a2747de55f2da1a2ea7ebef54c6d486e85b1f2f9
[mesa.git] / src / glu / mini / project.c
1 /* $Id: project.c,v 1.2 2003/08/22 20:11:43 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.3
6 * Copyright (C) 1995-2000 Brian Paul
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Library General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Library General Public License for more details.
17 *
18 * You should have received a copy of the GNU Library General Public
19 * License along with this library; if not, write to the Free
20 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23
24 #ifdef PC_HEADER
25 #include "all.h"
26 #else
27 #include <stdio.h>
28 #include <string.h>
29 #include <math.h>
30 #include "gluP.h"
31 #endif
32
33
34 /*
35 * This code was contributed by Marc Buffat (buffat@mecaflu.ec-lyon.fr).
36 * Thanks Marc!!!
37 */
38
39
40
41 /* implementation de gluProject et gluUnproject */
42 /* M. Buffat 17/2/95 */
43
44
45
46 /*
47 * Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in
48 * Input: m - the 4x4 matrix
49 * in - the 4x1 vector
50 * Output: out - the resulting 4x1 vector.
51 */
52 static void
53 transform_point(GLdouble out[4], const GLdouble m[16], const GLdouble in[4])
54 {
55 #define M(row,col) m[col*4+row]
56 out[0] =
57 M(0, 0) * in[0] + M(0, 1) * in[1] + M(0, 2) * in[2] + M(0, 3) * in[3];
58 out[1] =
59 M(1, 0) * in[0] + M(1, 1) * in[1] + M(1, 2) * in[2] + M(1, 3) * in[3];
60 out[2] =
61 M(2, 0) * in[0] + M(2, 1) * in[1] + M(2, 2) * in[2] + M(2, 3) * in[3];
62 out[3] =
63 M(3, 0) * in[0] + M(3, 1) * in[1] + M(3, 2) * in[2] + M(3, 3) * in[3];
64 #undef M
65 }
66
67
68
69
70 /*
71 * Perform a 4x4 matrix multiplication (product = a x b).
72 * Input: a, b - matrices to multiply
73 * Output: product - product of a and b
74 */
75 static void
76 matmul(GLdouble * product, const GLdouble * a, const GLdouble * b)
77 {
78 /* This matmul was contributed by Thomas Malik */
79 GLdouble temp[16];
80 GLint i;
81
82 #define A(row,col) a[(col<<2)+row]
83 #define B(row,col) b[(col<<2)+row]
84 #define T(row,col) temp[(col<<2)+row]
85
86 /* i-te Zeile */
87 for (i = 0; i < 4; i++) {
88 T(i, 0) =
89 A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i,
90 3) *
91 B(3, 0);
92 T(i, 1) =
93 A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i,
94 3) *
95 B(3, 1);
96 T(i, 2) =
97 A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i,
98 3) *
99 B(3, 2);
100 T(i, 3) =
101 A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i,
102 3) *
103 B(3, 3);
104 }
105
106 #undef A
107 #undef B
108 #undef T
109 MEMCPY(product, temp, 16 * sizeof(GLdouble));
110 }
111
112
113
114 /*
115 * Compute inverse of 4x4 transformation matrix.
116 * Code contributed by Jacques Leroy jle@star.be
117 * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
118 */
119 static GLboolean
120 invert_matrix(const GLdouble * m, GLdouble * out)
121 {
122 /* NB. OpenGL Matrices are COLUMN major. */
123 #define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; }
124 #define MAT(m,r,c) (m)[(c)*4+(r)]
125
126 GLdouble wtmp[4][8];
127 GLdouble m0, m1, m2, m3, s;
128 GLdouble *r0, *r1, *r2, *r3;
129
130 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
131
132 r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1),
133 r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3),
134 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
135 r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1),
136 r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3),
137 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
138 r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1),
139 r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3),
140 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
141 r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1),
142 r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3),
143 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
144
145 /* choose pivot - or die */
146 if (fabs(r3[0]) > fabs(r2[0]))
147 SWAP_ROWS(r3, r2);
148 if (fabs(r2[0]) > fabs(r1[0]))
149 SWAP_ROWS(r2, r1);
150 if (fabs(r1[0]) > fabs(r0[0]))
151 SWAP_ROWS(r1, r0);
152 if (0.0 == r0[0])
153 return GL_FALSE;
154
155 /* eliminate first variable */
156 m1 = r1[0] / r0[0];
157 m2 = r2[0] / r0[0];
158 m3 = r3[0] / r0[0];
159 s = r0[1];
160 r1[1] -= m1 * s;
161 r2[1] -= m2 * s;
162 r3[1] -= m3 * s;
163 s = r0[2];
164 r1[2] -= m1 * s;
165 r2[2] -= m2 * s;
166 r3[2] -= m3 * s;
167 s = r0[3];
168 r1[3] -= m1 * s;
169 r2[3] -= m2 * s;
170 r3[3] -= m3 * s;
171 s = r0[4];
172 if (s != 0.0) {
173 r1[4] -= m1 * s;
174 r2[4] -= m2 * s;
175 r3[4] -= m3 * s;
176 }
177 s = r0[5];
178 if (s != 0.0) {
179 r1[5] -= m1 * s;
180 r2[5] -= m2 * s;
181 r3[5] -= m3 * s;
182 }
183 s = r0[6];
184 if (s != 0.0) {
185 r1[6] -= m1 * s;
186 r2[6] -= m2 * s;
187 r3[6] -= m3 * s;
188 }
189 s = r0[7];
190 if (s != 0.0) {
191 r1[7] -= m1 * s;
192 r2[7] -= m2 * s;
193 r3[7] -= m3 * s;
194 }
195
196 /* choose pivot - or die */
197 if (fabs(r3[1]) > fabs(r2[1]))
198 SWAP_ROWS(r3, r2);
199 if (fabs(r2[1]) > fabs(r1[1]))
200 SWAP_ROWS(r2, r1);
201 if (0.0 == r1[1])
202 return GL_FALSE;
203
204 /* eliminate second variable */
205 m2 = r2[1] / r1[1];
206 m3 = r3[1] / r1[1];
207 r2[2] -= m2 * r1[2];
208 r3[2] -= m3 * r1[2];
209 r2[3] -= m2 * r1[3];
210 r3[3] -= m3 * r1[3];
211 s = r1[4];
212 if (0.0 != s) {
213 r2[4] -= m2 * s;
214 r3[4] -= m3 * s;
215 }
216 s = r1[5];
217 if (0.0 != s) {
218 r2[5] -= m2 * s;
219 r3[5] -= m3 * s;
220 }
221 s = r1[6];
222 if (0.0 != s) {
223 r2[6] -= m2 * s;
224 r3[6] -= m3 * s;
225 }
226 s = r1[7];
227 if (0.0 != s) {
228 r2[7] -= m2 * s;
229 r3[7] -= m3 * s;
230 }
231
232 /* choose pivot - or die */
233 if (fabs(r3[2]) > fabs(r2[2]))
234 SWAP_ROWS(r3, r2);
235 if (0.0 == r2[2])
236 return GL_FALSE;
237
238 /* eliminate third variable */
239 m3 = r3[2] / r2[2];
240 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
241 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7];
242
243 /* last check */
244 if (0.0 == r3[3])
245 return GL_FALSE;
246
247 s = 1.0 / r3[3]; /* now back substitute row 3 */
248 r3[4] *= s;
249 r3[5] *= s;
250 r3[6] *= s;
251 r3[7] *= s;
252
253 m2 = r2[3]; /* now back substitute row 2 */
254 s = 1.0 / r2[2];
255 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
256 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
257 m1 = r1[3];
258 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
259 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
260 m0 = r0[3];
261 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
262 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
263
264 m1 = r1[2]; /* now back substitute row 1 */
265 s = 1.0 / r1[1];
266 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
267 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
268 m0 = r0[2];
269 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
270 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
271
272 m0 = r0[1]; /* now back substitute row 0 */
273 s = 1.0 / r0[0];
274 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
275 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
276
277 MAT(out, 0, 0) = r0[4];
278 MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6];
279 MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4];
280 MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6];
281 MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4];
282 MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6];
283 MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4];
284 MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6];
285 MAT(out, 3, 3) = r3[7];
286
287 return GL_TRUE;
288
289 #undef MAT
290 #undef SWAP_ROWS
291 }
292
293
294
295 /* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */
296 GLint GLAPIENTRY
297 gluProject(GLdouble objx, GLdouble objy, GLdouble objz,
298 const GLdouble model[16], const GLdouble proj[16],
299 const GLint viewport[4],
300 GLdouble * winx, GLdouble * winy, GLdouble * winz)
301 {
302 /* matrice de transformation */
303 GLdouble in[4], out[4];
304
305 /* initilise la matrice et le vecteur a transformer */
306 in[0] = objx;
307 in[1] = objy;
308 in[2] = objz;
309 in[3] = 1.0;
310 transform_point(out, model, in);
311 transform_point(in, proj, out);
312
313 /* d'ou le resultat normalise entre -1 et 1 */
314 if (in[3] == 0.0)
315 return GL_FALSE;
316
317 in[0] /= in[3];
318 in[1] /= in[3];
319 in[2] /= in[3];
320
321 /* en coordonnees ecran */
322 *winx = viewport[0] + (1 + in[0]) * viewport[2] / 2;
323 *winy = viewport[1] + (1 + in[1]) * viewport[3] / 2;
324 /* entre 0 et 1 suivant z */
325 *winz = (1 + in[2]) / 2;
326 return GL_TRUE;
327 }
328
329
330
331 /* transformation du point ecran (winx,winy,winz) en point objet */
332 GLint GLAPIENTRY
333 gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz,
334 const GLdouble model[16], const GLdouble proj[16],
335 const GLint viewport[4],
336 GLdouble * objx, GLdouble * objy, GLdouble * objz)
337 {
338 /* matrice de transformation */
339 GLdouble m[16], A[16];
340 GLdouble in[4], out[4];
341
342 /* transformation coordonnees normalisees entre -1 et 1 */
343 in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0;
344 in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0;
345 in[2] = 2 * winz - 1.0;
346 in[3] = 1.0;
347
348 /* calcul transformation inverse */
349 matmul(A, proj, model);
350 invert_matrix(A, m);
351
352 /* d'ou les coordonnees objets */
353 transform_point(out, m, in);
354 if (out[3] == 0.0)
355 return GL_FALSE;
356 *objx = out[0] / out[3];
357 *objy = out[1] / out[3];
358 *objz = out[2] / out[3];
359 return GL_TRUE;
360 }
361
362
363 /*
364 * New in GLU 1.3
365 * This is like gluUnProject but also takes near and far DepthRange values.
366 */
367 #ifdef GLU_VERSION_1_3
368 GLint GLAPIENTRY
369 gluUnProject4(GLdouble winx, GLdouble winy, GLdouble winz, GLdouble clipw,
370 const GLdouble modelMatrix[16],
371 const GLdouble projMatrix[16],
372 const GLint viewport[4],
373 GLclampd nearZ, GLclampd farZ,
374 GLdouble * objx, GLdouble * objy, GLdouble * objz,
375 GLdouble * objw)
376 {
377 /* matrice de transformation */
378 GLdouble m[16], A[16];
379 GLdouble in[4], out[4];
380 GLdouble z = nearZ + winz * (farZ - nearZ);
381
382 /* transformation coordonnees normalisees entre -1 et 1 */
383 in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0;
384 in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0;
385 in[2] = 2.0 * z - 1.0;
386 in[3] = clipw;
387
388 /* calcul transformation inverse */
389 matmul(A, projMatrix, modelMatrix);
390 invert_matrix(A, m);
391
392 /* d'ou les coordonnees objets */
393 transform_point(out, m, in);
394 if (out[3] == 0.0)
395 return GL_FALSE;
396 *objx = out[0] / out[3];
397 *objy = out[1] / out[3];
398 *objz = out[2] / out[3];
399 *objw = out[3];
400 return GL_TRUE;
401 }
402 #endif