cursor;
1608 cursor.option = nir_cursor_after_block;
1609 cursor.block = block;
1610 return cursor;
1611 }
1612
1613 static inline nir_cursor
1614 nir_before_instr(nir_instr *instr)
1615 {
1616 nir_cursor cursor;
1617 cursor.option = nir_cursor_before_instr;
1618 cursor.instr = instr;
1619 return cursor;
1620 }
1621
1622 static inline nir_cursor
1623 nir_after_instr(nir_instr *instr)
1624 {
1625 nir_cursor cursor;
1626 cursor.option = nir_cursor_after_instr;
1627 cursor.instr = instr;
1628 return cursor;
1629 }
1630
1631 static inline nir_cursor
1632 nir_after_block_before_jump(nir_block *block)
1633 {
1634 nir_instr *last_instr = nir_block_last_instr(block);
1635 if (last_instr && last_instr->type == nir_instr_type_jump) {
1636 return nir_before_instr(last_instr);
1637 } else {
1638 return nir_after_block(block);
1639 }
1640 }
1641
1642 static inline nir_cursor
1643 nir_before_cf_node(nir_cf_node *node)
1644 {
1645 if (node->type == nir_cf_node_block)
1646 return nir_before_block(nir_cf_node_as_block(node));
1647
1648 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1649 }
1650
1651 static inline nir_cursor
1652 nir_after_cf_node(nir_cf_node *node)
1653 {
1654 if (node->type == nir_cf_node_block)
1655 return nir_after_block(nir_cf_node_as_block(node));
1656
1657 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1658 }
1659
1660 static inline nir_cursor
1661 nir_before_cf_list(struct exec_list *cf_list)
1662 {
1663 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1664 exec_list_get_head(cf_list), node);
1665 return nir_before_cf_node(first_node);
1666 }
1667
1668 static inline nir_cursor
1669 nir_after_cf_list(struct exec_list *cf_list)
1670 {
1671 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1672 exec_list_get_tail(cf_list), node);
1673 return nir_after_cf_node(last_node);
1674 }
1675
1676 /**
1677 * Insert a NIR instruction at the given cursor.
1678 *
1679 * Note: This does not update the cursor.
1680 */
1681 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1682
1683 static inline void
1684 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1685 {
1686 nir_instr_insert(nir_before_instr(instr), before);
1687 }
1688
1689 static inline void
1690 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1691 {
1692 nir_instr_insert(nir_after_instr(instr), after);
1693 }
1694
1695 static inline void
1696 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1697 {
1698 nir_instr_insert(nir_before_block(block), before);
1699 }
1700
1701 static inline void
1702 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
1703 {
1704 nir_instr_insert(nir_after_block(block), after);
1705 }
1706
1707 static inline void
1708 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
1709 {
1710 nir_instr_insert(nir_before_cf_node(node), before);
1711 }
1712
1713 static inline void
1714 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
1715 {
1716 nir_instr_insert(nir_after_cf_node(node), after);
1717 }
1718
1719 static inline void
1720 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
1721 {
1722 nir_instr_insert(nir_before_cf_list(list), before);
1723 }
1724
1725 static inline void
1726 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
1727 {
1728 nir_instr_insert(nir_after_cf_list(list), after);
1729 }
1730
1731 void nir_instr_remove(nir_instr *instr);
1732
1733 /** @} */
1734
1735 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1736 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1737 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1738 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1739 void *state);
1740 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1741 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1742
1743 nir_const_value *nir_src_as_const_value(nir_src src);
1744 bool nir_srcs_equal(nir_src src1, nir_src src2);
1745 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1746 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1747 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1748 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
1749 nir_dest new_dest);
1750
1751 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1752 unsigned num_components, const char *name);
1753 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1754 unsigned num_components, const char *name);
1755 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
1756
1757 /* visits basic blocks in source-code order */
1758 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1759 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1760 void *state);
1761 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1762 void *state);
1763 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
1764 void *state);
1765
1766 /* If the following CF node is an if, this function returns that if.
1767 * Otherwise, it returns NULL.
1768 */
1769 nir_if *nir_block_get_following_if(nir_block *block);
1770
1771 nir_loop *nir_block_get_following_loop(nir_block *block);
1772
1773 void nir_index_local_regs(nir_function_impl *impl);
1774 void nir_index_global_regs(nir_shader *shader);
1775 void nir_index_ssa_defs(nir_function_impl *impl);
1776
1777 void nir_index_blocks(nir_function_impl *impl);
1778
1779 void nir_print_shader(nir_shader *shader, FILE *fp);
1780 void nir_print_instr(const nir_instr *instr, FILE *fp);
1781
1782 #ifdef DEBUG
1783 void nir_validate_shader(nir_shader *shader);
1784 #else
1785 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1786 #endif /* DEBUG */
1787
1788 void nir_calc_dominance_impl(nir_function_impl *impl);
1789 void nir_calc_dominance(nir_shader *shader);
1790
1791 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1792 bool nir_block_dominates(nir_block *parent, nir_block *child);
1793
1794 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1795 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1796
1797 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1798 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1799
1800 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1801 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1802
1803 void nir_split_var_copies(nir_shader *shader);
1804
1805 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1806 void nir_lower_var_copies(nir_shader *shader);
1807
1808 void nir_lower_global_vars_to_local(nir_shader *shader);
1809
1810 void nir_lower_locals_to_regs(nir_shader *shader);
1811
1812 void nir_lower_outputs_to_temporaries(nir_shader *shader);
1813
1814 void nir_assign_var_locations(struct exec_list *var_list,
1815 unsigned *size,
1816 int (*type_size)(const struct glsl_type *));
1817
1818 void nir_lower_io(nir_shader *shader,
1819 int (*type_size)(const struct glsl_type *));
1820 void nir_lower_vars_to_ssa(nir_shader *shader);
1821
1822 void nir_remove_dead_variables(nir_shader *shader);
1823
1824 void nir_lower_vec_to_movs(nir_shader *shader);
1825 void nir_lower_alu_to_scalar(nir_shader *shader);
1826 void nir_lower_load_const_to_scalar(nir_shader *shader);
1827
1828 void nir_lower_phis_to_scalar(nir_shader *shader);
1829
1830 void nir_lower_samplers(nir_shader *shader,
1831 const struct gl_shader_program *shader_program);
1832
1833 void nir_lower_system_values(nir_shader *shader);
1834 void nir_lower_tex_projector(nir_shader *shader);
1835 void nir_lower_idiv(nir_shader *shader);
1836
1837 void nir_lower_atomics(nir_shader *shader);
1838 void nir_lower_to_source_mods(nir_shader *shader);
1839
1840 void nir_normalize_cubemap_coords(nir_shader *shader);
1841
1842 void nir_live_variables_impl(nir_function_impl *impl);
1843 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1844
1845 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1846 void nir_convert_to_ssa(nir_shader *shader);
1847
1848 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
1849 * registers. If false, convert all values (even those not involved in a phi
1850 * node) to registers.
1851 */
1852 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
1853
1854 bool nir_opt_algebraic(nir_shader *shader);
1855 bool nir_opt_algebraic_late(nir_shader *shader);
1856 bool nir_opt_constant_folding(nir_shader *shader);
1857
1858 bool nir_opt_global_to_local(nir_shader *shader);
1859
1860 bool nir_copy_prop_impl(nir_function_impl *impl);
1861 bool nir_copy_prop(nir_shader *shader);
1862
1863 bool nir_opt_cse(nir_shader *shader);
1864
1865 bool nir_opt_dce_impl(nir_function_impl *impl);
1866 bool nir_opt_dce(nir_shader *shader);
1867
1868 bool nir_opt_dead_cf(nir_shader *shader);
1869
1870 void nir_opt_gcm(nir_shader *shader);
1871
1872 bool nir_opt_peephole_select(nir_shader *shader);
1873 bool nir_opt_peephole_ffma(nir_shader *shader);
1874
1875 bool nir_opt_remove_phis(nir_shader *shader);
1876
1877 bool nir_opt_undef(nir_shader *shader);
1878
1879 void nir_sweep(nir_shader *shader);
1880
1881 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
1882
1883 #ifdef __cplusplus
1884 } /* extern "C" */
1885 #endif