gallium: fix refcount bug introduced in eb20e2984
[mesa.git] / src / glu / sgi / libtess / geom.c
1 /*
2 ** License Applicability. Except to the extent portions of this file are
3 ** made subject to an alternative license as permitted in the SGI Free
4 ** Software License B, Version 1.1 (the "License"), the contents of this
5 ** file are subject only to the provisions of the License. You may not use
6 ** this file except in compliance with the License. You may obtain a copy
7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9 **
10 ** http://oss.sgi.com/projects/FreeB
11 **
12 ** Note that, as provided in the License, the Software is distributed on an
13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17 **
18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21 ** Copyright in any portions created by third parties is as indicated
22 ** elsewhere herein. All Rights Reserved.
23 **
24 ** Additional Notice Provisions: The application programming interfaces
25 ** established by SGI in conjunction with the Original Code are The
26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31 ** published by SGI, but has not been independently verified as being
32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
33 **
34 */
35 /*
36 ** Author: Eric Veach, July 1994.
37 **
38 */
39
40 #include "gluos.h"
41 #include <assert.h>
42 #include "mesh.h"
43 #include "geom.h"
44
45 int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
46 {
47 /* Returns TRUE if u is lexicographically <= v. */
48
49 return VertLeq( u, v );
50 }
51
52 GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
53 {
54 /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
55 * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
56 * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
57 * If uw is vertical (and thus passes thru v), the result is zero.
58 *
59 * The calculation is extremely accurate and stable, even when v
60 * is very close to u or w. In particular if we set v->t = 0 and
61 * let r be the negated result (this evaluates (uw)(v->s)), then
62 * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
63 */
64 GLdouble gapL, gapR;
65
66 assert( VertLeq( u, v ) && VertLeq( v, w ));
67
68 gapL = v->s - u->s;
69 gapR = w->s - v->s;
70
71 if( gapL + gapR > 0 ) {
72 if( gapL < gapR ) {
73 return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
74 } else {
75 return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
76 }
77 }
78 /* vertical line */
79 return 0;
80 }
81
82 GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
83 {
84 /* Returns a number whose sign matches EdgeEval(u,v,w) but which
85 * is cheaper to evaluate. Returns > 0, == 0 , or < 0
86 * as v is above, on, or below the edge uw.
87 */
88 GLdouble gapL, gapR;
89
90 assert( VertLeq( u, v ) && VertLeq( v, w ));
91
92 gapL = v->s - u->s;
93 gapR = w->s - v->s;
94
95 if( gapL + gapR > 0 ) {
96 return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
97 }
98 /* vertical line */
99 return 0;
100 }
101
102
103 /***********************************************************************
104 * Define versions of EdgeSign, EdgeEval with s and t transposed.
105 */
106
107 GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
108 {
109 /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
110 * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
111 * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
112 * If uw is vertical (and thus passes thru v), the result is zero.
113 *
114 * The calculation is extremely accurate and stable, even when v
115 * is very close to u or w. In particular if we set v->s = 0 and
116 * let r be the negated result (this evaluates (uw)(v->t)), then
117 * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
118 */
119 GLdouble gapL, gapR;
120
121 assert( TransLeq( u, v ) && TransLeq( v, w ));
122
123 gapL = v->t - u->t;
124 gapR = w->t - v->t;
125
126 if( gapL + gapR > 0 ) {
127 if( gapL < gapR ) {
128 return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
129 } else {
130 return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
131 }
132 }
133 /* vertical line */
134 return 0;
135 }
136
137 GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
138 {
139 /* Returns a number whose sign matches TransEval(u,v,w) but which
140 * is cheaper to evaluate. Returns > 0, == 0 , or < 0
141 * as v is above, on, or below the edge uw.
142 */
143 GLdouble gapL, gapR;
144
145 assert( TransLeq( u, v ) && TransLeq( v, w ));
146
147 gapL = v->t - u->t;
148 gapR = w->t - v->t;
149
150 if( gapL + gapR > 0 ) {
151 return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
152 }
153 /* vertical line */
154 return 0;
155 }
156
157
158 int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
159 {
160 /* For almost-degenerate situations, the results are not reliable.
161 * Unless the floating-point arithmetic can be performed without
162 * rounding errors, *any* implementation will give incorrect results
163 * on some degenerate inputs, so the client must have some way to
164 * handle this situation.
165 */
166 return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
167 }
168
169 /* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
170 * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
171 * this in the rare case that one argument is slightly negative.
172 * The implementation is extremely stable numerically.
173 * In particular it guarantees that the result r satisfies
174 * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
175 * even when a and b differ greatly in magnitude.
176 */
177 #define RealInterpolate(a,x,b,y) \
178 (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \
179 ((a <= b) ? ((b == 0) ? ((x+y) / 2) \
180 : (x + (y-x) * (a/(a+b)))) \
181 : (y + (x-y) * (b/(a+b)))))
182
183 #ifndef FOR_TRITE_TEST_PROGRAM
184 #define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y)
185 #else
186
187 /* Claim: the ONLY property the sweep algorithm relies on is that
188 * MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that.
189 */
190 #include <stdlib.h>
191 extern int RandomInterpolate;
192
193 GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
194 {
195 printf("*********************%d\n",RandomInterpolate);
196 if( RandomInterpolate ) {
197 a = 1.2 * drand48() - 0.1;
198 a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
199 b = 1.0 - a;
200 }
201 return RealInterpolate(a,x,b,y);
202 }
203
204 #endif
205
206 #define Swap(a,b) if (1) { GLUvertex *t = a; a = b; b = t; } else
207
208 void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
209 GLUvertex *o2, GLUvertex *d2,
210 GLUvertex *v )
211 /* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
212 * The computed point is guaranteed to lie in the intersection of the
213 * bounding rectangles defined by each edge.
214 */
215 {
216 GLdouble z1, z2;
217
218 /* This is certainly not the most efficient way to find the intersection
219 * of two line segments, but it is very numerically stable.
220 *
221 * Strategy: find the two middle vertices in the VertLeq ordering,
222 * and interpolate the intersection s-value from these. Then repeat
223 * using the TransLeq ordering to find the intersection t-value.
224 */
225
226 if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
227 if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
228 if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
229
230 if( ! VertLeq( o2, d1 )) {
231 /* Technically, no intersection -- do our best */
232 v->s = (o2->s + d1->s) / 2;
233 } else if( VertLeq( d1, d2 )) {
234 /* Interpolate between o2 and d1 */
235 z1 = EdgeEval( o1, o2, d1 );
236 z2 = EdgeEval( o2, d1, d2 );
237 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
238 v->s = Interpolate( z1, o2->s, z2, d1->s );
239 } else {
240 /* Interpolate between o2 and d2 */
241 z1 = EdgeSign( o1, o2, d1 );
242 z2 = -EdgeSign( o1, d2, d1 );
243 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
244 v->s = Interpolate( z1, o2->s, z2, d2->s );
245 }
246
247 /* Now repeat the process for t */
248
249 if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
250 if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
251 if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
252
253 if( ! TransLeq( o2, d1 )) {
254 /* Technically, no intersection -- do our best */
255 v->t = (o2->t + d1->t) / 2;
256 } else if( TransLeq( d1, d2 )) {
257 /* Interpolate between o2 and d1 */
258 z1 = TransEval( o1, o2, d1 );
259 z2 = TransEval( o2, d1, d2 );
260 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
261 v->t = Interpolate( z1, o2->t, z2, d1->t );
262 } else {
263 /* Interpolate between o2 and d2 */
264 z1 = TransSign( o1, o2, d1 );
265 z2 = -TransSign( o1, d2, d1 );
266 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
267 v->t = Interpolate( z1, o2->t, z2, d2->t );
268 }
269 }