freedreno: update generated headers
[mesa.git] / src / glsl / opt_constant_propagation.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * constant of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, constant, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above constantright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR CONSTANTRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file opt_constant_propagation.cpp
26 *
27 * Tracks assignments of constants to channels of variables, and
28 * usage of those constant channels with direct usage of the constants.
29 *
30 * This can lead to constant folding and algebraic optimizations in
31 * those later expressions, while causing no increase in instruction
32 * count (due to constants being generally free to load from a
33 * constant push buffer or as instruction immediate values) and
34 * possibly reducing register pressure.
35 */
36
37 #include "ir.h"
38 #include "ir_visitor.h"
39 #include "ir_rvalue_visitor.h"
40 #include "ir_basic_block.h"
41 #include "ir_optimization.h"
42 #include "glsl_types.h"
43
44 namespace {
45
46 class acp_entry : public exec_node
47 {
48 public:
49 acp_entry(ir_variable *var, unsigned write_mask, ir_constant *constant)
50 {
51 assert(var);
52 assert(constant);
53 this->var = var;
54 this->write_mask = write_mask;
55 this->constant = constant;
56 this->initial_values = write_mask;
57 }
58
59 acp_entry(const acp_entry *src)
60 {
61 this->var = src->var;
62 this->write_mask = src->write_mask;
63 this->constant = src->constant;
64 this->initial_values = src->initial_values;
65 }
66
67 ir_variable *var;
68 ir_constant *constant;
69 unsigned write_mask;
70
71 /** Mask of values initially available in the constant. */
72 unsigned initial_values;
73 };
74
75
76 class kill_entry : public exec_node
77 {
78 public:
79 kill_entry(ir_variable *var, unsigned write_mask)
80 {
81 assert(var);
82 this->var = var;
83 this->write_mask = write_mask;
84 }
85
86 ir_variable *var;
87 unsigned write_mask;
88 };
89
90 class ir_constant_propagation_visitor : public ir_rvalue_visitor {
91 public:
92 ir_constant_propagation_visitor()
93 {
94 progress = false;
95 killed_all = false;
96 mem_ctx = ralloc_context(0);
97 this->acp = new(mem_ctx) exec_list;
98 this->kills = new(mem_ctx) exec_list;
99 }
100 ~ir_constant_propagation_visitor()
101 {
102 ralloc_free(mem_ctx);
103 }
104
105 virtual ir_visitor_status visit_enter(class ir_loop *);
106 virtual ir_visitor_status visit_enter(class ir_function_signature *);
107 virtual ir_visitor_status visit_enter(class ir_function *);
108 virtual ir_visitor_status visit_leave(class ir_assignment *);
109 virtual ir_visitor_status visit_enter(class ir_call *);
110 virtual ir_visitor_status visit_enter(class ir_if *);
111
112 void add_constant(ir_assignment *ir);
113 void kill(ir_variable *ir, unsigned write_mask);
114 void handle_if_block(exec_list *instructions);
115 void handle_rvalue(ir_rvalue **rvalue);
116
117 /** List of acp_entry: The available constants to propagate */
118 exec_list *acp;
119
120 /**
121 * List of kill_entry: The masks of variables whose values were
122 * killed in this block.
123 */
124 exec_list *kills;
125
126 bool progress;
127
128 bool killed_all;
129
130 void *mem_ctx;
131 };
132
133
134 void
135 ir_constant_propagation_visitor::handle_rvalue(ir_rvalue **rvalue)
136 {
137 if (this->in_assignee || !*rvalue)
138 return;
139
140 const glsl_type *type = (*rvalue)->type;
141 if (!type->is_scalar() && !type->is_vector())
142 return;
143
144 ir_swizzle *swiz = NULL;
145 ir_dereference_variable *deref = (*rvalue)->as_dereference_variable();
146 if (!deref) {
147 swiz = (*rvalue)->as_swizzle();
148 if (!swiz)
149 return;
150
151 deref = swiz->val->as_dereference_variable();
152 if (!deref)
153 return;
154 }
155
156 ir_constant_data data;
157 memset(&data, 0, sizeof(data));
158
159 for (unsigned int i = 0; i < type->components(); i++) {
160 int channel;
161 acp_entry *found = NULL;
162
163 if (swiz) {
164 switch (i) {
165 case 0: channel = swiz->mask.x; break;
166 case 1: channel = swiz->mask.y; break;
167 case 2: channel = swiz->mask.z; break;
168 case 3: channel = swiz->mask.w; break;
169 default: assert(!"shouldn't be reached"); channel = 0; break;
170 }
171 } else {
172 channel = i;
173 }
174
175 foreach_list(n, this->acp) {
176 acp_entry *entry = (acp_entry *) n;
177 if (entry->var == deref->var && entry->write_mask & (1 << channel)) {
178 found = entry;
179 break;
180 }
181 }
182
183 if (!found)
184 return;
185
186 int rhs_channel = 0;
187 for (int j = 0; j < 4; j++) {
188 if (j == channel)
189 break;
190 if (found->initial_values & (1 << j))
191 rhs_channel++;
192 }
193
194 switch (type->base_type) {
195 case GLSL_TYPE_FLOAT:
196 data.f[i] = found->constant->value.f[rhs_channel];
197 break;
198 case GLSL_TYPE_INT:
199 data.i[i] = found->constant->value.i[rhs_channel];
200 break;
201 case GLSL_TYPE_UINT:
202 data.u[i] = found->constant->value.u[rhs_channel];
203 break;
204 case GLSL_TYPE_BOOL:
205 data.b[i] = found->constant->value.b[rhs_channel];
206 break;
207 default:
208 assert(!"not reached");
209 break;
210 }
211 }
212
213 *rvalue = new(ralloc_parent(deref)) ir_constant(type, &data);
214 this->progress = true;
215 }
216
217 ir_visitor_status
218 ir_constant_propagation_visitor::visit_enter(ir_function_signature *ir)
219 {
220 /* Treat entry into a function signature as a completely separate
221 * block. Any instructions at global scope will be shuffled into
222 * main() at link time, so they're irrelevant to us.
223 */
224 exec_list *orig_acp = this->acp;
225 exec_list *orig_kills = this->kills;
226 bool orig_killed_all = this->killed_all;
227
228 this->acp = new(mem_ctx) exec_list;
229 this->kills = new(mem_ctx) exec_list;
230 this->killed_all = false;
231
232 visit_list_elements(this, &ir->body);
233
234 this->kills = orig_kills;
235 this->acp = orig_acp;
236 this->killed_all = orig_killed_all;
237
238 return visit_continue_with_parent;
239 }
240
241 ir_visitor_status
242 ir_constant_propagation_visitor::visit_leave(ir_assignment *ir)
243 {
244 if (this->in_assignee)
245 return visit_continue;
246
247 unsigned kill_mask = ir->write_mask;
248 if (ir->lhs->as_dereference_array()) {
249 /* The LHS of the assignment uses an array indexing operator (e.g. v[i]
250 * = ...;). Since we only try to constant propagate vectors and
251 * scalars, this means that either (a) array indexing is being used to
252 * select a vector component, or (b) the variable in question is neither
253 * a scalar or a vector, so we don't care about it. In the former case,
254 * we want to kill the whole vector, since in general we can't predict
255 * which vector component will be selected by array indexing. In the
256 * latter case, it doesn't matter what we do, so go ahead and kill the
257 * whole variable anyway.
258 *
259 * Note that if the array index is constant (e.g. v[2] = ...;), we could
260 * in principle be smarter, but we don't need to, because a future
261 * optimization pass will convert it to a simple assignment with the
262 * correct mask.
263 */
264 kill_mask = ~0;
265 }
266 kill(ir->lhs->variable_referenced(), kill_mask);
267
268 add_constant(ir);
269
270 return visit_continue;
271 }
272
273 ir_visitor_status
274 ir_constant_propagation_visitor::visit_enter(ir_function *ir)
275 {
276 (void) ir;
277 return visit_continue;
278 }
279
280 ir_visitor_status
281 ir_constant_propagation_visitor::visit_enter(ir_call *ir)
282 {
283 /* Do constant propagation on call parameters, but skip any out params */
284 foreach_two_lists(formal_node, &ir->callee->parameters,
285 actual_node, &ir->actual_parameters) {
286 ir_variable *sig_param = (ir_variable *) formal_node;
287 ir_rvalue *param = (ir_rvalue *) actual_node;
288 if (sig_param->data.mode != ir_var_function_out
289 && sig_param->data.mode != ir_var_function_inout) {
290 ir_rvalue *new_param = param;
291 handle_rvalue(&new_param);
292 if (new_param != param)
293 param->replace_with(new_param);
294 else
295 param->accept(this);
296 }
297 }
298
299 /* Since we're unlinked, we don't (necssarily) know the side effects of
300 * this call. So kill all copies.
301 */
302 acp->make_empty();
303 this->killed_all = true;
304
305 return visit_continue_with_parent;
306 }
307
308 void
309 ir_constant_propagation_visitor::handle_if_block(exec_list *instructions)
310 {
311 exec_list *orig_acp = this->acp;
312 exec_list *orig_kills = this->kills;
313 bool orig_killed_all = this->killed_all;
314
315 this->acp = new(mem_ctx) exec_list;
316 this->kills = new(mem_ctx) exec_list;
317 this->killed_all = false;
318
319 /* Populate the initial acp with a constant of the original */
320 foreach_list(n, orig_acp) {
321 acp_entry *a = (acp_entry *) n;
322 this->acp->push_tail(new(this->mem_ctx) acp_entry(a));
323 }
324
325 visit_list_elements(this, instructions);
326
327 if (this->killed_all) {
328 orig_acp->make_empty();
329 }
330
331 exec_list *new_kills = this->kills;
332 this->kills = orig_kills;
333 this->acp = orig_acp;
334 this->killed_all = this->killed_all || orig_killed_all;
335
336 foreach_list(n, new_kills) {
337 kill_entry *k = (kill_entry *) n;
338 kill(k->var, k->write_mask);
339 }
340 }
341
342 ir_visitor_status
343 ir_constant_propagation_visitor::visit_enter(ir_if *ir)
344 {
345 ir->condition->accept(this);
346 handle_rvalue(&ir->condition);
347
348 handle_if_block(&ir->then_instructions);
349 handle_if_block(&ir->else_instructions);
350
351 /* handle_if_block() already descended into the children. */
352 return visit_continue_with_parent;
353 }
354
355 ir_visitor_status
356 ir_constant_propagation_visitor::visit_enter(ir_loop *ir)
357 {
358 exec_list *orig_acp = this->acp;
359 exec_list *orig_kills = this->kills;
360 bool orig_killed_all = this->killed_all;
361
362 /* FINISHME: For now, the initial acp for loops is totally empty.
363 * We could go through once, then go through again with the acp
364 * cloned minus the killed entries after the first run through.
365 */
366 this->acp = new(mem_ctx) exec_list;
367 this->kills = new(mem_ctx) exec_list;
368 this->killed_all = false;
369
370 visit_list_elements(this, &ir->body_instructions);
371
372 if (this->killed_all) {
373 orig_acp->make_empty();
374 }
375
376 exec_list *new_kills = this->kills;
377 this->kills = orig_kills;
378 this->acp = orig_acp;
379 this->killed_all = this->killed_all || orig_killed_all;
380
381 foreach_list(n, new_kills) {
382 kill_entry *k = (kill_entry *) n;
383 kill(k->var, k->write_mask);
384 }
385
386 /* already descended into the children. */
387 return visit_continue_with_parent;
388 }
389
390 void
391 ir_constant_propagation_visitor::kill(ir_variable *var, unsigned write_mask)
392 {
393 assert(var != NULL);
394
395 /* We don't track non-vectors. */
396 if (!var->type->is_vector() && !var->type->is_scalar())
397 return;
398
399 /* Remove any entries currently in the ACP for this kill. */
400 foreach_list_safe(n, this->acp) {
401 acp_entry *entry = (acp_entry *) n;
402
403 if (entry->var == var) {
404 entry->write_mask &= ~write_mask;
405 if (entry->write_mask == 0)
406 entry->remove();
407 }
408 }
409
410 /* Add this writemask of the variable to the list of killed
411 * variables in this block.
412 */
413 foreach_list(n, this->kills) {
414 kill_entry *entry = (kill_entry *) n;
415
416 if (entry->var == var) {
417 entry->write_mask |= write_mask;
418 return;
419 }
420 }
421 /* Not already in the list. Make new entry. */
422 this->kills->push_tail(new(this->mem_ctx) kill_entry(var, write_mask));
423 }
424
425 /**
426 * Adds an entry to the available constant list if it's a plain assignment
427 * of a variable to a variable.
428 */
429 void
430 ir_constant_propagation_visitor::add_constant(ir_assignment *ir)
431 {
432 acp_entry *entry;
433
434 if (ir->condition)
435 return;
436
437 if (!ir->write_mask)
438 return;
439
440 ir_dereference_variable *deref = ir->lhs->as_dereference_variable();
441 ir_constant *constant = ir->rhs->as_constant();
442
443 if (!deref || !constant)
444 return;
445
446 /* Only do constant propagation on vectors. Constant matrices,
447 * arrays, or structures would require more work elsewhere.
448 */
449 if (!deref->var->type->is_vector() && !deref->var->type->is_scalar())
450 return;
451
452 entry = new(this->mem_ctx) acp_entry(deref->var, ir->write_mask, constant);
453 this->acp->push_tail(entry);
454 }
455
456 } /* unnamed namespace */
457
458 /**
459 * Does a constant propagation pass on the code present in the instruction stream.
460 */
461 bool
462 do_constant_propagation(exec_list *instructions)
463 {
464 ir_constant_propagation_visitor v;
465
466 visit_list_elements(&v, instructions);
467
468 return v.progress;
469 }