vc4: Make a helper function for getting the current offset in the CL.
[mesa.git] / src / glsl / opt_constant_propagation.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * constant of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, constant, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above constantright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR CONSTANTRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file opt_constant_propagation.cpp
26 *
27 * Tracks assignments of constants to channels of variables, and
28 * usage of those constant channels with direct usage of the constants.
29 *
30 * This can lead to constant folding and algebraic optimizations in
31 * those later expressions, while causing no increase in instruction
32 * count (due to constants being generally free to load from a
33 * constant push buffer or as instruction immediate values) and
34 * possibly reducing register pressure.
35 */
36
37 #include "ir.h"
38 #include "ir_visitor.h"
39 #include "ir_rvalue_visitor.h"
40 #include "ir_basic_block.h"
41 #include "ir_optimization.h"
42 #include "glsl_types.h"
43
44 namespace {
45
46 class acp_entry : public exec_node
47 {
48 public:
49 acp_entry(ir_variable *var, unsigned write_mask, ir_constant *constant)
50 {
51 assert(var);
52 assert(constant);
53 this->var = var;
54 this->write_mask = write_mask;
55 this->constant = constant;
56 this->initial_values = write_mask;
57 }
58
59 acp_entry(const acp_entry *src)
60 {
61 this->var = src->var;
62 this->write_mask = src->write_mask;
63 this->constant = src->constant;
64 this->initial_values = src->initial_values;
65 }
66
67 ir_variable *var;
68 ir_constant *constant;
69 unsigned write_mask;
70
71 /** Mask of values initially available in the constant. */
72 unsigned initial_values;
73 };
74
75
76 class kill_entry : public exec_node
77 {
78 public:
79 kill_entry(ir_variable *var, unsigned write_mask)
80 {
81 assert(var);
82 this->var = var;
83 this->write_mask = write_mask;
84 }
85
86 ir_variable *var;
87 unsigned write_mask;
88 };
89
90 class ir_constant_propagation_visitor : public ir_rvalue_visitor {
91 public:
92 ir_constant_propagation_visitor()
93 {
94 progress = false;
95 killed_all = false;
96 mem_ctx = ralloc_context(0);
97 this->acp = new(mem_ctx) exec_list;
98 this->kills = new(mem_ctx) exec_list;
99 }
100 ~ir_constant_propagation_visitor()
101 {
102 ralloc_free(mem_ctx);
103 }
104
105 virtual ir_visitor_status visit_enter(class ir_loop *);
106 virtual ir_visitor_status visit_enter(class ir_function_signature *);
107 virtual ir_visitor_status visit_enter(class ir_function *);
108 virtual ir_visitor_status visit_leave(class ir_assignment *);
109 virtual ir_visitor_status visit_enter(class ir_call *);
110 virtual ir_visitor_status visit_enter(class ir_if *);
111
112 void add_constant(ir_assignment *ir);
113 void kill(ir_variable *ir, unsigned write_mask);
114 void handle_if_block(exec_list *instructions);
115 void handle_rvalue(ir_rvalue **rvalue);
116
117 /** List of acp_entry: The available constants to propagate */
118 exec_list *acp;
119
120 /**
121 * List of kill_entry: The masks of variables whose values were
122 * killed in this block.
123 */
124 exec_list *kills;
125
126 bool progress;
127
128 bool killed_all;
129
130 void *mem_ctx;
131 };
132
133
134 void
135 ir_constant_propagation_visitor::handle_rvalue(ir_rvalue **rvalue)
136 {
137 if (this->in_assignee || !*rvalue)
138 return;
139
140 const glsl_type *type = (*rvalue)->type;
141 if (!type->is_scalar() && !type->is_vector())
142 return;
143
144 ir_swizzle *swiz = NULL;
145 ir_dereference_variable *deref = (*rvalue)->as_dereference_variable();
146 if (!deref) {
147 swiz = (*rvalue)->as_swizzle();
148 if (!swiz)
149 return;
150
151 deref = swiz->val->as_dereference_variable();
152 if (!deref)
153 return;
154 }
155
156 ir_constant_data data;
157 memset(&data, 0, sizeof(data));
158
159 for (unsigned int i = 0; i < type->components(); i++) {
160 int channel;
161 acp_entry *found = NULL;
162
163 if (swiz) {
164 switch (i) {
165 case 0: channel = swiz->mask.x; break;
166 case 1: channel = swiz->mask.y; break;
167 case 2: channel = swiz->mask.z; break;
168 case 3: channel = swiz->mask.w; break;
169 default: assert(!"shouldn't be reached"); channel = 0; break;
170 }
171 } else {
172 channel = i;
173 }
174
175 foreach_in_list(acp_entry, entry, this->acp) {
176 if (entry->var == deref->var && entry->write_mask & (1 << channel)) {
177 found = entry;
178 break;
179 }
180 }
181
182 if (!found)
183 return;
184
185 int rhs_channel = 0;
186 for (int j = 0; j < 4; j++) {
187 if (j == channel)
188 break;
189 if (found->initial_values & (1 << j))
190 rhs_channel++;
191 }
192
193 switch (type->base_type) {
194 case GLSL_TYPE_FLOAT:
195 data.f[i] = found->constant->value.f[rhs_channel];
196 break;
197 case GLSL_TYPE_DOUBLE:
198 data.d[i] = found->constant->value.d[rhs_channel];
199 break;
200 case GLSL_TYPE_INT:
201 data.i[i] = found->constant->value.i[rhs_channel];
202 break;
203 case GLSL_TYPE_UINT:
204 data.u[i] = found->constant->value.u[rhs_channel];
205 break;
206 case GLSL_TYPE_BOOL:
207 data.b[i] = found->constant->value.b[rhs_channel];
208 break;
209 default:
210 assert(!"not reached");
211 break;
212 }
213 }
214
215 *rvalue = new(ralloc_parent(deref)) ir_constant(type, &data);
216 this->progress = true;
217 }
218
219 ir_visitor_status
220 ir_constant_propagation_visitor::visit_enter(ir_function_signature *ir)
221 {
222 /* Treat entry into a function signature as a completely separate
223 * block. Any instructions at global scope will be shuffled into
224 * main() at link time, so they're irrelevant to us.
225 */
226 exec_list *orig_acp = this->acp;
227 exec_list *orig_kills = this->kills;
228 bool orig_killed_all = this->killed_all;
229
230 this->acp = new(mem_ctx) exec_list;
231 this->kills = new(mem_ctx) exec_list;
232 this->killed_all = false;
233
234 visit_list_elements(this, &ir->body);
235
236 this->kills = orig_kills;
237 this->acp = orig_acp;
238 this->killed_all = orig_killed_all;
239
240 return visit_continue_with_parent;
241 }
242
243 ir_visitor_status
244 ir_constant_propagation_visitor::visit_leave(ir_assignment *ir)
245 {
246 if (this->in_assignee)
247 return visit_continue;
248
249 unsigned kill_mask = ir->write_mask;
250 if (ir->lhs->as_dereference_array()) {
251 /* The LHS of the assignment uses an array indexing operator (e.g. v[i]
252 * = ...;). Since we only try to constant propagate vectors and
253 * scalars, this means that either (a) array indexing is being used to
254 * select a vector component, or (b) the variable in question is neither
255 * a scalar or a vector, so we don't care about it. In the former case,
256 * we want to kill the whole vector, since in general we can't predict
257 * which vector component will be selected by array indexing. In the
258 * latter case, it doesn't matter what we do, so go ahead and kill the
259 * whole variable anyway.
260 *
261 * Note that if the array index is constant (e.g. v[2] = ...;), we could
262 * in principle be smarter, but we don't need to, because a future
263 * optimization pass will convert it to a simple assignment with the
264 * correct mask.
265 */
266 kill_mask = ~0;
267 }
268 kill(ir->lhs->variable_referenced(), kill_mask);
269
270 add_constant(ir);
271
272 return visit_continue;
273 }
274
275 ir_visitor_status
276 ir_constant_propagation_visitor::visit_enter(ir_function *ir)
277 {
278 (void) ir;
279 return visit_continue;
280 }
281
282 ir_visitor_status
283 ir_constant_propagation_visitor::visit_enter(ir_call *ir)
284 {
285 /* Do constant propagation on call parameters, but skip any out params */
286 foreach_two_lists(formal_node, &ir->callee->parameters,
287 actual_node, &ir->actual_parameters) {
288 ir_variable *sig_param = (ir_variable *) formal_node;
289 ir_rvalue *param = (ir_rvalue *) actual_node;
290 if (sig_param->data.mode != ir_var_function_out
291 && sig_param->data.mode != ir_var_function_inout) {
292 ir_rvalue *new_param = param;
293 handle_rvalue(&new_param);
294 if (new_param != param)
295 param->replace_with(new_param);
296 else
297 param->accept(this);
298 }
299 }
300
301 /* Since we're unlinked, we don't (necssarily) know the side effects of
302 * this call. So kill all copies.
303 */
304 acp->make_empty();
305 this->killed_all = true;
306
307 return visit_continue_with_parent;
308 }
309
310 void
311 ir_constant_propagation_visitor::handle_if_block(exec_list *instructions)
312 {
313 exec_list *orig_acp = this->acp;
314 exec_list *orig_kills = this->kills;
315 bool orig_killed_all = this->killed_all;
316
317 this->acp = new(mem_ctx) exec_list;
318 this->kills = new(mem_ctx) exec_list;
319 this->killed_all = false;
320
321 /* Populate the initial acp with a constant of the original */
322 foreach_in_list(acp_entry, a, orig_acp) {
323 this->acp->push_tail(new(this->mem_ctx) acp_entry(a));
324 }
325
326 visit_list_elements(this, instructions);
327
328 if (this->killed_all) {
329 orig_acp->make_empty();
330 }
331
332 exec_list *new_kills = this->kills;
333 this->kills = orig_kills;
334 this->acp = orig_acp;
335 this->killed_all = this->killed_all || orig_killed_all;
336
337 foreach_in_list(kill_entry, k, new_kills) {
338 kill(k->var, k->write_mask);
339 }
340 }
341
342 ir_visitor_status
343 ir_constant_propagation_visitor::visit_enter(ir_if *ir)
344 {
345 ir->condition->accept(this);
346 handle_rvalue(&ir->condition);
347
348 handle_if_block(&ir->then_instructions);
349 handle_if_block(&ir->else_instructions);
350
351 /* handle_if_block() already descended into the children. */
352 return visit_continue_with_parent;
353 }
354
355 ir_visitor_status
356 ir_constant_propagation_visitor::visit_enter(ir_loop *ir)
357 {
358 exec_list *orig_acp = this->acp;
359 exec_list *orig_kills = this->kills;
360 bool orig_killed_all = this->killed_all;
361
362 /* FINISHME: For now, the initial acp for loops is totally empty.
363 * We could go through once, then go through again with the acp
364 * cloned minus the killed entries after the first run through.
365 */
366 this->acp = new(mem_ctx) exec_list;
367 this->kills = new(mem_ctx) exec_list;
368 this->killed_all = false;
369
370 visit_list_elements(this, &ir->body_instructions);
371
372 if (this->killed_all) {
373 orig_acp->make_empty();
374 }
375
376 exec_list *new_kills = this->kills;
377 this->kills = orig_kills;
378 this->acp = orig_acp;
379 this->killed_all = this->killed_all || orig_killed_all;
380
381 foreach_in_list(kill_entry, k, new_kills) {
382 kill(k->var, k->write_mask);
383 }
384
385 /* already descended into the children. */
386 return visit_continue_with_parent;
387 }
388
389 void
390 ir_constant_propagation_visitor::kill(ir_variable *var, unsigned write_mask)
391 {
392 assert(var != NULL);
393
394 /* We don't track non-vectors. */
395 if (!var->type->is_vector() && !var->type->is_scalar())
396 return;
397
398 /* Remove any entries currently in the ACP for this kill. */
399 foreach_in_list_safe(acp_entry, entry, this->acp) {
400 if (entry->var == var) {
401 entry->write_mask &= ~write_mask;
402 if (entry->write_mask == 0)
403 entry->remove();
404 }
405 }
406
407 /* Add this writemask of the variable to the list of killed
408 * variables in this block.
409 */
410 foreach_in_list(kill_entry, entry, this->kills) {
411 if (entry->var == var) {
412 entry->write_mask |= write_mask;
413 return;
414 }
415 }
416 /* Not already in the list. Make new entry. */
417 this->kills->push_tail(new(this->mem_ctx) kill_entry(var, write_mask));
418 }
419
420 /**
421 * Adds an entry to the available constant list if it's a plain assignment
422 * of a variable to a variable.
423 */
424 void
425 ir_constant_propagation_visitor::add_constant(ir_assignment *ir)
426 {
427 acp_entry *entry;
428
429 if (ir->condition)
430 return;
431
432 if (!ir->write_mask)
433 return;
434
435 ir_dereference_variable *deref = ir->lhs->as_dereference_variable();
436 ir_constant *constant = ir->rhs->as_constant();
437
438 if (!deref || !constant)
439 return;
440
441 /* Only do constant propagation on vectors. Constant matrices,
442 * arrays, or structures would require more work elsewhere.
443 */
444 if (!deref->var->type->is_vector() && !deref->var->type->is_scalar())
445 return;
446
447 /* We can't do copy propagation on buffer variables, since the underlying
448 * memory storage is shared across multiple threads we can't be sure that
449 * the variable value isn't modified between this assignment and the next
450 * instruction where its value is read.
451 */
452 if (deref->var->data.mode == ir_var_shader_storage)
453 return;
454
455 entry = new(this->mem_ctx) acp_entry(deref->var, ir->write_mask, constant);
456 this->acp->push_tail(entry);
457 }
458
459 } /* unnamed namespace */
460
461 /**
462 * Does a constant propagation pass on the code present in the instruction stream.
463 */
464 bool
465 do_constant_propagation(exec_list *instructions)
466 {
467 ir_constant_propagation_visitor v;
468
469 visit_list_elements(&v, instructions);
470
471 return v.progress;
472 }