nir: Add a nir_foreach_phi_src helper macro
[mesa.git] / src / glsl / nir / nir_from_ssa.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "nir.h"
29
30 /*
31 * This file implements an out-of-SSA pass as described in "Revisiting
32 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
33 * Boissinot et. al.
34 */
35
36 struct from_ssa_state {
37 void *mem_ctx;
38 void *dead_ctx;
39 struct hash_table *ssa_table;
40 struct hash_table *merge_node_table;
41 nir_instr *instr;
42 nir_function_impl *impl;
43 };
44
45 /* Returns true if a dominates b */
46 static bool
47 ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
48 {
49 if (a->live_index == 0) {
50 /* SSA undefs always dominate */
51 return true;
52 } else if (b->live_index < a->live_index) {
53 return false;
54 } else if (a->parent_instr->block == b->parent_instr->block) {
55 return a->live_index <= b->live_index;
56 } else {
57 nir_block *block = b->parent_instr->block;
58 while (block->imm_dom != NULL) {
59 if (block->imm_dom == a->parent_instr->block)
60 return true;
61 block = block->imm_dom;
62 }
63 return false;
64 }
65 }
66
67
68 /* The following data structure, which I have named merge_set is a way of
69 * representing a set registers of non-interfering registers. This is
70 * based on the concept of a "dominence forest" presented in "Fast Copy
71 * Coalescing and Live-Range Identification" by Budimlic et. al. but the
72 * implementation concept is taken from "Revisiting Out-of-SSA Translation
73 * for Correctness, Code Quality, and Efficiency" by Boissinot et. al..
74 *
75 * Each SSA definition is associated with a merge_node and the association
76 * is represented by a combination of a hash table and the "def" parameter
77 * in the merge_node structure. The merge_set stores a linked list of
78 * merge_node's in dominence order of the ssa definitions. (Since the
79 * liveness analysis pass indexes the SSA values in dominence order for us,
80 * this is an easy thing to keep up.) It is assumed that no pair of the
81 * nodes in a given set interfere. Merging two sets or checking for
82 * interference can be done in a single linear-time merge-sort walk of the
83 * two lists of nodes.
84 */
85 struct merge_set;
86
87 typedef struct {
88 struct exec_node node;
89 struct merge_set *set;
90 nir_ssa_def *def;
91 } merge_node;
92
93 typedef struct merge_set {
94 struct exec_list nodes;
95 unsigned size;
96 nir_register *reg;
97 } merge_set;
98
99 #if 0
100 static void
101 merge_set_dump(merge_set *set, FILE *fp)
102 {
103 nir_ssa_def *dom[set->size];
104 int dom_idx = -1;
105
106 foreach_list_typed(merge_node, node, node, &set->nodes) {
107 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
108 dom_idx--;
109
110 for (int i = 0; i <= dom_idx; i++)
111 fprintf(fp, " ");
112
113 if (node->def->name)
114 fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
115 else
116 fprintf(fp, "ssa_%d\n", node->def->index);
117
118 dom[++dom_idx] = node->def;
119 }
120 }
121 #endif
122
123 static merge_node *
124 get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
125 {
126 struct hash_entry *entry =
127 _mesa_hash_table_search(state->merge_node_table, def);
128 if (entry)
129 return entry->data;
130
131 merge_set *set = ralloc(state->dead_ctx, merge_set);
132 exec_list_make_empty(&set->nodes);
133 set->size = 1;
134 set->reg = NULL;
135
136 merge_node *node = ralloc(state->dead_ctx, merge_node);
137 node->set = set;
138 node->def = def;
139 exec_list_push_head(&set->nodes, &node->node);
140
141 _mesa_hash_table_insert(state->merge_node_table, def, node);
142
143 return node;
144 }
145
146 static bool
147 merge_nodes_interfere(merge_node *a, merge_node *b)
148 {
149 return nir_ssa_defs_interfere(a->def, b->def);
150 }
151
152 /* Merges b into a */
153 static merge_set *
154 merge_merge_sets(merge_set *a, merge_set *b)
155 {
156 struct exec_node *an = exec_list_get_head(&a->nodes);
157 struct exec_node *bn = exec_list_get_head(&b->nodes);
158 while (!exec_node_is_tail_sentinel(bn)) {
159 merge_node *a_node = exec_node_data(merge_node, an, node);
160 merge_node *b_node = exec_node_data(merge_node, bn, node);
161
162 if (exec_node_is_tail_sentinel(an) ||
163 a_node->def->live_index > b_node->def->live_index) {
164 struct exec_node *next = bn->next;
165 exec_node_remove(bn);
166 exec_node_insert_node_before(an, bn);
167 exec_node_data(merge_node, bn, node)->set = a;
168 bn = next;
169 } else {
170 an = an->next;
171 }
172 }
173
174 a->size += b->size;
175 b->size = 0;
176
177 return a;
178 }
179
180 /* Checks for any interference between two merge sets
181 *
182 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
183 * Translation for Correctness, Code Quality, and Efficiency" by
184 * Boissinot et. al.
185 */
186 static bool
187 merge_sets_interfere(merge_set *a, merge_set *b)
188 {
189 merge_node *dom[a->size + b->size];
190 int dom_idx = -1;
191
192 struct exec_node *an = exec_list_get_head(&a->nodes);
193 struct exec_node *bn = exec_list_get_head(&b->nodes);
194 while (!exec_node_is_tail_sentinel(an) ||
195 !exec_node_is_tail_sentinel(bn)) {
196
197 merge_node *current;
198 if (exec_node_is_tail_sentinel(an)) {
199 current = exec_node_data(merge_node, bn, node);
200 bn = bn->next;
201 } else if (exec_node_is_tail_sentinel(bn)) {
202 current = exec_node_data(merge_node, an, node);
203 an = an->next;
204 } else {
205 merge_node *a_node = exec_node_data(merge_node, an, node);
206 merge_node *b_node = exec_node_data(merge_node, bn, node);
207
208 if (a_node->def->live_index <= b_node->def->live_index) {
209 current = a_node;
210 an = an->next;
211 } else {
212 current = b_node;
213 bn = bn->next;
214 }
215 }
216
217 while (dom_idx >= 0 &&
218 !ssa_def_dominates(dom[dom_idx]->def, current->def))
219 dom_idx--;
220
221 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
222 return true;
223
224 dom[++dom_idx] = current;
225 }
226
227 return false;
228 }
229
230 static bool
231 add_parallel_copy_to_end_of_block(nir_block *block, void *void_state)
232 {
233 struct from_ssa_state *state = void_state;
234
235 bool need_end_copy = false;
236 if (block->successors[0]) {
237 nir_instr *instr = nir_block_first_instr(block->successors[0]);
238 if (instr && instr->type == nir_instr_type_phi)
239 need_end_copy = true;
240 }
241
242 if (block->successors[1]) {
243 nir_instr *instr = nir_block_first_instr(block->successors[1]);
244 if (instr && instr->type == nir_instr_type_phi)
245 need_end_copy = true;
246 }
247
248 if (need_end_copy) {
249 /* If one of our successors has at least one phi node, we need to
250 * create a parallel copy at the end of the block but before the jump
251 * (if there is one).
252 */
253 nir_parallel_copy_instr *pcopy =
254 nir_parallel_copy_instr_create(state->dead_ctx);
255
256 nir_instr *last_instr = nir_block_last_instr(block);
257 if (last_instr && last_instr->type == nir_instr_type_jump) {
258 nir_instr_insert_before(last_instr, &pcopy->instr);
259 } else {
260 nir_instr_insert_after_block(block, &pcopy->instr);
261 }
262 }
263
264 return true;
265 }
266
267 static nir_parallel_copy_instr *
268 get_parallel_copy_at_end_of_block(nir_block *block)
269 {
270 nir_instr *last_instr = nir_block_last_instr(block);
271 if (last_instr == NULL)
272 return NULL;
273
274 /* The last instruction may be a jump in which case the parallel copy is
275 * right before it.
276 */
277 if (last_instr->type == nir_instr_type_jump)
278 last_instr = nir_instr_prev(last_instr);
279
280 if (last_instr->type == nir_instr_type_parallel_copy)
281 return nir_instr_as_parallel_copy(last_instr);
282 else
283 return NULL;
284 }
285
286 /** Isolate phi nodes with parallel copies
287 *
288 * In order to solve the dependency problems with the sources and
289 * destinations of phi nodes, we first isolate them by adding parallel
290 * copies to the beginnings and ends of basic blocks. For every block with
291 * phi nodes, we add a parallel copy immediately following the last phi
292 * node that copies the destinations of all of the phi nodes to new SSA
293 * values. We also add a parallel copy to the end of every block that has
294 * a successor with phi nodes that, for each phi node in each successor,
295 * copies the corresponding sorce of the phi node and adjust the phi to
296 * used the destination of the parallel copy.
297 *
298 * In SSA form, each value has exactly one definition. What this does is
299 * ensure that each value used in a phi also has exactly one use. The
300 * destinations of phis are only used by the parallel copy immediately
301 * following the phi nodes and. Thanks to the parallel copy at the end of
302 * the predecessor block, the sources of phi nodes are are the only use of
303 * that value. This allows us to immediately assign all the sources and
304 * destinations of any given phi node to the same register without worrying
305 * about interference at all. We do coalescing to get rid of the parallel
306 * copies where possible.
307 *
308 * Before this pass can be run, we have to iterate over the blocks with
309 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
310 * the ends of blocks exist. We can create the ones at the beginnings as
311 * we go, but the ones at the ends of blocks need to be created ahead of
312 * time because of potential back-edges in the CFG.
313 */
314 static bool
315 isolate_phi_nodes_block(nir_block *block, void *void_state)
316 {
317 struct from_ssa_state *state = void_state;
318
319 nir_instr *last_phi_instr = NULL;
320 nir_foreach_instr(block, instr) {
321 /* Phi nodes only ever come at the start of a block */
322 if (instr->type != nir_instr_type_phi)
323 break;
324
325 last_phi_instr = instr;
326 }
327
328 /* If we don't have any phi's, then there's nothing for us to do. */
329 if (last_phi_instr == NULL)
330 return true;
331
332 /* If we have phi nodes, we need to create a parallel copy at the
333 * start of this block but after the phi nodes.
334 */
335 nir_parallel_copy_instr *block_pcopy =
336 nir_parallel_copy_instr_create(state->dead_ctx);
337 nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
338
339 nir_foreach_instr(block, instr) {
340 /* Phi nodes only ever come at the start of a block */
341 if (instr->type != nir_instr_type_phi)
342 break;
343
344 nir_phi_instr *phi = nir_instr_as_phi(instr);
345 assert(phi->dest.is_ssa);
346 nir_foreach_phi_src(phi, src) {
347 nir_parallel_copy_instr *pcopy =
348 get_parallel_copy_at_end_of_block(src->pred);
349 assert(pcopy);
350
351 nir_parallel_copy_entry *entry = ralloc(state->dead_ctx,
352 nir_parallel_copy_entry);
353 exec_list_push_tail(&pcopy->entries, &entry->node);
354
355 entry->src = nir_src_copy(src->src, state->dead_ctx);
356 _mesa_set_add(src->src.ssa->uses, &pcopy->instr);
357
358 entry->dest.is_ssa = true;
359 nir_ssa_def_init(&pcopy->instr, &entry->dest.ssa,
360 phi->dest.ssa.num_components, src->src.ssa->name);
361
362 struct set_entry *use_entry =
363 _mesa_set_search(src->src.ssa->uses, instr);
364 if (use_entry)
365 /* It is possible that a phi node can use the same source twice
366 * but for different basic blocks. If that happens, entry will
367 * be NULL because we already deleted it. This is safe
368 * because, by the time the loop is done, we will have deleted
369 * all of the sources of the phi from their respective use sets
370 * and moved them to the parallel copy definitions.
371 */
372 _mesa_set_remove(src->src.ssa->uses, use_entry);
373
374 src->src.ssa = &entry->dest.ssa;
375 _mesa_set_add(entry->dest.ssa.uses, instr);
376 }
377
378 nir_parallel_copy_entry *entry = ralloc(state->dead_ctx,
379 nir_parallel_copy_entry);
380 exec_list_push_tail(&block_pcopy->entries, &entry->node);
381
382 entry->dest.is_ssa = true;
383 nir_ssa_def_init(&block_pcopy->instr, &entry->dest.ssa,
384 phi->dest.ssa.num_components, phi->dest.ssa.name);
385
386 nir_src entry_dest_src = {
387 .ssa = &entry->dest.ssa,
388 .is_ssa = true,
389 };
390 nir_ssa_def_rewrite_uses(&phi->dest.ssa, entry_dest_src, state->mem_ctx);
391
392 entry->src.is_ssa = true;
393 entry->src.ssa = &phi->dest.ssa;
394 _mesa_set_add(phi->dest.ssa.uses, &block_pcopy->instr);
395 }
396
397 return true;
398 }
399
400 static bool
401 coalesce_phi_nodes_block(nir_block *block, void *void_state)
402 {
403 struct from_ssa_state *state = void_state;
404
405 nir_foreach_instr(block, instr) {
406 /* Phi nodes only ever come at the start of a block */
407 if (instr->type != nir_instr_type_phi)
408 break;
409
410 nir_phi_instr *phi = nir_instr_as_phi(instr);
411
412 assert(phi->dest.is_ssa);
413 merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
414
415 nir_foreach_phi_src(phi, src) {
416 assert(src->src.is_ssa);
417 merge_node *src_node = get_merge_node(src->src.ssa, state);
418 if (src_node->set != dest_node->set)
419 merge_merge_sets(dest_node->set, src_node->set);
420 }
421 }
422
423 return true;
424 }
425
426 static void
427 agressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
428 struct from_ssa_state *state)
429 {
430 nir_foreach_parallel_copy_entry(pcopy, entry) {
431 if (!entry->src.is_ssa)
432 continue;
433
434 /* Since load_const instructions are SSA only, we can't replace their
435 * destinations with registers and, therefore, can't coalesce them.
436 */
437 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
438 continue;
439
440 /* Don't try and coalesce these */
441 if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
442 continue;
443
444 merge_node *src_node = get_merge_node(entry->src.ssa, state);
445 merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
446
447 if (src_node->set == dest_node->set)
448 continue;
449
450 if (!merge_sets_interfere(src_node->set, dest_node->set))
451 merge_merge_sets(src_node->set, dest_node->set);
452 }
453 }
454
455 static bool
456 agressive_coalesce_block(nir_block *block, void *void_state)
457 {
458 struct from_ssa_state *state = void_state;
459
460 nir_parallel_copy_instr *start_pcopy = NULL;
461 nir_foreach_instr(block, instr) {
462 /* Phi nodes only ever come at the start of a block */
463 if (instr->type != nir_instr_type_phi) {
464 if (instr->type != nir_instr_type_parallel_copy)
465 break; /* The parallel copy must be right after the phis */
466
467 start_pcopy = nir_instr_as_parallel_copy(instr);
468
469 agressive_coalesce_parallel_copy(start_pcopy, state);
470
471 break;
472 }
473 }
474
475 nir_parallel_copy_instr *end_pcopy =
476 get_parallel_copy_at_end_of_block(block);
477
478 if (end_pcopy && end_pcopy != start_pcopy)
479 agressive_coalesce_parallel_copy(end_pcopy, state);
480
481 return true;
482 }
483
484 static nir_register *
485 get_register_for_ssa_def(nir_ssa_def *def, struct from_ssa_state *state)
486 {
487 struct hash_entry *entry =
488 _mesa_hash_table_search(state->merge_node_table, def);
489 if (entry) {
490 merge_node *node = (merge_node *)entry->data;
491
492 /* If it doesn't have a register yet, create one. Note that all of
493 * the things in the merge set should be the same so it doesn't
494 * matter which node's definition we use.
495 */
496 if (node->set->reg == NULL) {
497 node->set->reg = nir_local_reg_create(state->impl);
498 node->set->reg->name = def->name;
499 node->set->reg->num_components = def->num_components;
500 node->set->reg->num_array_elems = 0;
501 }
502
503 return node->set->reg;
504 }
505
506 entry = _mesa_hash_table_search(state->ssa_table, def);
507 if (entry) {
508 return (nir_register *)entry->data;
509 } else {
510 /* We leave load_const SSA values alone. They act as immediates to
511 * the backend. If it got coalesced into a phi, that's ok.
512 */
513 if (def->parent_instr->type == nir_instr_type_load_const)
514 return NULL;
515
516 nir_register *reg = nir_local_reg_create(state->impl);
517 reg->name = def->name;
518 reg->num_components = def->num_components;
519 reg->num_array_elems = 0;
520
521 _mesa_hash_table_insert(state->ssa_table, def, reg);
522 return reg;
523 }
524 }
525
526 static bool
527 rewrite_ssa_src(nir_src *src, void *void_state)
528 {
529 struct from_ssa_state *state = void_state;
530
531 if (src->is_ssa) {
532 nir_register *reg = get_register_for_ssa_def(src->ssa, state);
533
534 if (reg == NULL) {
535 assert(src->ssa->parent_instr->type == nir_instr_type_load_const);
536 return true;
537 }
538
539 memset(src, 0, sizeof *src);
540 src->reg.reg = reg;
541
542 /* We don't need to remove it from the uses set because that is going
543 * away. We just need to add it to the one for the register. */
544 _mesa_set_add(reg->uses, state->instr);
545 }
546
547 return true;
548 }
549
550 static bool
551 rewrite_ssa_dest(nir_dest *dest, void *void_state)
552 {
553 struct from_ssa_state *state = void_state;
554
555 if (dest->is_ssa) {
556 nir_register *reg = get_register_for_ssa_def(&dest->ssa, state);
557
558 if (reg == NULL) {
559 assert(dest->ssa.parent_instr->type == nir_instr_type_load_const);
560 return true;
561 }
562
563 _mesa_set_destroy(dest->ssa.uses, NULL);
564 _mesa_set_destroy(dest->ssa.if_uses, NULL);
565
566 memset(dest, 0, sizeof *dest);
567 dest->reg.reg = reg;
568
569 _mesa_set_add(reg->defs, state->instr);
570 }
571
572 return true;
573 }
574
575 /* Resolves ssa definitions to registers. While we're at it, we also
576 * remove phi nodes and ssa_undef instructions
577 */
578 static bool
579 resolve_registers_block(nir_block *block, void *void_state)
580 {
581 struct from_ssa_state *state = void_state;
582
583 nir_foreach_instr_safe(block, instr) {
584 state->instr = instr;
585 nir_foreach_src(instr, rewrite_ssa_src, state);
586 nir_foreach_dest(instr, rewrite_ssa_dest, state);
587
588 if (instr->type == nir_instr_type_ssa_undef ||
589 instr->type == nir_instr_type_phi) {
590 nir_instr_remove(instr);
591 ralloc_steal(state->dead_ctx, instr);
592 }
593 }
594 state->instr = NULL;
595
596 nir_if *following_if = nir_block_get_following_if(block);
597 if (following_if && following_if->condition.is_ssa) {
598 nir_register *reg = get_register_for_ssa_def(following_if->condition.ssa,
599 state);
600 if (reg) {
601 memset(&following_if->condition, 0, sizeof following_if->condition);
602 following_if->condition.reg.reg = reg;
603
604 _mesa_set_add(reg->if_uses, following_if);
605 } else {
606 /* FIXME: We really shouldn't hit this. We should be doing
607 * constant control flow propagation.
608 */
609 assert(following_if->condition.ssa->parent_instr->type == nir_instr_type_load_const);
610 }
611 }
612
613 return true;
614 }
615
616 static void
617 emit_copy(nir_parallel_copy_instr *pcopy, nir_src src, nir_src dest_src,
618 void *mem_ctx)
619 {
620 assert(!dest_src.is_ssa &&
621 dest_src.reg.indirect == NULL &&
622 dest_src.reg.base_offset == 0);
623 nir_dest dest = {
624 .reg.reg = dest_src.reg.reg,
625 .reg.indirect = NULL,
626 .reg.base_offset = 0,
627 .is_ssa = false,
628 };
629
630 if (src.is_ssa)
631 assert(src.ssa->num_components >= dest.reg.reg->num_components);
632 else
633 assert(src.reg.reg->num_components >= dest.reg.reg->num_components);
634
635 nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov);
636 mov->src[0].src = nir_src_copy(src, mem_ctx);
637 mov->dest.dest = nir_dest_copy(dest, mem_ctx);
638 mov->dest.write_mask = (1 << dest.reg.reg->num_components) - 1;
639
640 nir_instr_insert_before(&pcopy->instr, &mov->instr);
641 }
642
643 /* Resolves a single parallel copy operation into a sequence of mov's
644 *
645 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
646 * Correctness, Code Quality, and Efficiency" by Boissinot et. al..
647 * However, I never got the algorithm to work as written, so this version
648 * is slightly modified.
649 *
650 * The algorithm works by playing this little shell game with the values.
651 * We start by recording where every source value is and which source value
652 * each destination value should recieve. We then grab any copy whose
653 * destination is "empty", i.e. not used as a source, and do the following:
654 * - Find where its source value currently lives
655 * - Emit the move instruction
656 * - Set the location of the source value to the destination
657 * - Mark the location containing the source value
658 * - Mark the destination as no longer needing to be copied
659 *
660 * When we run out of "empty" destinations, we have a cycle and so we
661 * create a temporary register, copy to that register, and mark the value
662 * we copied as living in that temporary. Now, the cycle is broken, so we
663 * can continue with the above steps.
664 */
665 static void
666 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
667 struct from_ssa_state *state)
668 {
669 unsigned num_copies = 0;
670 nir_foreach_parallel_copy_entry(pcopy, entry) {
671 /* Sources may be SSA */
672 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
673 continue;
674
675 num_copies++;
676 }
677
678 if (num_copies == 0) {
679 /* Hooray, we don't need any copies! */
680 nir_instr_remove(&pcopy->instr);
681 return;
682 }
683
684 /* The register/source corresponding to the given index */
685 nir_src values[num_copies * 2];
686 memset(values, 0, sizeof values);
687
688 /* The current location of a given piece of data */
689 int loc[num_copies * 2];
690
691 /* The piece of data that the given piece of data is to be copied from */
692 int pred[num_copies * 2];
693
694 /* Initialize loc and pred. We will use -1 for "null" */
695 memset(loc, -1, sizeof loc);
696 memset(pred, -1, sizeof pred);
697
698 /* The destinations we have yet to properly fill */
699 int to_do[num_copies * 2];
700 int to_do_idx = -1;
701
702 /* Now we set everything up:
703 * - All values get assigned a temporary index
704 * - Current locations are set from sources
705 * - Predicessors are recorded from sources and destinations
706 */
707 int num_vals = 0;
708 nir_foreach_parallel_copy_entry(pcopy, entry) {
709 /* Sources may be SSA */
710 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
711 continue;
712
713 int src_idx = -1;
714 for (int i = 0; i < num_vals; ++i) {
715 if (nir_srcs_equal(values[i], entry->src))
716 src_idx = i;
717 }
718 if (src_idx < 0) {
719 src_idx = num_vals++;
720 values[src_idx] = entry->src;
721 }
722
723 nir_src dest_src = {
724 .reg.reg = entry->dest.reg.reg,
725 .reg.indirect = NULL,
726 .reg.base_offset = 0,
727 .is_ssa = false,
728 };
729
730 int dest_idx = -1;
731 for (int i = 0; i < num_vals; ++i) {
732 if (nir_srcs_equal(values[i], dest_src)) {
733 /* Each destination of a parallel copy instruction should be
734 * unique. A destination may get used as a source, so we still
735 * have to walk the list. However, the predecessor should not,
736 * at this point, be set yet, so we should have -1 here.
737 */
738 assert(pred[i] == -1);
739 dest_idx = i;
740 }
741 }
742 if (dest_idx < 0) {
743 dest_idx = num_vals++;
744 values[dest_idx] = dest_src;
745 }
746
747 loc[src_idx] = src_idx;
748 pred[dest_idx] = src_idx;
749
750 to_do[++to_do_idx] = dest_idx;
751 }
752
753 /* Currently empty destinations we can go ahead and fill */
754 int ready[num_copies * 2];
755 int ready_idx = -1;
756
757 /* Mark the ones that are ready for copying. We know an index is a
758 * destination if it has a predecessor and it's ready for copying if
759 * it's not marked as containing data.
760 */
761 for (int i = 0; i < num_vals; i++) {
762 if (pred[i] != -1 && loc[i] == -1)
763 ready[++ready_idx] = i;
764 }
765
766 while (to_do_idx >= 0) {
767 while (ready_idx >= 0) {
768 int b = ready[ready_idx--];
769 int a = pred[b];
770 emit_copy(pcopy, values[loc[a]], values[b], state->mem_ctx);
771
772 /* If any other copies want a they can find it at b */
773 loc[a] = b;
774
775 /* b has been filled, mark it as not needing to be copied */
776 pred[b] = -1;
777
778 /* If a needs to be filled, it's ready for copying now */
779 if (pred[a] != -1)
780 ready[++ready_idx] = a;
781 }
782 int b = to_do[to_do_idx--];
783 if (pred[b] == -1)
784 continue;
785
786 /* If we got here, then we don't have any more trivial copies that we
787 * can do. We have to break a cycle, so we create a new temporary
788 * register for that purpose. Normally, if going out of SSA after
789 * register allocation, you would want to avoid creating temporary
790 * registers. However, we are going out of SSA before register
791 * allocation, so we would rather not create extra register
792 * dependencies for the backend to deal with. If it wants, the
793 * backend can coalesce the (possibly multiple) temporaries.
794 */
795 assert(num_vals < num_copies * 2);
796 nir_register *reg = nir_local_reg_create(state->impl);
797 reg->name = "copy_temp";
798 reg->num_array_elems = 0;
799 if (values[b].is_ssa)
800 reg->num_components = values[b].ssa->num_components;
801 else
802 reg->num_components = values[b].reg.reg->num_components;
803 values[num_vals].is_ssa = false;
804 values[num_vals].reg.reg = reg;
805
806 emit_copy(pcopy, values[b], values[num_vals], state->mem_ctx);
807 loc[b] = num_vals;
808 ready[++ready_idx] = b;
809 num_vals++;
810 }
811
812 nir_instr_remove(&pcopy->instr);
813 }
814
815 /* Resolves the parallel copies in a block. Each block can have at most
816 * two: One at the beginning, right after all the phi noces, and one at
817 * the end (or right before the final jump if it exists).
818 */
819 static bool
820 resolve_parallel_copies_block(nir_block *block, void *void_state)
821 {
822 struct from_ssa_state *state = void_state;
823
824 /* At this point, we have removed all of the phi nodes. If a parallel
825 * copy existed right after the phi nodes in this block, it is now the
826 * first instruction.
827 */
828 nir_instr *first_instr = nir_block_first_instr(block);
829 if (first_instr == NULL)
830 return true; /* Empty, nothing to do. */
831
832 if (first_instr->type == nir_instr_type_parallel_copy) {
833 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
834
835 resolve_parallel_copy(pcopy, state);
836 }
837
838 /* It's possible that the above code already cleaned up the end parallel
839 * copy. However, doing so removed it form the instructions list so we
840 * won't find it here. Therefore, it's safe to go ahead and just look
841 * for one and clean it up if it exists.
842 */
843 nir_parallel_copy_instr *end_pcopy =
844 get_parallel_copy_at_end_of_block(block);
845 if (end_pcopy)
846 resolve_parallel_copy(end_pcopy, state);
847
848 return true;
849 }
850
851 static void
852 nir_convert_from_ssa_impl(nir_function_impl *impl)
853 {
854 struct from_ssa_state state;
855
856 state.mem_ctx = ralloc_parent(impl);
857 state.dead_ctx = ralloc_context(NULL);
858 state.impl = impl;
859 state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
860 _mesa_key_pointer_equal);
861
862 nir_foreach_block(impl, add_parallel_copy_to_end_of_block, &state);
863 nir_foreach_block(impl, isolate_phi_nodes_block, &state);
864
865 /* Mark metadata as dirty before we ask for liveness analysis */
866 nir_metadata_preserve(impl, nir_metadata_block_index |
867 nir_metadata_dominance);
868
869 nir_metadata_require(impl, nir_metadata_live_variables |
870 nir_metadata_dominance);
871
872 nir_foreach_block(impl, coalesce_phi_nodes_block, &state);
873 nir_foreach_block(impl, agressive_coalesce_block, &state);
874
875 state.ssa_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
876 _mesa_key_pointer_equal);
877 nir_foreach_block(impl, resolve_registers_block, &state);
878
879 nir_foreach_block(impl, resolve_parallel_copies_block, &state);
880
881 nir_metadata_preserve(impl, nir_metadata_block_index |
882 nir_metadata_dominance);
883
884 /* Clean up dead instructions and the hash tables */
885 _mesa_hash_table_destroy(state.ssa_table, NULL);
886 _mesa_hash_table_destroy(state.merge_node_table, NULL);
887 ralloc_free(state.dead_ctx);
888 }
889
890 void
891 nir_convert_from_ssa(nir_shader *shader)
892 {
893 nir_foreach_overload(shader, overload) {
894 if (overload->impl)
895 nir_convert_from_ssa_impl(overload->impl);
896 }
897 }