updated version string
[mesa.git] / src / glu / mesa / project.c
1 /* $Id: project.c,v 1.2 1999/09/14 00:10:31 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.1
6 * Copyright (C) 1995-1999 Brian Paul
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Library General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Library General Public License for more details.
17 *
18 * You should have received a copy of the GNU Library General Public
19 * License along with this library; if not, write to the Free
20 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23
24 /*
25 * $Log: project.c,v $
26 * Revision 1.2 1999/09/14 00:10:31 brianp
27 * added gluUnProject4()
28 *
29 * Revision 1.1.1.1 1999/08/19 00:55:42 jtg
30 * Imported sources
31 *
32 * Revision 1.7 1999/01/03 03:23:15 brianp
33 * now using GLAPIENTRY and GLCALLBACK keywords (Ted Jump)
34 *
35 * Revision 1.6 1998/07/08 01:43:43 brianp
36 * new version of invert_matrix() (also in src/matrix.c)
37 *
38 * Revision 1.5 1997/07/24 01:28:44 brianp
39 * changed precompiled header symbol from PCH to PC_HEADER
40 *
41 * Revision 1.4 1997/05/28 02:29:38 brianp
42 * added support for precompiled headers (PCH), inserted APIENTRY keyword
43 *
44 * Revision 1.3 1997/04/11 23:22:42 brianp
45 * added divide by zero checks to gluProject() and gluUnproject()
46 *
47 * Revision 1.2 1997/01/29 19:05:29 brianp
48 * faster invert_matrix() function from Stephane Rehel
49 *
50 * Revision 1.1 1996/09/27 01:19:39 brianp
51 * Initial revision
52 *
53 */
54
55
56 #ifdef PC_HEADER
57 #include "all.h"
58 #else
59 #include <stdio.h>
60 #include <string.h>
61 #include <math.h>
62 #include "gluP.h"
63 #endif
64
65
66 /*
67 * This code was contributed by Marc Buffat (buffat@mecaflu.ec-lyon.fr).
68 * Thanks Marc!!!
69 */
70
71
72
73 /* implementation de gluProject et gluUnproject */
74 /* M. Buffat 17/2/95 */
75
76
77
78 /*
79 * Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in
80 * Input: m - the 4x4 matrix
81 * in - the 4x1 vector
82 * Output: out - the resulting 4x1 vector.
83 */
84 static void transform_point( GLdouble out[4], const GLdouble m[16],
85 const GLdouble in[4] )
86 {
87 #define M(row,col) m[col*4+row]
88 out[0] = M(0,0) * in[0] + M(0,1) * in[1] + M(0,2) * in[2] + M(0,3) * in[3];
89 out[1] = M(1,0) * in[0] + M(1,1) * in[1] + M(1,2) * in[2] + M(1,3) * in[3];
90 out[2] = M(2,0) * in[0] + M(2,1) * in[1] + M(2,2) * in[2] + M(2,3) * in[3];
91 out[3] = M(3,0) * in[0] + M(3,1) * in[1] + M(3,2) * in[2] + M(3,3) * in[3];
92 #undef M
93 }
94
95
96
97
98 /*
99 * Perform a 4x4 matrix multiplication (product = a x b).
100 * Input: a, b - matrices to multiply
101 * Output: product - product of a and b
102 */
103 static void matmul( GLdouble *product, const GLdouble *a, const GLdouble *b )
104 {
105 /* This matmul was contributed by Thomas Malik */
106 GLdouble temp[16];
107 GLint i;
108
109 #define A(row,col) a[(col<<2)+row]
110 #define B(row,col) b[(col<<2)+row]
111 #define T(row,col) temp[(col<<2)+row]
112
113 /* i-te Zeile */
114 for (i = 0; i < 4; i++)
115 {
116 T(i, 0) = A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i, 3) * B(3, 0);
117 T(i, 1) = A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i, 3) * B(3, 1);
118 T(i, 2) = A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i, 3) * B(3, 2);
119 T(i, 3) = A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i, 3) * B(3, 3);
120 }
121
122 #undef A
123 #undef B
124 #undef T
125 MEMCPY( product, temp, 16*sizeof(GLdouble) );
126 }
127
128
129
130 /*
131 * Compute inverse of 4x4 transformation matrix.
132 * Code contributed by Jacques Leroy jle@star.be
133 * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
134 */
135 static GLboolean invert_matrix( const GLdouble *m, GLdouble *out )
136 {
137 /* NB. OpenGL Matrices are COLUMN major. */
138 #define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; }
139 #define MAT(m,r,c) (m)[(c)*4+(r)]
140
141 GLdouble wtmp[4][8];
142 GLdouble m0, m1, m2, m3, s;
143 GLdouble *r0, *r1, *r2, *r3;
144
145 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
146
147 r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
148 r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
149 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
150
151 r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
152 r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
153 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
154
155 r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
156 r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
157 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
158
159 r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
160 r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
161 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
162
163 /* choose pivot - or die */
164 if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
165 if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
166 if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
167 if (0.0 == r0[0]) return GL_FALSE;
168
169 /* eliminate first variable */
170 m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
171 s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
172 s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
173 s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
174 s = r0[4];
175 if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
176 s = r0[5];
177 if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
178 s = r0[6];
179 if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
180 s = r0[7];
181 if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
182
183 /* choose pivot - or die */
184 if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
185 if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
186 if (0.0 == r1[1]) return GL_FALSE;
187
188 /* eliminate second variable */
189 m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
190 r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
191 r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
192 s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
193 s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
194 s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
195 s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
196
197 /* choose pivot - or die */
198 if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
199 if (0.0 == r2[2]) return GL_FALSE;
200
201 /* eliminate third variable */
202 m3 = r3[2]/r2[2];
203 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
204 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
205 r3[7] -= m3 * r2[7];
206
207 /* last check */
208 if (0.0 == r3[3]) return GL_FALSE;
209
210 s = 1.0/r3[3]; /* now back substitute row 3 */
211 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
212
213 m2 = r2[3]; /* now back substitute row 2 */
214 s = 1.0/r2[2];
215 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
216 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
217 m1 = r1[3];
218 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
219 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
220 m0 = r0[3];
221 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
222 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
223
224 m1 = r1[2]; /* now back substitute row 1 */
225 s = 1.0/r1[1];
226 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
227 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
228 m0 = r0[2];
229 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
230 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
231
232 m0 = r0[1]; /* now back substitute row 0 */
233 s = 1.0/r0[0];
234 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
235 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
236
237 MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
238 MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
239 MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
240 MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
241 MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
242 MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
243 MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
244 MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
245
246 return GL_TRUE;
247
248 #undef MAT
249 #undef SWAP_ROWS
250 }
251
252
253
254 /* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */
255 GLint GLAPIENTRY gluProject(GLdouble objx,GLdouble objy,GLdouble objz,
256 const GLdouble model[16],const GLdouble proj[16],
257 const GLint viewport[4],
258 GLdouble *winx,GLdouble *winy,GLdouble *winz)
259 {
260 /* matrice de transformation */
261 GLdouble in[4],out[4];
262
263 /* initilise la matrice et le vecteur a transformer */
264 in[0]=objx; in[1]=objy; in[2]=objz; in[3]=1.0;
265 transform_point(out,model,in);
266 transform_point(in,proj,out);
267
268 /* d'ou le resultat normalise entre -1 et 1*/
269 if (in[3]==0.0)
270 return GL_FALSE;
271
272 in[0]/=in[3]; in[1]/=in[3]; in[2]/=in[3];
273
274 /* en coordonnees ecran */
275 *winx = viewport[0]+(1+in[0])*viewport[2]/2;
276 *winy = viewport[1]+(1+in[1])*viewport[3]/2;
277 /* entre 0 et 1 suivant z */
278 *winz = (1+in[2])/2;
279 return GL_TRUE;
280 }
281
282
283
284 /* transformation du point ecran (winx,winy,winz) en point objet */
285 GLint GLAPIENTRY gluUnProject(GLdouble winx,GLdouble winy,GLdouble winz,
286 const GLdouble model[16],const GLdouble proj[16],
287 const GLint viewport[4],
288 GLdouble *objx,GLdouble *objy,GLdouble *objz)
289 {
290 /* matrice de transformation */
291 GLdouble m[16], A[16];
292 GLdouble in[4],out[4];
293
294 /* transformation coordonnees normalisees entre -1 et 1 */
295 in[0]=(winx-viewport[0])*2/viewport[2] - 1.0;
296 in[1]=(winy-viewport[1])*2/viewport[3] - 1.0;
297 in[2]=2*winz - 1.0;
298 in[3]=1.0;
299
300 /* calcul transformation inverse */
301 matmul(A,proj,model);
302 invert_matrix(A,m);
303
304 /* d'ou les coordonnees objets */
305 transform_point(out,m,in);
306 if (out[3]==0.0)
307 return GL_FALSE;
308 *objx=out[0]/out[3];
309 *objy=out[1]/out[3];
310 *objz=out[2]/out[3];
311 return GL_TRUE;
312 }
313
314
315 /*
316 * New in GLU 1.3
317 * This is like gluUnProject but also takes near and far DepthRange values.
318 */
319 GLint GLAPIENTRY
320 gluUnProject4( GLdouble winx, GLdouble winy, GLdouble winz, GLdouble clipw,
321 const GLdouble modelMatrix[16],
322 const GLdouble projMatrix[16],
323 const GLint viewport[4],
324 GLclampd nearZ, GLclampd farZ,
325 GLdouble *objx, GLdouble *objy, GLdouble *objz, GLdouble *objw )
326 {
327 /* matrice de transformation */
328 GLdouble m[16], A[16];
329 GLdouble in[4],out[4];
330 GLdouble z = nearZ + winz * (farZ - nearZ);
331
332 /* transformation coordonnees normalisees entre -1 et 1 */
333 in[0] = (winx-viewport[0])*2/viewport[2] - 1.0;
334 in[1] = (winy-viewport[1])*2/viewport[3] - 1.0;
335 in[2] = 2.0 * z - 1.0;
336 in[3] = clipw;
337
338 /* calcul transformation inverse */
339 matmul(A,projMatrix,modelMatrix);
340 invert_matrix(A,m);
341
342 /* d'ou les coordonnees objets */
343 transform_point(out,m,in);
344 if (out[3]==0.0)
345 return GL_FALSE;
346 *objx=out[0]/out[3];
347 *objy=out[1]/out[3];
348 *objz=out[2]/out[3];
349 *objw=out[3];
350 return GL_TRUE;
351 }