glsl: Optimize mul(a, -1) into neg(a).
[mesa.git] / src / glsl / opt_algebraic.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file opt_algebraic.cpp
26 *
27 * Takes advantage of association, commutivity, and other algebraic
28 * properties to simplify expressions.
29 */
30
31 #include "ir.h"
32 #include "ir_visitor.h"
33 #include "ir_rvalue_visitor.h"
34 #include "ir_optimization.h"
35 #include "glsl_types.h"
36
37 namespace {
38
39 /**
40 * Visitor class for replacing expressions with ir_constant values.
41 */
42
43 class ir_algebraic_visitor : public ir_rvalue_visitor {
44 public:
45 ir_algebraic_visitor()
46 {
47 this->progress = false;
48 this->mem_ctx = NULL;
49 }
50
51 virtual ~ir_algebraic_visitor()
52 {
53 }
54
55 ir_rvalue *handle_expression(ir_expression *ir);
56 void handle_rvalue(ir_rvalue **rvalue);
57 bool reassociate_constant(ir_expression *ir1,
58 int const_index,
59 ir_constant *constant,
60 ir_expression *ir2);
61 void reassociate_operands(ir_expression *ir1,
62 int op1,
63 ir_expression *ir2,
64 int op2);
65 ir_rvalue *swizzle_if_required(ir_expression *expr,
66 ir_rvalue *operand);
67
68 void *mem_ctx;
69
70 bool progress;
71 };
72
73 } /* unnamed namespace */
74
75 static inline bool
76 is_vec_zero(ir_constant *ir)
77 {
78 return (ir == NULL) ? false : ir->is_zero();
79 }
80
81 static inline bool
82 is_vec_one(ir_constant *ir)
83 {
84 return (ir == NULL) ? false : ir->is_one();
85 }
86
87 static inline bool
88 is_vec_negative_one(ir_constant *ir)
89 {
90 return (ir == NULL) ? false : ir->is_negative_one();
91 }
92
93 static inline bool
94 is_vec_basis(ir_constant *ir)
95 {
96 return (ir == NULL) ? false : ir->is_basis();
97 }
98
99 static void
100 update_type(ir_expression *ir)
101 {
102 if (ir->operands[0]->type->is_vector())
103 ir->type = ir->operands[0]->type;
104 else
105 ir->type = ir->operands[1]->type;
106 }
107
108 void
109 ir_algebraic_visitor::reassociate_operands(ir_expression *ir1,
110 int op1,
111 ir_expression *ir2,
112 int op2)
113 {
114 ir_rvalue *temp = ir2->operands[op2];
115 ir2->operands[op2] = ir1->operands[op1];
116 ir1->operands[op1] = temp;
117
118 /* Update the type of ir2. The type of ir1 won't have changed --
119 * base types matched, and at least one of the operands of the 2
120 * binops is still a vector if any of them were.
121 */
122 update_type(ir2);
123
124 this->progress = true;
125 }
126
127 /**
128 * Reassociates a constant down a tree of adds or multiplies.
129 *
130 * Consider (2 * (a * (b * 0.5))). We want to send up with a * b.
131 */
132 bool
133 ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index,
134 ir_constant *constant,
135 ir_expression *ir2)
136 {
137 if (!ir2 || ir1->operation != ir2->operation)
138 return false;
139
140 /* Don't want to even think about matrices. */
141 if (ir1->operands[0]->type->is_matrix() ||
142 ir1->operands[1]->type->is_matrix() ||
143 ir2->operands[0]->type->is_matrix() ||
144 ir2->operands[1]->type->is_matrix())
145 return false;
146
147 ir_constant *ir2_const[2];
148 ir2_const[0] = ir2->operands[0]->constant_expression_value();
149 ir2_const[1] = ir2->operands[1]->constant_expression_value();
150
151 if (ir2_const[0] && ir2_const[1])
152 return false;
153
154 if (ir2_const[0]) {
155 reassociate_operands(ir1, const_index, ir2, 1);
156 return true;
157 } else if (ir2_const[1]) {
158 reassociate_operands(ir1, const_index, ir2, 0);
159 return true;
160 }
161
162 if (reassociate_constant(ir1, const_index, constant,
163 ir2->operands[0]->as_expression())) {
164 update_type(ir2);
165 return true;
166 }
167
168 if (reassociate_constant(ir1, const_index, constant,
169 ir2->operands[1]->as_expression())) {
170 update_type(ir2);
171 return true;
172 }
173
174 return false;
175 }
176
177 /* When eliminating an expression and just returning one of its operands,
178 * we may need to swizzle that operand out to a vector if the expression was
179 * vector type.
180 */
181 ir_rvalue *
182 ir_algebraic_visitor::swizzle_if_required(ir_expression *expr,
183 ir_rvalue *operand)
184 {
185 if (expr->type->is_vector() && operand->type->is_scalar()) {
186 return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0,
187 expr->type->vector_elements);
188 } else
189 return operand;
190 }
191
192 ir_rvalue *
193 ir_algebraic_visitor::handle_expression(ir_expression *ir)
194 {
195 ir_constant *op_const[4] = {NULL, NULL, NULL, NULL};
196 ir_expression *op_expr[4] = {NULL, NULL, NULL, NULL};
197 ir_expression *temp;
198 unsigned int i;
199
200 assert(ir->get_num_operands() <= 4);
201 for (i = 0; i < ir->get_num_operands(); i++) {
202 if (ir->operands[i]->type->is_matrix())
203 return ir;
204
205 op_const[i] = ir->operands[i]->constant_expression_value();
206 op_expr[i] = ir->operands[i]->as_expression();
207 }
208
209 if (this->mem_ctx == NULL)
210 this->mem_ctx = ralloc_parent(ir);
211
212 switch (ir->operation) {
213 case ir_unop_logic_not: {
214 enum ir_expression_operation new_op = ir_unop_logic_not;
215
216 if (op_expr[0] == NULL)
217 break;
218
219 switch (op_expr[0]->operation) {
220 case ir_binop_less: new_op = ir_binop_gequal; break;
221 case ir_binop_greater: new_op = ir_binop_lequal; break;
222 case ir_binop_lequal: new_op = ir_binop_greater; break;
223 case ir_binop_gequal: new_op = ir_binop_less; break;
224 case ir_binop_equal: new_op = ir_binop_nequal; break;
225 case ir_binop_nequal: new_op = ir_binop_equal; break;
226 case ir_binop_all_equal: new_op = ir_binop_any_nequal; break;
227 case ir_binop_any_nequal: new_op = ir_binop_all_equal; break;
228
229 default:
230 /* The default case handler is here to silence a warning from GCC.
231 */
232 break;
233 }
234
235 if (new_op != ir_unop_logic_not) {
236 this->progress = true;
237 return new(mem_ctx) ir_expression(new_op,
238 ir->type,
239 op_expr[0]->operands[0],
240 op_expr[0]->operands[1]);
241 }
242
243 break;
244 }
245
246 case ir_binop_add:
247 if (is_vec_zero(op_const[0])) {
248 this->progress = true;
249 return swizzle_if_required(ir, ir->operands[1]);
250 }
251 if (is_vec_zero(op_const[1])) {
252 this->progress = true;
253 return swizzle_if_required(ir, ir->operands[0]);
254 }
255
256 /* Reassociate addition of constants so that we can do constant
257 * folding.
258 */
259 if (op_const[0] && !op_const[1])
260 reassociate_constant(ir, 0, op_const[0],
261 ir->operands[1]->as_expression());
262 if (op_const[1] && !op_const[0])
263 reassociate_constant(ir, 1, op_const[1],
264 ir->operands[0]->as_expression());
265 break;
266
267 case ir_binop_sub:
268 if (is_vec_zero(op_const[0])) {
269 this->progress = true;
270 temp = new(mem_ctx) ir_expression(ir_unop_neg,
271 ir->operands[1]->type,
272 ir->operands[1],
273 NULL);
274 return swizzle_if_required(ir, temp);
275 }
276 if (is_vec_zero(op_const[1])) {
277 this->progress = true;
278 return swizzle_if_required(ir, ir->operands[0]);
279 }
280 break;
281
282 case ir_binop_mul:
283 if (is_vec_one(op_const[0])) {
284 this->progress = true;
285 return swizzle_if_required(ir, ir->operands[1]);
286 }
287 if (is_vec_one(op_const[1])) {
288 this->progress = true;
289 return swizzle_if_required(ir, ir->operands[0]);
290 }
291
292 if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
293 this->progress = true;
294 return ir_constant::zero(ir, ir->type);
295 }
296 if (is_vec_negative_one(op_const[0])) {
297 this->progress = true;
298 temp = new(mem_ctx) ir_expression(ir_unop_neg,
299 ir->operands[1]->type,
300 ir->operands[1],
301 NULL);
302 return swizzle_if_required(ir, temp);
303 }
304 if (is_vec_negative_one(op_const[1])) {
305 this->progress = true;
306 temp = new(mem_ctx) ir_expression(ir_unop_neg,
307 ir->operands[0]->type,
308 ir->operands[0],
309 NULL);
310 return swizzle_if_required(ir, temp);
311 }
312
313
314 /* Reassociate multiplication of constants so that we can do
315 * constant folding.
316 */
317 if (op_const[0] && !op_const[1])
318 reassociate_constant(ir, 0, op_const[0],
319 ir->operands[1]->as_expression());
320 if (op_const[1] && !op_const[0])
321 reassociate_constant(ir, 1, op_const[1],
322 ir->operands[0]->as_expression());
323
324 break;
325
326 case ir_binop_div:
327 if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) {
328 this->progress = true;
329 temp = new(mem_ctx) ir_expression(ir_unop_rcp,
330 ir->operands[1]->type,
331 ir->operands[1],
332 NULL);
333 return swizzle_if_required(ir, temp);
334 }
335 if (is_vec_one(op_const[1])) {
336 this->progress = true;
337 return swizzle_if_required(ir, ir->operands[0]);
338 }
339 break;
340
341 case ir_binop_dot:
342 if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
343 this->progress = true;
344 return ir_constant::zero(mem_ctx, ir->type);
345 }
346 if (is_vec_basis(op_const[0])) {
347 this->progress = true;
348 unsigned component = 0;
349 for (unsigned c = 0; c < op_const[0]->type->vector_elements; c++) {
350 if (op_const[0]->value.f[c] == 1.0)
351 component = c;
352 }
353 return new(mem_ctx) ir_swizzle(ir->operands[1], component, 0, 0, 0, 1);
354 }
355 if (is_vec_basis(op_const[1])) {
356 this->progress = true;
357 unsigned component = 0;
358 for (unsigned c = 0; c < op_const[1]->type->vector_elements; c++) {
359 if (op_const[1]->value.f[c] == 1.0)
360 component = c;
361 }
362 return new(mem_ctx) ir_swizzle(ir->operands[0], component, 0, 0, 0, 1);
363 }
364 break;
365
366 case ir_binop_logic_and:
367 /* FINISHME: Also simplify (a && a) to (a). */
368 if (is_vec_one(op_const[0])) {
369 this->progress = true;
370 return ir->operands[1];
371 } else if (is_vec_one(op_const[1])) {
372 this->progress = true;
373 return ir->operands[0];
374 } else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
375 this->progress = true;
376 return ir_constant::zero(mem_ctx, ir->type);
377 }
378 break;
379
380 case ir_binop_logic_xor:
381 /* FINISHME: Also simplify (a ^^ a) to (false). */
382 if (is_vec_zero(op_const[0])) {
383 this->progress = true;
384 return ir->operands[1];
385 } else if (is_vec_zero(op_const[1])) {
386 this->progress = true;
387 return ir->operands[0];
388 } else if (is_vec_one(op_const[0])) {
389 this->progress = true;
390 return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
391 ir->operands[1], NULL);
392 } else if (is_vec_one(op_const[1])) {
393 this->progress = true;
394 return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
395 ir->operands[0], NULL);
396 }
397 break;
398
399 case ir_binop_logic_or:
400 /* FINISHME: Also simplify (a || a) to (a). */
401 if (is_vec_zero(op_const[0])) {
402 this->progress = true;
403 return ir->operands[1];
404 } else if (is_vec_zero(op_const[1])) {
405 this->progress = true;
406 return ir->operands[0];
407 } else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) {
408 ir_constant_data data;
409
410 for (unsigned i = 0; i < 16; i++)
411 data.b[i] = true;
412
413 this->progress = true;
414 return new(mem_ctx) ir_constant(ir->type, &data);
415 }
416 break;
417
418 case ir_unop_rcp:
419 if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) {
420 this->progress = true;
421 return op_expr[0]->operands[0];
422 }
423
424 /* FINISHME: We should do rcp(rsq(x)) -> sqrt(x) for some
425 * backends, except that some backends will have done sqrt ->
426 * rcp(rsq(x)) and we don't want to undo it for them.
427 */
428
429 /* As far as we know, all backends are OK with rsq. */
430 if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) {
431 this->progress = true;
432 temp = new(mem_ctx) ir_expression(ir_unop_rsq,
433 op_expr[0]->operands[0]->type,
434 op_expr[0]->operands[0],
435 NULL);
436 return swizzle_if_required(ir, temp);
437 }
438
439 break;
440
441 case ir_triop_lrp:
442 /* Operands are (x, y, a). */
443 if (is_vec_zero(op_const[2])) {
444 this->progress = true;
445 return swizzle_if_required(ir, ir->operands[0]);
446 } else if (is_vec_one(op_const[2])) {
447 this->progress = true;
448 return swizzle_if_required(ir, ir->operands[1]);
449 }
450 break;
451
452 default:
453 break;
454 }
455
456 return ir;
457 }
458
459 void
460 ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue)
461 {
462 if (!*rvalue)
463 return;
464
465 ir_expression *expr = (*rvalue)->as_expression();
466 if (!expr || expr->operation == ir_quadop_vector)
467 return;
468
469 *rvalue = handle_expression(expr);
470 }
471
472 bool
473 do_algebraic(exec_list *instructions)
474 {
475 ir_algebraic_visitor v;
476
477 visit_list_elements(&v, instructions);
478
479 return v.progress;
480 }