arch, cpu, dev, gpu, mem, sim, python: start using getPort.
[gem5.git] / src / gpu-compute / compute_unit.hh
1 /*
2 * Copyright (c) 2011-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright notice,
14 * this list of conditions and the following disclaimer in the documentation
15 * and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its
18 * contributors may be used to endorse or promote products derived from this
19 * software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Authors: John Kalamatianos,
34 * Anthony Gutierrez
35 */
36
37 #ifndef __COMPUTE_UNIT_HH__
38 #define __COMPUTE_UNIT_HH__
39
40 #include <deque>
41 #include <map>
42 #include <unordered_map>
43 #include <vector>
44
45 #include "base/callback.hh"
46 #include "base/statistics.hh"
47 #include "base/types.hh"
48 #include "enums/PrefetchType.hh"
49 #include "gpu-compute/exec_stage.hh"
50 #include "gpu-compute/fetch_stage.hh"
51 #include "gpu-compute/global_memory_pipeline.hh"
52 #include "gpu-compute/local_memory_pipeline.hh"
53 #include "gpu-compute/qstruct.hh"
54 #include "gpu-compute/schedule_stage.hh"
55 #include "gpu-compute/scoreboard_check_stage.hh"
56 #include "mem/mem_object.hh"
57 #include "mem/port.hh"
58
59 static const int MAX_REGS_FOR_NON_VEC_MEM_INST = 1;
60 static const int MAX_WIDTH_FOR_MEM_INST = 32;
61
62 class NDRange;
63 class Shader;
64 class VectorRegisterFile;
65
66 struct ComputeUnitParams;
67
68 enum EXEC_POLICY
69 {
70 OLDEST = 0,
71 RR
72 };
73
74 // List of execution units
75 enum EXEC_UNIT
76 {
77 SIMD0 = 0,
78 SIMD1,
79 SIMD2,
80 SIMD3,
81 GLBMEM_PIPE,
82 LDSMEM_PIPE,
83 NUM_UNITS
84 };
85
86 enum TLB_CACHE
87 {
88 TLB_MISS_CACHE_MISS = 0,
89 TLB_MISS_CACHE_HIT,
90 TLB_HIT_CACHE_MISS,
91 TLB_HIT_CACHE_HIT
92 };
93
94 class ComputeUnit : public MemObject
95 {
96 public:
97 FetchStage fetchStage;
98 ScoreboardCheckStage scoreboardCheckStage;
99 ScheduleStage scheduleStage;
100 ExecStage execStage;
101 GlobalMemPipeline globalMemoryPipe;
102 LocalMemPipeline localMemoryPipe;
103
104 // Buffers used to communicate between various pipeline stages
105
106 // List of waves which are ready to be scheduled.
107 // Each execution resource has a ready list. readyList is
108 // used to communicate between scoreboardCheck stage and
109 // schedule stage
110 // TODO: make enum to index readyList
111 std::vector<std::vector<Wavefront*>> readyList;
112
113 // Stores the status of waves. A READY implies the
114 // wave is ready to be scheduled this cycle and
115 // is already present in the readyList. waveStatusList is
116 // used to communicate between scoreboardCheck stage and
117 // schedule stage
118 // TODO: convert std::pair to a class to increase readability
119 std::vector<std::vector<std::pair<Wavefront*, WAVE_STATUS>>> waveStatusList;
120
121 // List of waves which will be dispatched to
122 // each execution resource. A FILLED implies
123 // dispatch list is non-empty and
124 // execution unit has something to execute
125 // this cycle. Currently, the dispatch list of
126 // an execution resource can hold only one wave because
127 // an execution resource can execute only one wave in a cycle.
128 // dispatchList is used to communicate between schedule
129 // and exec stage
130 // TODO: convert std::pair to a class to increase readability
131 std::vector<std::pair<Wavefront*, DISPATCH_STATUS>> dispatchList;
132
133 int rrNextMemID; // used by RR WF exec policy to cycle through WF's
134 int rrNextALUWp;
135 typedef ComputeUnitParams Params;
136 std::vector<std::vector<Wavefront*>> wfList;
137 int cu_id;
138
139 // array of vector register files, one per SIMD
140 std::vector<VectorRegisterFile*> vrf;
141 // Number of vector ALU units (SIMDs) in CU
142 int numSIMDs;
143 // number of pipe stages for bypassing data to next dependent single
144 // precision vector instruction inside the vector ALU pipeline
145 int spBypassPipeLength;
146 // number of pipe stages for bypassing data to next dependent double
147 // precision vector instruction inside the vector ALU pipeline
148 int dpBypassPipeLength;
149 // number of cycles per issue period
150 int issuePeriod;
151
152 // Number of global and local memory execution resources in CU
153 int numGlbMemUnits;
154 int numLocMemUnits;
155 // tracks the last cycle a vector instruction was executed on a SIMD
156 std::vector<uint64_t> lastExecCycle;
157
158 // true if we allow a separate TLB per lane
159 bool perLaneTLB;
160 // if 0, TLB prefetching is off.
161 int prefetchDepth;
162 // if fixed-stride prefetching, this is the stride.
163 int prefetchStride;
164
165 std::vector<Addr> lastVaddrCU;
166 std::vector<std::vector<Addr>> lastVaddrSimd;
167 std::vector<std::vector<std::vector<Addr>>> lastVaddrWF;
168 Enums::PrefetchType prefetchType;
169 EXEC_POLICY exec_policy;
170
171 bool xact_cas_mode;
172 bool debugSegFault;
173 bool functionalTLB;
174 bool localMemBarrier;
175
176 /*
177 * for Counting page accesses
178 *
179 * cuExitCallback inherits from Callback. When you register a callback
180 * function as an exit callback, it will get added to an exit callback
181 * queue, such that on simulation exit, all callbacks in the callback
182 * queue will have their process() function called.
183 */
184 bool countPages;
185
186 Shader *shader;
187 uint32_t barrier_id;
188 // vector of Vector ALU (MACC) pipelines
189 std::vector<WaitClass> aluPipe;
190 // minimum issue period per SIMD unit (in cycles)
191 std::vector<WaitClass> wfWait;
192
193 // Resource control for Vector Register File->Global Memory pipe buses
194 std::vector<WaitClass> vrfToGlobalMemPipeBus;
195 // Resource control for Vector Register File->Local Memory pipe buses
196 std::vector<WaitClass> vrfToLocalMemPipeBus;
197 int nextGlbMemBus;
198 int nextLocMemBus;
199 // Resource control for global memory to VRF data/address bus
200 WaitClass glbMemToVrfBus;
201 // Resource control for local memory to VRF data/address bus
202 WaitClass locMemToVrfBus;
203
204 uint32_t vrfToCoalescerBusWidth; // VRF->Coalescer data bus width in bytes
205 uint32_t coalescerToVrfBusWidth; // Coalescer->VRF data bus width in bytes
206 uint32_t numCyclesPerStoreTransfer; // number of cycles per vector store
207 uint32_t numCyclesPerLoadTransfer; // number of cycles per vector load
208
209 Tick req_tick_latency;
210 Tick resp_tick_latency;
211
212 // number of vector registers being reserved for each SIMD unit
213 std::vector<int> vectorRegsReserved;
214 // number of vector registers per SIMD unit
215 uint32_t numVecRegsPerSimd;
216 // Support for scheduling VGPR status update events
217 std::vector<std::pair<uint32_t, uint32_t> > regIdxVec;
218 std::vector<uint64_t> timestampVec;
219 std::vector<uint8_t> statusVec;
220
221 void
222 registerEvent(uint32_t simdId,
223 uint32_t regIdx,
224 uint32_t operandSize,
225 uint64_t when,
226 uint8_t newStatus) {
227 regIdxVec.push_back(std::make_pair(simdId, regIdx));
228 timestampVec.push_back(when);
229 statusVec.push_back(newStatus);
230 if (operandSize > 4) {
231 regIdxVec.push_back(std::make_pair(simdId,
232 ((regIdx + 1) %
233 numVecRegsPerSimd)));
234 timestampVec.push_back(when);
235 statusVec.push_back(newStatus);
236 }
237 }
238
239 void updateEvents();
240
241 // this hash map will keep track of page divergence
242 // per memory instruction per wavefront. The hash map
243 // is cleared in GPUDynInst::updateStats() in gpu_dyn_inst.cc.
244 std::map<Addr, int> pagesTouched;
245
246 ComputeUnit(const Params *p);
247 ~ComputeUnit();
248 int spBypassLength() { return spBypassPipeLength; };
249 int dpBypassLength() { return dpBypassPipeLength; };
250 int storeBusLength() { return numCyclesPerStoreTransfer; };
251 int loadBusLength() { return numCyclesPerLoadTransfer; };
252 int wfSize() const { return wavefrontSize; };
253
254 void resizeRegFiles(int num_cregs, int num_sregs, int num_dregs);
255 void exec();
256 void initiateFetch(Wavefront *wavefront);
257 void fetch(PacketPtr pkt, Wavefront *wavefront);
258 void fillKernelState(Wavefront *w, NDRange *ndr);
259
260 void startWavefront(Wavefront *w, int waveId, LdsChunk *ldsChunk,
261 NDRange *ndr);
262
263 void StartWorkgroup(NDRange *ndr);
264 int ReadyWorkgroup(NDRange *ndr);
265
266 bool isVecAlu(int unitId) { return unitId >= SIMD0 && unitId <= SIMD3; }
267 bool isGlbMem(int unitId) { return unitId == GLBMEM_PIPE; }
268 bool isShrMem(int unitId) { return unitId == LDSMEM_PIPE; }
269 int GlbMemUnitId() { return GLBMEM_PIPE; }
270 int ShrMemUnitId() { return LDSMEM_PIPE; }
271 int nextGlbRdBus() { return (++nextGlbMemBus) % numGlbMemUnits; }
272 int nextLocRdBus() { return (++nextLocMemBus) % numLocMemUnits; }
273 /* This function cycles through all the wavefronts in all the phases to see
274 * if all of the wavefronts which should be associated with one barrier
275 * (denoted with _barrier_id), are all at the same barrier in the program
276 * (denoted by bcnt). When the number at the barrier matches bslots, then
277 * return true.
278 */
279 int AllAtBarrier(uint32_t _barrier_id, uint32_t bcnt, uint32_t bslots);
280 bool cedeSIMD(int simdId, int wfSlotId);
281
282 template<typename c0, typename c1> void doSmReturn(GPUDynInstPtr gpuDynInst);
283 virtual void init();
284 void sendRequest(GPUDynInstPtr gpuDynInst, int index, PacketPtr pkt);
285 void sendSyncRequest(GPUDynInstPtr gpuDynInst, int index, PacketPtr pkt);
286 void injectGlobalMemFence(GPUDynInstPtr gpuDynInst,
287 bool kernelLaunch=true,
288 RequestPtr req=nullptr);
289 void handleMemPacket(PacketPtr pkt, int memport_index);
290 bool processTimingPacket(PacketPtr pkt);
291 void processFetchReturn(PacketPtr pkt);
292 void updatePageDivergenceDist(Addr addr);
293
294 MasterID masterId() { return _masterId; }
295
296 bool isDone() const;
297 bool isSimdDone(uint32_t) const;
298
299 protected:
300 MasterID _masterId;
301
302 LdsState &lds;
303
304 public:
305 Stats::Scalar vALUInsts;
306 Stats::Formula vALUInstsPerWF;
307 Stats::Scalar sALUInsts;
308 Stats::Formula sALUInstsPerWF;
309 Stats::Scalar instCyclesVALU;
310 Stats::Scalar instCyclesSALU;
311 Stats::Scalar threadCyclesVALU;
312 Stats::Formula vALUUtilization;
313 Stats::Scalar ldsNoFlatInsts;
314 Stats::Formula ldsNoFlatInstsPerWF;
315 Stats::Scalar flatVMemInsts;
316 Stats::Formula flatVMemInstsPerWF;
317 Stats::Scalar flatLDSInsts;
318 Stats::Formula flatLDSInstsPerWF;
319 Stats::Scalar vectorMemWrites;
320 Stats::Formula vectorMemWritesPerWF;
321 Stats::Scalar vectorMemReads;
322 Stats::Formula vectorMemReadsPerWF;
323 Stats::Scalar scalarMemWrites;
324 Stats::Formula scalarMemWritesPerWF;
325 Stats::Scalar scalarMemReads;
326 Stats::Formula scalarMemReadsPerWF;
327
328 void updateInstStats(GPUDynInstPtr gpuDynInst);
329
330 // the following stats compute the avg. TLB accesslatency per
331 // uncoalesced request (only for data)
332 Stats::Scalar tlbRequests;
333 Stats::Scalar tlbCycles;
334 Stats::Formula tlbLatency;
335 // hitsPerTLBLevel[x] are the hits in Level x TLB. x = 0 is the page table.
336 Stats::Vector hitsPerTLBLevel;
337
338 Stats::Scalar ldsBankAccesses;
339 Stats::Distribution ldsBankConflictDist;
340
341 // over all memory instructions executed over all wavefronts
342 // how many touched 0-4 pages, 4-8, ..., 60-64 pages
343 Stats::Distribution pageDivergenceDist;
344 Stats::Scalar dynamicGMemInstrCnt;
345 Stats::Scalar dynamicLMemInstrCnt;
346
347 Stats::Scalar wgBlockedDueLdsAllocation;
348 // Number of instructions executed, i.e. if 64 (or 32 or 7) lanes are active
349 // when the instruction is committed, this number is still incremented by 1
350 Stats::Scalar numInstrExecuted;
351 // Number of cycles among successive instruction executions across all
352 // wavefronts of the same CU
353 Stats::Distribution execRateDist;
354 // number of individual vector operations executed
355 Stats::Scalar numVecOpsExecuted;
356 // Total cycles that something is running on the GPU
357 Stats::Scalar totalCycles;
358 Stats::Formula vpc; // vector ops per cycle
359 Stats::Formula ipc; // vector instructions per cycle
360 Stats::Distribution controlFlowDivergenceDist;
361 Stats::Distribution activeLanesPerGMemInstrDist;
362 Stats::Distribution activeLanesPerLMemInstrDist;
363 // number of vector ALU instructions received
364 Stats::Formula numALUInstsExecuted;
365 // number of times a WG can not start due to lack of free VGPRs in SIMDs
366 Stats::Scalar numTimesWgBlockedDueVgprAlloc;
367 Stats::Scalar numCASOps;
368 Stats::Scalar numFailedCASOps;
369 Stats::Scalar completedWfs;
370 // flag per vector SIMD unit that is set when there is at least one
371 // WV that has a vector ALU instruction as the oldest in its
372 // Instruction Buffer: Defined in the Scoreboard stage, consumed
373 // by the Execute stage.
374 std::vector<bool> vectorAluInstAvail;
375 // number of available (oldest) LDS instructions that could have
376 // been issued to the LDS at a specific issue slot
377 int shrMemInstAvail;
378 // number of available Global memory instructions that could have
379 // been issued to TCP at a specific issue slot
380 int glbMemInstAvail;
381
382 void
383 regStats();
384
385 LdsState &
386 getLds() const
387 {
388 return lds;
389 }
390
391 int32_t
392 getRefCounter(const uint32_t dispatchId, const uint32_t wgId) const;
393
394 int cacheLineSize() const { return _cacheLineSize; }
395
396 bool
397 sendToLds(GPUDynInstPtr gpuDynInst) __attribute__((warn_unused_result));
398
399 typedef std::unordered_map<Addr, std::pair<int, int>> pageDataStruct;
400 pageDataStruct pageAccesses;
401
402 class CUExitCallback : public Callback
403 {
404 private:
405 ComputeUnit *computeUnit;
406
407 public:
408 virtual ~CUExitCallback() { }
409
410 CUExitCallback(ComputeUnit *_cu)
411 {
412 computeUnit = _cu;
413 }
414
415 virtual void
416 process();
417 };
418
419 CUExitCallback *cuExitCallback;
420
421 /** Data access Port **/
422 class DataPort : public MasterPort
423 {
424 public:
425 DataPort(const std::string &_name, ComputeUnit *_cu, PortID _index)
426 : MasterPort(_name, _cu), computeUnit(_cu),
427 index(_index) { }
428
429 bool snoopRangeSent;
430
431 struct SenderState : public Packet::SenderState
432 {
433 GPUDynInstPtr _gpuDynInst;
434 int port_index;
435 Packet::SenderState *saved;
436
437 SenderState(GPUDynInstPtr gpuDynInst, PortID _port_index,
438 Packet::SenderState *sender_state=nullptr)
439 : _gpuDynInst(gpuDynInst),
440 port_index(_port_index),
441 saved(sender_state) { }
442 };
443
444 void processMemReqEvent(PacketPtr pkt);
445 EventFunctionWrapper *createMemReqEvent(PacketPtr pkt);
446
447 void processMemRespEvent(PacketPtr pkt);
448 EventFunctionWrapper *createMemRespEvent(PacketPtr pkt);
449
450 std::deque<std::pair<PacketPtr, GPUDynInstPtr>> retries;
451
452 protected:
453 ComputeUnit *computeUnit;
454 int index;
455
456 virtual bool recvTimingResp(PacketPtr pkt);
457 virtual Tick recvAtomic(PacketPtr pkt) { return 0; }
458 virtual void recvFunctional(PacketPtr pkt) { }
459 virtual void recvRangeChange() { }
460 virtual void recvReqRetry();
461
462 virtual void
463 getDeviceAddressRanges(AddrRangeList &resp, bool &snoop)
464 {
465 resp.clear();
466 snoop = true;
467 }
468
469 };
470
471 // Instruction cache access port
472 class SQCPort : public MasterPort
473 {
474 public:
475 SQCPort(const std::string &_name, ComputeUnit *_cu, PortID _index)
476 : MasterPort(_name, _cu), computeUnit(_cu),
477 index(_index) { }
478
479 bool snoopRangeSent;
480
481 struct SenderState : public Packet::SenderState
482 {
483 Wavefront *wavefront;
484 Packet::SenderState *saved;
485
486 SenderState(Wavefront *_wavefront, Packet::SenderState
487 *sender_state=nullptr)
488 : wavefront(_wavefront), saved(sender_state) { }
489 };
490
491 std::deque<std::pair<PacketPtr, Wavefront*>> retries;
492
493 protected:
494 ComputeUnit *computeUnit;
495 int index;
496
497 virtual bool recvTimingResp(PacketPtr pkt);
498 virtual Tick recvAtomic(PacketPtr pkt) { return 0; }
499 virtual void recvFunctional(PacketPtr pkt) { }
500 virtual void recvRangeChange() { }
501 virtual void recvReqRetry();
502
503 virtual void
504 getDeviceAddressRanges(AddrRangeList &resp, bool &snoop)
505 {
506 resp.clear();
507 snoop = true;
508 }
509 };
510
511 /** Data TLB port **/
512 class DTLBPort : public MasterPort
513 {
514 public:
515 DTLBPort(const std::string &_name, ComputeUnit *_cu, PortID _index)
516 : MasterPort(_name, _cu), computeUnit(_cu),
517 index(_index), stalled(false)
518 { }
519
520 bool isStalled() { return stalled; }
521 void stallPort() { stalled = true; }
522 void unstallPort() { stalled = false; }
523
524 /**
525 * here we queue all the translation requests that were
526 * not successfully sent.
527 */
528 std::deque<PacketPtr> retries;
529
530 /** SenderState is information carried along with the packet
531 * throughout the TLB hierarchy
532 */
533 struct SenderState: public Packet::SenderState
534 {
535 // the memInst that this is associated with
536 GPUDynInstPtr _gpuDynInst;
537
538 // the lane in the memInst this is associated with, so we send
539 // the memory request down the right port
540 int portIndex;
541
542 // constructor used for packets involved in timing accesses
543 SenderState(GPUDynInstPtr gpuDynInst, PortID port_index)
544 : _gpuDynInst(gpuDynInst), portIndex(port_index) { }
545
546 };
547
548 protected:
549 ComputeUnit *computeUnit;
550 int index;
551 bool stalled;
552
553 virtual bool recvTimingResp(PacketPtr pkt);
554 virtual Tick recvAtomic(PacketPtr pkt) { return 0; }
555 virtual void recvFunctional(PacketPtr pkt) { }
556 virtual void recvRangeChange() { }
557 virtual void recvReqRetry();
558 };
559
560 class ITLBPort : public MasterPort
561 {
562 public:
563 ITLBPort(const std::string &_name, ComputeUnit *_cu)
564 : MasterPort(_name, _cu), computeUnit(_cu), stalled(false) { }
565
566
567 bool isStalled() { return stalled; }
568 void stallPort() { stalled = true; }
569 void unstallPort() { stalled = false; }
570
571 /**
572 * here we queue all the translation requests that were
573 * not successfully sent.
574 */
575 std::deque<PacketPtr> retries;
576
577 /** SenderState is information carried along with the packet
578 * throughout the TLB hierarchy
579 */
580 struct SenderState: public Packet::SenderState
581 {
582 // The wavefront associated with this request
583 Wavefront *wavefront;
584
585 SenderState(Wavefront *_wavefront) : wavefront(_wavefront) { }
586 };
587
588 protected:
589 ComputeUnit *computeUnit;
590 bool stalled;
591
592 virtual bool recvTimingResp(PacketPtr pkt);
593 virtual Tick recvAtomic(PacketPtr pkt) { return 0; }
594 virtual void recvFunctional(PacketPtr pkt) { }
595 virtual void recvRangeChange() { }
596 virtual void recvReqRetry();
597 };
598
599 /**
600 * the port intended to communicate between the CU and its LDS
601 */
602 class LDSPort : public MasterPort
603 {
604 public:
605 LDSPort(const std::string &_name, ComputeUnit *_cu, PortID _id)
606 : MasterPort(_name, _cu, _id), computeUnit(_cu)
607 {
608 }
609
610 bool isStalled() const { return stalled; }
611 void stallPort() { stalled = true; }
612 void unstallPort() { stalled = false; }
613
614 /**
615 * here we queue all the requests that were
616 * not successfully sent.
617 */
618 std::queue<PacketPtr> retries;
619
620 /**
621 * SenderState is information carried along with the packet, esp. the
622 * GPUDynInstPtr
623 */
624 class SenderState: public Packet::SenderState
625 {
626 protected:
627 // The actual read/write/atomic request that goes with this command
628 GPUDynInstPtr _gpuDynInst = nullptr;
629
630 public:
631 SenderState(GPUDynInstPtr gpuDynInst):
632 _gpuDynInst(gpuDynInst)
633 {
634 }
635
636 GPUDynInstPtr
637 getMemInst() const
638 {
639 return _gpuDynInst;
640 }
641 };
642
643 virtual bool
644 sendTimingReq(PacketPtr pkt);
645
646 protected:
647
648 bool stalled = false; ///< whether or not it is stalled
649
650 ComputeUnit *computeUnit;
651
652 virtual bool
653 recvTimingResp(PacketPtr pkt);
654
655 virtual Tick
656 recvAtomic(PacketPtr pkt) { return 0; }
657
658 virtual void
659 recvFunctional(PacketPtr pkt)
660 {
661 }
662
663 virtual void
664 recvRangeChange()
665 {
666 }
667
668 virtual void
669 recvReqRetry();
670 };
671
672 /** The port to access the Local Data Store
673 * Can be connected to a LDS object
674 */
675 LDSPort *ldsPort = nullptr;
676
677 LDSPort *
678 getLdsPort() const
679 {
680 return ldsPort;
681 }
682
683 /** The memory port for SIMD data accesses.
684 * Can be connected to PhysMem for Ruby for timing simulations
685 */
686 std::vector<DataPort*> memPort;
687 // port to the TLB hierarchy (i.e., the L1 TLB)
688 std::vector<DTLBPort*> tlbPort;
689 // port to the SQC (i.e. the I-cache)
690 SQCPort *sqcPort;
691 // port to the SQC TLB (there's a separate TLB for each I-cache)
692 ITLBPort *sqcTLBPort;
693
694 Port &
695 getPort(const std::string &if_name, PortID idx) override
696 {
697 if (if_name == "memory_port") {
698 memPort[idx] = new DataPort(csprintf("%s-port%d", name(), idx),
699 this, idx);
700 return *memPort[idx];
701 } else if (if_name == "translation_port") {
702 tlbPort[idx] = new DTLBPort(csprintf("%s-port%d", name(), idx),
703 this, idx);
704 return *tlbPort[idx];
705 } else if (if_name == "sqc_port") {
706 sqcPort = new SQCPort(csprintf("%s-port%d", name(), idx),
707 this, idx);
708 return *sqcPort;
709 } else if (if_name == "sqc_tlb_port") {
710 sqcTLBPort = new ITLBPort(csprintf("%s-port", name()), this);
711 return *sqcTLBPort;
712 } else if (if_name == "ldsPort") {
713 if (ldsPort) {
714 fatal("an LDS port was already allocated");
715 }
716 ldsPort = new LDSPort(csprintf("%s-port", name()), this, idx);
717 return *ldsPort;
718 } else {
719 panic("incorrect port name");
720 }
721 }
722
723 // xact_cas_load()
724 class waveIdentifier
725 {
726 public:
727 waveIdentifier() { }
728 waveIdentifier(int _simdId, int _wfSlotId)
729 : simdId(_simdId), wfSlotId(_wfSlotId) { }
730
731 int simdId;
732 int wfSlotId;
733 };
734
735 class waveQueue
736 {
737 public:
738 std::list<waveIdentifier> waveIDQueue;
739 };
740 std::map<unsigned, waveQueue> xactCasLoadMap;
741
742 uint64_t getAndIncSeqNum() { return globalSeqNum++; }
743
744 private:
745 const int _cacheLineSize;
746 uint64_t globalSeqNum;
747 int wavefrontSize;
748 GPUStaticInst *kernelLaunchInst;
749 };
750
751 #endif // __COMPUTE_UNIT_HH__