nir: Allocate nir_phi_src values out of the nir_phi_instr.
[mesa.git] / src / glsl / nir / nir_lower_vars_to_ssa.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "nir.h"
29 #include "nir_vla.h"
30
31
32 struct deref_node {
33 struct deref_node *parent;
34 const struct glsl_type *type;
35
36 bool lower_to_ssa;
37
38 /* Only valid for things that end up in the direct list.
39 * Note that multiple nir_deref_vars may correspond to this node, but they
40 * will all be equivalent, so any is as good as the other.
41 */
42 nir_deref_var *deref;
43 struct exec_node direct_derefs_link;
44
45 struct set *loads;
46 struct set *stores;
47 struct set *copies;
48
49 nir_ssa_def **def_stack;
50 nir_ssa_def **def_stack_tail;
51
52 struct deref_node *wildcard;
53 struct deref_node *indirect;
54 struct deref_node *children[0];
55 };
56
57 struct lower_variables_state {
58 void *mem_ctx;
59 void *dead_ctx;
60 nir_function_impl *impl;
61
62 /* A hash table mapping variables to deref_node data */
63 struct hash_table *deref_var_nodes;
64
65 /* A hash table mapping fully-qualified direct dereferences, i.e.
66 * dereferences with no indirect or wildcard array dereferences, to
67 * deref_node data.
68 *
69 * At the moment, we only lower loads, stores, and copies that can be
70 * trivially lowered to loads and stores, i.e. copies with no indirects
71 * and no wildcards. If a part of a variable that is being loaded from
72 * and/or stored into is also involved in a copy operation with
73 * wildcards, then we lower that copy operation to loads and stores, but
74 * otherwise we leave copies with wildcards alone. Since the only derefs
75 * used in these loads, stores, and trivial copies are ones with no
76 * wildcards and no indirects, these are precisely the derefs that we
77 * can actually consider lowering.
78 */
79 struct exec_list direct_deref_nodes;
80
81 /* Controls whether get_deref_node will add variables to the
82 * direct_deref_nodes table. This is turned on when we are initially
83 * scanning for load/store instructions. It is then turned off so we
84 * don't accidentally change the direct_deref_nodes table while we're
85 * iterating throug it.
86 */
87 bool add_to_direct_deref_nodes;
88
89 /* A hash table mapping phi nodes to deref_state data */
90 struct hash_table *phi_table;
91 };
92
93 static int
94 type_get_length(const struct glsl_type *type)
95 {
96 switch (glsl_get_base_type(type)) {
97 case GLSL_TYPE_STRUCT:
98 case GLSL_TYPE_ARRAY:
99 return glsl_get_length(type);
100 case GLSL_TYPE_FLOAT:
101 case GLSL_TYPE_INT:
102 case GLSL_TYPE_UINT:
103 case GLSL_TYPE_BOOL:
104 if (glsl_type_is_matrix(type))
105 return glsl_get_matrix_columns(type);
106 else
107 return glsl_get_vector_elements(type);
108 default:
109 unreachable("Invalid deref base type");
110 }
111 }
112
113 static struct deref_node *
114 deref_node_create(struct deref_node *parent,
115 const struct glsl_type *type, void *mem_ctx)
116 {
117 size_t size = sizeof(struct deref_node) +
118 type_get_length(type) * sizeof(struct deref_node *);
119
120 struct deref_node *node = rzalloc_size(mem_ctx, size);
121 node->type = type;
122 node->parent = parent;
123 node->deref = NULL;
124 exec_node_init(&node->direct_derefs_link);
125
126 return node;
127 }
128
129 /* Returns the deref node associated with the given variable. This will be
130 * the root of the tree representing all of the derefs of the given variable.
131 */
132 static struct deref_node *
133 get_deref_node_for_var(nir_variable *var, struct lower_variables_state *state)
134 {
135 struct deref_node *node;
136
137 struct hash_entry *var_entry =
138 _mesa_hash_table_search(state->deref_var_nodes, var);
139
140 if (var_entry) {
141 return var_entry->data;
142 } else {
143 node = deref_node_create(NULL, var->type, state->dead_ctx);
144 _mesa_hash_table_insert(state->deref_var_nodes, var, node);
145 return node;
146 }
147 }
148
149 /* Gets the deref_node for the given deref chain and creates it if it
150 * doesn't yet exist. If the deref is fully-qualified and direct and
151 * state->add_to_direct_deref_nodes is true, it will be added to the hash
152 * table of of fully-qualified direct derefs.
153 */
154 static struct deref_node *
155 get_deref_node(nir_deref_var *deref, struct lower_variables_state *state)
156 {
157 bool is_direct = true;
158
159 /* Start at the base of the chain. */
160 struct deref_node *node = get_deref_node_for_var(deref->var, state);
161 assert(deref->deref.type == node->type);
162
163 for (nir_deref *tail = deref->deref.child; tail; tail = tail->child) {
164 switch (tail->deref_type) {
165 case nir_deref_type_struct: {
166 nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
167
168 assert(deref_struct->index < type_get_length(node->type));
169
170 if (node->children[deref_struct->index] == NULL)
171 node->children[deref_struct->index] =
172 deref_node_create(node, tail->type, state->dead_ctx);
173
174 node = node->children[deref_struct->index];
175 break;
176 }
177
178 case nir_deref_type_array: {
179 nir_deref_array *arr = nir_deref_as_array(tail);
180
181 switch (arr->deref_array_type) {
182 case nir_deref_array_type_direct:
183 /* This is possible if a loop unrolls and generates an
184 * out-of-bounds offset. We need to handle this at least
185 * somewhat gracefully.
186 */
187 if (arr->base_offset >= type_get_length(node->type))
188 return NULL;
189
190 if (node->children[arr->base_offset] == NULL)
191 node->children[arr->base_offset] =
192 deref_node_create(node, tail->type, state->dead_ctx);
193
194 node = node->children[arr->base_offset];
195 break;
196
197 case nir_deref_array_type_indirect:
198 if (node->indirect == NULL)
199 node->indirect = deref_node_create(node, tail->type,
200 state->dead_ctx);
201
202 node = node->indirect;
203 is_direct = false;
204 break;
205
206 case nir_deref_array_type_wildcard:
207 if (node->wildcard == NULL)
208 node->wildcard = deref_node_create(node, tail->type,
209 state->dead_ctx);
210
211 node = node->wildcard;
212 is_direct = false;
213 break;
214
215 default:
216 unreachable("Invalid array deref type");
217 }
218 break;
219 }
220 default:
221 unreachable("Invalid deref type");
222 }
223 }
224
225 assert(node);
226
227 /* Only insert if it isn't already in the list. */
228 if (is_direct && state->add_to_direct_deref_nodes &&
229 node->direct_derefs_link.next == NULL) {
230 node->deref = deref;
231 assert(deref->var != NULL);
232 exec_list_push_tail(&state->direct_deref_nodes,
233 &node->direct_derefs_link);
234 }
235
236 return node;
237 }
238
239 /* \sa foreach_deref_node_match */
240 static bool
241 foreach_deref_node_worker(struct deref_node *node, nir_deref *deref,
242 bool (* cb)(struct deref_node *node,
243 struct lower_variables_state *state),
244 struct lower_variables_state *state)
245 {
246 if (deref->child == NULL) {
247 return cb(node, state);
248 } else {
249 switch (deref->child->deref_type) {
250 case nir_deref_type_array: {
251 nir_deref_array *arr = nir_deref_as_array(deref->child);
252 assert(arr->deref_array_type == nir_deref_array_type_direct);
253 if (node->children[arr->base_offset] &&
254 !foreach_deref_node_worker(node->children[arr->base_offset],
255 deref->child, cb, state))
256 return false;
257
258 if (node->wildcard &&
259 !foreach_deref_node_worker(node->wildcard,
260 deref->child, cb, state))
261 return false;
262
263 return true;
264 }
265
266 case nir_deref_type_struct: {
267 nir_deref_struct *str = nir_deref_as_struct(deref->child);
268 return foreach_deref_node_worker(node->children[str->index],
269 deref->child, cb, state);
270 }
271
272 default:
273 unreachable("Invalid deref child type");
274 }
275 }
276 }
277
278 /* Walks over every "matching" deref_node and calls the callback. A node
279 * is considered to "match" if either refers to that deref or matches up t
280 * a wildcard. In other words, the following would match a[6].foo[3].bar:
281 *
282 * a[6].foo[3].bar
283 * a[*].foo[3].bar
284 * a[6].foo[*].bar
285 * a[*].foo[*].bar
286 *
287 * The given deref must be a full-length and fully qualified (no wildcards
288 * or indirects) deref chain.
289 */
290 static bool
291 foreach_deref_node_match(nir_deref_var *deref,
292 bool (* cb)(struct deref_node *node,
293 struct lower_variables_state *state),
294 struct lower_variables_state *state)
295 {
296 nir_deref_var var_deref = *deref;
297 var_deref.deref.child = NULL;
298 struct deref_node *node = get_deref_node(&var_deref, state);
299
300 if (node == NULL)
301 return false;
302
303 return foreach_deref_node_worker(node, &deref->deref, cb, state);
304 }
305
306 /* \sa deref_may_be_aliased */
307 static bool
308 deref_may_be_aliased_node(struct deref_node *node, nir_deref *deref,
309 struct lower_variables_state *state)
310 {
311 if (deref->child == NULL) {
312 return false;
313 } else {
314 switch (deref->child->deref_type) {
315 case nir_deref_type_array: {
316 nir_deref_array *arr = nir_deref_as_array(deref->child);
317 if (arr->deref_array_type == nir_deref_array_type_indirect)
318 return true;
319
320 assert(arr->deref_array_type == nir_deref_array_type_direct);
321
322 if (node->children[arr->base_offset] &&
323 deref_may_be_aliased_node(node->children[arr->base_offset],
324 deref->child, state))
325 return true;
326
327 if (node->wildcard &&
328 deref_may_be_aliased_node(node->wildcard, deref->child, state))
329 return true;
330
331 return false;
332 }
333
334 case nir_deref_type_struct: {
335 nir_deref_struct *str = nir_deref_as_struct(deref->child);
336 if (node->children[str->index]) {
337 return deref_may_be_aliased_node(node->children[str->index],
338 deref->child, state);
339 } else {
340 return false;
341 }
342 }
343
344 default:
345 unreachable("Invalid nir_deref child type");
346 }
347 }
348 }
349
350 /* Returns true if there are no indirects that can ever touch this deref.
351 *
352 * For example, if the given deref is a[6].foo, then any uses of a[i].foo
353 * would cause this to return false, but a[i].bar would not affect it
354 * because it's a different structure member. A var_copy involving of
355 * a[*].bar also doesn't affect it because that can be lowered to entirely
356 * direct load/stores.
357 *
358 * We only support asking this question about fully-qualified derefs.
359 * Obviously, it's pointless to ask this about indirects, but we also
360 * rule-out wildcards. Handling Wildcard dereferences would involve
361 * checking each array index to make sure that there aren't any indirect
362 * references.
363 */
364 static bool
365 deref_may_be_aliased(nir_deref_var *deref,
366 struct lower_variables_state *state)
367 {
368 return deref_may_be_aliased_node(get_deref_node_for_var(deref->var, state),
369 &deref->deref, state);
370 }
371
372 static void
373 register_load_instr(nir_intrinsic_instr *load_instr,
374 struct lower_variables_state *state)
375 {
376 struct deref_node *node = get_deref_node(load_instr->variables[0], state);
377 if (node == NULL)
378 return;
379
380 if (node->loads == NULL)
381 node->loads = _mesa_set_create(state->dead_ctx, _mesa_hash_pointer,
382 _mesa_key_pointer_equal);
383
384 _mesa_set_add(node->loads, load_instr);
385 }
386
387 static void
388 register_store_instr(nir_intrinsic_instr *store_instr,
389 struct lower_variables_state *state)
390 {
391 struct deref_node *node = get_deref_node(store_instr->variables[0], state);
392 if (node == NULL)
393 return;
394
395 if (node->stores == NULL)
396 node->stores = _mesa_set_create(state->dead_ctx, _mesa_hash_pointer,
397 _mesa_key_pointer_equal);
398
399 _mesa_set_add(node->stores, store_instr);
400 }
401
402 static void
403 register_copy_instr(nir_intrinsic_instr *copy_instr,
404 struct lower_variables_state *state)
405 {
406 for (unsigned idx = 0; idx < 2; idx++) {
407 struct deref_node *node =
408 get_deref_node(copy_instr->variables[idx], state);
409
410 if (node == NULL)
411 continue;
412
413 if (node->copies == NULL)
414 node->copies = _mesa_set_create(state->dead_ctx, _mesa_hash_pointer,
415 _mesa_key_pointer_equal);
416
417 _mesa_set_add(node->copies, copy_instr);
418 }
419 }
420
421 /* Registers all variable uses in the given block. */
422 static bool
423 register_variable_uses_block(nir_block *block, void *void_state)
424 {
425 struct lower_variables_state *state = void_state;
426
427 nir_foreach_instr_safe(block, instr) {
428 if (instr->type != nir_instr_type_intrinsic)
429 continue;
430
431 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
432
433 switch (intrin->intrinsic) {
434 case nir_intrinsic_load_var:
435 register_load_instr(intrin, state);
436 break;
437
438 case nir_intrinsic_store_var:
439 register_store_instr(intrin, state);
440 break;
441
442 case nir_intrinsic_copy_var:
443 register_copy_instr(intrin, state);
444 break;
445
446 default:
447 continue;
448 }
449 }
450
451 return true;
452 }
453
454 /* Walks over all of the copy instructions to or from the given deref_node
455 * and lowers them to load/store intrinsics.
456 */
457 static bool
458 lower_copies_to_load_store(struct deref_node *node,
459 struct lower_variables_state *state)
460 {
461 if (!node->copies)
462 return true;
463
464 struct set_entry *copy_entry;
465 set_foreach(node->copies, copy_entry) {
466 nir_intrinsic_instr *copy = (void *)copy_entry->key;
467
468 nir_lower_var_copy_instr(copy, state->mem_ctx);
469
470 for (unsigned i = 0; i < 2; ++i) {
471 struct deref_node *arg_node =
472 get_deref_node(copy->variables[i], state);
473
474 if (arg_node == NULL)
475 continue;
476
477 struct set_entry *arg_entry = _mesa_set_search(arg_node->copies, copy);
478 assert(arg_entry);
479 _mesa_set_remove(node->copies, arg_entry);
480 }
481
482 nir_instr_remove(&copy->instr);
483 }
484
485 return true;
486 }
487
488 /* Returns a load_const instruction that represents the constant
489 * initializer for the given deref chain. The caller is responsible for
490 * ensuring that there actually is a constant initializer.
491 */
492 static nir_load_const_instr *
493 get_const_initializer_load(const nir_deref_var *deref,
494 struct lower_variables_state *state)
495 {
496 nir_constant *constant = deref->var->constant_initializer;
497 const nir_deref *tail = &deref->deref;
498 unsigned matrix_offset = 0;
499 while (tail->child) {
500 switch (tail->child->deref_type) {
501 case nir_deref_type_array: {
502 nir_deref_array *arr = nir_deref_as_array(tail->child);
503 assert(arr->deref_array_type == nir_deref_array_type_direct);
504 if (glsl_type_is_matrix(tail->type)) {
505 assert(arr->deref.child == NULL);
506 matrix_offset = arr->base_offset;
507 } else {
508 constant = constant->elements[arr->base_offset];
509 }
510 break;
511 }
512
513 case nir_deref_type_struct: {
514 constant = constant->elements[nir_deref_as_struct(tail->child)->index];
515 break;
516 }
517
518 default:
519 unreachable("Invalid deref child type");
520 }
521
522 tail = tail->child;
523 }
524
525 nir_load_const_instr *load =
526 nir_load_const_instr_create(state->mem_ctx,
527 glsl_get_vector_elements(tail->type));
528
529 matrix_offset *= load->def.num_components;
530 for (unsigned i = 0; i < load->def.num_components; i++) {
531 switch (glsl_get_base_type(tail->type)) {
532 case GLSL_TYPE_FLOAT:
533 case GLSL_TYPE_INT:
534 case GLSL_TYPE_UINT:
535 load->value.u[i] = constant->value.u[matrix_offset + i];
536 break;
537 case GLSL_TYPE_BOOL:
538 load->value.u[i] = constant->value.b[matrix_offset + i] ?
539 NIR_TRUE : NIR_FALSE;
540 break;
541 default:
542 unreachable("Invalid immediate type");
543 }
544 }
545
546 return load;
547 }
548
549 /** Pushes an SSA def onto the def stack for the given node
550 *
551 * Each node is potentially associated with a stack of SSA definitions.
552 * This stack is used for determining what SSA definition reaches a given
553 * point in the program for variable renaming. The stack is always kept in
554 * dominance-order with at most one SSA def per block. If the SSA
555 * definition on the top of the stack is in the same block as the one being
556 * pushed, the top element is replaced.
557 */
558 static void
559 def_stack_push(struct deref_node *node, nir_ssa_def *def,
560 struct lower_variables_state *state)
561 {
562 if (node->def_stack == NULL) {
563 node->def_stack = ralloc_array(state->dead_ctx, nir_ssa_def *,
564 state->impl->num_blocks);
565 node->def_stack_tail = node->def_stack - 1;
566 }
567
568 if (node->def_stack_tail >= node->def_stack) {
569 nir_ssa_def *top_def = *node->def_stack_tail;
570
571 if (def->parent_instr->block == top_def->parent_instr->block) {
572 /* They're in the same block, just replace the top */
573 *node->def_stack_tail = def;
574 return;
575 }
576 }
577
578 *(++node->def_stack_tail) = def;
579 }
580
581 /* Pop the top of the def stack if it's in the given block */
582 static void
583 def_stack_pop_if_in_block(struct deref_node *node, nir_block *block)
584 {
585 /* If we're popping, then we have presumably pushed at some time in the
586 * past so this should exist.
587 */
588 assert(node->def_stack != NULL);
589
590 /* The stack is already empty. Do nothing. */
591 if (node->def_stack_tail < node->def_stack)
592 return;
593
594 nir_ssa_def *def = *node->def_stack_tail;
595 if (def->parent_instr->block == block)
596 node->def_stack_tail--;
597 }
598
599 /** Retrieves the SSA definition on the top of the stack for the given
600 * node, if one exists. If the stack is empty, then we return the constant
601 * initializer (if it exists) or an SSA undef.
602 */
603 static nir_ssa_def *
604 get_ssa_def_for_block(struct deref_node *node, nir_block *block,
605 struct lower_variables_state *state)
606 {
607 /* If we have something on the stack, go ahead and return it. We're
608 * assuming that the top of the stack dominates the given block.
609 */
610 if (node->def_stack && node->def_stack_tail >= node->def_stack)
611 return *node->def_stack_tail;
612
613 /* If we got here then we don't have a definition that dominates the
614 * given block. This means that we need to add an undef and use that.
615 */
616 nir_ssa_undef_instr *undef =
617 nir_ssa_undef_instr_create(state->mem_ctx,
618 glsl_get_vector_elements(node->type));
619 nir_instr_insert_before_cf_list(&state->impl->body, &undef->instr);
620 def_stack_push(node, &undef->def, state);
621 return &undef->def;
622 }
623
624 /* Given a block and one of its predecessors, this function fills in the
625 * souces of the phi nodes to take SSA defs from the given predecessor.
626 * This function must be called exactly once per block/predecessor pair.
627 */
628 static void
629 add_phi_sources(nir_block *block, nir_block *pred,
630 struct lower_variables_state *state)
631 {
632 nir_foreach_instr(block, instr) {
633 if (instr->type != nir_instr_type_phi)
634 break;
635
636 nir_phi_instr *phi = nir_instr_as_phi(instr);
637
638 struct hash_entry *entry =
639 _mesa_hash_table_search(state->phi_table, phi);
640 if (!entry)
641 continue;
642
643 struct deref_node *node = entry->data;
644
645 nir_phi_src *src = ralloc(phi, nir_phi_src);
646 src->pred = pred;
647 src->src.is_ssa = true;
648 src->src.ssa = get_ssa_def_for_block(node, pred, state);
649
650 _mesa_set_add(src->src.ssa->uses, instr);
651
652 exec_list_push_tail(&phi->srcs, &src->node);
653 }
654 }
655
656 /* Performs variable renaming by doing a DFS of the dominance tree
657 *
658 * This algorithm is very similar to the one outlined in "Efficiently
659 * Computing Static Single Assignment Form and the Control Dependence
660 * Graph" by Cytron et. al. The primary difference is that we only put one
661 * SSA def on the stack per block.
662 */
663 static bool
664 rename_variables_block(nir_block *block, struct lower_variables_state *state)
665 {
666 nir_foreach_instr_safe(block, instr) {
667 if (instr->type == nir_instr_type_phi) {
668 nir_phi_instr *phi = nir_instr_as_phi(instr);
669
670 struct hash_entry *entry =
671 _mesa_hash_table_search(state->phi_table, phi);
672
673 /* This can happen if we already have phi nodes in the program
674 * that were not created in this pass.
675 */
676 if (!entry)
677 continue;
678
679 struct deref_node *node = entry->data;
680
681 def_stack_push(node, &phi->dest.ssa, state);
682 } else if (instr->type == nir_instr_type_intrinsic) {
683 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
684
685 switch (intrin->intrinsic) {
686 case nir_intrinsic_load_var: {
687 struct deref_node *node =
688 get_deref_node(intrin->variables[0], state);
689
690 if (node == NULL) {
691 /* If we hit this path then we are referencing an invalid
692 * value. Most likely, we unrolled something and are
693 * reading past the end of some array. In any case, this
694 * should result in an undefined value.
695 */
696 nir_ssa_undef_instr *undef =
697 nir_ssa_undef_instr_create(state->mem_ctx,
698 intrin->num_components);
699
700 nir_instr_insert_before(&intrin->instr, &undef->instr);
701 nir_instr_remove(&intrin->instr);
702
703 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
704 nir_src_for_ssa(&undef->def),
705 state->mem_ctx);
706 continue;
707 }
708
709 if (!node->lower_to_ssa)
710 continue;
711
712 nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
713 nir_op_imov);
714 mov->src[0].src.is_ssa = true;
715 mov->src[0].src.ssa = get_ssa_def_for_block(node, block, state);
716 for (unsigned i = intrin->num_components; i < 4; i++)
717 mov->src[0].swizzle[i] = 0;
718
719 assert(intrin->dest.is_ssa);
720
721 mov->dest.write_mask = (1 << intrin->num_components) - 1;
722 nir_ssa_dest_init(&mov->instr, &mov->dest.dest,
723 intrin->num_components, NULL);
724
725 nir_instr_insert_before(&intrin->instr, &mov->instr);
726 nir_instr_remove(&intrin->instr);
727
728 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
729 nir_src_for_ssa(&mov->dest.dest.ssa),
730 state->mem_ctx);
731 break;
732 }
733
734 case nir_intrinsic_store_var: {
735 struct deref_node *node =
736 get_deref_node(intrin->variables[0], state);
737
738 if (node == NULL) {
739 /* Probably an out-of-bounds array store. That should be a
740 * no-op. */
741 nir_instr_remove(&intrin->instr);
742 continue;
743 }
744
745 if (!node->lower_to_ssa)
746 continue;
747
748 assert(intrin->num_components ==
749 glsl_get_vector_elements(node->type));
750
751 assert(intrin->src[0].is_ssa);
752
753 nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
754 nir_op_imov);
755 mov->src[0].src.is_ssa = true;
756 mov->src[0].src.ssa = intrin->src[0].ssa;
757 for (unsigned i = intrin->num_components; i < 4; i++)
758 mov->src[0].swizzle[i] = 0;
759
760 mov->dest.write_mask = (1 << intrin->num_components) - 1;
761 nir_ssa_dest_init(&mov->instr, &mov->dest.dest,
762 intrin->num_components, NULL);
763
764 nir_instr_insert_before(&intrin->instr, &mov->instr);
765
766 def_stack_push(node, &mov->dest.dest.ssa, state);
767
768 /* We'll wait to remove the instruction until the next pass
769 * where we pop the node we just pushed back off the stack.
770 */
771 break;
772 }
773
774 default:
775 break;
776 }
777 }
778 }
779
780 if (block->successors[0])
781 add_phi_sources(block->successors[0], block, state);
782 if (block->successors[1])
783 add_phi_sources(block->successors[1], block, state);
784
785 for (unsigned i = 0; i < block->num_dom_children; ++i)
786 rename_variables_block(block->dom_children[i], state);
787
788 /* Now we iterate over the instructions and pop off any SSA defs that we
789 * pushed in the first loop.
790 */
791 nir_foreach_instr_safe(block, instr) {
792 if (instr->type == nir_instr_type_phi) {
793 nir_phi_instr *phi = nir_instr_as_phi(instr);
794
795 struct hash_entry *entry =
796 _mesa_hash_table_search(state->phi_table, phi);
797
798 /* This can happen if we already have phi nodes in the program
799 * that were not created in this pass.
800 */
801 if (!entry)
802 continue;
803
804 struct deref_node *node = entry->data;
805
806 def_stack_pop_if_in_block(node, block);
807 } else if (instr->type == nir_instr_type_intrinsic) {
808 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
809
810 if (intrin->intrinsic != nir_intrinsic_store_var)
811 continue;
812
813 struct deref_node *node = get_deref_node(intrin->variables[0], state);
814 if (!node)
815 continue;
816
817 if (!node->lower_to_ssa)
818 continue;
819
820 def_stack_pop_if_in_block(node, block);
821 nir_instr_remove(&intrin->instr);
822 }
823 }
824
825 return true;
826 }
827
828 /* Inserts phi nodes for all variables marked lower_to_ssa
829 *
830 * This is the same algorithm as presented in "Efficiently Computing Static
831 * Single Assignment Form and the Control Dependence Graph" by Cytron et.
832 * al.
833 */
834 static void
835 insert_phi_nodes(struct lower_variables_state *state)
836 {
837 NIR_VLA_ZERO(unsigned, work, state->impl->num_blocks);
838 NIR_VLA_ZERO(unsigned, has_already, state->impl->num_blocks);
839
840 /*
841 * Since the work flags already prevent us from inserting a node that has
842 * ever been inserted into W, we don't need to use a set to represent W.
843 * Also, since no block can ever be inserted into W more than once, we know
844 * that the maximum size of W is the number of basic blocks in the
845 * function. So all we need to handle W is an array and a pointer to the
846 * next element to be inserted and the next element to be removed.
847 */
848 NIR_VLA(nir_block *, W, state->impl->num_blocks);
849
850 unsigned w_start, w_end;
851 unsigned iter_count = 0;
852
853 foreach_list_typed(struct deref_node, node, direct_derefs_link,
854 &state->direct_deref_nodes) {
855 if (node->stores == NULL)
856 continue;
857
858 if (!node->lower_to_ssa)
859 continue;
860
861 w_start = w_end = 0;
862 iter_count++;
863
864 struct set_entry *store_entry;
865 set_foreach(node->stores, store_entry) {
866 nir_intrinsic_instr *store = (nir_intrinsic_instr *)store_entry->key;
867 if (work[store->instr.block->index] < iter_count)
868 W[w_end++] = store->instr.block;
869 work[store->instr.block->index] = iter_count;
870 }
871
872 while (w_start != w_end) {
873 nir_block *cur = W[w_start++];
874 struct set_entry *dom_entry;
875 set_foreach(cur->dom_frontier, dom_entry) {
876 nir_block *next = (nir_block *) dom_entry->key;
877
878 /*
879 * If there's more than one return statement, then the end block
880 * can be a join point for some definitions. However, there are
881 * no instructions in the end block, so nothing would use those
882 * phi nodes. Of course, we couldn't place those phi nodes
883 * anyways due to the restriction of having no instructions in the
884 * end block...
885 */
886 if (next == state->impl->end_block)
887 continue;
888
889 if (has_already[next->index] < iter_count) {
890 nir_phi_instr *phi = nir_phi_instr_create(state->mem_ctx);
891 nir_ssa_dest_init(&phi->instr, &phi->dest,
892 glsl_get_vector_elements(node->type), NULL);
893 nir_instr_insert_before_block(next, &phi->instr);
894
895 _mesa_hash_table_insert(state->phi_table, phi, node);
896
897 has_already[next->index] = iter_count;
898 if (work[next->index] < iter_count) {
899 work[next->index] = iter_count;
900 W[w_end++] = next;
901 }
902 }
903 }
904 }
905 }
906 }
907
908
909 /** Implements a pass to lower variable uses to SSA values
910 *
911 * This path walks the list of instructions and tries to lower as many
912 * local variable load/store operations to SSA defs and uses as it can.
913 * The process involves four passes:
914 *
915 * 1) Iterate over all of the instructions and mark where each local
916 * variable deref is used in a load, store, or copy. While we're at
917 * it, we keep track of all of the fully-qualified (no wildcards) and
918 * fully-direct references we see and store them in the
919 * direct_deref_nodes hash table.
920 *
921 * 2) Walk over the the list of fully-qualified direct derefs generated in
922 * the previous pass. For each deref, we determine if it can ever be
923 * aliased, i.e. if there is an indirect reference anywhere that may
924 * refer to it. If it cannot be aliased, we mark it for lowering to an
925 * SSA value. At this point, we lower any var_copy instructions that
926 * use the given deref to load/store operations and, if the deref has a
927 * constant initializer, we go ahead and add a load_const value at the
928 * beginning of the function with the initialized value.
929 *
930 * 3) Walk over the list of derefs we plan to lower to SSA values and
931 * insert phi nodes as needed.
932 *
933 * 4) Perform "variable renaming" by replacing the load/store instructions
934 * with SSA definitions and SSA uses.
935 */
936 static bool
937 nir_lower_vars_to_ssa_impl(nir_function_impl *impl)
938 {
939 struct lower_variables_state state;
940
941 state.mem_ctx = ralloc_parent(impl);
942 state.dead_ctx = ralloc_context(state.mem_ctx);
943 state.impl = impl;
944
945 state.deref_var_nodes = _mesa_hash_table_create(state.dead_ctx,
946 _mesa_hash_pointer,
947 _mesa_key_pointer_equal);
948 exec_list_make_empty(&state.direct_deref_nodes);
949 state.phi_table = _mesa_hash_table_create(state.dead_ctx,
950 _mesa_hash_pointer,
951 _mesa_key_pointer_equal);
952
953 /* Build the initial deref structures and direct_deref_nodes table */
954 state.add_to_direct_deref_nodes = true;
955 nir_foreach_block(impl, register_variable_uses_block, &state);
956
957 struct set *outputs = _mesa_set_create(state.dead_ctx,
958 _mesa_hash_pointer,
959 _mesa_key_pointer_equal);
960
961 bool progress = false;
962
963 nir_metadata_require(impl, nir_metadata_block_index);
964
965 /* We're about to iterate through direct_deref_nodes. Don't modify it. */
966 state.add_to_direct_deref_nodes = false;
967
968 foreach_list_typed_safe(struct deref_node, node, direct_derefs_link,
969 &state.direct_deref_nodes) {
970 nir_deref_var *deref = node->deref;
971
972 if (deref->var->data.mode != nir_var_local) {
973 exec_node_remove(&node->direct_derefs_link);
974 continue;
975 }
976
977 if (deref_may_be_aliased(deref, &state)) {
978 exec_node_remove(&node->direct_derefs_link);
979 continue;
980 }
981
982 node->lower_to_ssa = true;
983 progress = true;
984
985 if (deref->var->constant_initializer) {
986 nir_load_const_instr *load = get_const_initializer_load(deref, &state);
987 nir_ssa_def_init(&load->instr, &load->def,
988 glsl_get_vector_elements(node->type), NULL);
989 nir_instr_insert_before_cf_list(&impl->body, &load->instr);
990 def_stack_push(node, &load->def, &state);
991 }
992
993 if (deref->var->data.mode == nir_var_shader_out)
994 _mesa_set_add(outputs, node);
995
996 foreach_deref_node_match(deref, lower_copies_to_load_store, &state);
997 }
998
999 if (!progress)
1000 return false;
1001
1002 nir_metadata_require(impl, nir_metadata_dominance);
1003
1004 /* We may have lowered some copy instructions to load/store
1005 * instructions. The uses from the copy instructions hav already been
1006 * removed but we need to rescan to ensure that the uses from the newly
1007 * added load/store instructions are registered. We need this
1008 * information for phi node insertion below.
1009 */
1010 nir_foreach_block(impl, register_variable_uses_block, &state);
1011
1012 insert_phi_nodes(&state);
1013 rename_variables_block(impl->start_block, &state);
1014
1015 nir_metadata_preserve(impl, nir_metadata_block_index |
1016 nir_metadata_dominance);
1017
1018 ralloc_free(state.dead_ctx);
1019
1020 return progress;
1021 }
1022
1023 void
1024 nir_lower_vars_to_ssa(nir_shader *shader)
1025 {
1026 nir_foreach_overload(shader, overload) {
1027 if (overload->impl)
1028 nir_lower_vars_to_ssa_impl(overload->impl);
1029 }
1030 }