nir: Add a function for rewriting the condition of an if statement
[mesa.git] / src / glsl / nir / nir_to_ssa.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #include "nir.h"
29 #include <stdlib.h>
30 #include <unistd.h>
31
32 /*
33 * Implements the classic to-SSA algorithm described by Cytron et. al. in
34 * "Efficiently Computing Static Single Assignment Form and the Control
35 * Dependence Graph."
36 */
37
38 /* inserts a phi node of the form reg = phi(reg, reg, reg, ...) */
39
40 static void
41 insert_trivial_phi(nir_register *reg, nir_block *block, void *mem_ctx)
42 {
43 nir_phi_instr *instr = nir_phi_instr_create(mem_ctx);
44
45 instr->dest.reg.reg = reg;
46 struct set_entry *entry;
47 set_foreach(block->predecessors, entry) {
48 nir_block *pred = (nir_block *) entry->key;
49
50 nir_phi_src *src = ralloc(instr, nir_phi_src);
51 src->pred = pred;
52 src->src.is_ssa = false;
53 src->src.reg.base_offset = 0;
54 src->src.reg.indirect = NULL;
55 src->src.reg.reg = reg;
56 exec_list_push_tail(&instr->srcs, &src->node);
57 }
58
59 nir_instr_insert_before_block(block, &instr->instr);
60 }
61
62 static void
63 insert_phi_nodes(nir_function_impl *impl)
64 {
65 void *mem_ctx = ralloc_parent(impl);
66
67 unsigned *work = calloc(impl->num_blocks, sizeof(unsigned));
68 unsigned *has_already = calloc(impl->num_blocks, sizeof(unsigned));
69
70 /*
71 * Since the work flags already prevent us from inserting a node that has
72 * ever been inserted into W, we don't need to use a set to represent W.
73 * Also, since no block can ever be inserted into W more than once, we know
74 * that the maximum size of W is the number of basic blocks in the
75 * function. So all we need to handle W is an array and a pointer to the
76 * next element to be inserted and the next element to be removed.
77 */
78 nir_block **W = malloc(impl->num_blocks * sizeof(nir_block *));
79 unsigned w_start, w_end;
80
81 unsigned iter_count = 0;
82
83 nir_index_blocks(impl);
84
85 foreach_list_typed(nir_register, reg, node, &impl->registers) {
86 if (reg->num_array_elems != 0)
87 continue;
88
89 w_start = w_end = 0;
90 iter_count++;
91
92 struct set_entry *entry;
93 set_foreach(reg->defs, entry) {
94 nir_instr *def = (nir_instr *) entry->key;
95 if (work[def->block->index] < iter_count)
96 W[w_end++] = def->block;
97 work[def->block->index] = iter_count;
98 }
99
100 while (w_start != w_end) {
101 nir_block *cur = W[w_start++];
102 set_foreach(cur->dom_frontier, entry) {
103 nir_block *next = (nir_block *) entry->key;
104
105 /*
106 * If there's more than one return statement, then the end block
107 * can be a join point for some definitions. However, there are
108 * no instructions in the end block, so nothing would use those
109 * phi nodes. Of course, we couldn't place those phi nodes
110 * anyways due to the restriction of having no instructions in the
111 * end block...
112 */
113 if (next == impl->end_block)
114 continue;
115
116 if (has_already[next->index] < iter_count) {
117 insert_trivial_phi(reg, next, mem_ctx);
118 has_already[next->index] = iter_count;
119 if (work[next->index] < iter_count) {
120 work[next->index] = iter_count;
121 W[w_end++] = next;
122 }
123 }
124 }
125 }
126 }
127
128 free(work);
129 free(has_already);
130 free(W);
131 }
132
133 typedef struct {
134 nir_ssa_def **stack;
135 int index;
136 unsigned num_defs; /** < used to add indices to debug names */
137 #ifndef NDEBUG
138 unsigned stack_size;
139 #endif
140 } reg_state;
141
142 typedef struct {
143 reg_state *states;
144 void *mem_ctx;
145 nir_instr *parent_instr;
146 nir_if *parent_if;
147 nir_function_impl *impl;
148
149 /* map from SSA value -> original register */
150 struct hash_table *ssa_map;
151 } rewrite_state;
152
153 static nir_ssa_def *get_ssa_src(nir_register *reg, rewrite_state *state)
154 {
155 unsigned index = reg->index;
156
157 if (state->states[index].index == -1) {
158 /*
159 * We're using an undefined register, create a new undefined SSA value
160 * to preserve the information that this source is undefined
161 */
162 nir_ssa_undef_instr *instr =
163 nir_ssa_undef_instr_create(state->mem_ctx, reg->num_components);
164
165 /*
166 * We could just insert the undefined instruction before the instruction
167 * we're rewriting, but we could be rewriting a phi source in which case
168 * we can't do that, so do the next easiest thing - insert it at the
169 * beginning of the program. In the end, it doesn't really matter where
170 * the undefined instructions are because they're going to be ignored
171 * in the backend.
172 */
173 nir_instr_insert_before_cf_list(&state->impl->body, &instr->instr);
174 return &instr->def;
175 }
176
177 return state->states[index].stack[state->states[index].index];
178 }
179
180 static bool
181 rewrite_use(nir_src *src, void *_state)
182 {
183 rewrite_state *state = (rewrite_state *) _state;
184
185 if (src->is_ssa)
186 return true;
187
188 unsigned index = src->reg.reg->index;
189
190 if (state->states[index].stack == NULL)
191 return true;
192
193 src->is_ssa = true;
194 src->ssa = get_ssa_src(src->reg.reg, state);
195
196 if (state->parent_instr)
197 _mesa_set_add(src->ssa->uses, state->parent_instr);
198 else
199 _mesa_set_add(src->ssa->if_uses, state->parent_if);
200 return true;
201 }
202
203 static bool
204 rewrite_def_forwards(nir_dest *dest, void *_state)
205 {
206 rewrite_state *state = (rewrite_state *) _state;
207
208 if (dest->is_ssa)
209 return true;
210
211 nir_register *reg = dest->reg.reg;
212 unsigned index = reg->index;
213
214 if (state->states[index].stack == NULL)
215 return true;
216
217 char *name = NULL;
218 if (dest->reg.reg->name)
219 name = ralloc_asprintf(state->mem_ctx, "%s_%u", dest->reg.reg->name,
220 state->states[index].num_defs);
221
222 nir_ssa_dest_init(state->parent_instr, dest, reg->num_components, name);
223
224 /* push our SSA destination on the stack */
225 state->states[index].index++;
226 assert(state->states[index].index < state->states[index].stack_size);
227 state->states[index].stack[state->states[index].index] = &dest->ssa;
228 state->states[index].num_defs++;
229
230 _mesa_hash_table_insert(state->ssa_map, &dest->ssa, reg);
231
232 return true;
233 }
234
235 static void
236 rewrite_alu_instr_forward(nir_alu_instr *instr, rewrite_state *state)
237 {
238 state->parent_instr = &instr->instr;
239
240 nir_foreach_src(&instr->instr, rewrite_use, state);
241
242 if (instr->dest.dest.is_ssa)
243 return;
244
245 nir_register *reg = instr->dest.dest.reg.reg;
246 unsigned index = reg->index;
247
248 if (state->states[index].stack == NULL)
249 return;
250
251 unsigned write_mask = instr->dest.write_mask;
252 if (write_mask != (1 << instr->dest.dest.reg.reg->num_components) - 1) {
253 /*
254 * Calculate the number of components the final instruction, which for
255 * per-component things is the number of output components of the
256 * instruction and non-per-component things is the number of enabled
257 * channels in the write mask.
258 */
259 unsigned num_components;
260 if (nir_op_infos[instr->op].output_size == 0) {
261 unsigned temp = (write_mask & 0x5) + ((write_mask >> 1) & 0x5);
262 num_components = (temp & 0x3) + ((temp >> 2) & 0x3);
263 } else {
264 num_components = nir_op_infos[instr->op].output_size;
265 }
266
267 char *name = NULL;
268 if (instr->dest.dest.reg.reg->name)
269 name = ralloc_asprintf(state->mem_ctx, "%s_%u",
270 reg->name, state->states[index].num_defs);
271
272 instr->dest.write_mask = (1 << num_components) - 1;
273 nir_ssa_dest_init(&instr->instr, &instr->dest.dest, num_components, name);
274
275 if (nir_op_infos[instr->op].output_size == 0) {
276 /*
277 * When we change the output writemask, we need to change the
278 * swizzles for per-component inputs too
279 */
280 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
281 if (nir_op_infos[instr->op].input_sizes[i] != 0)
282 continue;
283
284 unsigned new_swizzle[4] = {0, 0, 0, 0};
285
286 /*
287 * We keep two indices:
288 * 1. The index of the original (non-SSA) component
289 * 2. The index of the post-SSA, compacted, component
290 *
291 * We need to map the swizzle component at index 1 to the swizzle
292 * component at index 2.
293 */
294
295 unsigned ssa_index = 0;
296 for (unsigned index = 0; index < 4; index++) {
297 if (!((write_mask >> index) & 1))
298 continue;
299
300 new_swizzle[ssa_index] = instr->src[i].swizzle[index];
301 ssa_index++;
302 }
303
304 for (unsigned j = 0; j < 4; j++)
305 instr->src[i].swizzle[j] = new_swizzle[j];
306 }
307 }
308
309 nir_op op;
310 switch (reg->num_components) {
311 case 2: op = nir_op_vec2; break;
312 case 3: op = nir_op_vec3; break;
313 case 4: op = nir_op_vec4; break;
314 default: unreachable("not reached");
315 }
316
317 nir_alu_instr *vec = nir_alu_instr_create(state->mem_ctx, op);
318
319 vec->dest.dest.reg.reg = reg;
320 vec->dest.write_mask = (1 << reg->num_components) - 1;
321
322 nir_ssa_def *old_src = get_ssa_src(reg, state);
323 nir_ssa_def *new_src = &instr->dest.dest.ssa;
324
325 unsigned ssa_index = 0;
326 for (unsigned i = 0; i < reg->num_components; i++) {
327 vec->src[i].src.is_ssa = true;
328 if ((write_mask >> i) & 1) {
329 vec->src[i].src.ssa = new_src;
330 if (nir_op_infos[instr->op].output_size == 0)
331 vec->src[i].swizzle[0] = ssa_index;
332 else
333 vec->src[i].swizzle[0] = i;
334 ssa_index++;
335 } else {
336 vec->src[i].src.ssa = old_src;
337 vec->src[i].swizzle[0] = i;
338 }
339 }
340
341 nir_instr_insert_after(&instr->instr, &vec->instr);
342
343 state->parent_instr = &vec->instr;
344 rewrite_def_forwards(&vec->dest.dest, state);
345 } else {
346 rewrite_def_forwards(&instr->dest.dest, state);
347 }
348 }
349
350 static void
351 rewrite_phi_instr(nir_phi_instr *instr, rewrite_state *state)
352 {
353 state->parent_instr = &instr->instr;
354 rewrite_def_forwards(&instr->dest, state);
355 }
356
357 static void
358 rewrite_instr_forward(nir_instr *instr, rewrite_state *state)
359 {
360 if (instr->type == nir_instr_type_alu) {
361 rewrite_alu_instr_forward(nir_instr_as_alu(instr), state);
362 return;
363 }
364
365 if (instr->type == nir_instr_type_phi) {
366 rewrite_phi_instr(nir_instr_as_phi(instr), state);
367 return;
368 }
369
370 state->parent_instr = instr;
371
372 nir_foreach_src(instr, rewrite_use, state);
373 nir_foreach_dest(instr, rewrite_def_forwards, state);
374 }
375
376 static void
377 rewrite_phi_sources(nir_block *block, nir_block *pred, rewrite_state *state)
378 {
379 nir_foreach_instr(block, instr) {
380 if (instr->type != nir_instr_type_phi)
381 break;
382
383 nir_phi_instr *phi_instr = nir_instr_as_phi(instr);
384
385 state->parent_instr = instr;
386
387 nir_foreach_phi_src(phi_instr, src) {
388 if (src->pred == pred) {
389 rewrite_use(&src->src, state);
390 break;
391 }
392 }
393 }
394 }
395
396 static bool
397 rewrite_def_backwards(nir_dest *dest, void *_state)
398 {
399 rewrite_state *state = (rewrite_state *) _state;
400
401 if (!dest->is_ssa)
402 return true;
403
404 struct hash_entry *entry =
405 _mesa_hash_table_search(state->ssa_map, &dest->ssa);
406
407 if (!entry)
408 return true;
409
410 nir_register *reg = (nir_register *) entry->data;
411 unsigned index = reg->index;
412
413 state->states[index].index--;
414 assert(state->states[index].index >= -1);
415
416 return true;
417 }
418
419 static void
420 rewrite_instr_backwards(nir_instr *instr, rewrite_state *state)
421 {
422 nir_foreach_dest(instr, rewrite_def_backwards, state);
423 }
424
425 static void
426 rewrite_block(nir_block *block, rewrite_state *state)
427 {
428 /* This will skip over any instructions after the current one, which is
429 * what we want because those instructions (vector gather, conditional
430 * select) will already be in SSA form.
431 */
432 nir_foreach_instr_safe(block, instr) {
433 rewrite_instr_forward(instr, state);
434 }
435
436 if (block != state->impl->end_block &&
437 !nir_cf_node_is_last(&block->cf_node) &&
438 nir_cf_node_next(&block->cf_node)->type == nir_cf_node_if) {
439 nir_if *if_stmt = nir_cf_node_as_if(nir_cf_node_next(&block->cf_node));
440 state->parent_instr = NULL;
441 state->parent_if = if_stmt;
442 rewrite_use(&if_stmt->condition, state);
443 }
444
445 if (block->successors[0])
446 rewrite_phi_sources(block->successors[0], block, state);
447 if (block->successors[1])
448 rewrite_phi_sources(block->successors[1], block, state);
449
450 for (unsigned i = 0; i < block->num_dom_children; i++)
451 rewrite_block(block->dom_children[i], state);
452
453 nir_foreach_instr_reverse(block, instr) {
454 rewrite_instr_backwards(instr, state);
455 }
456 }
457
458 static void
459 remove_unused_regs(nir_function_impl *impl, rewrite_state *state)
460 {
461 foreach_list_typed_safe(nir_register, reg, node, &impl->registers) {
462 if (state->states[reg->index].stack != NULL)
463 exec_node_remove(&reg->node);
464 }
465 }
466
467 static void
468 init_rewrite_state(nir_function_impl *impl, rewrite_state *state)
469 {
470 state->impl = impl;
471 state->mem_ctx = ralloc_parent(impl);
472 state->ssa_map = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
473 _mesa_key_pointer_equal);
474 state->states = ralloc_array(NULL, reg_state, impl->reg_alloc);
475
476 foreach_list_typed(nir_register, reg, node, &impl->registers) {
477 assert(reg->index < impl->reg_alloc);
478 if (reg->num_array_elems > 0) {
479 state->states[reg->index].stack = NULL;
480 } else {
481 /*
482 * Calculate a conservative estimate of the stack size based on the
483 * number of definitions there are. Note that this function *must* be
484 * called after phi nodes are inserted so we can count phi node
485 * definitions too.
486 */
487 unsigned stack_size = reg->defs->entries;
488
489 state->states[reg->index].stack = ralloc_array(state->states,
490 nir_ssa_def *,
491 stack_size);
492 #ifndef NDEBUG
493 state->states[reg->index].stack_size = stack_size;
494 #endif
495 state->states[reg->index].index = -1;
496 state->states[reg->index].num_defs = 0;
497 }
498 }
499 }
500
501 static void
502 destroy_rewrite_state(rewrite_state *state)
503 {
504 _mesa_hash_table_destroy(state->ssa_map, NULL);
505 ralloc_free(state->states);
506 }
507
508 void
509 nir_convert_to_ssa_impl(nir_function_impl *impl)
510 {
511 nir_metadata_require(impl, nir_metadata_dominance);
512
513 insert_phi_nodes(impl);
514
515 rewrite_state state;
516 init_rewrite_state(impl, &state);
517
518 rewrite_block(impl->start_block, &state);
519
520 remove_unused_regs(impl, &state);
521
522 nir_metadata_preserve(impl, nir_metadata_block_index |
523 nir_metadata_dominance);
524
525 destroy_rewrite_state(&state);
526 }
527
528 void
529 nir_convert_to_ssa(nir_shader *shader)
530 {
531 nir_foreach_overload(shader, overload) {
532 if (overload->impl)
533 nir_convert_to_ssa_impl(overload->impl);
534 }
535 }