nir/from_ssa: Use the nir_block_dominance function instead of our own
[mesa.git] / src / glsl / nir / nir_from_ssa.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "nir.h"
29
30 /*
31 * This file implements an out-of-SSA pass as described in "Revisiting
32 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
33 * Boissinot et. al.
34 */
35
36 struct from_ssa_state {
37 void *mem_ctx;
38 void *dead_ctx;
39 struct hash_table *ssa_table;
40 struct hash_table *merge_node_table;
41 nir_instr *instr;
42 nir_function_impl *impl;
43 };
44
45 /* Returns true if a dominates b */
46 static bool
47 ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
48 {
49 if (a->live_index == 0) {
50 /* SSA undefs always dominate */
51 return true;
52 } else if (b->live_index < a->live_index) {
53 return false;
54 } else if (a->parent_instr->block == b->parent_instr->block) {
55 return a->live_index <= b->live_index;
56 } else {
57 return nir_block_dominates(a->parent_instr->block,
58 b->parent_instr->block);
59 }
60 }
61
62
63 /* The following data structure, which I have named merge_set is a way of
64 * representing a set registers of non-interfering registers. This is
65 * based on the concept of a "dominence forest" presented in "Fast Copy
66 * Coalescing and Live-Range Identification" by Budimlic et. al. but the
67 * implementation concept is taken from "Revisiting Out-of-SSA Translation
68 * for Correctness, Code Quality, and Efficiency" by Boissinot et. al..
69 *
70 * Each SSA definition is associated with a merge_node and the association
71 * is represented by a combination of a hash table and the "def" parameter
72 * in the merge_node structure. The merge_set stores a linked list of
73 * merge_node's in dominence order of the ssa definitions. (Since the
74 * liveness analysis pass indexes the SSA values in dominence order for us,
75 * this is an easy thing to keep up.) It is assumed that no pair of the
76 * nodes in a given set interfere. Merging two sets or checking for
77 * interference can be done in a single linear-time merge-sort walk of the
78 * two lists of nodes.
79 */
80 struct merge_set;
81
82 typedef struct {
83 struct exec_node node;
84 struct merge_set *set;
85 nir_ssa_def *def;
86 } merge_node;
87
88 typedef struct merge_set {
89 struct exec_list nodes;
90 unsigned size;
91 nir_register *reg;
92 } merge_set;
93
94 #if 0
95 static void
96 merge_set_dump(merge_set *set, FILE *fp)
97 {
98 nir_ssa_def *dom[set->size];
99 int dom_idx = -1;
100
101 foreach_list_typed(merge_node, node, node, &set->nodes) {
102 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
103 dom_idx--;
104
105 for (int i = 0; i <= dom_idx; i++)
106 fprintf(fp, " ");
107
108 if (node->def->name)
109 fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
110 else
111 fprintf(fp, "ssa_%d\n", node->def->index);
112
113 dom[++dom_idx] = node->def;
114 }
115 }
116 #endif
117
118 static merge_node *
119 get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
120 {
121 struct hash_entry *entry =
122 _mesa_hash_table_search(state->merge_node_table, def);
123 if (entry)
124 return entry->data;
125
126 merge_set *set = ralloc(state->dead_ctx, merge_set);
127 exec_list_make_empty(&set->nodes);
128 set->size = 1;
129 set->reg = NULL;
130
131 merge_node *node = ralloc(state->dead_ctx, merge_node);
132 node->set = set;
133 node->def = def;
134 exec_list_push_head(&set->nodes, &node->node);
135
136 _mesa_hash_table_insert(state->merge_node_table, def, node);
137
138 return node;
139 }
140
141 static bool
142 merge_nodes_interfere(merge_node *a, merge_node *b)
143 {
144 return nir_ssa_defs_interfere(a->def, b->def);
145 }
146
147 /* Merges b into a */
148 static merge_set *
149 merge_merge_sets(merge_set *a, merge_set *b)
150 {
151 struct exec_node *an = exec_list_get_head(&a->nodes);
152 struct exec_node *bn = exec_list_get_head(&b->nodes);
153 while (!exec_node_is_tail_sentinel(bn)) {
154 merge_node *a_node = exec_node_data(merge_node, an, node);
155 merge_node *b_node = exec_node_data(merge_node, bn, node);
156
157 if (exec_node_is_tail_sentinel(an) ||
158 a_node->def->live_index > b_node->def->live_index) {
159 struct exec_node *next = bn->next;
160 exec_node_remove(bn);
161 exec_node_insert_node_before(an, bn);
162 exec_node_data(merge_node, bn, node)->set = a;
163 bn = next;
164 } else {
165 an = an->next;
166 }
167 }
168
169 a->size += b->size;
170 b->size = 0;
171
172 return a;
173 }
174
175 /* Checks for any interference between two merge sets
176 *
177 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
178 * Translation for Correctness, Code Quality, and Efficiency" by
179 * Boissinot et. al.
180 */
181 static bool
182 merge_sets_interfere(merge_set *a, merge_set *b)
183 {
184 merge_node *dom[a->size + b->size];
185 int dom_idx = -1;
186
187 struct exec_node *an = exec_list_get_head(&a->nodes);
188 struct exec_node *bn = exec_list_get_head(&b->nodes);
189 while (!exec_node_is_tail_sentinel(an) ||
190 !exec_node_is_tail_sentinel(bn)) {
191
192 merge_node *current;
193 if (exec_node_is_tail_sentinel(an)) {
194 current = exec_node_data(merge_node, bn, node);
195 bn = bn->next;
196 } else if (exec_node_is_tail_sentinel(bn)) {
197 current = exec_node_data(merge_node, an, node);
198 an = an->next;
199 } else {
200 merge_node *a_node = exec_node_data(merge_node, an, node);
201 merge_node *b_node = exec_node_data(merge_node, bn, node);
202
203 if (a_node->def->live_index <= b_node->def->live_index) {
204 current = a_node;
205 an = an->next;
206 } else {
207 current = b_node;
208 bn = bn->next;
209 }
210 }
211
212 while (dom_idx >= 0 &&
213 !ssa_def_dominates(dom[dom_idx]->def, current->def))
214 dom_idx--;
215
216 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
217 return true;
218
219 dom[++dom_idx] = current;
220 }
221
222 return false;
223 }
224
225 static bool
226 add_parallel_copy_to_end_of_block(nir_block *block, void *void_state)
227 {
228 struct from_ssa_state *state = void_state;
229
230 bool need_end_copy = false;
231 if (block->successors[0]) {
232 nir_instr *instr = nir_block_first_instr(block->successors[0]);
233 if (instr && instr->type == nir_instr_type_phi)
234 need_end_copy = true;
235 }
236
237 if (block->successors[1]) {
238 nir_instr *instr = nir_block_first_instr(block->successors[1]);
239 if (instr && instr->type == nir_instr_type_phi)
240 need_end_copy = true;
241 }
242
243 if (need_end_copy) {
244 /* If one of our successors has at least one phi node, we need to
245 * create a parallel copy at the end of the block but before the jump
246 * (if there is one).
247 */
248 nir_parallel_copy_instr *pcopy =
249 nir_parallel_copy_instr_create(state->dead_ctx);
250
251 nir_instr *last_instr = nir_block_last_instr(block);
252 if (last_instr && last_instr->type == nir_instr_type_jump) {
253 nir_instr_insert_before(last_instr, &pcopy->instr);
254 } else {
255 nir_instr_insert_after_block(block, &pcopy->instr);
256 }
257 }
258
259 return true;
260 }
261
262 static nir_parallel_copy_instr *
263 get_parallel_copy_at_end_of_block(nir_block *block)
264 {
265 nir_instr *last_instr = nir_block_last_instr(block);
266 if (last_instr == NULL)
267 return NULL;
268
269 /* The last instruction may be a jump in which case the parallel copy is
270 * right before it.
271 */
272 if (last_instr->type == nir_instr_type_jump)
273 last_instr = nir_instr_prev(last_instr);
274
275 if (last_instr->type == nir_instr_type_parallel_copy)
276 return nir_instr_as_parallel_copy(last_instr);
277 else
278 return NULL;
279 }
280
281 /** Isolate phi nodes with parallel copies
282 *
283 * In order to solve the dependency problems with the sources and
284 * destinations of phi nodes, we first isolate them by adding parallel
285 * copies to the beginnings and ends of basic blocks. For every block with
286 * phi nodes, we add a parallel copy immediately following the last phi
287 * node that copies the destinations of all of the phi nodes to new SSA
288 * values. We also add a parallel copy to the end of every block that has
289 * a successor with phi nodes that, for each phi node in each successor,
290 * copies the corresponding sorce of the phi node and adjust the phi to
291 * used the destination of the parallel copy.
292 *
293 * In SSA form, each value has exactly one definition. What this does is
294 * ensure that each value used in a phi also has exactly one use. The
295 * destinations of phis are only used by the parallel copy immediately
296 * following the phi nodes and. Thanks to the parallel copy at the end of
297 * the predecessor block, the sources of phi nodes are are the only use of
298 * that value. This allows us to immediately assign all the sources and
299 * destinations of any given phi node to the same register without worrying
300 * about interference at all. We do coalescing to get rid of the parallel
301 * copies where possible.
302 *
303 * Before this pass can be run, we have to iterate over the blocks with
304 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
305 * the ends of blocks exist. We can create the ones at the beginnings as
306 * we go, but the ones at the ends of blocks need to be created ahead of
307 * time because of potential back-edges in the CFG.
308 */
309 static bool
310 isolate_phi_nodes_block(nir_block *block, void *void_state)
311 {
312 struct from_ssa_state *state = void_state;
313
314 nir_instr *last_phi_instr = NULL;
315 nir_foreach_instr(block, instr) {
316 /* Phi nodes only ever come at the start of a block */
317 if (instr->type != nir_instr_type_phi)
318 break;
319
320 last_phi_instr = instr;
321 }
322
323 /* If we don't have any phi's, then there's nothing for us to do. */
324 if (last_phi_instr == NULL)
325 return true;
326
327 /* If we have phi nodes, we need to create a parallel copy at the
328 * start of this block but after the phi nodes.
329 */
330 nir_parallel_copy_instr *block_pcopy =
331 nir_parallel_copy_instr_create(state->dead_ctx);
332 nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
333
334 nir_foreach_instr(block, instr) {
335 /* Phi nodes only ever come at the start of a block */
336 if (instr->type != nir_instr_type_phi)
337 break;
338
339 nir_phi_instr *phi = nir_instr_as_phi(instr);
340 assert(phi->dest.is_ssa);
341 nir_foreach_phi_src(phi, src) {
342 nir_parallel_copy_instr *pcopy =
343 get_parallel_copy_at_end_of_block(src->pred);
344 assert(pcopy);
345
346 nir_parallel_copy_entry *entry = ralloc(state->dead_ctx,
347 nir_parallel_copy_entry);
348 exec_list_push_tail(&pcopy->entries, &entry->node);
349
350 nir_src_copy(&entry->src, &src->src, state->dead_ctx);
351 _mesa_set_add(src->src.ssa->uses, &pcopy->instr);
352
353 nir_ssa_dest_init(&pcopy->instr, &entry->dest,
354 phi->dest.ssa.num_components, src->src.ssa->name);
355
356 struct set_entry *use_entry =
357 _mesa_set_search(src->src.ssa->uses, instr);
358 if (use_entry)
359 /* It is possible that a phi node can use the same source twice
360 * but for different basic blocks. If that happens, entry will
361 * be NULL because we already deleted it. This is safe
362 * because, by the time the loop is done, we will have deleted
363 * all of the sources of the phi from their respective use sets
364 * and moved them to the parallel copy definitions.
365 */
366 _mesa_set_remove(src->src.ssa->uses, use_entry);
367
368 src->src.ssa = &entry->dest.ssa;
369 _mesa_set_add(entry->dest.ssa.uses, instr);
370 }
371
372 nir_parallel_copy_entry *entry = ralloc(state->dead_ctx,
373 nir_parallel_copy_entry);
374 exec_list_push_tail(&block_pcopy->entries, &entry->node);
375
376 nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
377 phi->dest.ssa.num_components, phi->dest.ssa.name);
378 nir_ssa_def_rewrite_uses(&phi->dest.ssa,
379 nir_src_for_ssa(&entry->dest.ssa),
380 state->mem_ctx);
381
382 entry->src.is_ssa = true;
383 entry->src.ssa = &phi->dest.ssa;
384 _mesa_set_add(phi->dest.ssa.uses, &block_pcopy->instr);
385 }
386
387 return true;
388 }
389
390 static bool
391 coalesce_phi_nodes_block(nir_block *block, void *void_state)
392 {
393 struct from_ssa_state *state = void_state;
394
395 nir_foreach_instr(block, instr) {
396 /* Phi nodes only ever come at the start of a block */
397 if (instr->type != nir_instr_type_phi)
398 break;
399
400 nir_phi_instr *phi = nir_instr_as_phi(instr);
401
402 assert(phi->dest.is_ssa);
403 merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
404
405 nir_foreach_phi_src(phi, src) {
406 assert(src->src.is_ssa);
407 merge_node *src_node = get_merge_node(src->src.ssa, state);
408 if (src_node->set != dest_node->set)
409 merge_merge_sets(dest_node->set, src_node->set);
410 }
411 }
412
413 return true;
414 }
415
416 static void
417 agressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
418 struct from_ssa_state *state)
419 {
420 nir_foreach_parallel_copy_entry(pcopy, entry) {
421 if (!entry->src.is_ssa)
422 continue;
423
424 /* Since load_const instructions are SSA only, we can't replace their
425 * destinations with registers and, therefore, can't coalesce them.
426 */
427 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
428 continue;
429
430 /* Don't try and coalesce these */
431 if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
432 continue;
433
434 merge_node *src_node = get_merge_node(entry->src.ssa, state);
435 merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
436
437 if (src_node->set == dest_node->set)
438 continue;
439
440 if (!merge_sets_interfere(src_node->set, dest_node->set))
441 merge_merge_sets(src_node->set, dest_node->set);
442 }
443 }
444
445 static bool
446 agressive_coalesce_block(nir_block *block, void *void_state)
447 {
448 struct from_ssa_state *state = void_state;
449
450 nir_parallel_copy_instr *start_pcopy = NULL;
451 nir_foreach_instr(block, instr) {
452 /* Phi nodes only ever come at the start of a block */
453 if (instr->type != nir_instr_type_phi) {
454 if (instr->type != nir_instr_type_parallel_copy)
455 break; /* The parallel copy must be right after the phis */
456
457 start_pcopy = nir_instr_as_parallel_copy(instr);
458
459 agressive_coalesce_parallel_copy(start_pcopy, state);
460
461 break;
462 }
463 }
464
465 nir_parallel_copy_instr *end_pcopy =
466 get_parallel_copy_at_end_of_block(block);
467
468 if (end_pcopy && end_pcopy != start_pcopy)
469 agressive_coalesce_parallel_copy(end_pcopy, state);
470
471 return true;
472 }
473
474 static nir_register *
475 get_register_for_ssa_def(nir_ssa_def *def, struct from_ssa_state *state)
476 {
477 struct hash_entry *entry =
478 _mesa_hash_table_search(state->merge_node_table, def);
479 if (entry) {
480 merge_node *node = (merge_node *)entry->data;
481
482 /* If it doesn't have a register yet, create one. Note that all of
483 * the things in the merge set should be the same so it doesn't
484 * matter which node's definition we use.
485 */
486 if (node->set->reg == NULL) {
487 node->set->reg = nir_local_reg_create(state->impl);
488 node->set->reg->name = def->name;
489 node->set->reg->num_components = def->num_components;
490 node->set->reg->num_array_elems = 0;
491 }
492
493 return node->set->reg;
494 }
495
496 entry = _mesa_hash_table_search(state->ssa_table, def);
497 if (entry) {
498 return (nir_register *)entry->data;
499 } else {
500 /* We leave load_const SSA values alone. They act as immediates to
501 * the backend. If it got coalesced into a phi, that's ok.
502 */
503 if (def->parent_instr->type == nir_instr_type_load_const)
504 return NULL;
505
506 nir_register *reg = nir_local_reg_create(state->impl);
507 reg->name = def->name;
508 reg->num_components = def->num_components;
509 reg->num_array_elems = 0;
510
511 _mesa_hash_table_insert(state->ssa_table, def, reg);
512 return reg;
513 }
514 }
515
516 static bool
517 rewrite_ssa_src(nir_src *src, void *void_state)
518 {
519 struct from_ssa_state *state = void_state;
520
521 if (src->is_ssa) {
522 nir_register *reg = get_register_for_ssa_def(src->ssa, state);
523
524 if (reg == NULL) {
525 assert(src->ssa->parent_instr->type == nir_instr_type_load_const);
526 return true;
527 }
528
529 memset(src, 0, sizeof *src);
530 src->reg.reg = reg;
531
532 /* We don't need to remove it from the uses set because that is going
533 * away. We just need to add it to the one for the register. */
534 _mesa_set_add(reg->uses, state->instr);
535 }
536
537 return true;
538 }
539
540 static bool
541 rewrite_ssa_dest(nir_dest *dest, void *void_state)
542 {
543 struct from_ssa_state *state = void_state;
544
545 if (dest->is_ssa) {
546 nir_register *reg = get_register_for_ssa_def(&dest->ssa, state);
547
548 if (reg == NULL) {
549 assert(dest->ssa.parent_instr->type == nir_instr_type_load_const);
550 return true;
551 }
552
553 _mesa_set_destroy(dest->ssa.uses, NULL);
554 _mesa_set_destroy(dest->ssa.if_uses, NULL);
555
556 memset(dest, 0, sizeof *dest);
557 dest->reg.reg = reg;
558
559 _mesa_set_add(reg->defs, state->instr);
560 }
561
562 return true;
563 }
564
565 /* Resolves ssa definitions to registers. While we're at it, we also
566 * remove phi nodes and ssa_undef instructions
567 */
568 static bool
569 resolve_registers_block(nir_block *block, void *void_state)
570 {
571 struct from_ssa_state *state = void_state;
572
573 nir_foreach_instr_safe(block, instr) {
574 state->instr = instr;
575 nir_foreach_src(instr, rewrite_ssa_src, state);
576 nir_foreach_dest(instr, rewrite_ssa_dest, state);
577
578 if (instr->type == nir_instr_type_ssa_undef ||
579 instr->type == nir_instr_type_phi) {
580 nir_instr_remove(instr);
581 ralloc_steal(state->dead_ctx, instr);
582 }
583 }
584 state->instr = NULL;
585
586 nir_if *following_if = nir_block_get_following_if(block);
587 if (following_if && following_if->condition.is_ssa) {
588 nir_register *reg = get_register_for_ssa_def(following_if->condition.ssa,
589 state);
590 if (reg) {
591 memset(&following_if->condition, 0, sizeof following_if->condition);
592 following_if->condition.reg.reg = reg;
593
594 _mesa_set_add(reg->if_uses, following_if);
595 } else {
596 /* FIXME: We really shouldn't hit this. We should be doing
597 * constant control flow propagation.
598 */
599 assert(following_if->condition.ssa->parent_instr->type == nir_instr_type_load_const);
600 }
601 }
602
603 return true;
604 }
605
606 static void
607 emit_copy(nir_parallel_copy_instr *pcopy, nir_src src, nir_src dest_src,
608 void *mem_ctx)
609 {
610 assert(!dest_src.is_ssa &&
611 dest_src.reg.indirect == NULL &&
612 dest_src.reg.base_offset == 0);
613
614 if (src.is_ssa)
615 assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
616 else
617 assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
618
619 nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov);
620 nir_src_copy(&mov->src[0].src, &src, mem_ctx);
621 mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
622 mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
623
624 nir_instr_insert_before(&pcopy->instr, &mov->instr);
625 }
626
627 /* Resolves a single parallel copy operation into a sequence of mov's
628 *
629 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
630 * Correctness, Code Quality, and Efficiency" by Boissinot et. al..
631 * However, I never got the algorithm to work as written, so this version
632 * is slightly modified.
633 *
634 * The algorithm works by playing this little shell game with the values.
635 * We start by recording where every source value is and which source value
636 * each destination value should recieve. We then grab any copy whose
637 * destination is "empty", i.e. not used as a source, and do the following:
638 * - Find where its source value currently lives
639 * - Emit the move instruction
640 * - Set the location of the source value to the destination
641 * - Mark the location containing the source value
642 * - Mark the destination as no longer needing to be copied
643 *
644 * When we run out of "empty" destinations, we have a cycle and so we
645 * create a temporary register, copy to that register, and mark the value
646 * we copied as living in that temporary. Now, the cycle is broken, so we
647 * can continue with the above steps.
648 */
649 static void
650 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
651 struct from_ssa_state *state)
652 {
653 unsigned num_copies = 0;
654 nir_foreach_parallel_copy_entry(pcopy, entry) {
655 /* Sources may be SSA */
656 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
657 continue;
658
659 num_copies++;
660 }
661
662 if (num_copies == 0) {
663 /* Hooray, we don't need any copies! */
664 nir_instr_remove(&pcopy->instr);
665 return;
666 }
667
668 /* The register/source corresponding to the given index */
669 nir_src values[num_copies * 2];
670 memset(values, 0, sizeof values);
671
672 /* The current location of a given piece of data */
673 int loc[num_copies * 2];
674
675 /* The piece of data that the given piece of data is to be copied from */
676 int pred[num_copies * 2];
677
678 /* Initialize loc and pred. We will use -1 for "null" */
679 memset(loc, -1, sizeof loc);
680 memset(pred, -1, sizeof pred);
681
682 /* The destinations we have yet to properly fill */
683 int to_do[num_copies * 2];
684 int to_do_idx = -1;
685
686 /* Now we set everything up:
687 * - All values get assigned a temporary index
688 * - Current locations are set from sources
689 * - Predicessors are recorded from sources and destinations
690 */
691 int num_vals = 0;
692 nir_foreach_parallel_copy_entry(pcopy, entry) {
693 /* Sources may be SSA */
694 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
695 continue;
696
697 int src_idx = -1;
698 for (int i = 0; i < num_vals; ++i) {
699 if (nir_srcs_equal(values[i], entry->src))
700 src_idx = i;
701 }
702 if (src_idx < 0) {
703 src_idx = num_vals++;
704 values[src_idx] = entry->src;
705 }
706
707 nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
708
709 int dest_idx = -1;
710 for (int i = 0; i < num_vals; ++i) {
711 if (nir_srcs_equal(values[i], dest_src)) {
712 /* Each destination of a parallel copy instruction should be
713 * unique. A destination may get used as a source, so we still
714 * have to walk the list. However, the predecessor should not,
715 * at this point, be set yet, so we should have -1 here.
716 */
717 assert(pred[i] == -1);
718 dest_idx = i;
719 }
720 }
721 if (dest_idx < 0) {
722 dest_idx = num_vals++;
723 values[dest_idx] = dest_src;
724 }
725
726 loc[src_idx] = src_idx;
727 pred[dest_idx] = src_idx;
728
729 to_do[++to_do_idx] = dest_idx;
730 }
731
732 /* Currently empty destinations we can go ahead and fill */
733 int ready[num_copies * 2];
734 int ready_idx = -1;
735
736 /* Mark the ones that are ready for copying. We know an index is a
737 * destination if it has a predecessor and it's ready for copying if
738 * it's not marked as containing data.
739 */
740 for (int i = 0; i < num_vals; i++) {
741 if (pred[i] != -1 && loc[i] == -1)
742 ready[++ready_idx] = i;
743 }
744
745 while (to_do_idx >= 0) {
746 while (ready_idx >= 0) {
747 int b = ready[ready_idx--];
748 int a = pred[b];
749 emit_copy(pcopy, values[loc[a]], values[b], state->mem_ctx);
750
751 /* If any other copies want a they can find it at b */
752 loc[a] = b;
753
754 /* b has been filled, mark it as not needing to be copied */
755 pred[b] = -1;
756
757 /* If a needs to be filled, it's ready for copying now */
758 if (pred[a] != -1)
759 ready[++ready_idx] = a;
760 }
761 int b = to_do[to_do_idx--];
762 if (pred[b] == -1)
763 continue;
764
765 /* If we got here, then we don't have any more trivial copies that we
766 * can do. We have to break a cycle, so we create a new temporary
767 * register for that purpose. Normally, if going out of SSA after
768 * register allocation, you would want to avoid creating temporary
769 * registers. However, we are going out of SSA before register
770 * allocation, so we would rather not create extra register
771 * dependencies for the backend to deal with. If it wants, the
772 * backend can coalesce the (possibly multiple) temporaries.
773 */
774 assert(num_vals < num_copies * 2);
775 nir_register *reg = nir_local_reg_create(state->impl);
776 reg->name = "copy_temp";
777 reg->num_array_elems = 0;
778 if (values[b].is_ssa)
779 reg->num_components = values[b].ssa->num_components;
780 else
781 reg->num_components = values[b].reg.reg->num_components;
782 values[num_vals].is_ssa = false;
783 values[num_vals].reg.reg = reg;
784
785 emit_copy(pcopy, values[b], values[num_vals], state->mem_ctx);
786 loc[b] = num_vals;
787 ready[++ready_idx] = b;
788 num_vals++;
789 }
790
791 nir_instr_remove(&pcopy->instr);
792 }
793
794 /* Resolves the parallel copies in a block. Each block can have at most
795 * two: One at the beginning, right after all the phi noces, and one at
796 * the end (or right before the final jump if it exists).
797 */
798 static bool
799 resolve_parallel_copies_block(nir_block *block, void *void_state)
800 {
801 struct from_ssa_state *state = void_state;
802
803 /* At this point, we have removed all of the phi nodes. If a parallel
804 * copy existed right after the phi nodes in this block, it is now the
805 * first instruction.
806 */
807 nir_instr *first_instr = nir_block_first_instr(block);
808 if (first_instr == NULL)
809 return true; /* Empty, nothing to do. */
810
811 if (first_instr->type == nir_instr_type_parallel_copy) {
812 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
813
814 resolve_parallel_copy(pcopy, state);
815 }
816
817 /* It's possible that the above code already cleaned up the end parallel
818 * copy. However, doing so removed it form the instructions list so we
819 * won't find it here. Therefore, it's safe to go ahead and just look
820 * for one and clean it up if it exists.
821 */
822 nir_parallel_copy_instr *end_pcopy =
823 get_parallel_copy_at_end_of_block(block);
824 if (end_pcopy)
825 resolve_parallel_copy(end_pcopy, state);
826
827 return true;
828 }
829
830 static void
831 nir_convert_from_ssa_impl(nir_function_impl *impl)
832 {
833 struct from_ssa_state state;
834
835 state.mem_ctx = ralloc_parent(impl);
836 state.dead_ctx = ralloc_context(NULL);
837 state.impl = impl;
838 state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
839 _mesa_key_pointer_equal);
840
841 nir_foreach_block(impl, add_parallel_copy_to_end_of_block, &state);
842 nir_foreach_block(impl, isolate_phi_nodes_block, &state);
843
844 /* Mark metadata as dirty before we ask for liveness analysis */
845 nir_metadata_preserve(impl, nir_metadata_block_index |
846 nir_metadata_dominance);
847
848 nir_metadata_require(impl, nir_metadata_live_variables |
849 nir_metadata_dominance);
850
851 nir_foreach_block(impl, coalesce_phi_nodes_block, &state);
852 nir_foreach_block(impl, agressive_coalesce_block, &state);
853
854 state.ssa_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
855 _mesa_key_pointer_equal);
856 nir_foreach_block(impl, resolve_registers_block, &state);
857
858 nir_foreach_block(impl, resolve_parallel_copies_block, &state);
859
860 nir_metadata_preserve(impl, nir_metadata_block_index |
861 nir_metadata_dominance);
862
863 /* Clean up dead instructions and the hash tables */
864 _mesa_hash_table_destroy(state.ssa_table, NULL);
865 _mesa_hash_table_destroy(state.merge_node_table, NULL);
866 ralloc_free(state.dead_ctx);
867 }
868
869 void
870 nir_convert_from_ssa(nir_shader *shader)
871 {
872 nir_foreach_overload(shader, overload) {
873 if (overload->impl)
874 nir_convert_from_ssa_impl(overload->impl);
875 }
876 }