nir: Make intrinsic flags into an enum
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "main/set.h"
32 #include "../list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/ralloc.h"
35 #include "main/mtypes.h"
36 #include "main/bitset.h"
37 #include "nir_types.h"
38 #include <stdio.h>
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 #define NIR_FALSE 0u
45 #define NIR_TRUE (~0u)
46
47 /** Defines a cast function
48 *
49 * This macro defines a cast function from in_type to out_type where
50 * out_type is some structure type that contains a field of type out_type.
51 *
52 * Note that you have to be a bit careful as the generated cast function
53 * destroys constness.
54 */
55 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
56 static inline out_type * \
57 name(const in_type *parent) \
58 { \
59 return exec_node_data(out_type, parent, field); \
60 }
61
62 struct nir_function_overload;
63 struct nir_function;
64 struct nir_shader;
65
66
67 /**
68 * Description of built-in state associated with a uniform
69 *
70 * \sa nir_variable::state_slots
71 */
72 typedef struct {
73 int tokens[5];
74 int swizzle;
75 } nir_state_slot;
76
77 typedef enum {
78 nir_var_shader_in,
79 nir_var_shader_out,
80 nir_var_global,
81 nir_var_local,
82 nir_var_uniform,
83 nir_var_system_value
84 } nir_variable_mode;
85
86 /**
87 * Data stored in an nir_constant
88 */
89 union nir_constant_data {
90 unsigned u[16];
91 int i[16];
92 float f[16];
93 bool b[16];
94 };
95
96 typedef struct nir_constant {
97 /**
98 * Value of the constant.
99 *
100 * The field used to back the values supplied by the constant is determined
101 * by the type associated with the \c nir_variable. Constants may be
102 * scalars, vectors, or matrices.
103 */
104 union nir_constant_data value;
105
106 /* Array elements / Structure Fields */
107 struct nir_constant **elements;
108 } nir_constant;
109
110 /**
111 * \brief Layout qualifiers for gl_FragDepth.
112 *
113 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
114 * with a layout qualifier.
115 */
116 typedef enum {
117 nir_depth_layout_none, /**< No depth layout is specified. */
118 nir_depth_layout_any,
119 nir_depth_layout_greater,
120 nir_depth_layout_less,
121 nir_depth_layout_unchanged
122 } nir_depth_layout;
123
124 /**
125 * Either a uniform, global variable, shader input, or shader output. Based on
126 * ir_variable - it should be easy to translate between the two.
127 */
128
129 typedef struct {
130 struct exec_node node;
131
132 /**
133 * Declared type of the variable
134 */
135 const struct glsl_type *type;
136
137 /**
138 * Declared name of the variable
139 */
140 char *name;
141
142 /**
143 * For variables which satisfy the is_interface_instance() predicate, this
144 * points to an array of integers such that if the ith member of the
145 * interface block is an array, max_ifc_array_access[i] is the maximum
146 * array element of that member that has been accessed. If the ith member
147 * of the interface block is not an array, max_ifc_array_access[i] is
148 * unused.
149 *
150 * For variables whose type is not an interface block, this pointer is
151 * NULL.
152 */
153 unsigned *max_ifc_array_access;
154
155 struct nir_variable_data {
156
157 /**
158 * Is the variable read-only?
159 *
160 * This is set for variables declared as \c const, shader inputs,
161 * and uniforms.
162 */
163 unsigned read_only:1;
164 unsigned centroid:1;
165 unsigned sample:1;
166 unsigned invariant:1;
167
168 /**
169 * Storage class of the variable.
170 *
171 * \sa nir_variable_mode
172 */
173 nir_variable_mode mode:4;
174
175 /**
176 * Interpolation mode for shader inputs / outputs
177 *
178 * \sa glsl_interp_qualifier
179 */
180 unsigned interpolation:2;
181
182 /**
183 * \name ARB_fragment_coord_conventions
184 * @{
185 */
186 unsigned origin_upper_left:1;
187 unsigned pixel_center_integer:1;
188 /*@}*/
189
190 /**
191 * Was the location explicitly set in the shader?
192 *
193 * If the location is explicitly set in the shader, it \b cannot be changed
194 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
195 * no effect).
196 */
197 unsigned explicit_location:1;
198 unsigned explicit_index:1;
199
200 /**
201 * Was an initial binding explicitly set in the shader?
202 *
203 * If so, constant_initializer contains an integer nir_constant
204 * representing the initial binding point.
205 */
206 unsigned explicit_binding:1;
207
208 /**
209 * Does this variable have an initializer?
210 *
211 * This is used by the linker to cross-validiate initializers of global
212 * variables.
213 */
214 unsigned has_initializer:1;
215
216 /**
217 * Is this variable a generic output or input that has not yet been matched
218 * up to a variable in another stage of the pipeline?
219 *
220 * This is used by the linker as scratch storage while assigning locations
221 * to generic inputs and outputs.
222 */
223 unsigned is_unmatched_generic_inout:1;
224
225 /**
226 * If non-zero, then this variable may be packed along with other variables
227 * into a single varying slot, so this offset should be applied when
228 * accessing components. For example, an offset of 1 means that the x
229 * component of this variable is actually stored in component y of the
230 * location specified by \c location.
231 */
232 unsigned location_frac:2;
233
234 /**
235 * Non-zero if this variable was created by lowering a named interface
236 * block which was not an array.
237 *
238 * Note that this variable and \c from_named_ifc_block_array will never
239 * both be non-zero.
240 */
241 unsigned from_named_ifc_block_nonarray:1;
242
243 /**
244 * Non-zero if this variable was created by lowering a named interface
245 * block which was an array.
246 *
247 * Note that this variable and \c from_named_ifc_block_nonarray will never
248 * both be non-zero.
249 */
250 unsigned from_named_ifc_block_array:1;
251
252 /**
253 * \brief Layout qualifier for gl_FragDepth.
254 *
255 * This is not equal to \c ir_depth_layout_none if and only if this
256 * variable is \c gl_FragDepth and a layout qualifier is specified.
257 */
258 nir_depth_layout depth_layout;
259
260 /**
261 * Storage location of the base of this variable
262 *
263 * The precise meaning of this field depends on the nature of the variable.
264 *
265 * - Vertex shader input: one of the values from \c gl_vert_attrib.
266 * - Vertex shader output: one of the values from \c gl_varying_slot.
267 * - Geometry shader input: one of the values from \c gl_varying_slot.
268 * - Geometry shader output: one of the values from \c gl_varying_slot.
269 * - Fragment shader input: one of the values from \c gl_varying_slot.
270 * - Fragment shader output: one of the values from \c gl_frag_result.
271 * - Uniforms: Per-stage uniform slot number for default uniform block.
272 * - Uniforms: Index within the uniform block definition for UBO members.
273 * - Other: This field is not currently used.
274 *
275 * If the variable is a uniform, shader input, or shader output, and the
276 * slot has not been assigned, the value will be -1.
277 */
278 int location;
279
280 /**
281 * The actual location of the variable in the IR. Only valid for inputs
282 * and outputs.
283 */
284 unsigned int driver_location;
285
286 /**
287 * output index for dual source blending.
288 */
289 int index;
290
291 /**
292 * Initial binding point for a sampler or UBO.
293 *
294 * For array types, this represents the binding point for the first element.
295 */
296 int binding;
297
298 /**
299 * Location an atomic counter is stored at.
300 */
301 struct {
302 unsigned buffer_index;
303 unsigned offset;
304 } atomic;
305
306 /**
307 * ARB_shader_image_load_store qualifiers.
308 */
309 struct {
310 bool read_only; /**< "readonly" qualifier. */
311 bool write_only; /**< "writeonly" qualifier. */
312 bool coherent;
313 bool _volatile;
314 bool restrict_flag;
315
316 /** Image internal format if specified explicitly, otherwise GL_NONE. */
317 GLenum format;
318 } image;
319
320 /**
321 * Highest element accessed with a constant expression array index
322 *
323 * Not used for non-array variables.
324 */
325 unsigned max_array_access;
326
327 } data;
328
329 /**
330 * Built-in state that backs this uniform
331 *
332 * Once set at variable creation, \c state_slots must remain invariant.
333 * This is because, ideally, this array would be shared by all clones of
334 * this variable in the IR tree. In other words, we'd really like for it
335 * to be a fly-weight.
336 *
337 * If the variable is not a uniform, \c num_state_slots will be zero and
338 * \c state_slots will be \c NULL.
339 */
340 /*@{*/
341 unsigned num_state_slots; /**< Number of state slots used */
342 nir_state_slot *state_slots; /**< State descriptors. */
343 /*@}*/
344
345 /**
346 * Constant expression assigned in the initializer of the variable
347 */
348 nir_constant *constant_initializer;
349
350 /**
351 * For variables that are in an interface block or are an instance of an
352 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
353 *
354 * \sa ir_variable::location
355 */
356 const struct glsl_type *interface_type;
357 } nir_variable;
358
359 typedef struct {
360 struct exec_node node;
361
362 unsigned num_components; /** < number of vector components */
363 unsigned num_array_elems; /** < size of array (0 for no array) */
364
365 /** generic register index. */
366 unsigned index;
367
368 /** only for debug purposes, can be NULL */
369 const char *name;
370
371 /** whether this register is local (per-function) or global (per-shader) */
372 bool is_global;
373
374 /**
375 * If this flag is set to true, then accessing channels >= num_components
376 * is well-defined, and simply spills over to the next array element. This
377 * is useful for backends that can do per-component accessing, in
378 * particular scalar backends. By setting this flag and making
379 * num_components equal to 1, structures can be packed tightly into
380 * registers and then registers can be accessed per-component to get to
381 * each structure member, even if it crosses vec4 boundaries.
382 */
383 bool is_packed;
384
385 /** set of nir_instr's where this register is used (read from) */
386 struct set *uses;
387
388 /** set of nir_instr's where this register is defined (written to) */
389 struct set *defs;
390
391 /** set of nir_if's where this register is used as a condition */
392 struct set *if_uses;
393 } nir_register;
394
395 typedef enum {
396 nir_instr_type_alu,
397 nir_instr_type_call,
398 nir_instr_type_tex,
399 nir_instr_type_intrinsic,
400 nir_instr_type_load_const,
401 nir_instr_type_jump,
402 nir_instr_type_ssa_undef,
403 nir_instr_type_phi,
404 nir_instr_type_parallel_copy,
405 } nir_instr_type;
406
407 typedef struct {
408 struct exec_node node;
409 nir_instr_type type;
410 struct nir_block *block;
411
412 /* flag for dead code elimination (see nir_opt_dce.c) */
413 bool live;
414 } nir_instr;
415
416 static inline nir_instr *
417 nir_instr_next(const nir_instr *instr)
418 {
419 return exec_node_data(nir_instr, (instr)->node.next, node);
420 }
421
422 static inline nir_instr *
423 nir_instr_prev(const nir_instr *instr)
424 {
425 return exec_node_data(nir_instr, (instr)->node.prev, node);
426 }
427
428 typedef struct {
429 /** for debugging only, can be NULL */
430 const char* name;
431
432 /** generic SSA definition index. */
433 unsigned index;
434
435 /** Index into the live_in and live_out bitfields */
436 unsigned live_index;
437
438 nir_instr *parent_instr;
439
440 /** set of nir_instr's where this register is used (read from) */
441 struct set *uses;
442
443 /** set of nir_if's where this register is used as a condition */
444 struct set *if_uses;
445
446 uint8_t num_components;
447 } nir_ssa_def;
448
449 struct nir_src;
450
451 typedef struct {
452 nir_register *reg;
453 struct nir_src *indirect; /** < NULL for no indirect offset */
454 unsigned base_offset;
455
456 /* TODO use-def chain goes here */
457 } nir_reg_src;
458
459 typedef struct {
460 nir_register *reg;
461 struct nir_src *indirect; /** < NULL for no indirect offset */
462 unsigned base_offset;
463
464 /* TODO def-use chain goes here */
465 } nir_reg_dest;
466
467 typedef struct nir_src {
468 union {
469 nir_reg_src reg;
470 nir_ssa_def *ssa;
471 };
472
473 bool is_ssa;
474 } nir_src;
475
476 typedef struct {
477 union {
478 nir_reg_dest reg;
479 nir_ssa_def ssa;
480 };
481
482 bool is_ssa;
483 } nir_dest;
484
485 nir_src nir_src_copy(nir_src src, void *mem_ctx);
486 nir_dest nir_dest_copy(nir_dest dest, void *mem_ctx);
487
488 typedef struct {
489 nir_src src;
490
491 /**
492 * \name input modifiers
493 */
494 /*@{*/
495 /**
496 * For inputs interpreted as floating point, flips the sign bit. For
497 * inputs interpreted as integers, performs the two's complement negation.
498 */
499 bool negate;
500
501 /**
502 * Clears the sign bit for floating point values, and computes the integer
503 * absolute value for integers. Note that the negate modifier acts after
504 * the absolute value modifier, therefore if both are set then all inputs
505 * will become negative.
506 */
507 bool abs;
508 /*@}*/
509
510 /**
511 * For each input component, says which component of the register it is
512 * chosen from. Note that which elements of the swizzle are used and which
513 * are ignored are based on the write mask for most opcodes - for example,
514 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
515 * a swizzle of {2, x, 1, 0} where x means "don't care."
516 */
517 uint8_t swizzle[4];
518 } nir_alu_src;
519
520 typedef struct {
521 nir_dest dest;
522
523 /**
524 * \name saturate output modifier
525 *
526 * Only valid for opcodes that output floating-point numbers. Clamps the
527 * output to between 0.0 and 1.0 inclusive.
528 */
529
530 bool saturate;
531
532 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
533 } nir_alu_dest;
534
535 #define OPCODE(name, num_inputs, output_size, output_type, \
536 input_sizes, input_types, algebraic_props) \
537 nir_op_##name,
538
539 #define LAST_OPCODE(name) nir_last_opcode = nir_op_##name,
540
541 typedef enum {
542 #include "nir_opcodes.h"
543 nir_num_opcodes = nir_last_opcode + 1
544 } nir_op;
545
546 #undef OPCODE
547 #undef LAST_OPCODE
548
549 typedef enum {
550 nir_type_float,
551 nir_type_int,
552 nir_type_unsigned,
553 nir_type_bool
554 } nir_alu_type;
555
556 typedef enum {
557 NIR_OP_IS_COMMUTATIVE = (1 << 0),
558 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
559 } nir_op_algebraic_property;
560
561 typedef struct {
562 const char *name;
563
564 unsigned num_inputs;
565
566 /**
567 * The number of components in the output
568 *
569 * If non-zero, this is the size of the output and input sizes are
570 * explicitly given; swizzle and writemask are still in effect, but if
571 * the output component is masked out, then the input component may
572 * still be in use.
573 *
574 * If zero, the opcode acts in the standard, per-component manner; the
575 * operation is performed on each component (except the ones that are
576 * masked out) with the input being taken from the input swizzle for
577 * that component.
578 *
579 * The size of some of the inputs may be given (i.e. non-zero) even
580 * though output_size is zero; in that case, the inputs with a zero
581 * size act per-component, while the inputs with non-zero size don't.
582 */
583 unsigned output_size;
584
585 /**
586 * The type of vector that the instruction outputs. Note that the
587 * staurate modifier is only allowed on outputs with the float type.
588 */
589
590 nir_alu_type output_type;
591
592 /**
593 * The number of components in each input
594 */
595 unsigned input_sizes[4];
596
597 /**
598 * The type of vector that each input takes. Note that negate and
599 * absolute value are only allowed on inputs with int or float type and
600 * behave differently on the two.
601 */
602 nir_alu_type input_types[4];
603
604 nir_op_algebraic_property algebraic_properties;
605 } nir_op_info;
606
607 extern const nir_op_info nir_op_infos[nir_num_opcodes];
608
609 typedef struct nir_alu_instr {
610 nir_instr instr;
611 nir_op op;
612 nir_alu_dest dest;
613 nir_alu_src src[];
614 } nir_alu_instr;
615
616 /* is this source channel used? */
617 static inline bool
618 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
619 {
620 if (nir_op_infos[instr->op].input_sizes[src] > 0)
621 return channel < nir_op_infos[instr->op].input_sizes[src];
622
623 return (instr->dest.write_mask >> channel) & 1;
624 }
625
626 typedef enum {
627 nir_deref_type_var,
628 nir_deref_type_array,
629 nir_deref_type_struct
630 } nir_deref_type;
631
632 typedef struct nir_deref {
633 nir_deref_type deref_type;
634 struct nir_deref *child;
635 const struct glsl_type *type;
636 } nir_deref;
637
638 typedef struct {
639 nir_deref deref;
640
641 nir_variable *var;
642 } nir_deref_var;
643
644 /* This enum describes how the array is referenced. If the deref is
645 * direct then the base_offset is used. If the deref is indirect then then
646 * offset is given by base_offset + indirect. If the deref is a wildcard
647 * then the deref refers to all of the elements of the array at the same
648 * time. Wildcard dereferences are only ever allowed in copy_var
649 * intrinsics and the source and destination derefs must have matching
650 * wildcards.
651 */
652 typedef enum {
653 nir_deref_array_type_direct,
654 nir_deref_array_type_indirect,
655 nir_deref_array_type_wildcard,
656 } nir_deref_array_type;
657
658 typedef struct {
659 nir_deref deref;
660
661 nir_deref_array_type deref_array_type;
662 unsigned base_offset;
663 nir_src indirect;
664 } nir_deref_array;
665
666 typedef struct {
667 nir_deref deref;
668
669 unsigned index;
670 } nir_deref_struct;
671
672 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
673 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
674 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
675
676 typedef struct {
677 nir_instr instr;
678
679 unsigned num_params;
680 nir_deref_var **params;
681 nir_deref_var *return_deref;
682
683 struct nir_function_overload *callee;
684 } nir_call_instr;
685
686 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
687 num_variables, num_indices, flags) \
688 nir_intrinsic_##name,
689
690 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
691
692 typedef enum {
693 #include "nir_intrinsics.h"
694 nir_num_intrinsics = nir_last_intrinsic + 1
695 } nir_intrinsic_op;
696
697 #undef INTRINSIC
698 #undef LAST_INTRINSIC
699
700 /** Represents an intrinsic
701 *
702 * An intrinsic is an instruction type for handling things that are
703 * more-or-less regular operations but don't just consume and produce SSA
704 * values like ALU operations do. Intrinsics are not for things that have
705 * special semantic meaning such as phi nodes and parallel copies.
706 * Examples of intrinsics include variable load/store operations, system
707 * value loads, and the like. Even though texturing more-or-less falls
708 * under this category, texturing is its own instruction type because
709 * trying to represent texturing with intrinsics would lead to a
710 * combinatorial explosion of intrinsic opcodes.
711 *
712 * By having a single instruction type for handling a lot of different
713 * cases, optimization passes can look for intrinsics and, for the most
714 * part, completely ignore them. Each intrinsic type also has a few
715 * possible flags that govern whether or not they can be reordered or
716 * eliminated. That way passes like dead code elimination can still work
717 * on intrisics without understanding the meaning of each.
718 *
719 * Each intrinsic has some number of constant indices, some number of
720 * variables, and some number of sources. What these sources, variables,
721 * and indices mean depends on the intrinsic and is documented with the
722 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
723 * instructions are the only types of instruction that can operate on
724 * variables.
725 */
726 typedef struct {
727 nir_instr instr;
728
729 nir_intrinsic_op intrinsic;
730
731 nir_dest dest;
732
733 /** number of components if this is a vectorized intrinsic
734 *
735 * Similarly to ALU operations, some intrinsics are vectorized.
736 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
737 * For vectorized intrinsics, the num_components field specifies the
738 * number of destination components and the number of source components
739 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
740 */
741 uint8_t num_components;
742
743 int const_index[3];
744
745 nir_deref_var *variables[2];
746
747 nir_src src[];
748 } nir_intrinsic_instr;
749
750 /**
751 * \name NIR intrinsics semantic flags
752 *
753 * information about what the compiler can do with the intrinsics.
754 *
755 * \sa nir_intrinsic_info::flags
756 */
757 typedef enum {
758 /**
759 * whether the intrinsic can be safely eliminated if none of its output
760 * value is not being used.
761 */
762 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
763
764 /**
765 * Whether the intrinsic can be reordered with respect to any other
766 * intrinsic, i.e. whether the only reordering dependencies of the
767 * intrinsic are due to the register reads/writes.
768 */
769 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
770 } nir_intrinsic_semantic_flag;
771
772 #define NIR_INTRINSIC_MAX_INPUTS 4
773
774 typedef struct {
775 const char *name;
776
777 unsigned num_srcs; /** < number of register/SSA inputs */
778
779 /** number of components of each input register
780 *
781 * If this value is 0, the number of components is given by the
782 * num_components field of nir_intrinsic_instr.
783 */
784 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
785
786 bool has_dest;
787
788 /** number of components of the output register
789 *
790 * If this value is 0, the number of components is given by the
791 * num_components field of nir_intrinsic_instr.
792 */
793 unsigned dest_components;
794
795 /** the number of inputs/outputs that are variables */
796 unsigned num_variables;
797
798 /** the number of constant indices used by the intrinsic */
799 unsigned num_indices;
800
801 /** semantic flags for calls to this intrinsic */
802 nir_intrinsic_semantic_flag flags;
803 } nir_intrinsic_info;
804
805 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
806
807 /**
808 * \group texture information
809 *
810 * This gives semantic information about textures which is useful to the
811 * frontend, the backend, and lowering passes, but not the optimizer.
812 */
813
814 typedef enum {
815 nir_tex_src_coord,
816 nir_tex_src_projector,
817 nir_tex_src_comparitor, /* shadow comparitor */
818 nir_tex_src_offset,
819 nir_tex_src_bias,
820 nir_tex_src_lod,
821 nir_tex_src_ms_index, /* MSAA sample index */
822 nir_tex_src_ddx,
823 nir_tex_src_ddy,
824 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
825 nir_num_texinput_types
826 } nir_texinput_type;
827
828 typedef enum {
829 nir_texop_tex, /**< Regular texture look-up */
830 nir_texop_txb, /**< Texture look-up with LOD bias */
831 nir_texop_txl, /**< Texture look-up with explicit LOD */
832 nir_texop_txd, /**< Texture look-up with partial derivatvies */
833 nir_texop_txf, /**< Texel fetch with explicit LOD */
834 nir_texop_txf_ms, /**< Multisample texture fetch */
835 nir_texop_txs, /**< Texture size */
836 nir_texop_lod, /**< Texture lod query */
837 nir_texop_tg4, /**< Texture gather */
838 nir_texop_query_levels /**< Texture levels query */
839 } nir_texop;
840
841 typedef struct {
842 nir_instr instr;
843
844 enum glsl_sampler_dim sampler_dim;
845 nir_alu_type dest_type;
846
847 nir_texop op;
848 nir_dest dest;
849 nir_src src[4];
850 nir_texinput_type src_type[4];
851 unsigned num_srcs, coord_components;
852 bool is_array, is_shadow;
853
854 /**
855 * If is_shadow is true, whether this is the old-style shadow that outputs 4
856 * components or the new-style shadow that outputs 1 component.
857 */
858 bool is_new_style_shadow;
859
860 /* constant offset - must be 0 if the offset source is used */
861 int const_offset[4];
862
863 /* gather component selector */
864 unsigned component : 2;
865
866 /** The sampler index
867 *
868 * If this texture instruction has a nir_tex_src_sampler_offset source,
869 * then the sampler index is given by sampler_index + sampler_offset.
870 */
871 unsigned sampler_index;
872
873 /** The size of the sampler array or 0 if it's not an array */
874 unsigned sampler_array_size;
875
876 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
877 } nir_tex_instr;
878
879 static inline unsigned
880 nir_tex_instr_dest_size(nir_tex_instr *instr)
881 {
882 if (instr->op == nir_texop_txs) {
883 unsigned ret;
884 switch (instr->sampler_dim) {
885 case GLSL_SAMPLER_DIM_1D:
886 case GLSL_SAMPLER_DIM_BUF:
887 ret = 1;
888 break;
889 case GLSL_SAMPLER_DIM_2D:
890 case GLSL_SAMPLER_DIM_CUBE:
891 case GLSL_SAMPLER_DIM_MS:
892 case GLSL_SAMPLER_DIM_RECT:
893 case GLSL_SAMPLER_DIM_EXTERNAL:
894 ret = 2;
895 break;
896 case GLSL_SAMPLER_DIM_3D:
897 ret = 3;
898 break;
899 default:
900 assert(0);
901 break;
902 }
903 if (instr->is_array)
904 ret++;
905 return ret;
906 }
907
908 if (instr->op == nir_texop_query_levels)
909 return 2;
910
911 if (instr->is_shadow && instr->is_new_style_shadow)
912 return 1;
913
914 return 4;
915 }
916
917 static inline unsigned
918 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
919 {
920 if (instr->src_type[src] == nir_tex_src_coord)
921 return instr->coord_components;
922
923
924 if (instr->src_type[src] == nir_tex_src_offset ||
925 instr->src_type[src] == nir_tex_src_ddx ||
926 instr->src_type[src] == nir_tex_src_ddy) {
927 if (instr->is_array)
928 return instr->coord_components - 1;
929 else
930 return instr->coord_components;
931 }
932
933 return 1;
934 }
935
936 static inline int
937 nir_tex_instr_src_index(nir_tex_instr *instr, nir_texinput_type type)
938 {
939 for (unsigned i = 0; i < instr->num_srcs; i++)
940 if (instr->src_type[i] == type)
941 return (int) i;
942
943 return -1;
944 }
945
946 typedef struct {
947 union {
948 float f[4];
949 int32_t i[4];
950 uint32_t u[4];
951 };
952 } nir_const_value;
953
954 typedef struct {
955 nir_instr instr;
956
957 nir_const_value value;
958
959 nir_ssa_def def;
960 } nir_load_const_instr;
961
962 typedef enum {
963 nir_jump_return,
964 nir_jump_break,
965 nir_jump_continue,
966 } nir_jump_type;
967
968 typedef struct {
969 nir_instr instr;
970 nir_jump_type type;
971 } nir_jump_instr;
972
973 /* creates a new SSA variable in an undefined state */
974
975 typedef struct {
976 nir_instr instr;
977 nir_ssa_def def;
978 } nir_ssa_undef_instr;
979
980 typedef struct {
981 struct exec_node node;
982
983 /* The predecessor block corresponding to this source */
984 struct nir_block *pred;
985
986 nir_src src;
987 } nir_phi_src;
988
989 typedef struct {
990 nir_instr instr;
991
992 struct exec_list srcs; /** < list of nir_phi_src */
993
994 nir_dest dest;
995 } nir_phi_instr;
996
997 typedef struct {
998 struct exec_node node;
999 nir_src src;
1000 nir_dest dest;
1001 } nir_parallel_copy_entry;
1002
1003 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1004 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1005
1006 typedef struct {
1007 nir_instr instr;
1008
1009 /* A list of nir_parallel_copy_entry's. The sources of all of the
1010 * entries are copied to the corresponding destinations "in parallel".
1011 * In other words, if we have two entries: a -> b and b -> a, the values
1012 * get swapped.
1013 */
1014 struct exec_list entries;
1015 } nir_parallel_copy_instr;
1016
1017 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1018 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1019 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1020 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1021 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1022 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1023 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1024 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1025 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1026 nir_parallel_copy_instr, instr)
1027
1028 /*
1029 * Control flow
1030 *
1031 * Control flow consists of a tree of control flow nodes, which include
1032 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1033 * instructions that always run start-to-finish. Each basic block also keeps
1034 * track of its successors (blocks which may run immediately after the current
1035 * block) and predecessors (blocks which could have run immediately before the
1036 * current block). Each function also has a start block and an end block which
1037 * all return statements point to (which is always empty). Together, all the
1038 * blocks with their predecessors and successors make up the control flow
1039 * graph (CFG) of the function. There are helpers that modify the tree of
1040 * control flow nodes while modifying the CFG appropriately; these should be
1041 * used instead of modifying the tree directly.
1042 */
1043
1044 typedef enum {
1045 nir_cf_node_block,
1046 nir_cf_node_if,
1047 nir_cf_node_loop,
1048 nir_cf_node_function
1049 } nir_cf_node_type;
1050
1051 typedef struct nir_cf_node {
1052 struct exec_node node;
1053 nir_cf_node_type type;
1054 struct nir_cf_node *parent;
1055 } nir_cf_node;
1056
1057 typedef struct nir_block {
1058 nir_cf_node cf_node;
1059
1060 struct exec_list instr_list; /** < list of nir_instr */
1061
1062 /** generic block index; generated by nir_index_blocks */
1063 unsigned index;
1064
1065 /*
1066 * Each block can only have up to 2 successors, so we put them in a simple
1067 * array - no need for anything more complicated.
1068 */
1069 struct nir_block *successors[2];
1070
1071 /* Set of nir_block predecessors in the CFG */
1072 struct set *predecessors;
1073
1074 /*
1075 * this node's immediate dominator in the dominance tree - set to NULL for
1076 * the start block.
1077 */
1078 struct nir_block *imm_dom;
1079
1080 /* This node's children in the dominance tree */
1081 unsigned num_dom_children;
1082 struct nir_block **dom_children;
1083
1084 /* Set of nir_block's on the dominance frontier of this block */
1085 struct set *dom_frontier;
1086
1087 /* live in and out for this block; used for liveness analysis */
1088 BITSET_WORD *live_in;
1089 BITSET_WORD *live_out;
1090 } nir_block;
1091
1092 static inline nir_instr *
1093 nir_block_first_instr(nir_block *block)
1094 {
1095 struct exec_node *head = exec_list_get_head(&block->instr_list);
1096 return exec_node_data(nir_instr, head, node);
1097 }
1098
1099 static inline nir_instr *
1100 nir_block_last_instr(nir_block *block)
1101 {
1102 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1103 return exec_node_data(nir_instr, tail, node);
1104 }
1105
1106 #define nir_foreach_instr(block, instr) \
1107 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1108 #define nir_foreach_instr_reverse(block, instr) \
1109 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1110 #define nir_foreach_instr_safe(block, instr) \
1111 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1112
1113 typedef struct {
1114 nir_cf_node cf_node;
1115 nir_src condition;
1116
1117 struct exec_list then_list; /** < list of nir_cf_node */
1118 struct exec_list else_list; /** < list of nir_cf_node */
1119 } nir_if;
1120
1121 static inline nir_cf_node *
1122 nir_if_first_then_node(nir_if *if_stmt)
1123 {
1124 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1125 return exec_node_data(nir_cf_node, head, node);
1126 }
1127
1128 static inline nir_cf_node *
1129 nir_if_last_then_node(nir_if *if_stmt)
1130 {
1131 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1132 return exec_node_data(nir_cf_node, tail, node);
1133 }
1134
1135 static inline nir_cf_node *
1136 nir_if_first_else_node(nir_if *if_stmt)
1137 {
1138 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1139 return exec_node_data(nir_cf_node, head, node);
1140 }
1141
1142 static inline nir_cf_node *
1143 nir_if_last_else_node(nir_if *if_stmt)
1144 {
1145 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1146 return exec_node_data(nir_cf_node, tail, node);
1147 }
1148
1149 typedef struct {
1150 nir_cf_node cf_node;
1151
1152 struct exec_list body; /** < list of nir_cf_node */
1153 } nir_loop;
1154
1155 static inline nir_cf_node *
1156 nir_loop_first_cf_node(nir_loop *loop)
1157 {
1158 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1159 }
1160
1161 static inline nir_cf_node *
1162 nir_loop_last_cf_node(nir_loop *loop)
1163 {
1164 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1165 }
1166
1167 /**
1168 * Various bits of metadata that can may be created or required by
1169 * optimization and analysis passes
1170 */
1171 typedef enum {
1172 nir_metadata_none = 0x0,
1173 nir_metadata_block_index = 0x1,
1174 nir_metadata_dominance = 0x2,
1175 nir_metadata_live_variables = 0x4,
1176 } nir_metadata;
1177
1178 typedef struct {
1179 nir_cf_node cf_node;
1180
1181 /** pointer to the overload of which this is an implementation */
1182 struct nir_function_overload *overload;
1183
1184 struct exec_list body; /** < list of nir_cf_node */
1185
1186 nir_block *start_block, *end_block;
1187
1188 /** list for all local variables in the function */
1189 struct exec_list locals;
1190
1191 /** array of variables used as parameters */
1192 unsigned num_params;
1193 nir_variable **params;
1194
1195 /** variable used to hold the result of the function */
1196 nir_variable *return_var;
1197
1198 /** list of local registers in the function */
1199 struct exec_list registers;
1200
1201 /** next available local register index */
1202 unsigned reg_alloc;
1203
1204 /** next available SSA value index */
1205 unsigned ssa_alloc;
1206
1207 /* total number of basic blocks, only valid when block_index_dirty = false */
1208 unsigned num_blocks;
1209
1210 nir_metadata valid_metadata;
1211 } nir_function_impl;
1212
1213 static inline nir_cf_node *
1214 nir_cf_node_next(nir_cf_node *node)
1215 {
1216 return exec_node_data(nir_cf_node, exec_node_get_next(&node->node), node);
1217 }
1218
1219 static inline nir_cf_node *
1220 nir_cf_node_prev(nir_cf_node *node)
1221 {
1222 return exec_node_data(nir_cf_node, exec_node_get_prev(&node->node), node);
1223 }
1224
1225 static inline bool
1226 nir_cf_node_is_first(const nir_cf_node *node)
1227 {
1228 return exec_node_is_head_sentinel(node->node.prev);
1229 }
1230
1231 static inline bool
1232 nir_cf_node_is_last(const nir_cf_node *node)
1233 {
1234 return exec_node_is_tail_sentinel(node->node.next);
1235 }
1236
1237 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1238 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1239 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1240 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1241
1242 typedef enum {
1243 nir_parameter_in,
1244 nir_parameter_out,
1245 nir_parameter_inout,
1246 } nir_parameter_type;
1247
1248 typedef struct {
1249 nir_parameter_type param_type;
1250 const struct glsl_type *type;
1251 } nir_parameter;
1252
1253 typedef struct nir_function_overload {
1254 struct exec_node node;
1255
1256 unsigned num_params;
1257 nir_parameter *params;
1258 const struct glsl_type *return_type;
1259
1260 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1261
1262 /** pointer to the function of which this is an overload */
1263 struct nir_function *function;
1264 } nir_function_overload;
1265
1266 typedef struct nir_function {
1267 struct exec_node node;
1268
1269 struct exec_list overload_list; /** < list of nir_function_overload */
1270 const char *name;
1271 struct nir_shader *shader;
1272 } nir_function;
1273
1274 #define nir_function_first_overload(func) \
1275 exec_node_data(nir_function_overload, \
1276 exec_list_get_head(&(func)->overload_list), node)
1277
1278 typedef struct nir_shader {
1279 /** hash table of name -> uniform nir_variable */
1280 struct hash_table *uniforms;
1281
1282 /** hash table of name -> input nir_variable */
1283 struct hash_table *inputs;
1284
1285 /** hash table of name -> output nir_variable */
1286 struct hash_table *outputs;
1287
1288 /** list of global variables in the shader */
1289 struct exec_list globals;
1290
1291 /** list of system value variables in the shader */
1292 struct exec_list system_values;
1293
1294 struct exec_list functions; /** < list of nir_function */
1295
1296 /** list of global register in the shader */
1297 struct exec_list registers;
1298
1299 /** structures used in this shader */
1300 unsigned num_user_structures;
1301 struct glsl_type **user_structures;
1302
1303 /** next available global register index */
1304 unsigned reg_alloc;
1305
1306 /**
1307 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1308 * access plus one
1309 */
1310 unsigned num_inputs, num_uniforms, num_outputs;
1311 } nir_shader;
1312
1313 #define nir_foreach_overload(shader, overload) \
1314 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1315 foreach_list_typed(nir_function_overload, overload, node, \
1316 &(func)->overload_list)
1317
1318 nir_shader *nir_shader_create(void *mem_ctx);
1319
1320 /** creates a register, including assigning it an index and adding it to the list */
1321 nir_register *nir_global_reg_create(nir_shader *shader);
1322
1323 nir_register *nir_local_reg_create(nir_function_impl *impl);
1324
1325 void nir_reg_remove(nir_register *reg);
1326
1327 /** creates a function and adds it to the shader's list of functions */
1328 nir_function *nir_function_create(nir_shader *shader, const char *name);
1329
1330 /** creates a null function returning null */
1331 nir_function_overload *nir_function_overload_create(nir_function *func);
1332
1333 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1334
1335 nir_block *nir_block_create(void *mem_ctx);
1336 nir_if *nir_if_create(void *mem_ctx);
1337 nir_loop *nir_loop_create(void *mem_ctx);
1338
1339 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1340
1341 /** puts a control flow node immediately after another control flow node */
1342 void nir_cf_node_insert_after(nir_cf_node *node, nir_cf_node *after);
1343
1344 /** puts a control flow node immediately before another control flow node */
1345 void nir_cf_node_insert_before(nir_cf_node *node, nir_cf_node *before);
1346
1347 /** puts a control flow node at the beginning of a list from an if, loop, or function */
1348 void nir_cf_node_insert_begin(struct exec_list *list, nir_cf_node *node);
1349
1350 /** puts a control flow node at the end of a list from an if, loop, or function */
1351 void nir_cf_node_insert_end(struct exec_list *list, nir_cf_node *node);
1352
1353 /** removes a control flow node, doing any cleanup necessary */
1354 void nir_cf_node_remove(nir_cf_node *node);
1355
1356 /** requests that the given pieces of metadata be generated */
1357 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1358 /** dirties all but the preserved metadata */
1359 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1360
1361 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1362 nir_alu_instr *nir_alu_instr_create(void *mem_ctx, nir_op op);
1363
1364 nir_jump_instr *nir_jump_instr_create(void *mem_ctx, nir_jump_type type);
1365
1366 nir_load_const_instr *nir_load_const_instr_create(void *mem_ctx,
1367 unsigned num_components);
1368
1369 nir_intrinsic_instr *nir_intrinsic_instr_create(void *mem_ctx,
1370 nir_intrinsic_op op);
1371
1372 nir_call_instr *nir_call_instr_create(void *mem_ctx,
1373 nir_function_overload *callee);
1374
1375 nir_tex_instr *nir_tex_instr_create(void *mem_ctx, unsigned num_srcs);
1376
1377 nir_phi_instr *nir_phi_instr_create(void *mem_ctx);
1378
1379 nir_parallel_copy_instr *nir_parallel_copy_instr_create(void *mem_ctx);
1380
1381 nir_ssa_undef_instr *nir_ssa_undef_instr_create(void *mem_ctx,
1382 unsigned num_components);
1383
1384 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1385 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1386 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1387
1388 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1389
1390 void nir_instr_insert_before(nir_instr *instr, nir_instr *before);
1391 void nir_instr_insert_after(nir_instr *instr, nir_instr *after);
1392
1393 void nir_instr_insert_before_block(nir_block *block, nir_instr *before);
1394 void nir_instr_insert_after_block(nir_block *block, nir_instr *after);
1395
1396 void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before);
1397 void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after);
1398
1399 void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before);
1400 void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after);
1401
1402 void nir_instr_remove(nir_instr *instr);
1403
1404 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1405 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1406 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1407 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1408 void *state);
1409 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1410 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1411
1412 nir_const_value *nir_src_as_const_value(nir_src src);
1413 bool nir_srcs_equal(nir_src src1, nir_src src2);
1414 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1415
1416 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1417 unsigned num_components, const char *name);
1418 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src, void *mem_ctx);
1419
1420 /* visits basic blocks in source-code order */
1421 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1422 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1423 void *state);
1424 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1425 void *state);
1426
1427 /* If the following CF node is an if, this function returns that if.
1428 * Otherwise, it returns NULL.
1429 */
1430 nir_if *nir_block_get_following_if(nir_block *block);
1431
1432 void nir_index_local_regs(nir_function_impl *impl);
1433 void nir_index_global_regs(nir_shader *shader);
1434 void nir_index_ssa_defs(nir_function_impl *impl);
1435
1436 void nir_index_blocks(nir_function_impl *impl);
1437
1438 void nir_print_shader(nir_shader *shader, FILE *fp);
1439
1440 void nir_validate_shader(nir_shader *shader);
1441
1442 void nir_calc_dominance_impl(nir_function_impl *impl);
1443 void nir_calc_dominance(nir_shader *shader);
1444
1445 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1446 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1447
1448 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1449 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1450
1451 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1452 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1453
1454 void nir_split_var_copies(nir_shader *shader);
1455
1456 void nir_lower_global_vars_to_local(nir_shader *shader);
1457
1458 void nir_lower_locals_to_regs(nir_shader *shader);
1459
1460 void nir_lower_io(nir_shader *shader);
1461
1462 void nir_lower_variables(nir_shader *shader);
1463
1464 void nir_remove_dead_variables(nir_shader *shader);
1465
1466 void nir_lower_vec_to_movs(nir_shader *shader);
1467
1468 void nir_lower_samplers(nir_shader *shader,
1469 struct gl_shader_program *shader_program,
1470 struct gl_program *prog);
1471
1472 void nir_lower_system_values(nir_shader *shader);
1473
1474 void nir_lower_atomics(nir_shader *shader);
1475 void nir_lower_to_source_mods(nir_shader *shader);
1476
1477 void nir_live_variables_impl(nir_function_impl *impl);
1478 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1479
1480 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1481 void nir_convert_to_ssa(nir_shader *shader);
1482 void nir_convert_from_ssa(nir_shader *shader);
1483
1484 bool nir_opt_algebraic(nir_shader *shader);
1485 bool nir_opt_constant_folding(nir_shader *shader);
1486
1487 bool nir_opt_global_to_local(nir_shader *shader);
1488
1489 bool nir_copy_prop_impl(nir_function_impl *impl);
1490 bool nir_copy_prop(nir_shader *shader);
1491
1492 bool nir_opt_cse(nir_shader *shader);
1493
1494 bool nir_opt_dce_impl(nir_function_impl *impl);
1495 bool nir_opt_dce(nir_shader *shader);
1496
1497 bool nir_opt_peephole_select(nir_shader *shader);
1498 bool nir_opt_peephole_ffma(nir_shader *shader);
1499
1500 #ifdef __cplusplus
1501 } /* extern "C" */
1502 #endif