b77587661f79ed6a544cb9f1b440123b0dfb602b
[mesa.git] / src / glu / sgi / libtess / geom.c
1 /*
2 * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3 * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice including the dates of first publication and
13 * either this permission notice or a reference to
14 * http://oss.sgi.com/projects/FreeB/
15 * shall be included in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Except as contained in this notice, the name of Silicon Graphics, Inc.
26 * shall not be used in advertising or otherwise to promote the sale, use or
27 * other dealings in this Software without prior written authorization from
28 * Silicon Graphics, Inc.
29 */
30 /*
31 ** Author: Eric Veach, July 1994.
32 **
33 ** $Date: 2001/03/17 00:25:41 $ $Revision: 1.1 $
34 ** $Header: /home/krh/git/sync/mesa-cvs-repo/Mesa/src/glu/sgi/libtess/geom.c,v 1.1 2001/03/17 00:25:41 brianp Exp $
35 */
36
37 #include "gluos.h"
38 #include <assert.h>
39 #include "mesh.h"
40 #include "geom.h"
41
42 int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
43 {
44 /* Returns TRUE if u is lexicographically <= v. */
45
46 return VertLeq( u, v );
47 }
48
49 GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
50 {
51 /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
52 * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
53 * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
54 * If uw is vertical (and thus passes thru v), the result is zero.
55 *
56 * The calculation is extremely accurate and stable, even when v
57 * is very close to u or w. In particular if we set v->t = 0 and
58 * let r be the negated result (this evaluates (uw)(v->s)), then
59 * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
60 */
61 GLdouble gapL, gapR;
62
63 assert( VertLeq( u, v ) && VertLeq( v, w ));
64
65 gapL = v->s - u->s;
66 gapR = w->s - v->s;
67
68 if( gapL + gapR > 0 ) {
69 if( gapL < gapR ) {
70 return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
71 } else {
72 return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
73 }
74 }
75 /* vertical line */
76 return 0;
77 }
78
79 GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
80 {
81 /* Returns a number whose sign matches EdgeEval(u,v,w) but which
82 * is cheaper to evaluate. Returns > 0, == 0 , or < 0
83 * as v is above, on, or below the edge uw.
84 */
85 GLdouble gapL, gapR;
86
87 assert( VertLeq( u, v ) && VertLeq( v, w ));
88
89 gapL = v->s - u->s;
90 gapR = w->s - v->s;
91
92 if( gapL + gapR > 0 ) {
93 return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
94 }
95 /* vertical line */
96 return 0;
97 }
98
99
100 /***********************************************************************
101 * Define versions of EdgeSign, EdgeEval with s and t transposed.
102 */
103
104 GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
105 {
106 /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
107 * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
108 * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
109 * If uw is vertical (and thus passes thru v), the result is zero.
110 *
111 * The calculation is extremely accurate and stable, even when v
112 * is very close to u or w. In particular if we set v->s = 0 and
113 * let r be the negated result (this evaluates (uw)(v->t)), then
114 * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
115 */
116 GLdouble gapL, gapR;
117
118 assert( TransLeq( u, v ) && TransLeq( v, w ));
119
120 gapL = v->t - u->t;
121 gapR = w->t - v->t;
122
123 if( gapL + gapR > 0 ) {
124 if( gapL < gapR ) {
125 return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
126 } else {
127 return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
128 }
129 }
130 /* vertical line */
131 return 0;
132 }
133
134 GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
135 {
136 /* Returns a number whose sign matches TransEval(u,v,w) but which
137 * is cheaper to evaluate. Returns > 0, == 0 , or < 0
138 * as v is above, on, or below the edge uw.
139 */
140 GLdouble gapL, gapR;
141
142 assert( TransLeq( u, v ) && TransLeq( v, w ));
143
144 gapL = v->t - u->t;
145 gapR = w->t - v->t;
146
147 if( gapL + gapR > 0 ) {
148 return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
149 }
150 /* vertical line */
151 return 0;
152 }
153
154
155 int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
156 {
157 /* For almost-degenerate situations, the results are not reliable.
158 * Unless the floating-point arithmetic can be performed without
159 * rounding errors, *any* implementation will give incorrect results
160 * on some degenerate inputs, so the client must have some way to
161 * handle this situation.
162 */
163 return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
164 }
165
166 /* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
167 * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
168 * this in the rare case that one argument is slightly negative.
169 * The implementation is extremely stable numerically.
170 * In particular it guarantees that the result r satisfies
171 * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
172 * even when a and b differ greatly in magnitude.
173 */
174 #define RealInterpolate(a,x,b,y) \
175 (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \
176 ((a <= b) ? ((b == 0) ? ((x+y) / 2) \
177 : (x + (y-x) * (a/(a+b)))) \
178 : (y + (x-y) * (b/(a+b)))))
179
180 #ifndef FOR_TRITE_TEST_PROGRAM
181 #define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y)
182 #else
183
184 /* Claim: the ONLY property the sweep algorithm relies on is that
185 * MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that.
186 */
187 #include <stdlib.h>
188 extern int RandomInterpolate;
189
190 GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
191 {
192 printf("*********************%d\n",RandomInterpolate);
193 if( RandomInterpolate ) {
194 a = 1.2 * drand48() - 0.1;
195 a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
196 b = 1.0 - a;
197 }
198 return RealInterpolate(a,x,b,y);
199 }
200
201 #endif
202
203 #define Swap(a,b) if (1) { GLUvertex *t = a; a = b; b = t; } else
204
205 void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
206 GLUvertex *o2, GLUvertex *d2,
207 GLUvertex *v )
208 /* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
209 * The computed point is guaranteed to lie in the intersection of the
210 * bounding rectangles defined by each edge.
211 */
212 {
213 GLdouble z1, z2;
214
215 /* This is certainly not the most efficient way to find the intersection
216 * of two line segments, but it is very numerically stable.
217 *
218 * Strategy: find the two middle vertices in the VertLeq ordering,
219 * and interpolate the intersection s-value from these. Then repeat
220 * using the TransLeq ordering to find the intersection t-value.
221 */
222
223 if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
224 if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
225 if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
226
227 if( ! VertLeq( o2, d1 )) {
228 /* Technically, no intersection -- do our best */
229 v->s = (o2->s + d1->s) / 2;
230 } else if( VertLeq( d1, d2 )) {
231 /* Interpolate between o2 and d1 */
232 z1 = EdgeEval( o1, o2, d1 );
233 z2 = EdgeEval( o2, d1, d2 );
234 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
235 v->s = Interpolate( z1, o2->s, z2, d1->s );
236 } else {
237 /* Interpolate between o2 and d2 */
238 z1 = EdgeSign( o1, o2, d1 );
239 z2 = -EdgeSign( o1, d2, d1 );
240 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
241 v->s = Interpolate( z1, o2->s, z2, d2->s );
242 }
243
244 /* Now repeat the process for t */
245
246 if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
247 if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
248 if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
249
250 if( ! TransLeq( o2, d1 )) {
251 /* Technically, no intersection -- do our best */
252 v->t = (o2->t + d1->t) / 2;
253 } else if( TransLeq( d1, d2 )) {
254 /* Interpolate between o2 and d1 */
255 z1 = TransEval( o1, o2, d1 );
256 z2 = TransEval( o2, d1, d2 );
257 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
258 v->t = Interpolate( z1, o2->t, z2, d1->t );
259 } else {
260 /* Interpolate between o2 and d2 */
261 z1 = TransSign( o1, o2, d1 );
262 z2 = -TransSign( o1, d2, d1 );
263 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
264 v->t = Interpolate( z1, o2->t, z2, d2->t );
265 }
266 }