mesa: Fix linker-assigned varying component counting since 8fb1e4a462
[mesa.git] / src / glsl / opt_constant_propagation.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * constant of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, constant, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above constantright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR CONSTANTRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file opt_constant_propagation.cpp
26 *
27 * Tracks assignments of constants to channels of variables, and
28 * usage of those constant channels with direct usage of the constants.
29 *
30 * This can lead to constant folding and algebraic optimizations in
31 * those later expressions, while causing no increase in instruction
32 * count (due to constants being generally free to load from a
33 * constant push buffer or as instruction immediate values) and
34 * possibly reducing register pressure.
35 */
36
37 #include "ir.h"
38 #include "ir_visitor.h"
39 #include "ir_rvalue_visitor.h"
40 #include "ir_basic_block.h"
41 #include "ir_optimization.h"
42 #include "glsl_types.h"
43
44 namespace {
45
46 class acp_entry : public exec_node
47 {
48 public:
49 acp_entry(ir_variable *var, unsigned write_mask, ir_constant *constant)
50 {
51 assert(var);
52 assert(constant);
53 this->var = var;
54 this->write_mask = write_mask;
55 this->constant = constant;
56 this->initial_values = write_mask;
57 }
58
59 acp_entry(const acp_entry *src)
60 {
61 this->var = src->var;
62 this->write_mask = src->write_mask;
63 this->constant = src->constant;
64 this->initial_values = src->initial_values;
65 }
66
67 ir_variable *var;
68 ir_constant *constant;
69 unsigned write_mask;
70
71 /** Mask of values initially available in the constant. */
72 unsigned initial_values;
73 };
74
75
76 class kill_entry : public exec_node
77 {
78 public:
79 kill_entry(ir_variable *var, unsigned write_mask)
80 {
81 assert(var);
82 this->var = var;
83 this->write_mask = write_mask;
84 }
85
86 ir_variable *var;
87 unsigned write_mask;
88 };
89
90 class ir_constant_propagation_visitor : public ir_rvalue_visitor {
91 public:
92 ir_constant_propagation_visitor()
93 {
94 progress = false;
95 mem_ctx = ralloc_context(0);
96 this->acp = new(mem_ctx) exec_list;
97 this->kills = new(mem_ctx) exec_list;
98 }
99 ~ir_constant_propagation_visitor()
100 {
101 ralloc_free(mem_ctx);
102 }
103
104 virtual ir_visitor_status visit_enter(class ir_loop *);
105 virtual ir_visitor_status visit_enter(class ir_function_signature *);
106 virtual ir_visitor_status visit_enter(class ir_function *);
107 virtual ir_visitor_status visit_leave(class ir_assignment *);
108 virtual ir_visitor_status visit_enter(class ir_call *);
109 virtual ir_visitor_status visit_enter(class ir_if *);
110
111 void add_constant(ir_assignment *ir);
112 void kill(ir_variable *ir, unsigned write_mask);
113 void handle_if_block(exec_list *instructions);
114 void handle_rvalue(ir_rvalue **rvalue);
115
116 /** List of acp_entry: The available constants to propagate */
117 exec_list *acp;
118
119 /**
120 * List of kill_entry: The masks of variables whose values were
121 * killed in this block.
122 */
123 exec_list *kills;
124
125 bool progress;
126
127 bool killed_all;
128
129 void *mem_ctx;
130 };
131
132
133 void
134 ir_constant_propagation_visitor::handle_rvalue(ir_rvalue **rvalue)
135 {
136 if (this->in_assignee || !*rvalue)
137 return;
138
139 const glsl_type *type = (*rvalue)->type;
140 if (!type->is_scalar() && !type->is_vector())
141 return;
142
143 ir_swizzle *swiz = NULL;
144 ir_dereference_variable *deref = (*rvalue)->as_dereference_variable();
145 if (!deref) {
146 swiz = (*rvalue)->as_swizzle();
147 if (!swiz)
148 return;
149
150 deref = swiz->val->as_dereference_variable();
151 if (!deref)
152 return;
153 }
154
155 ir_constant_data data;
156 memset(&data, 0, sizeof(data));
157
158 for (unsigned int i = 0; i < type->components(); i++) {
159 int channel;
160 acp_entry *found = NULL;
161
162 if (swiz) {
163 switch (i) {
164 case 0: channel = swiz->mask.x; break;
165 case 1: channel = swiz->mask.y; break;
166 case 2: channel = swiz->mask.z; break;
167 case 3: channel = swiz->mask.w; break;
168 default: assert(!"shouldn't be reached"); channel = 0; break;
169 }
170 } else {
171 channel = i;
172 }
173
174 foreach_iter(exec_list_iterator, iter, *this->acp) {
175 acp_entry *entry = (acp_entry *)iter.get();
176 if (entry->var == deref->var && entry->write_mask & (1 << channel)) {
177 found = entry;
178 break;
179 }
180 }
181
182 if (!found)
183 return;
184
185 int rhs_channel = 0;
186 for (int j = 0; j < 4; j++) {
187 if (j == channel)
188 break;
189 if (found->initial_values & (1 << j))
190 rhs_channel++;
191 }
192
193 switch (type->base_type) {
194 case GLSL_TYPE_FLOAT:
195 data.f[i] = found->constant->value.f[rhs_channel];
196 break;
197 case GLSL_TYPE_INT:
198 data.i[i] = found->constant->value.i[rhs_channel];
199 break;
200 case GLSL_TYPE_UINT:
201 data.u[i] = found->constant->value.u[rhs_channel];
202 break;
203 case GLSL_TYPE_BOOL:
204 data.b[i] = found->constant->value.b[rhs_channel];
205 break;
206 default:
207 assert(!"not reached");
208 break;
209 }
210 }
211
212 *rvalue = new(ralloc_parent(deref)) ir_constant(type, &data);
213 this->progress = true;
214 }
215
216 ir_visitor_status
217 ir_constant_propagation_visitor::visit_enter(ir_function_signature *ir)
218 {
219 /* Treat entry into a function signature as a completely separate
220 * block. Any instructions at global scope will be shuffled into
221 * main() at link time, so they're irrelevant to us.
222 */
223 exec_list *orig_acp = this->acp;
224 exec_list *orig_kills = this->kills;
225 bool orig_killed_all = this->killed_all;
226
227 this->acp = new(mem_ctx) exec_list;
228 this->kills = new(mem_ctx) exec_list;
229 this->killed_all = false;
230
231 visit_list_elements(this, &ir->body);
232
233 this->kills = orig_kills;
234 this->acp = orig_acp;
235 this->killed_all = orig_killed_all;
236
237 return visit_continue_with_parent;
238 }
239
240 ir_visitor_status
241 ir_constant_propagation_visitor::visit_leave(ir_assignment *ir)
242 {
243 if (this->in_assignee)
244 return visit_continue;
245
246 unsigned kill_mask = ir->write_mask;
247 if (ir->lhs->as_dereference_array()) {
248 /* The LHS of the assignment uses an array indexing operator (e.g. v[i]
249 * = ...;). Since we only try to constant propagate vectors and
250 * scalars, this means that either (a) array indexing is being used to
251 * select a vector component, or (b) the variable in question is neither
252 * a scalar or a vector, so we don't care about it. In the former case,
253 * we want to kill the whole vector, since in general we can't predict
254 * which vector component will be selected by array indexing. In the
255 * latter case, it doesn't matter what we do, so go ahead and kill the
256 * whole variable anyway.
257 *
258 * Note that if the array index is constant (e.g. v[2] = ...;), we could
259 * in principle be smarter, but we don't need to, because a future
260 * optimization pass will convert it to a simple assignment with the
261 * correct mask.
262 */
263 kill_mask = ~0;
264 }
265 kill(ir->lhs->variable_referenced(), kill_mask);
266
267 add_constant(ir);
268
269 return visit_continue;
270 }
271
272 ir_visitor_status
273 ir_constant_propagation_visitor::visit_enter(ir_function *ir)
274 {
275 (void) ir;
276 return visit_continue;
277 }
278
279 ir_visitor_status
280 ir_constant_propagation_visitor::visit_enter(ir_call *ir)
281 {
282 /* Do constant propagation on call parameters, but skip any out params */
283 exec_list_iterator sig_param_iter = ir->callee->parameters.iterator();
284 foreach_iter(exec_list_iterator, iter, ir->actual_parameters) {
285 ir_variable *sig_param = (ir_variable *)sig_param_iter.get();
286 ir_rvalue *param = (ir_rvalue *)iter.get();
287 if (sig_param->mode != ir_var_out && sig_param->mode != ir_var_inout) {
288 ir_rvalue *new_param = param;
289 handle_rvalue(&new_param);
290 if (new_param != param)
291 param->replace_with(new_param);
292 else
293 param->accept(this);
294 }
295 sig_param_iter.next();
296 }
297
298 /* Since we're unlinked, we don't (necssarily) know the side effects of
299 * this call. So kill all copies.
300 */
301 acp->make_empty();
302 this->killed_all = true;
303
304 return visit_continue_with_parent;
305 }
306
307 void
308 ir_constant_propagation_visitor::handle_if_block(exec_list *instructions)
309 {
310 exec_list *orig_acp = this->acp;
311 exec_list *orig_kills = this->kills;
312 bool orig_killed_all = this->killed_all;
313
314 this->acp = new(mem_ctx) exec_list;
315 this->kills = new(mem_ctx) exec_list;
316 this->killed_all = false;
317
318 /* Populate the initial acp with a constant of the original */
319 foreach_iter(exec_list_iterator, iter, *orig_acp) {
320 acp_entry *a = (acp_entry *)iter.get();
321 this->acp->push_tail(new(this->mem_ctx) acp_entry(a));
322 }
323
324 visit_list_elements(this, instructions);
325
326 if (this->killed_all) {
327 orig_acp->make_empty();
328 }
329
330 exec_list *new_kills = this->kills;
331 this->kills = orig_kills;
332 this->acp = orig_acp;
333 this->killed_all = this->killed_all || orig_killed_all;
334
335 foreach_iter(exec_list_iterator, iter, *new_kills) {
336 kill_entry *k = (kill_entry *)iter.get();
337 kill(k->var, k->write_mask);
338 }
339 }
340
341 ir_visitor_status
342 ir_constant_propagation_visitor::visit_enter(ir_if *ir)
343 {
344 ir->condition->accept(this);
345 handle_rvalue(&ir->condition);
346
347 handle_if_block(&ir->then_instructions);
348 handle_if_block(&ir->else_instructions);
349
350 /* handle_if_block() already descended into the children. */
351 return visit_continue_with_parent;
352 }
353
354 ir_visitor_status
355 ir_constant_propagation_visitor::visit_enter(ir_loop *ir)
356 {
357 exec_list *orig_acp = this->acp;
358 exec_list *orig_kills = this->kills;
359 bool orig_killed_all = this->killed_all;
360
361 /* FINISHME: For now, the initial acp for loops is totally empty.
362 * We could go through once, then go through again with the acp
363 * cloned minus the killed entries after the first run through.
364 */
365 this->acp = new(mem_ctx) exec_list;
366 this->kills = new(mem_ctx) exec_list;
367 this->killed_all = false;
368
369 visit_list_elements(this, &ir->body_instructions);
370
371 if (this->killed_all) {
372 orig_acp->make_empty();
373 }
374
375 exec_list *new_kills = this->kills;
376 this->kills = orig_kills;
377 this->acp = orig_acp;
378 this->killed_all = this->killed_all || orig_killed_all;
379
380 foreach_iter(exec_list_iterator, iter, *new_kills) {
381 kill_entry *k = (kill_entry *)iter.get();
382 kill(k->var, k->write_mask);
383 }
384
385 /* already descended into the children. */
386 return visit_continue_with_parent;
387 }
388
389 void
390 ir_constant_propagation_visitor::kill(ir_variable *var, unsigned write_mask)
391 {
392 assert(var != NULL);
393
394 /* We don't track non-vectors. */
395 if (!var->type->is_vector() && !var->type->is_scalar())
396 return;
397
398 /* Remove any entries currently in the ACP for this kill. */
399 foreach_iter(exec_list_iterator, iter, *this->acp) {
400 acp_entry *entry = (acp_entry *)iter.get();
401
402 if (entry->var == var) {
403 entry->write_mask &= ~write_mask;
404 if (entry->write_mask == 0)
405 entry->remove();
406 }
407 }
408
409 /* Add this writemask of the variable to the list of killed
410 * variables in this block.
411 */
412 foreach_iter(exec_list_iterator, iter, *this->kills) {
413 kill_entry *entry = (kill_entry *)iter.get();
414
415 if (entry->var == var) {
416 entry->write_mask |= write_mask;
417 return;
418 }
419 }
420 /* Not already in the list. Make new entry. */
421 this->kills->push_tail(new(this->mem_ctx) kill_entry(var, write_mask));
422 }
423
424 /**
425 * Adds an entry to the available constant list if it's a plain assignment
426 * of a variable to a variable.
427 */
428 void
429 ir_constant_propagation_visitor::add_constant(ir_assignment *ir)
430 {
431 acp_entry *entry;
432
433 if (ir->condition)
434 return;
435
436 if (!ir->write_mask)
437 return;
438
439 ir_dereference_variable *deref = ir->lhs->as_dereference_variable();
440 ir_constant *constant = ir->rhs->as_constant();
441
442 if (!deref || !constant)
443 return;
444
445 /* Only do constant propagation on vectors. Constant matrices,
446 * arrays, or structures would require more work elsewhere.
447 */
448 if (!deref->var->type->is_vector() && !deref->var->type->is_scalar())
449 return;
450
451 entry = new(this->mem_ctx) acp_entry(deref->var, ir->write_mask, constant);
452 this->acp->push_tail(entry);
453 }
454
455 } /* unnamed namespace */
456
457 /**
458 * Does a constant propagation pass on the code present in the instruction stream.
459 */
460 bool
461 do_constant_propagation(exec_list *instructions)
462 {
463 ir_constant_propagation_visitor v;
464
465 visit_list_elements(&v, instructions);
466
467 return v.progress;
468 }