glsl: Use saved values instead of recomputing them.
[mesa.git] / src / glsl / opt_algebraic.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file opt_algebraic.cpp
26 *
27 * Takes advantage of association, commutivity, and other algebraic
28 * properties to simplify expressions.
29 */
30
31 #include "ir.h"
32 #include "ir_visitor.h"
33 #include "ir_rvalue_visitor.h"
34 #include "ir_optimization.h"
35 #include "glsl_types.h"
36
37 namespace {
38
39 /**
40 * Visitor class for replacing expressions with ir_constant values.
41 */
42
43 class ir_algebraic_visitor : public ir_rvalue_visitor {
44 public:
45 ir_algebraic_visitor()
46 {
47 this->progress = false;
48 this->mem_ctx = NULL;
49 }
50
51 virtual ~ir_algebraic_visitor()
52 {
53 }
54
55 ir_rvalue *handle_expression(ir_expression *ir);
56 void handle_rvalue(ir_rvalue **rvalue);
57 bool reassociate_constant(ir_expression *ir1,
58 int const_index,
59 ir_constant *constant,
60 ir_expression *ir2);
61 void reassociate_operands(ir_expression *ir1,
62 int op1,
63 ir_expression *ir2,
64 int op2);
65 ir_rvalue *swizzle_if_required(ir_expression *expr,
66 ir_rvalue *operand);
67
68 void *mem_ctx;
69
70 bool progress;
71 };
72
73 } /* unnamed namespace */
74
75 static inline bool
76 is_vec_zero(ir_constant *ir)
77 {
78 return (ir == NULL) ? false : ir->is_zero();
79 }
80
81 static inline bool
82 is_vec_one(ir_constant *ir)
83 {
84 return (ir == NULL) ? false : ir->is_one();
85 }
86
87 static inline bool
88 is_vec_negative_one(ir_constant *ir)
89 {
90 return (ir == NULL) ? false : ir->is_negative_one();
91 }
92
93 static inline bool
94 is_vec_basis(ir_constant *ir)
95 {
96 return (ir == NULL) ? false : ir->is_basis();
97 }
98
99 static void
100 update_type(ir_expression *ir)
101 {
102 if (ir->operands[0]->type->is_vector())
103 ir->type = ir->operands[0]->type;
104 else
105 ir->type = ir->operands[1]->type;
106 }
107
108 void
109 ir_algebraic_visitor::reassociate_operands(ir_expression *ir1,
110 int op1,
111 ir_expression *ir2,
112 int op2)
113 {
114 ir_rvalue *temp = ir2->operands[op2];
115 ir2->operands[op2] = ir1->operands[op1];
116 ir1->operands[op1] = temp;
117
118 /* Update the type of ir2. The type of ir1 won't have changed --
119 * base types matched, and at least one of the operands of the 2
120 * binops is still a vector if any of them were.
121 */
122 update_type(ir2);
123
124 this->progress = true;
125 }
126
127 /**
128 * Reassociates a constant down a tree of adds or multiplies.
129 *
130 * Consider (2 * (a * (b * 0.5))). We want to send up with a * b.
131 */
132 bool
133 ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index,
134 ir_constant *constant,
135 ir_expression *ir2)
136 {
137 if (!ir2 || ir1->operation != ir2->operation)
138 return false;
139
140 /* Don't want to even think about matrices. */
141 if (ir1->operands[0]->type->is_matrix() ||
142 ir1->operands[1]->type->is_matrix() ||
143 ir2->operands[0]->type->is_matrix() ||
144 ir2->operands[1]->type->is_matrix())
145 return false;
146
147 ir_constant *ir2_const[2];
148 ir2_const[0] = ir2->operands[0]->constant_expression_value();
149 ir2_const[1] = ir2->operands[1]->constant_expression_value();
150
151 if (ir2_const[0] && ir2_const[1])
152 return false;
153
154 if (ir2_const[0]) {
155 reassociate_operands(ir1, const_index, ir2, 1);
156 return true;
157 } else if (ir2_const[1]) {
158 reassociate_operands(ir1, const_index, ir2, 0);
159 return true;
160 }
161
162 if (reassociate_constant(ir1, const_index, constant,
163 ir2->operands[0]->as_expression())) {
164 update_type(ir2);
165 return true;
166 }
167
168 if (reassociate_constant(ir1, const_index, constant,
169 ir2->operands[1]->as_expression())) {
170 update_type(ir2);
171 return true;
172 }
173
174 return false;
175 }
176
177 /* When eliminating an expression and just returning one of its operands,
178 * we may need to swizzle that operand out to a vector if the expression was
179 * vector type.
180 */
181 ir_rvalue *
182 ir_algebraic_visitor::swizzle_if_required(ir_expression *expr,
183 ir_rvalue *operand)
184 {
185 if (expr->type->is_vector() && operand->type->is_scalar()) {
186 return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0,
187 expr->type->vector_elements);
188 } else
189 return operand;
190 }
191
192 ir_rvalue *
193 ir_algebraic_visitor::handle_expression(ir_expression *ir)
194 {
195 ir_constant *op_const[4] = {NULL, NULL, NULL, NULL};
196 ir_expression *op_expr[4] = {NULL, NULL, NULL, NULL};
197 ir_expression *temp;
198 unsigned int i;
199
200 assert(ir->get_num_operands() <= 4);
201 for (i = 0; i < ir->get_num_operands(); i++) {
202 if (ir->operands[i]->type->is_matrix())
203 return ir;
204
205 op_const[i] = ir->operands[i]->constant_expression_value();
206 op_expr[i] = ir->operands[i]->as_expression();
207 }
208
209 if (this->mem_ctx == NULL)
210 this->mem_ctx = ralloc_parent(ir);
211
212 switch (ir->operation) {
213 case ir_unop_logic_not: {
214 enum ir_expression_operation new_op = ir_unop_logic_not;
215
216 if (op_expr[0] == NULL)
217 break;
218
219 switch (op_expr[0]->operation) {
220 case ir_binop_less: new_op = ir_binop_gequal; break;
221 case ir_binop_greater: new_op = ir_binop_lequal; break;
222 case ir_binop_lequal: new_op = ir_binop_greater; break;
223 case ir_binop_gequal: new_op = ir_binop_less; break;
224 case ir_binop_equal: new_op = ir_binop_nequal; break;
225 case ir_binop_nequal: new_op = ir_binop_equal; break;
226 case ir_binop_all_equal: new_op = ir_binop_any_nequal; break;
227 case ir_binop_any_nequal: new_op = ir_binop_all_equal; break;
228
229 default:
230 /* The default case handler is here to silence a warning from GCC.
231 */
232 break;
233 }
234
235 if (new_op != ir_unop_logic_not) {
236 this->progress = true;
237 return new(mem_ctx) ir_expression(new_op,
238 ir->type,
239 op_expr[0]->operands[0],
240 op_expr[0]->operands[1]);
241 }
242
243 break;
244 }
245
246 case ir_binop_add:
247 if (is_vec_zero(op_const[0])) {
248 this->progress = true;
249 return swizzle_if_required(ir, ir->operands[1]);
250 }
251 if (is_vec_zero(op_const[1])) {
252 this->progress = true;
253 return swizzle_if_required(ir, ir->operands[0]);
254 }
255
256 /* Reassociate addition of constants so that we can do constant
257 * folding.
258 */
259 if (op_const[0] && !op_const[1])
260 reassociate_constant(ir, 0, op_const[0], op_expr[1]);
261 if (op_const[1] && !op_const[0])
262 reassociate_constant(ir, 1, op_const[1], op_expr[0]);
263 break;
264
265 case ir_binop_sub:
266 if (is_vec_zero(op_const[0])) {
267 this->progress = true;
268 temp = new(mem_ctx) ir_expression(ir_unop_neg,
269 ir->operands[1]->type,
270 ir->operands[1],
271 NULL);
272 return swizzle_if_required(ir, temp);
273 }
274 if (is_vec_zero(op_const[1])) {
275 this->progress = true;
276 return swizzle_if_required(ir, ir->operands[0]);
277 }
278 break;
279
280 case ir_binop_mul:
281 if (is_vec_one(op_const[0])) {
282 this->progress = true;
283 return swizzle_if_required(ir, ir->operands[1]);
284 }
285 if (is_vec_one(op_const[1])) {
286 this->progress = true;
287 return swizzle_if_required(ir, ir->operands[0]);
288 }
289
290 if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
291 this->progress = true;
292 return ir_constant::zero(ir, ir->type);
293 }
294 if (is_vec_negative_one(op_const[0])) {
295 this->progress = true;
296 temp = new(mem_ctx) ir_expression(ir_unop_neg,
297 ir->operands[1]->type,
298 ir->operands[1],
299 NULL);
300 return swizzle_if_required(ir, temp);
301 }
302 if (is_vec_negative_one(op_const[1])) {
303 this->progress = true;
304 temp = new(mem_ctx) ir_expression(ir_unop_neg,
305 ir->operands[0]->type,
306 ir->operands[0],
307 NULL);
308 return swizzle_if_required(ir, temp);
309 }
310
311
312 /* Reassociate multiplication of constants so that we can do
313 * constant folding.
314 */
315 if (op_const[0] && !op_const[1])
316 reassociate_constant(ir, 0, op_const[0], op_expr[1]);
317 if (op_const[1] && !op_const[0])
318 reassociate_constant(ir, 1, op_const[1], op_expr[0]);
319
320 break;
321
322 case ir_binop_div:
323 if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) {
324 this->progress = true;
325 temp = new(mem_ctx) ir_expression(ir_unop_rcp,
326 ir->operands[1]->type,
327 ir->operands[1],
328 NULL);
329 return swizzle_if_required(ir, temp);
330 }
331 if (is_vec_one(op_const[1])) {
332 this->progress = true;
333 return swizzle_if_required(ir, ir->operands[0]);
334 }
335 break;
336
337 case ir_binop_dot:
338 if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
339 this->progress = true;
340 return ir_constant::zero(mem_ctx, ir->type);
341 }
342 if (is_vec_basis(op_const[0])) {
343 this->progress = true;
344 unsigned component = 0;
345 for (unsigned c = 0; c < op_const[0]->type->vector_elements; c++) {
346 if (op_const[0]->value.f[c] == 1.0)
347 component = c;
348 }
349 return new(mem_ctx) ir_swizzle(ir->operands[1], component, 0, 0, 0, 1);
350 }
351 if (is_vec_basis(op_const[1])) {
352 this->progress = true;
353 unsigned component = 0;
354 for (unsigned c = 0; c < op_const[1]->type->vector_elements; c++) {
355 if (op_const[1]->value.f[c] == 1.0)
356 component = c;
357 }
358 return new(mem_ctx) ir_swizzle(ir->operands[0], component, 0, 0, 0, 1);
359 }
360 break;
361
362 case ir_binop_logic_and:
363 /* FINISHME: Also simplify (a && a) to (a). */
364 if (is_vec_one(op_const[0])) {
365 this->progress = true;
366 return ir->operands[1];
367 } else if (is_vec_one(op_const[1])) {
368 this->progress = true;
369 return ir->operands[0];
370 } else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
371 this->progress = true;
372 return ir_constant::zero(mem_ctx, ir->type);
373 }
374 break;
375
376 case ir_binop_logic_xor:
377 /* FINISHME: Also simplify (a ^^ a) to (false). */
378 if (is_vec_zero(op_const[0])) {
379 this->progress = true;
380 return ir->operands[1];
381 } else if (is_vec_zero(op_const[1])) {
382 this->progress = true;
383 return ir->operands[0];
384 } else if (is_vec_one(op_const[0])) {
385 this->progress = true;
386 return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
387 ir->operands[1], NULL);
388 } else if (is_vec_one(op_const[1])) {
389 this->progress = true;
390 return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
391 ir->operands[0], NULL);
392 }
393 break;
394
395 case ir_binop_logic_or:
396 /* FINISHME: Also simplify (a || a) to (a). */
397 if (is_vec_zero(op_const[0])) {
398 this->progress = true;
399 return ir->operands[1];
400 } else if (is_vec_zero(op_const[1])) {
401 this->progress = true;
402 return ir->operands[0];
403 } else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) {
404 ir_constant_data data;
405
406 for (unsigned i = 0; i < 16; i++)
407 data.b[i] = true;
408
409 this->progress = true;
410 return new(mem_ctx) ir_constant(ir->type, &data);
411 }
412 break;
413
414 case ir_unop_rcp:
415 if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) {
416 this->progress = true;
417 return op_expr[0]->operands[0];
418 }
419
420 /* FINISHME: We should do rcp(rsq(x)) -> sqrt(x) for some
421 * backends, except that some backends will have done sqrt ->
422 * rcp(rsq(x)) and we don't want to undo it for them.
423 */
424
425 /* As far as we know, all backends are OK with rsq. */
426 if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) {
427 this->progress = true;
428 temp = new(mem_ctx) ir_expression(ir_unop_rsq,
429 op_expr[0]->operands[0]->type,
430 op_expr[0]->operands[0],
431 NULL);
432 return swizzle_if_required(ir, temp);
433 }
434
435 break;
436
437 case ir_triop_lrp:
438 /* Operands are (x, y, a). */
439 if (is_vec_zero(op_const[2])) {
440 this->progress = true;
441 return swizzle_if_required(ir, ir->operands[0]);
442 } else if (is_vec_one(op_const[2])) {
443 this->progress = true;
444 return swizzle_if_required(ir, ir->operands[1]);
445 }
446 break;
447
448 default:
449 break;
450 }
451
452 return ir;
453 }
454
455 void
456 ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue)
457 {
458 if (!*rvalue)
459 return;
460
461 ir_expression *expr = (*rvalue)->as_expression();
462 if (!expr || expr->operation == ir_quadop_vector)
463 return;
464
465 *rvalue = handle_expression(expr);
466 }
467
468 bool
469 do_algebraic(exec_list *instructions)
470 {
471 ir_algebraic_visitor v;
472
473 visit_list_elements(&v, instructions);
474
475 return v.progress;
476 }