nir: s/malloc.h/stdlib.h/
[mesa.git] / src / glsl / nir / nir_to_ssa.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #include "nir.h"
29 #include <stdlib.h>
30 #include <unistd.h>
31
32 /*
33 * Implements the classic to-SSA algorithm described by Cytron et. al. in
34 * "Efficiently Computing Static Single Assignment Form and the Control
35 * Dependence Graph."
36 */
37
38 /* inserts a phi node of the form reg = phi(reg, reg, reg, ...) */
39
40 static void
41 insert_trivial_phi(nir_register *reg, nir_block *block, void *mem_ctx)
42 {
43 nir_phi_instr *instr = nir_phi_instr_create(mem_ctx);
44
45 instr->dest.reg.reg = reg;
46 struct set_entry *entry;
47 set_foreach(block->predecessors, entry) {
48 nir_block *pred = (nir_block *) entry->key;
49
50 nir_phi_src *src = ralloc(mem_ctx, nir_phi_src);
51 src->pred = pred;
52 src->src.is_ssa = false;
53 src->src.reg.base_offset = 0;
54 src->src.reg.indirect = NULL;
55 src->src.reg.reg = reg;
56 exec_list_push_tail(&instr->srcs, &src->node);
57 }
58
59 nir_instr_insert_before_block(block, &instr->instr);
60 }
61
62 static void
63 insert_phi_nodes(nir_function_impl *impl)
64 {
65 void *mem_ctx = ralloc_parent(impl);
66
67 unsigned *work = calloc(impl->num_blocks, sizeof(unsigned));
68 unsigned *has_already = calloc(impl->num_blocks, sizeof(unsigned));
69
70 /*
71 * Since the work flags already prevent us from inserting a node that has
72 * ever been inserted into W, we don't need to use a set to represent W.
73 * Also, since no block can ever be inserted into W more than once, we know
74 * that the maximum size of W is the number of basic blocks in the
75 * function. So all we need to handle W is an array and a pointer to the
76 * next element to be inserted and the next element to be removed.
77 */
78 nir_block **W = malloc(impl->num_blocks * sizeof(nir_block *));
79 unsigned w_start, w_end;
80
81 unsigned iter_count = 0;
82
83 nir_index_blocks(impl);
84
85 foreach_list_typed(nir_register, reg, node, &impl->registers) {
86 if (reg->num_array_elems != 0)
87 continue;
88
89 w_start = w_end = 0;
90 iter_count++;
91
92 struct set_entry *entry;
93 set_foreach(reg->defs, entry) {
94 nir_instr *def = (nir_instr *) entry->key;
95 if (work[def->block->index] < iter_count)
96 W[w_end++] = def->block;
97 work[def->block->index] = iter_count;
98 }
99
100 while (w_start != w_end) {
101 nir_block *cur = W[w_start++];
102 set_foreach(cur->dom_frontier, entry) {
103 nir_block *next = (nir_block *) entry->key;
104
105 /*
106 * If there's more than one return statement, then the end block
107 * can be a join point for some definitions. However, there are
108 * no instructions in the end block, so nothing would use those
109 * phi nodes. Of course, we couldn't place those phi nodes
110 * anyways due to the restriction of having no instructions in the
111 * end block...
112 */
113 if (next == impl->end_block)
114 continue;
115
116 if (has_already[next->index] < iter_count) {
117 insert_trivial_phi(reg, next, mem_ctx);
118 has_already[next->index] = iter_count;
119 if (work[next->index] < iter_count) {
120 work[next->index] = iter_count;
121 W[w_end++] = next;
122 }
123 }
124 }
125 }
126 }
127
128 free(work);
129 free(has_already);
130 free(W);
131 }
132
133 typedef struct {
134 nir_ssa_def **stack;
135 int index;
136 unsigned num_defs; /** < used to add indices to debug names */
137 #ifdef DEBUG
138 unsigned stack_size;
139 #endif
140 } reg_state;
141
142 typedef struct {
143 reg_state *states;
144 void *mem_ctx;
145 nir_instr *parent_instr;
146 nir_if *parent_if;
147 nir_function_impl *impl;
148
149 /* map from SSA value -> original register */
150 struct hash_table *ssa_map;
151 } rewrite_state;
152
153 static nir_ssa_def *get_ssa_src(nir_register *reg, rewrite_state *state)
154 {
155 unsigned index = reg->index;
156
157 if (state->states[index].index == -1) {
158 /*
159 * We're using an undefined register, create a new undefined SSA value
160 * to preserve the information that this source is undefined
161 */
162 nir_ssa_undef_instr *instr =
163 nir_ssa_undef_instr_create(state->mem_ctx, reg->num_components);
164
165 /*
166 * We could just insert the undefined instruction before the instruction
167 * we're rewriting, but we could be rewriting a phi source in which case
168 * we can't do that, so do the next easiest thing - insert it at the
169 * beginning of the program. In the end, it doesn't really matter where
170 * the undefined instructions are because they're going to be ignored
171 * in the backend.
172 */
173 nir_instr_insert_before_cf_list(&state->impl->body, &instr->instr);
174 return &instr->def;
175 }
176
177 return state->states[index].stack[state->states[index].index];
178 }
179
180 static bool
181 rewrite_use(nir_src *src, void *_state)
182 {
183 rewrite_state *state = (rewrite_state *) _state;
184
185 if (src->is_ssa)
186 return true;
187
188 unsigned index = src->reg.reg->index;
189
190 if (state->states[index].stack == NULL)
191 return true;
192
193 src->is_ssa = true;
194 src->ssa = get_ssa_src(src->reg.reg, state);
195
196 if (state->parent_instr)
197 _mesa_set_add(src->ssa->uses, state->parent_instr);
198 else
199 _mesa_set_add(src->ssa->if_uses, state->parent_if);
200 return true;
201 }
202
203 static bool
204 rewrite_def_forwards(nir_dest *dest, void *_state)
205 {
206 rewrite_state *state = (rewrite_state *) _state;
207
208 if (dest->is_ssa)
209 return true;
210
211 nir_register *reg = dest->reg.reg;
212 unsigned index = reg->index;
213
214 if (state->states[index].stack == NULL)
215 return true;
216
217 dest->is_ssa = true;
218
219 char *name = NULL;
220 if (dest->reg.reg->name)
221 name = ralloc_asprintf(state->mem_ctx, "%s_%u", dest->reg.reg->name,
222 state->states[index].num_defs);
223
224 nir_ssa_def_init(state->parent_instr, &dest->ssa,
225 reg->num_components, name);
226
227 /* push our SSA destination on the stack */
228 state->states[index].index++;
229 assert(state->states[index].index < state->states[index].stack_size);
230 state->states[index].stack[state->states[index].index] = &dest->ssa;
231 state->states[index].num_defs++;
232
233 _mesa_hash_table_insert(state->ssa_map, &dest->ssa, reg);
234
235 return true;
236 }
237
238 static void
239 rewrite_alu_instr_forward(nir_alu_instr *instr, rewrite_state *state)
240 {
241 state->parent_instr = &instr->instr;
242
243 nir_foreach_src(&instr->instr, rewrite_use, state);
244
245 nir_register *reg = instr->dest.dest.reg.reg;
246 unsigned index = reg->index;
247
248 if (state->states[index].stack == NULL)
249 return;
250
251 unsigned write_mask = instr->dest.write_mask;
252 if (write_mask != (1 << instr->dest.dest.reg.reg->num_components) - 1) {
253 /*
254 * Calculate the number of components the final instruction, which for
255 * per-component things is the number of output components of the
256 * instruction and non-per-component things is the number of enabled
257 * channels in the write mask.
258 */
259 unsigned num_components;
260 if (nir_op_infos[instr->op].output_size == 0) {
261 unsigned temp = (write_mask & 0x5) + ((write_mask >> 1) & 0x5);
262 num_components = (temp & 0x3) + ((temp >> 2) & 0x3);
263 } else {
264 num_components = nir_op_infos[instr->op].output_size;
265 }
266
267 char *name = NULL;
268 if (instr->dest.dest.reg.reg->name)
269 name = ralloc_asprintf(state->mem_ctx, "%s_%u",
270 reg->name, state->states[index].num_defs);
271
272 instr->dest.write_mask = (1 << num_components) - 1;
273 instr->dest.dest.is_ssa = true;
274 nir_ssa_def_init(&instr->instr, &instr->dest.dest.ssa,
275 num_components, name);
276
277 if (nir_op_infos[instr->op].output_size == 0) {
278 /*
279 * When we change the output writemask, we need to change the
280 * swizzles for per-component inputs too
281 */
282 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
283 if (nir_op_infos[instr->op].input_sizes[i] != 0)
284 continue;
285
286 unsigned new_swizzle[4] = {0, 0, 0, 0};
287
288 /*
289 * We keep two indices:
290 * 1. The index of the original (non-SSA) component
291 * 2. The index of the post-SSA, compacted, component
292 *
293 * We need to map the swizzle component at index 1 to the swizzle
294 * component at index 2.
295 */
296
297 unsigned ssa_index = 0;
298 for (unsigned index = 0; index < 4; index++) {
299 if (!((write_mask >> index) & 1))
300 continue;
301
302 new_swizzle[ssa_index] = instr->src[i].swizzle[index];
303 ssa_index++;
304 }
305
306 for (unsigned j = 0; j < 4; j++)
307 instr->src[i].swizzle[j] = new_swizzle[j];
308 }
309 }
310
311 nir_op op;
312 switch (reg->num_components) {
313 case 2: op = nir_op_vec2; break;
314 case 3: op = nir_op_vec3; break;
315 case 4: op = nir_op_vec4; break;
316 default: assert(0); break;
317 }
318
319 nir_alu_instr *vec = nir_alu_instr_create(state->mem_ctx, op);
320
321 vec->dest.dest.reg.reg = reg;
322 vec->dest.write_mask = (1 << reg->num_components) - 1;
323
324 nir_ssa_def *old_src = get_ssa_src(reg, state);
325 nir_ssa_def *new_src = &instr->dest.dest.ssa;
326
327 unsigned ssa_index = 0;
328 for (unsigned i = 0; i < reg->num_components; i++) {
329 vec->src[i].src.is_ssa = true;
330 if ((write_mask >> i) & 1) {
331 vec->src[i].src.ssa = new_src;
332 if (nir_op_infos[instr->op].output_size == 0)
333 vec->src[i].swizzle[0] = ssa_index;
334 else
335 vec->src[i].swizzle[0] = i;
336 ssa_index++;
337 } else {
338 vec->src[i].src.ssa = old_src;
339 vec->src[i].swizzle[0] = i;
340 }
341 }
342
343 nir_instr_insert_after(&instr->instr, &vec->instr);
344
345 state->parent_instr = &vec->instr;
346 rewrite_def_forwards(&vec->dest.dest, state);
347 } else {
348 rewrite_def_forwards(&instr->dest.dest, state);
349 }
350 }
351
352 static void
353 rewrite_phi_instr(nir_phi_instr *instr, rewrite_state *state)
354 {
355 state->parent_instr = &instr->instr;
356 rewrite_def_forwards(&instr->dest, state);
357 }
358
359 static void
360 rewrite_instr_forward(nir_instr *instr, rewrite_state *state)
361 {
362 if (instr->type == nir_instr_type_alu) {
363 rewrite_alu_instr_forward(nir_instr_as_alu(instr), state);
364 return;
365 }
366
367 if (instr->type == nir_instr_type_phi) {
368 rewrite_phi_instr(nir_instr_as_phi(instr), state);
369 return;
370 }
371
372 state->parent_instr = instr;
373
374 nir_foreach_src(instr, rewrite_use, state);
375 nir_foreach_dest(instr, rewrite_def_forwards, state);
376 }
377
378 static void
379 rewrite_phi_sources(nir_block *block, nir_block *pred, rewrite_state *state)
380 {
381 nir_foreach_instr(block, instr) {
382 if (instr->type != nir_instr_type_phi)
383 break;
384
385 nir_phi_instr *phi_instr = nir_instr_as_phi(instr);
386
387 state->parent_instr = instr;
388
389 foreach_list_typed(nir_phi_src, src, node, &phi_instr->srcs) {
390 if (src->pred == pred) {
391 rewrite_use(&src->src, state);
392 break;
393 }
394 }
395 }
396 }
397
398 static bool
399 rewrite_def_backwards(nir_dest *dest, void *_state)
400 {
401 rewrite_state *state = (rewrite_state *) _state;
402
403 if (!dest->is_ssa)
404 return true;
405
406 struct hash_entry *entry =
407 _mesa_hash_table_search(state->ssa_map, &dest->ssa);
408
409 if (!entry)
410 return true;
411
412 nir_register *reg = (nir_register *) entry->data;
413 unsigned index = reg->index;
414
415 state->states[index].index--;
416 assert(state->states[index].index >= -1);
417
418 return true;
419 }
420
421 static void
422 rewrite_instr_backwards(nir_instr *instr, rewrite_state *state)
423 {
424 nir_foreach_dest(instr, rewrite_def_backwards, state);
425 }
426
427 static void
428 rewrite_block(nir_block *block, rewrite_state *state)
429 {
430 /* This will skip over any instructions after the current one, which is
431 * what we want because those instructions (vector gather, conditional
432 * select) will already be in SSA form.
433 */
434 nir_foreach_instr_safe(block, instr) {
435 rewrite_instr_forward(instr, state);
436 }
437
438 if (block != state->impl->end_block &&
439 !nir_cf_node_is_last(&block->cf_node) &&
440 nir_cf_node_next(&block->cf_node)->type == nir_cf_node_if) {
441 nir_if *if_stmt = nir_cf_node_as_if(nir_cf_node_next(&block->cf_node));
442 state->parent_instr = NULL;
443 state->parent_if = if_stmt;
444 rewrite_use(&if_stmt->condition, state);
445 }
446
447 if (block->successors[0])
448 rewrite_phi_sources(block->successors[0], block, state);
449 if (block->successors[1])
450 rewrite_phi_sources(block->successors[1], block, state);
451
452 for (unsigned i = 0; i < block->num_dom_children; i++)
453 rewrite_block(block->dom_children[i], state);
454
455 nir_foreach_instr_reverse(block, instr) {
456 rewrite_instr_backwards(instr, state);
457 }
458 }
459
460 static void
461 remove_unused_regs(nir_function_impl *impl, rewrite_state *state)
462 {
463 foreach_list_typed_safe(nir_register, reg, node, &impl->registers) {
464 if (state->states[reg->index].stack != NULL)
465 exec_node_remove(&reg->node);
466 }
467 }
468
469 static void
470 init_rewrite_state(nir_function_impl *impl, rewrite_state *state)
471 {
472 state->impl = impl;
473 state->mem_ctx = ralloc_parent(impl);
474 state->ssa_map = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
475 _mesa_key_pointer_equal);
476 state->states = ralloc_array(NULL, reg_state, impl->reg_alloc);
477
478 foreach_list_typed(nir_register, reg, node, &impl->registers) {
479 assert(reg->index < impl->reg_alloc);
480 if (reg->num_array_elems > 0) {
481 state->states[reg->index].stack = NULL;
482 } else {
483 /*
484 * Calculate a conservative estimate of the stack size based on the
485 * number of definitions there are. Note that this function *must* be
486 * called after phi nodes are inserted so we can count phi node
487 * definitions too.
488 */
489 unsigned stack_size = reg->defs->entries;
490
491 state->states[reg->index].stack = ralloc_array(state->states,
492 nir_ssa_def *,
493 stack_size);
494 #ifdef DEBUG
495 state->states[reg->index].stack_size = stack_size;
496 #endif
497 state->states[reg->index].index = -1;
498 state->states[reg->index].num_defs = 0;
499 }
500 }
501 }
502
503 static void
504 destroy_rewrite_state(rewrite_state *state)
505 {
506 _mesa_hash_table_destroy(state->ssa_map, NULL);
507 ralloc_free(state->states);
508 }
509
510 void
511 nir_convert_to_ssa_impl(nir_function_impl *impl)
512 {
513 nir_metadata_require(impl, nir_metadata_dominance);
514
515 insert_phi_nodes(impl);
516
517 rewrite_state state;
518 init_rewrite_state(impl, &state);
519
520 rewrite_block(impl->start_block, &state);
521
522 remove_unused_regs(impl, &state);
523
524 nir_metadata_preserve(impl, nir_metadata_block_index |
525 nir_metadata_dominance);
526
527 destroy_rewrite_state(&state);
528 }
529
530 void
531 nir_convert_to_ssa(nir_shader *shader)
532 {
533 nir_foreach_overload(shader, overload) {
534 if (overload->impl)
535 nir_convert_to_ssa_impl(overload->impl);
536 }
537 }