Remove CVS keywords.
[mesa.git] / src / glu / sgi / libtess / render.c
1 /*
2 ** License Applicability. Except to the extent portions of this file are
3 ** made subject to an alternative license as permitted in the SGI Free
4 ** Software License B, Version 1.1 (the "License"), the contents of this
5 ** file are subject only to the provisions of the License. You may not use
6 ** this file except in compliance with the License. You may obtain a copy
7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9 **
10 ** http://oss.sgi.com/projects/FreeB
11 **
12 ** Note that, as provided in the License, the Software is distributed on an
13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17 **
18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21 ** Copyright in any portions created by third parties is as indicated
22 ** elsewhere herein. All Rights Reserved.
23 **
24 ** Additional Notice Provisions: The application programming interfaces
25 ** established by SGI in conjunction with the Original Code are The
26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31 ** published by SGI, but has not been independently verified as being
32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
33 **
34 */
35 /*
36 ** Author: Eric Veach, July 1994.
37 **
38 */
39
40 #include "gluos.h"
41 #include <assert.h>
42 #include <stddef.h>
43 #include "mesh.h"
44 #include "tess.h"
45 #include "render.h"
46
47 #define TRUE 1
48 #define FALSE 0
49
50 /* This structure remembers the information we need about a primitive
51 * to be able to render it later, once we have determined which
52 * primitive is able to use the most triangles.
53 */
54 struct FaceCount {
55 long size; /* number of triangles used */
56 GLUhalfEdge *eStart; /* edge where this primitive starts */
57 void (*render)(GLUtesselator *, GLUhalfEdge *, long);
58 /* routine to render this primitive */
59 };
60
61 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig );
62 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig );
63
64 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
65 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
66 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *eStart,
67 long size );
68
69 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig );
70 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );
71
72
73
74 /************************ Strips and Fans decomposition ******************/
75
76 /* __gl_renderMesh( tess, mesh ) takes a mesh and breaks it into triangle
77 * fans, strips, and separate triangles. A substantial effort is made
78 * to use as few rendering primitives as possible (ie. to make the fans
79 * and strips as large as possible).
80 *
81 * The rendering output is provided as callbacks (see the api).
82 */
83 void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh )
84 {
85 GLUface *f;
86
87 /* Make a list of separate triangles so we can render them all at once */
88 tess->lonelyTriList = NULL;
89
90 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
91 f->marked = FALSE;
92 }
93 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
94
95 /* We examine all faces in an arbitrary order. Whenever we find
96 * an unprocessed face F, we output a group of faces including F
97 * whose size is maximum.
98 */
99 if( f->inside && ! f->marked ) {
100 RenderMaximumFaceGroup( tess, f );
101 assert( f->marked );
102 }
103 }
104 if( tess->lonelyTriList != NULL ) {
105 RenderLonelyTriangles( tess, tess->lonelyTriList );
106 tess->lonelyTriList = NULL;
107 }
108 }
109
110
111 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
112 {
113 /* We want to find the largest triangle fan or strip of unmarked faces
114 * which includes the given face fOrig. There are 3 possible fans
115 * passing through fOrig (one centered at each vertex), and 3 possible
116 * strips (one for each CCW permutation of the vertices). Our strategy
117 * is to try all of these, and take the primitive which uses the most
118 * triangles (a greedy approach).
119 */
120 GLUhalfEdge *e = fOrig->anEdge;
121 struct FaceCount max, newFace;
122
123 max.size = 1;
124 max.eStart = e;
125 max.render = &RenderTriangle;
126
127 if( ! tess->flagBoundary ) {
128 newFace = MaximumFan( e ); if( newFace.size > max.size ) { max = newFace; }
129 newFace = MaximumFan( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
130 newFace = MaximumFan( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
131
132 newFace = MaximumStrip( e ); if( newFace.size > max.size ) { max = newFace; }
133 newFace = MaximumStrip( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
134 newFace = MaximumStrip( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
135 }
136 (*(max.render))( tess, max.eStart, max.size );
137 }
138
139
140 /* Macros which keep track of faces we have marked temporarily, and allow
141 * us to backtrack when necessary. With triangle fans, this is not
142 * really necessary, since the only awkward case is a loop of triangles
143 * around a single origin vertex. However with strips the situation is
144 * more complicated, and we need a general tracking method like the
145 * one here.
146 */
147 #define Marked(f) (! (f)->inside || (f)->marked)
148
149 #define AddToTrail(f,t) ((f)->trail = (t), (t) = (f), (f)->marked = TRUE)
150
151 #define FreeTrail(t) if( 1 ) { \
152 while( (t) != NULL ) { \
153 (t)->marked = FALSE; t = (t)->trail; \
154 } \
155 } else /* absorb trailing semicolon */
156
157
158
159 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig )
160 {
161 /* eOrig->Lface is the face we want to render. We want to find the size
162 * of a maximal fan around eOrig->Org. To do this we just walk around
163 * the origin vertex as far as possible in both directions.
164 */
165 struct FaceCount newFace = { 0, NULL, &RenderFan };
166 GLUface *trail = NULL;
167 GLUhalfEdge *e;
168
169 for( e = eOrig; ! Marked( e->Lface ); e = e->Onext ) {
170 AddToTrail( e->Lface, trail );
171 ++newFace.size;
172 }
173 for( e = eOrig; ! Marked( e->Rface ); e = e->Oprev ) {
174 AddToTrail( e->Rface, trail );
175 ++newFace.size;
176 }
177 newFace.eStart = e;
178 /*LINTED*/
179 FreeTrail( trail );
180 return newFace;
181 }
182
183
184 #define IsEven(n) (((n) & 1) == 0)
185
186 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
187 {
188 /* Here we are looking for a maximal strip that contains the vertices
189 * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
190 * reverse, such that all triangles are oriented CCW).
191 *
192 * Again we walk forward and backward as far as possible. However for
193 * strips there is a twist: to get CCW orientations, there must be
194 * an *even* number of triangles in the strip on one side of eOrig.
195 * We walk the strip starting on a side with an even number of triangles;
196 * if both side have an odd number, we are forced to shorten one side.
197 */
198 struct FaceCount newFace = { 0, NULL, &RenderStrip };
199 long headSize = 0, tailSize = 0;
200 GLUface *trail = NULL;
201 GLUhalfEdge *e, *eTail, *eHead;
202
203 for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
204 AddToTrail( e->Lface, trail );
205 ++tailSize;
206 e = e->Dprev;
207 if( Marked( e->Lface )) break;
208 AddToTrail( e->Lface, trail );
209 }
210 eTail = e;
211
212 for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
213 AddToTrail( e->Rface, trail );
214 ++headSize;
215 e = e->Oprev;
216 if( Marked( e->Rface )) break;
217 AddToTrail( e->Rface, trail );
218 }
219 eHead = e;
220
221 newFace.size = tailSize + headSize;
222 if( IsEven( tailSize )) {
223 newFace.eStart = eTail->Sym;
224 } else if( IsEven( headSize )) {
225 newFace.eStart = eHead;
226 } else {
227 /* Both sides have odd length, we must shorten one of them. In fact,
228 * we must start from eHead to guarantee inclusion of eOrig->Lface.
229 */
230 --newFace.size;
231 newFace.eStart = eHead->Onext;
232 }
233 /*LINTED*/
234 FreeTrail( trail );
235 return newFace;
236 }
237
238
239 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *e, long size )
240 {
241 /* Just add the triangle to a triangle list, so we can render all
242 * the separate triangles at once.
243 */
244 assert( size == 1 );
245 AddToTrail( e->Lface, tess->lonelyTriList );
246 }
247
248
249 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *f )
250 {
251 /* Now we render all the separate triangles which could not be
252 * grouped into a triangle fan or strip.
253 */
254 GLUhalfEdge *e;
255 int newState;
256 int edgeState = -1; /* force edge state output for first vertex */
257
258 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES );
259
260 for( ; f != NULL; f = f->trail ) {
261 /* Loop once for each edge (there will always be 3 edges) */
262
263 e = f->anEdge;
264 do {
265 if( tess->flagBoundary ) {
266 /* Set the "edge state" to TRUE just before we output the
267 * first vertex of each edge on the polygon boundary.
268 */
269 newState = ! e->Rface->inside;
270 if( edgeState != newState ) {
271 edgeState = newState;
272 CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState );
273 }
274 }
275 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
276
277 e = e->Lnext;
278 } while( e != f->anEdge );
279 }
280 CALL_END_OR_END_DATA();
281 }
282
283
284 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *e, long size )
285 {
286 /* Render as many CCW triangles as possible in a fan starting from
287 * edge "e". The fan *should* contain exactly "size" triangles
288 * (otherwise we've goofed up somewhere).
289 */
290 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN );
291 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
292 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
293
294 while( ! Marked( e->Lface )) {
295 e->Lface->marked = TRUE;
296 --size;
297 e = e->Onext;
298 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
299 }
300
301 assert( size == 0 );
302 CALL_END_OR_END_DATA();
303 }
304
305
306 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
307 {
308 /* Render as many CCW triangles as possible in a strip starting from
309 * edge "e". The strip *should* contain exactly "size" triangles
310 * (otherwise we've goofed up somewhere).
311 */
312 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
313 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
314 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
315
316 while( ! Marked( e->Lface )) {
317 e->Lface->marked = TRUE;
318 --size;
319 e = e->Dprev;
320 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
321 if( Marked( e->Lface )) break;
322
323 e->Lface->marked = TRUE;
324 --size;
325 e = e->Onext;
326 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
327 }
328
329 assert( size == 0 );
330 CALL_END_OR_END_DATA();
331 }
332
333
334 /************************ Boundary contour decomposition ******************/
335
336 /* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
337 * contour for each face marked "inside". The rendering output is
338 * provided as callbacks (see the api).
339 */
340 void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh )
341 {
342 GLUface *f;
343 GLUhalfEdge *e;
344
345 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
346 if( f->inside ) {
347 CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP );
348 e = f->anEdge;
349 do {
350 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
351 e = e->Lnext;
352 } while( e != f->anEdge );
353 CALL_END_OR_END_DATA();
354 }
355 }
356 }
357
358
359 /************************ Quick-and-dirty decomposition ******************/
360
361 #define SIGN_INCONSISTENT 2
362
363 static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
364 /*
365 * If check==FALSE, we compute the polygon normal and place it in norm[].
366 * If check==TRUE, we check that each triangle in the fan from v0 has a
367 * consistent orientation with respect to norm[]. If triangles are
368 * consistently oriented CCW, return 1; if CW, return -1; if all triangles
369 * are degenerate return 0; otherwise (no consistent orientation) return
370 * SIGN_INCONSISTENT.
371 */
372 {
373 CachedVertex *v0 = tess->cache;
374 CachedVertex *vn = v0 + tess->cacheCount;
375 CachedVertex *vc;
376 GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
377 int sign = 0;
378
379 /* Find the polygon normal. It is important to get a reasonable
380 * normal even when the polygon is self-intersecting (eg. a bowtie).
381 * Otherwise, the computed normal could be very tiny, but perpendicular
382 * to the true plane of the polygon due to numerical noise. Then all
383 * the triangles would appear to be degenerate and we would incorrectly
384 * decompose the polygon as a fan (or simply not render it at all).
385 *
386 * We use a sum-of-triangles normal algorithm rather than the more
387 * efficient sum-of-trapezoids method (used in CheckOrientation()
388 * in normal.c). This lets us explicitly reverse the signed area
389 * of some triangles to get a reasonable normal in the self-intersecting
390 * case.
391 */
392 if( ! check ) {
393 norm[0] = norm[1] = norm[2] = 0.0;
394 }
395
396 vc = v0 + 1;
397 xc = vc->coords[0] - v0->coords[0];
398 yc = vc->coords[1] - v0->coords[1];
399 zc = vc->coords[2] - v0->coords[2];
400 while( ++vc < vn ) {
401 xp = xc; yp = yc; zp = zc;
402 xc = vc->coords[0] - v0->coords[0];
403 yc = vc->coords[1] - v0->coords[1];
404 zc = vc->coords[2] - v0->coords[2];
405
406 /* Compute (vp - v0) cross (vc - v0) */
407 n[0] = yp*zc - zp*yc;
408 n[1] = zp*xc - xp*zc;
409 n[2] = xp*yc - yp*xc;
410
411 dot = n[0]*norm[0] + n[1]*norm[1] + n[2]*norm[2];
412 if( ! check ) {
413 /* Reverse the contribution of back-facing triangles to get
414 * a reasonable normal for self-intersecting polygons (see above)
415 */
416 if( dot >= 0 ) {
417 norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2];
418 } else {
419 norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2];
420 }
421 } else if( dot != 0 ) {
422 /* Check the new orientation for consistency with previous triangles */
423 if( dot > 0 ) {
424 if( sign < 0 ) return SIGN_INCONSISTENT;
425 sign = 1;
426 } else {
427 if( sign > 0 ) return SIGN_INCONSISTENT;
428 sign = -1;
429 }
430 }
431 }
432 return sign;
433 }
434
435 /* __gl_renderCache( tess ) takes a single contour and tries to render it
436 * as a triangle fan. This handles convex polygons, as well as some
437 * non-convex polygons if we get lucky.
438 *
439 * Returns TRUE if the polygon was successfully rendered. The rendering
440 * output is provided as callbacks (see the api).
441 */
442 GLboolean __gl_renderCache( GLUtesselator *tess )
443 {
444 CachedVertex *v0 = tess->cache;
445 CachedVertex *vn = v0 + tess->cacheCount;
446 CachedVertex *vc;
447 GLdouble norm[3];
448 int sign;
449
450 if( tess->cacheCount < 3 ) {
451 /* Degenerate contour -- no output */
452 return TRUE;
453 }
454
455 norm[0] = tess->normal[0];
456 norm[1] = tess->normal[1];
457 norm[2] = tess->normal[2];
458 if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
459 ComputeNormal( tess, norm, FALSE );
460 }
461
462 sign = ComputeNormal( tess, norm, TRUE );
463 if( sign == SIGN_INCONSISTENT ) {
464 /* Fan triangles did not have a consistent orientation */
465 return FALSE;
466 }
467 if( sign == 0 ) {
468 /* All triangles were degenerate */
469 return TRUE;
470 }
471
472 /* Make sure we do the right thing for each winding rule */
473 switch( tess->windingRule ) {
474 case GLU_TESS_WINDING_ODD:
475 case GLU_TESS_WINDING_NONZERO:
476 break;
477 case GLU_TESS_WINDING_POSITIVE:
478 if( sign < 0 ) return TRUE;
479 break;
480 case GLU_TESS_WINDING_NEGATIVE:
481 if( sign > 0 ) return TRUE;
482 break;
483 case GLU_TESS_WINDING_ABS_GEQ_TWO:
484 return TRUE;
485 }
486
487 CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
488 : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
489 : GL_TRIANGLES );
490
491 CALL_VERTEX_OR_VERTEX_DATA( v0->data );
492 if( sign > 0 ) {
493 for( vc = v0+1; vc < vn; ++vc ) {
494 CALL_VERTEX_OR_VERTEX_DATA( vc->data );
495 }
496 } else {
497 for( vc = vn-1; vc > v0; --vc ) {
498 CALL_VERTEX_OR_VERTEX_DATA( vc->data );
499 }
500 }
501 CALL_END_OR_END_DATA();
502 return TRUE;
503 }