nir/vars_to_ssa: Delete dead output set code
[mesa.git] / src / glsl / nir / nir_lower_vars_to_ssa.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "nir.h"
29 #include "nir_vla.h"
30
31
32 struct deref_node {
33 struct deref_node *parent;
34 const struct glsl_type *type;
35
36 bool lower_to_ssa;
37
38 /* Only valid for things that end up in the direct list.
39 * Note that multiple nir_deref_vars may correspond to this node, but they
40 * will all be equivalent, so any is as good as the other.
41 */
42 nir_deref_var *deref;
43 struct exec_node direct_derefs_link;
44
45 struct set *loads;
46 struct set *stores;
47 struct set *copies;
48
49 nir_ssa_def **def_stack;
50 nir_ssa_def **def_stack_tail;
51
52 struct deref_node *wildcard;
53 struct deref_node *indirect;
54 struct deref_node *children[0];
55 };
56
57 struct lower_variables_state {
58 nir_shader *shader;
59 void *dead_ctx;
60 nir_function_impl *impl;
61
62 /* A hash table mapping variables to deref_node data */
63 struct hash_table *deref_var_nodes;
64
65 /* A hash table mapping fully-qualified direct dereferences, i.e.
66 * dereferences with no indirect or wildcard array dereferences, to
67 * deref_node data.
68 *
69 * At the moment, we only lower loads, stores, and copies that can be
70 * trivially lowered to loads and stores, i.e. copies with no indirects
71 * and no wildcards. If a part of a variable that is being loaded from
72 * and/or stored into is also involved in a copy operation with
73 * wildcards, then we lower that copy operation to loads and stores, but
74 * otherwise we leave copies with wildcards alone. Since the only derefs
75 * used in these loads, stores, and trivial copies are ones with no
76 * wildcards and no indirects, these are precisely the derefs that we
77 * can actually consider lowering.
78 */
79 struct exec_list direct_deref_nodes;
80
81 /* Controls whether get_deref_node will add variables to the
82 * direct_deref_nodes table. This is turned on when we are initially
83 * scanning for load/store instructions. It is then turned off so we
84 * don't accidentally change the direct_deref_nodes table while we're
85 * iterating throug it.
86 */
87 bool add_to_direct_deref_nodes;
88
89 /* A hash table mapping phi nodes to deref_state data */
90 struct hash_table *phi_table;
91 };
92
93 static struct deref_node *
94 deref_node_create(struct deref_node *parent,
95 const struct glsl_type *type, nir_shader *shader)
96 {
97 size_t size = sizeof(struct deref_node) +
98 glsl_get_length(type) * sizeof(struct deref_node *);
99
100 struct deref_node *node = rzalloc_size(shader, size);
101 node->type = type;
102 node->parent = parent;
103 node->deref = NULL;
104 exec_node_init(&node->direct_derefs_link);
105
106 return node;
107 }
108
109 /* Returns the deref node associated with the given variable. This will be
110 * the root of the tree representing all of the derefs of the given variable.
111 */
112 static struct deref_node *
113 get_deref_node_for_var(nir_variable *var, struct lower_variables_state *state)
114 {
115 struct deref_node *node;
116
117 struct hash_entry *var_entry =
118 _mesa_hash_table_search(state->deref_var_nodes, var);
119
120 if (var_entry) {
121 return var_entry->data;
122 } else {
123 node = deref_node_create(NULL, var->type, state->dead_ctx);
124 _mesa_hash_table_insert(state->deref_var_nodes, var, node);
125 return node;
126 }
127 }
128
129 /* Gets the deref_node for the given deref chain and creates it if it
130 * doesn't yet exist. If the deref is fully-qualified and direct and
131 * state->add_to_direct_deref_nodes is true, it will be added to the hash
132 * table of of fully-qualified direct derefs.
133 */
134 static struct deref_node *
135 get_deref_node(nir_deref_var *deref, struct lower_variables_state *state)
136 {
137 bool is_direct = true;
138
139 /* Start at the base of the chain. */
140 struct deref_node *node = get_deref_node_for_var(deref->var, state);
141 assert(deref->deref.type == node->type);
142
143 for (nir_deref *tail = deref->deref.child; tail; tail = tail->child) {
144 switch (tail->deref_type) {
145 case nir_deref_type_struct: {
146 nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
147
148 assert(deref_struct->index < glsl_get_length(node->type));
149
150 if (node->children[deref_struct->index] == NULL)
151 node->children[deref_struct->index] =
152 deref_node_create(node, tail->type, state->dead_ctx);
153
154 node = node->children[deref_struct->index];
155 break;
156 }
157
158 case nir_deref_type_array: {
159 nir_deref_array *arr = nir_deref_as_array(tail);
160
161 switch (arr->deref_array_type) {
162 case nir_deref_array_type_direct:
163 /* This is possible if a loop unrolls and generates an
164 * out-of-bounds offset. We need to handle this at least
165 * somewhat gracefully.
166 */
167 if (arr->base_offset >= glsl_get_length(node->type))
168 return NULL;
169
170 if (node->children[arr->base_offset] == NULL)
171 node->children[arr->base_offset] =
172 deref_node_create(node, tail->type, state->dead_ctx);
173
174 node = node->children[arr->base_offset];
175 break;
176
177 case nir_deref_array_type_indirect:
178 if (node->indirect == NULL)
179 node->indirect = deref_node_create(node, tail->type,
180 state->dead_ctx);
181
182 node = node->indirect;
183 is_direct = false;
184 break;
185
186 case nir_deref_array_type_wildcard:
187 if (node->wildcard == NULL)
188 node->wildcard = deref_node_create(node, tail->type,
189 state->dead_ctx);
190
191 node = node->wildcard;
192 is_direct = false;
193 break;
194
195 default:
196 unreachable("Invalid array deref type");
197 }
198 break;
199 }
200 default:
201 unreachable("Invalid deref type");
202 }
203 }
204
205 assert(node);
206
207 /* Only insert if it isn't already in the list. */
208 if (is_direct && state->add_to_direct_deref_nodes &&
209 node->direct_derefs_link.next == NULL) {
210 node->deref = deref;
211 assert(deref->var != NULL);
212 exec_list_push_tail(&state->direct_deref_nodes,
213 &node->direct_derefs_link);
214 }
215
216 return node;
217 }
218
219 /* \sa foreach_deref_node_match */
220 static bool
221 foreach_deref_node_worker(struct deref_node *node, nir_deref *deref,
222 bool (* cb)(struct deref_node *node,
223 struct lower_variables_state *state),
224 struct lower_variables_state *state)
225 {
226 if (deref->child == NULL) {
227 return cb(node, state);
228 } else {
229 switch (deref->child->deref_type) {
230 case nir_deref_type_array: {
231 nir_deref_array *arr = nir_deref_as_array(deref->child);
232 assert(arr->deref_array_type == nir_deref_array_type_direct);
233 if (node->children[arr->base_offset] &&
234 !foreach_deref_node_worker(node->children[arr->base_offset],
235 deref->child, cb, state))
236 return false;
237
238 if (node->wildcard &&
239 !foreach_deref_node_worker(node->wildcard,
240 deref->child, cb, state))
241 return false;
242
243 return true;
244 }
245
246 case nir_deref_type_struct: {
247 nir_deref_struct *str = nir_deref_as_struct(deref->child);
248 return foreach_deref_node_worker(node->children[str->index],
249 deref->child, cb, state);
250 }
251
252 default:
253 unreachable("Invalid deref child type");
254 }
255 }
256 }
257
258 /* Walks over every "matching" deref_node and calls the callback. A node
259 * is considered to "match" if either refers to that deref or matches up t
260 * a wildcard. In other words, the following would match a[6].foo[3].bar:
261 *
262 * a[6].foo[3].bar
263 * a[*].foo[3].bar
264 * a[6].foo[*].bar
265 * a[*].foo[*].bar
266 *
267 * The given deref must be a full-length and fully qualified (no wildcards
268 * or indirects) deref chain.
269 */
270 static bool
271 foreach_deref_node_match(nir_deref_var *deref,
272 bool (* cb)(struct deref_node *node,
273 struct lower_variables_state *state),
274 struct lower_variables_state *state)
275 {
276 nir_deref_var var_deref = *deref;
277 var_deref.deref.child = NULL;
278 struct deref_node *node = get_deref_node(&var_deref, state);
279
280 if (node == NULL)
281 return false;
282
283 return foreach_deref_node_worker(node, &deref->deref, cb, state);
284 }
285
286 /* \sa deref_may_be_aliased */
287 static bool
288 deref_may_be_aliased_node(struct deref_node *node, nir_deref *deref,
289 struct lower_variables_state *state)
290 {
291 if (deref->child == NULL) {
292 return false;
293 } else {
294 switch (deref->child->deref_type) {
295 case nir_deref_type_array: {
296 nir_deref_array *arr = nir_deref_as_array(deref->child);
297 if (arr->deref_array_type == nir_deref_array_type_indirect)
298 return true;
299
300 /* If there is an indirect at this level, we're aliased. */
301 if (node->indirect)
302 return true;
303
304 assert(arr->deref_array_type == nir_deref_array_type_direct);
305
306 if (node->children[arr->base_offset] &&
307 deref_may_be_aliased_node(node->children[arr->base_offset],
308 deref->child, state))
309 return true;
310
311 if (node->wildcard &&
312 deref_may_be_aliased_node(node->wildcard, deref->child, state))
313 return true;
314
315 return false;
316 }
317
318 case nir_deref_type_struct: {
319 nir_deref_struct *str = nir_deref_as_struct(deref->child);
320 if (node->children[str->index]) {
321 return deref_may_be_aliased_node(node->children[str->index],
322 deref->child, state);
323 } else {
324 return false;
325 }
326 }
327
328 default:
329 unreachable("Invalid nir_deref child type");
330 }
331 }
332 }
333
334 /* Returns true if there are no indirects that can ever touch this deref.
335 *
336 * For example, if the given deref is a[6].foo, then any uses of a[i].foo
337 * would cause this to return false, but a[i].bar would not affect it
338 * because it's a different structure member. A var_copy involving of
339 * a[*].bar also doesn't affect it because that can be lowered to entirely
340 * direct load/stores.
341 *
342 * We only support asking this question about fully-qualified derefs.
343 * Obviously, it's pointless to ask this about indirects, but we also
344 * rule-out wildcards. Handling Wildcard dereferences would involve
345 * checking each array index to make sure that there aren't any indirect
346 * references.
347 */
348 static bool
349 deref_may_be_aliased(nir_deref_var *deref,
350 struct lower_variables_state *state)
351 {
352 return deref_may_be_aliased_node(get_deref_node_for_var(deref->var, state),
353 &deref->deref, state);
354 }
355
356 static void
357 register_load_instr(nir_intrinsic_instr *load_instr,
358 struct lower_variables_state *state)
359 {
360 struct deref_node *node = get_deref_node(load_instr->variables[0], state);
361 if (node == NULL)
362 return;
363
364 if (node->loads == NULL)
365 node->loads = _mesa_set_create(state->dead_ctx, _mesa_hash_pointer,
366 _mesa_key_pointer_equal);
367
368 _mesa_set_add(node->loads, load_instr);
369 }
370
371 static void
372 register_store_instr(nir_intrinsic_instr *store_instr,
373 struct lower_variables_state *state)
374 {
375 struct deref_node *node = get_deref_node(store_instr->variables[0], state);
376 if (node == NULL)
377 return;
378
379 if (node->stores == NULL)
380 node->stores = _mesa_set_create(state->dead_ctx, _mesa_hash_pointer,
381 _mesa_key_pointer_equal);
382
383 _mesa_set_add(node->stores, store_instr);
384 }
385
386 static void
387 register_copy_instr(nir_intrinsic_instr *copy_instr,
388 struct lower_variables_state *state)
389 {
390 for (unsigned idx = 0; idx < 2; idx++) {
391 struct deref_node *node =
392 get_deref_node(copy_instr->variables[idx], state);
393
394 if (node == NULL)
395 continue;
396
397 if (node->copies == NULL)
398 node->copies = _mesa_set_create(state->dead_ctx, _mesa_hash_pointer,
399 _mesa_key_pointer_equal);
400
401 _mesa_set_add(node->copies, copy_instr);
402 }
403 }
404
405 /* Registers all variable uses in the given block. */
406 static bool
407 register_variable_uses_block(nir_block *block, void *void_state)
408 {
409 struct lower_variables_state *state = void_state;
410
411 nir_foreach_instr_safe(block, instr) {
412 if (instr->type != nir_instr_type_intrinsic)
413 continue;
414
415 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
416
417 switch (intrin->intrinsic) {
418 case nir_intrinsic_load_var:
419 register_load_instr(intrin, state);
420 break;
421
422 case nir_intrinsic_store_var:
423 register_store_instr(intrin, state);
424 break;
425
426 case nir_intrinsic_copy_var:
427 register_copy_instr(intrin, state);
428 break;
429
430 default:
431 continue;
432 }
433 }
434
435 return true;
436 }
437
438 /* Walks over all of the copy instructions to or from the given deref_node
439 * and lowers them to load/store intrinsics.
440 */
441 static bool
442 lower_copies_to_load_store(struct deref_node *node,
443 struct lower_variables_state *state)
444 {
445 if (!node->copies)
446 return true;
447
448 struct set_entry *copy_entry;
449 set_foreach(node->copies, copy_entry) {
450 nir_intrinsic_instr *copy = (void *)copy_entry->key;
451
452 nir_lower_var_copy_instr(copy, state->shader);
453
454 for (unsigned i = 0; i < 2; ++i) {
455 struct deref_node *arg_node =
456 get_deref_node(copy->variables[i], state);
457
458 /* Only bother removing copy entries for other nodes */
459 if (arg_node == NULL || arg_node == node)
460 continue;
461
462 struct set_entry *arg_entry = _mesa_set_search(arg_node->copies, copy);
463 assert(arg_entry);
464 _mesa_set_remove(node->copies, arg_entry);
465 }
466
467 nir_instr_remove(&copy->instr);
468 }
469
470 node->copies = NULL;
471
472 return true;
473 }
474
475 /** Pushes an SSA def onto the def stack for the given node
476 *
477 * Each node is potentially associated with a stack of SSA definitions.
478 * This stack is used for determining what SSA definition reaches a given
479 * point in the program for variable renaming. The stack is always kept in
480 * dominance-order with at most one SSA def per block. If the SSA
481 * definition on the top of the stack is in the same block as the one being
482 * pushed, the top element is replaced.
483 */
484 static void
485 def_stack_push(struct deref_node *node, nir_ssa_def *def,
486 struct lower_variables_state *state)
487 {
488 if (node->def_stack == NULL) {
489 node->def_stack = ralloc_array(state->dead_ctx, nir_ssa_def *,
490 state->impl->num_blocks);
491 node->def_stack_tail = node->def_stack - 1;
492 }
493
494 if (node->def_stack_tail >= node->def_stack) {
495 nir_ssa_def *top_def = *node->def_stack_tail;
496
497 if (def->parent_instr->block == top_def->parent_instr->block) {
498 /* They're in the same block, just replace the top */
499 *node->def_stack_tail = def;
500 return;
501 }
502 }
503
504 *(++node->def_stack_tail) = def;
505 }
506
507 /* Pop the top of the def stack if it's in the given block */
508 static void
509 def_stack_pop_if_in_block(struct deref_node *node, nir_block *block)
510 {
511 /* If we're popping, then we have presumably pushed at some time in the
512 * past so this should exist.
513 */
514 assert(node->def_stack != NULL);
515
516 /* The stack is already empty. Do nothing. */
517 if (node->def_stack_tail < node->def_stack)
518 return;
519
520 nir_ssa_def *def = *node->def_stack_tail;
521 if (def->parent_instr->block == block)
522 node->def_stack_tail--;
523 }
524
525 /** Retrieves the SSA definition on the top of the stack for the given
526 * node, if one exists. If the stack is empty, then we return the constant
527 * initializer (if it exists) or an SSA undef.
528 */
529 static nir_ssa_def *
530 get_ssa_def_for_block(struct deref_node *node, nir_block *block,
531 struct lower_variables_state *state)
532 {
533 /* If we have something on the stack, go ahead and return it. We're
534 * assuming that the top of the stack dominates the given block.
535 */
536 if (node->def_stack && node->def_stack_tail >= node->def_stack)
537 return *node->def_stack_tail;
538
539 /* If we got here then we don't have a definition that dominates the
540 * given block. This means that we need to add an undef and use that.
541 */
542 nir_ssa_undef_instr *undef =
543 nir_ssa_undef_instr_create(state->shader,
544 glsl_get_vector_elements(node->type));
545 nir_instr_insert_before_cf_list(&state->impl->body, &undef->instr);
546 def_stack_push(node, &undef->def, state);
547 return &undef->def;
548 }
549
550 /* Given a block and one of its predecessors, this function fills in the
551 * souces of the phi nodes to take SSA defs from the given predecessor.
552 * This function must be called exactly once per block/predecessor pair.
553 */
554 static void
555 add_phi_sources(nir_block *block, nir_block *pred,
556 struct lower_variables_state *state)
557 {
558 nir_foreach_instr(block, instr) {
559 if (instr->type != nir_instr_type_phi)
560 break;
561
562 nir_phi_instr *phi = nir_instr_as_phi(instr);
563
564 struct hash_entry *entry =
565 _mesa_hash_table_search(state->phi_table, phi);
566 if (!entry)
567 continue;
568
569 struct deref_node *node = entry->data;
570
571 nir_phi_src *src = ralloc(phi, nir_phi_src);
572 src->pred = pred;
573 src->src.parent_instr = &phi->instr;
574 src->src.is_ssa = true;
575 src->src.ssa = get_ssa_def_for_block(node, pred, state);
576
577 list_addtail(&src->src.use_link, &src->src.ssa->uses);
578
579 exec_list_push_tail(&phi->srcs, &src->node);
580 }
581 }
582
583 /* Performs variable renaming by doing a DFS of the dominance tree
584 *
585 * This algorithm is very similar to the one outlined in "Efficiently
586 * Computing Static Single Assignment Form and the Control Dependence
587 * Graph" by Cytron et. al. The primary difference is that we only put one
588 * SSA def on the stack per block.
589 */
590 static bool
591 rename_variables_block(nir_block *block, struct lower_variables_state *state)
592 {
593 nir_foreach_instr_safe(block, instr) {
594 if (instr->type == nir_instr_type_phi) {
595 nir_phi_instr *phi = nir_instr_as_phi(instr);
596
597 struct hash_entry *entry =
598 _mesa_hash_table_search(state->phi_table, phi);
599
600 /* This can happen if we already have phi nodes in the program
601 * that were not created in this pass.
602 */
603 if (!entry)
604 continue;
605
606 struct deref_node *node = entry->data;
607
608 def_stack_push(node, &phi->dest.ssa, state);
609 } else if (instr->type == nir_instr_type_intrinsic) {
610 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
611
612 switch (intrin->intrinsic) {
613 case nir_intrinsic_load_var: {
614 struct deref_node *node =
615 get_deref_node(intrin->variables[0], state);
616
617 if (node == NULL) {
618 /* If we hit this path then we are referencing an invalid
619 * value. Most likely, we unrolled something and are
620 * reading past the end of some array. In any case, this
621 * should result in an undefined value.
622 */
623 nir_ssa_undef_instr *undef =
624 nir_ssa_undef_instr_create(state->shader,
625 intrin->num_components);
626
627 nir_instr_insert_before(&intrin->instr, &undef->instr);
628 nir_instr_remove(&intrin->instr);
629
630 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
631 nir_src_for_ssa(&undef->def));
632 continue;
633 }
634
635 if (!node->lower_to_ssa)
636 continue;
637
638 nir_alu_instr *mov = nir_alu_instr_create(state->shader,
639 nir_op_imov);
640 mov->src[0].src.is_ssa = true;
641 mov->src[0].src.ssa = get_ssa_def_for_block(node, block, state);
642 for (unsigned i = intrin->num_components; i < 4; i++)
643 mov->src[0].swizzle[i] = 0;
644
645 assert(intrin->dest.is_ssa);
646
647 mov->dest.write_mask = (1 << intrin->num_components) - 1;
648 nir_ssa_dest_init(&mov->instr, &mov->dest.dest,
649 intrin->num_components, NULL);
650
651 nir_instr_insert_before(&intrin->instr, &mov->instr);
652 nir_instr_remove(&intrin->instr);
653
654 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
655 nir_src_for_ssa(&mov->dest.dest.ssa));
656 break;
657 }
658
659 case nir_intrinsic_store_var: {
660 struct deref_node *node =
661 get_deref_node(intrin->variables[0], state);
662
663 if (node == NULL) {
664 /* Probably an out-of-bounds array store. That should be a
665 * no-op. */
666 nir_instr_remove(&intrin->instr);
667 continue;
668 }
669
670 if (!node->lower_to_ssa)
671 continue;
672
673 assert(intrin->num_components ==
674 glsl_get_vector_elements(node->type));
675
676 assert(intrin->src[0].is_ssa);
677
678 nir_alu_instr *mov = nir_alu_instr_create(state->shader,
679 nir_op_imov);
680 mov->src[0].src.is_ssa = true;
681 mov->src[0].src.ssa = intrin->src[0].ssa;
682 for (unsigned i = intrin->num_components; i < 4; i++)
683 mov->src[0].swizzle[i] = 0;
684
685 mov->dest.write_mask = (1 << intrin->num_components) - 1;
686 nir_ssa_dest_init(&mov->instr, &mov->dest.dest,
687 intrin->num_components, NULL);
688
689 nir_instr_insert_before(&intrin->instr, &mov->instr);
690
691 def_stack_push(node, &mov->dest.dest.ssa, state);
692
693 /* We'll wait to remove the instruction until the next pass
694 * where we pop the node we just pushed back off the stack.
695 */
696 break;
697 }
698
699 default:
700 break;
701 }
702 }
703 }
704
705 if (block->successors[0])
706 add_phi_sources(block->successors[0], block, state);
707 if (block->successors[1])
708 add_phi_sources(block->successors[1], block, state);
709
710 for (unsigned i = 0; i < block->num_dom_children; ++i)
711 rename_variables_block(block->dom_children[i], state);
712
713 /* Now we iterate over the instructions and pop off any SSA defs that we
714 * pushed in the first loop.
715 */
716 nir_foreach_instr_safe(block, instr) {
717 if (instr->type == nir_instr_type_phi) {
718 nir_phi_instr *phi = nir_instr_as_phi(instr);
719
720 struct hash_entry *entry =
721 _mesa_hash_table_search(state->phi_table, phi);
722
723 /* This can happen if we already have phi nodes in the program
724 * that were not created in this pass.
725 */
726 if (!entry)
727 continue;
728
729 struct deref_node *node = entry->data;
730
731 def_stack_pop_if_in_block(node, block);
732 } else if (instr->type == nir_instr_type_intrinsic) {
733 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
734
735 if (intrin->intrinsic != nir_intrinsic_store_var)
736 continue;
737
738 struct deref_node *node = get_deref_node(intrin->variables[0], state);
739 if (!node)
740 continue;
741
742 if (!node->lower_to_ssa)
743 continue;
744
745 def_stack_pop_if_in_block(node, block);
746 nir_instr_remove(&intrin->instr);
747 }
748 }
749
750 return true;
751 }
752
753 /* Inserts phi nodes for all variables marked lower_to_ssa
754 *
755 * This is the same algorithm as presented in "Efficiently Computing Static
756 * Single Assignment Form and the Control Dependence Graph" by Cytron et.
757 * al.
758 */
759 static void
760 insert_phi_nodes(struct lower_variables_state *state)
761 {
762 NIR_VLA_ZERO(unsigned, work, state->impl->num_blocks);
763 NIR_VLA_ZERO(unsigned, has_already, state->impl->num_blocks);
764
765 /*
766 * Since the work flags already prevent us from inserting a node that has
767 * ever been inserted into W, we don't need to use a set to represent W.
768 * Also, since no block can ever be inserted into W more than once, we know
769 * that the maximum size of W is the number of basic blocks in the
770 * function. So all we need to handle W is an array and a pointer to the
771 * next element to be inserted and the next element to be removed.
772 */
773 NIR_VLA(nir_block *, W, state->impl->num_blocks);
774
775 unsigned w_start, w_end;
776 unsigned iter_count = 0;
777
778 foreach_list_typed(struct deref_node, node, direct_derefs_link,
779 &state->direct_deref_nodes) {
780 if (node->stores == NULL)
781 continue;
782
783 if (!node->lower_to_ssa)
784 continue;
785
786 w_start = w_end = 0;
787 iter_count++;
788
789 struct set_entry *store_entry;
790 set_foreach(node->stores, store_entry) {
791 nir_intrinsic_instr *store = (nir_intrinsic_instr *)store_entry->key;
792 if (work[store->instr.block->index] < iter_count)
793 W[w_end++] = store->instr.block;
794 work[store->instr.block->index] = iter_count;
795 }
796
797 while (w_start != w_end) {
798 nir_block *cur = W[w_start++];
799 struct set_entry *dom_entry;
800 set_foreach(cur->dom_frontier, dom_entry) {
801 nir_block *next = (nir_block *) dom_entry->key;
802
803 /*
804 * If there's more than one return statement, then the end block
805 * can be a join point for some definitions. However, there are
806 * no instructions in the end block, so nothing would use those
807 * phi nodes. Of course, we couldn't place those phi nodes
808 * anyways due to the restriction of having no instructions in the
809 * end block...
810 */
811 if (next == state->impl->end_block)
812 continue;
813
814 if (has_already[next->index] < iter_count) {
815 nir_phi_instr *phi = nir_phi_instr_create(state->shader);
816 nir_ssa_dest_init(&phi->instr, &phi->dest,
817 glsl_get_vector_elements(node->type), NULL);
818 nir_instr_insert_before_block(next, &phi->instr);
819
820 _mesa_hash_table_insert(state->phi_table, phi, node);
821
822 has_already[next->index] = iter_count;
823 if (work[next->index] < iter_count) {
824 work[next->index] = iter_count;
825 W[w_end++] = next;
826 }
827 }
828 }
829 }
830 }
831 }
832
833
834 /** Implements a pass to lower variable uses to SSA values
835 *
836 * This path walks the list of instructions and tries to lower as many
837 * local variable load/store operations to SSA defs and uses as it can.
838 * The process involves four passes:
839 *
840 * 1) Iterate over all of the instructions and mark where each local
841 * variable deref is used in a load, store, or copy. While we're at
842 * it, we keep track of all of the fully-qualified (no wildcards) and
843 * fully-direct references we see and store them in the
844 * direct_deref_nodes hash table.
845 *
846 * 2) Walk over the the list of fully-qualified direct derefs generated in
847 * the previous pass. For each deref, we determine if it can ever be
848 * aliased, i.e. if there is an indirect reference anywhere that may
849 * refer to it. If it cannot be aliased, we mark it for lowering to an
850 * SSA value. At this point, we lower any var_copy instructions that
851 * use the given deref to load/store operations and, if the deref has a
852 * constant initializer, we go ahead and add a load_const value at the
853 * beginning of the function with the initialized value.
854 *
855 * 3) Walk over the list of derefs we plan to lower to SSA values and
856 * insert phi nodes as needed.
857 *
858 * 4) Perform "variable renaming" by replacing the load/store instructions
859 * with SSA definitions and SSA uses.
860 */
861 static bool
862 nir_lower_vars_to_ssa_impl(nir_function_impl *impl)
863 {
864 struct lower_variables_state state;
865
866 state.shader = impl->overload->function->shader;
867 state.dead_ctx = ralloc_context(state.shader);
868 state.impl = impl;
869
870 state.deref_var_nodes = _mesa_hash_table_create(state.dead_ctx,
871 _mesa_hash_pointer,
872 _mesa_key_pointer_equal);
873 exec_list_make_empty(&state.direct_deref_nodes);
874 state.phi_table = _mesa_hash_table_create(state.dead_ctx,
875 _mesa_hash_pointer,
876 _mesa_key_pointer_equal);
877
878 /* Build the initial deref structures and direct_deref_nodes table */
879 state.add_to_direct_deref_nodes = true;
880 nir_foreach_block(impl, register_variable_uses_block, &state);
881
882 bool progress = false;
883
884 nir_metadata_require(impl, nir_metadata_block_index);
885
886 /* We're about to iterate through direct_deref_nodes. Don't modify it. */
887 state.add_to_direct_deref_nodes = false;
888
889 foreach_list_typed_safe(struct deref_node, node, direct_derefs_link,
890 &state.direct_deref_nodes) {
891 nir_deref_var *deref = node->deref;
892
893 if (deref->var->data.mode != nir_var_local) {
894 exec_node_remove(&node->direct_derefs_link);
895 continue;
896 }
897
898 if (deref_may_be_aliased(deref, &state)) {
899 exec_node_remove(&node->direct_derefs_link);
900 continue;
901 }
902
903 node->lower_to_ssa = true;
904 progress = true;
905
906 if (deref->var->constant_initializer) {
907 nir_load_const_instr *load =
908 nir_deref_get_const_initializer_load(state.shader, deref);
909 nir_ssa_def_init(&load->instr, &load->def,
910 glsl_get_vector_elements(node->type), NULL);
911 nir_instr_insert_before_cf_list(&impl->body, &load->instr);
912 def_stack_push(node, &load->def, &state);
913 }
914
915 foreach_deref_node_match(deref, lower_copies_to_load_store, &state);
916 }
917
918 if (!progress)
919 return false;
920
921 nir_metadata_require(impl, nir_metadata_dominance);
922
923 /* We may have lowered some copy instructions to load/store
924 * instructions. The uses from the copy instructions hav already been
925 * removed but we need to rescan to ensure that the uses from the newly
926 * added load/store instructions are registered. We need this
927 * information for phi node insertion below.
928 */
929 nir_foreach_block(impl, register_variable_uses_block, &state);
930
931 insert_phi_nodes(&state);
932 rename_variables_block(nir_start_block(impl), &state);
933
934 nir_metadata_preserve(impl, nir_metadata_block_index |
935 nir_metadata_dominance);
936
937 ralloc_free(state.dead_ctx);
938
939 return progress;
940 }
941
942 void
943 nir_lower_vars_to_ssa(nir_shader *shader)
944 {
945 nir_foreach_overload(shader, overload) {
946 if (overload->impl)
947 nir_lower_vars_to_ssa_impl(overload->impl);
948 }
949 }