9e07b0547bfcc0c370d578e0b55cc0b4e53c1fcf
[gem5.git] / src / gpu-compute / gpu_tlb.cc
1 /*
2 * Copyright (c) 2011-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright notice,
14 * this list of conditions and the following disclaimer in the documentation
15 * and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Author: Lisa Hsu
34 */
35
36 #include "gpu-compute/gpu_tlb.hh"
37
38 #include <cmath>
39 #include <cstring>
40
41 #include "arch/x86/faults.hh"
42 #include "arch/x86/insts/microldstop.hh"
43 #include "arch/x86/pagetable.hh"
44 #include "arch/x86/pagetable_walker.hh"
45 #include "arch/x86/regs/misc.hh"
46 #include "arch/x86/x86_traits.hh"
47 #include "base/bitfield.hh"
48 #include "base/logging.hh"
49 #include "base/output.hh"
50 #include "base/trace.hh"
51 #include "cpu/base.hh"
52 #include "cpu/thread_context.hh"
53 #include "debug/GPUPrefetch.hh"
54 #include "debug/GPUTLB.hh"
55 #include "mem/packet_access.hh"
56 #include "mem/page_table.hh"
57 #include "mem/request.hh"
58 #include "sim/process.hh"
59
60 namespace X86ISA
61 {
62
63 GpuTLB::GpuTLB(const Params *p)
64 : MemObject(p), configAddress(0), size(p->size),
65 cleanupEvent([this]{ cleanup(); }, name(), false,
66 Event::Maximum_Pri),
67 exitEvent([this]{ exitCallback(); }, name())
68 {
69 assoc = p->assoc;
70 assert(assoc <= size);
71 numSets = size/assoc;
72 allocationPolicy = p->allocationPolicy;
73 hasMemSidePort = false;
74 accessDistance = p->accessDistance;
75 clock = p->clk_domain->clockPeriod();
76
77 tlb.assign(size, TlbEntry());
78
79 freeList.resize(numSets);
80 entryList.resize(numSets);
81
82 for (int set = 0; set < numSets; ++set) {
83 for (int way = 0; way < assoc; ++way) {
84 int x = set * assoc + way;
85 freeList[set].push_back(&tlb.at(x));
86 }
87 }
88
89 FA = (size == assoc);
90
91 /**
92 * @warning: the set-associative version assumes you have a
93 * fixed page size of 4KB.
94 * If the page size is greather than 4KB (as defined in the
95 * TheISA::PageBytes), then there are various issues w/ the current
96 * implementation (you'd have the same 8KB page being replicated in
97 * different sets etc)
98 */
99 setMask = numSets - 1;
100
101 #if 0
102 // GpuTLB doesn't yet support full system
103 walker = p->walker;
104 walker->setTLB(this);
105 #endif
106
107 maxCoalescedReqs = p->maxOutstandingReqs;
108
109 // Do not allow maxCoalescedReqs to be more than the TLB associativity
110 if (maxCoalescedReqs > assoc) {
111 maxCoalescedReqs = assoc;
112 cprintf("Forcing maxCoalescedReqs to %d (TLB assoc.) \n", assoc);
113 }
114
115 outstandingReqs = 0;
116 hitLatency = p->hitLatency;
117 missLatency1 = p->missLatency1;
118 missLatency2 = p->missLatency2;
119
120 // create the slave ports based on the number of connected ports
121 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
122 cpuSidePort.push_back(new CpuSidePort(csprintf("%s-port%d",
123 name(), i), this, i));
124 }
125
126 // create the master ports based on the number of connected ports
127 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
128 memSidePort.push_back(new MemSidePort(csprintf("%s-port%d",
129 name(), i), this, i));
130 }
131 }
132
133 // fixme: this is never called?
134 GpuTLB::~GpuTLB()
135 {
136 // make sure all the hash-maps are empty
137 assert(translationReturnEvent.empty());
138 }
139
140 BaseSlavePort&
141 GpuTLB::getSlavePort(const std::string &if_name, PortID idx)
142 {
143 if (if_name == "slave") {
144 if (idx >= static_cast<PortID>(cpuSidePort.size())) {
145 panic("TLBCoalescer::getSlavePort: unknown index %d\n", idx);
146 }
147
148 return *cpuSidePort[idx];
149 } else {
150 panic("TLBCoalescer::getSlavePort: unknown port %s\n", if_name);
151 }
152 }
153
154 BaseMasterPort&
155 GpuTLB::getMasterPort(const std::string &if_name, PortID idx)
156 {
157 if (if_name == "master") {
158 if (idx >= static_cast<PortID>(memSidePort.size())) {
159 panic("TLBCoalescer::getMasterPort: unknown index %d\n", idx);
160 }
161
162 hasMemSidePort = true;
163
164 return *memSidePort[idx];
165 } else {
166 panic("TLBCoalescer::getMasterPort: unknown port %s\n", if_name);
167 }
168 }
169
170 TlbEntry*
171 GpuTLB::insert(Addr vpn, TlbEntry &entry)
172 {
173 TlbEntry *newEntry = nullptr;
174
175 /**
176 * vpn holds the virtual page address
177 * The least significant bits are simply masked
178 */
179 int set = (vpn >> TheISA::PageShift) & setMask;
180
181 if (!freeList[set].empty()) {
182 newEntry = freeList[set].front();
183 freeList[set].pop_front();
184 } else {
185 newEntry = entryList[set].back();
186 entryList[set].pop_back();
187 }
188
189 *newEntry = entry;
190 newEntry->vaddr = vpn;
191 entryList[set].push_front(newEntry);
192
193 return newEntry;
194 }
195
196 GpuTLB::EntryList::iterator
197 GpuTLB::lookupIt(Addr va, bool update_lru)
198 {
199 int set = (va >> TheISA::PageShift) & setMask;
200
201 if (FA) {
202 assert(!set);
203 }
204
205 auto entry = entryList[set].begin();
206 for (; entry != entryList[set].end(); ++entry) {
207 int page_size = (*entry)->size();
208
209 if ((*entry)->vaddr <= va && (*entry)->vaddr + page_size > va) {
210 DPRINTF(GPUTLB, "Matched vaddr %#x to entry starting at %#x "
211 "with size %#x.\n", va, (*entry)->vaddr, page_size);
212
213 if (update_lru) {
214 entryList[set].push_front(*entry);
215 entryList[set].erase(entry);
216 entry = entryList[set].begin();
217 }
218
219 break;
220 }
221 }
222
223 return entry;
224 }
225
226 TlbEntry*
227 GpuTLB::lookup(Addr va, bool update_lru)
228 {
229 int set = (va >> TheISA::PageShift) & setMask;
230
231 auto entry = lookupIt(va, update_lru);
232
233 if (entry == entryList[set].end())
234 return nullptr;
235 else
236 return *entry;
237 }
238
239 void
240 GpuTLB::invalidateAll()
241 {
242 DPRINTF(GPUTLB, "Invalidating all entries.\n");
243
244 for (int i = 0; i < numSets; ++i) {
245 while (!entryList[i].empty()) {
246 TlbEntry *entry = entryList[i].front();
247 entryList[i].pop_front();
248 freeList[i].push_back(entry);
249 }
250 }
251 }
252
253 void
254 GpuTLB::setConfigAddress(uint32_t addr)
255 {
256 configAddress = addr;
257 }
258
259 void
260 GpuTLB::invalidateNonGlobal()
261 {
262 DPRINTF(GPUTLB, "Invalidating all non global entries.\n");
263
264 for (int i = 0; i < numSets; ++i) {
265 for (auto entryIt = entryList[i].begin();
266 entryIt != entryList[i].end();) {
267 if (!(*entryIt)->global) {
268 freeList[i].push_back(*entryIt);
269 entryList[i].erase(entryIt++);
270 } else {
271 ++entryIt;
272 }
273 }
274 }
275 }
276
277 void
278 GpuTLB::demapPage(Addr va, uint64_t asn)
279 {
280
281 int set = (va >> TheISA::PageShift) & setMask;
282 auto entry = lookupIt(va, false);
283
284 if (entry != entryList[set].end()) {
285 freeList[set].push_back(*entry);
286 entryList[set].erase(entry);
287 }
288 }
289
290 Fault
291 GpuTLB::translateInt(const RequestPtr &req, ThreadContext *tc)
292 {
293 DPRINTF(GPUTLB, "Addresses references internal memory.\n");
294 Addr vaddr = req->getVaddr();
295 Addr prefix = (vaddr >> 3) & IntAddrPrefixMask;
296
297 if (prefix == IntAddrPrefixCPUID) {
298 panic("CPUID memory space not yet implemented!\n");
299 } else if (prefix == IntAddrPrefixMSR) {
300 vaddr = vaddr >> 3;
301 req->setFlags(Request::MMAPPED_IPR);
302 Addr regNum = 0;
303
304 switch (vaddr & ~IntAddrPrefixMask) {
305 case 0x10:
306 regNum = MISCREG_TSC;
307 break;
308 case 0x1B:
309 regNum = MISCREG_APIC_BASE;
310 break;
311 case 0xFE:
312 regNum = MISCREG_MTRRCAP;
313 break;
314 case 0x174:
315 regNum = MISCREG_SYSENTER_CS;
316 break;
317 case 0x175:
318 regNum = MISCREG_SYSENTER_ESP;
319 break;
320 case 0x176:
321 regNum = MISCREG_SYSENTER_EIP;
322 break;
323 case 0x179:
324 regNum = MISCREG_MCG_CAP;
325 break;
326 case 0x17A:
327 regNum = MISCREG_MCG_STATUS;
328 break;
329 case 0x17B:
330 regNum = MISCREG_MCG_CTL;
331 break;
332 case 0x1D9:
333 regNum = MISCREG_DEBUG_CTL_MSR;
334 break;
335 case 0x1DB:
336 regNum = MISCREG_LAST_BRANCH_FROM_IP;
337 break;
338 case 0x1DC:
339 regNum = MISCREG_LAST_BRANCH_TO_IP;
340 break;
341 case 0x1DD:
342 regNum = MISCREG_LAST_EXCEPTION_FROM_IP;
343 break;
344 case 0x1DE:
345 regNum = MISCREG_LAST_EXCEPTION_TO_IP;
346 break;
347 case 0x200:
348 regNum = MISCREG_MTRR_PHYS_BASE_0;
349 break;
350 case 0x201:
351 regNum = MISCREG_MTRR_PHYS_MASK_0;
352 break;
353 case 0x202:
354 regNum = MISCREG_MTRR_PHYS_BASE_1;
355 break;
356 case 0x203:
357 regNum = MISCREG_MTRR_PHYS_MASK_1;
358 break;
359 case 0x204:
360 regNum = MISCREG_MTRR_PHYS_BASE_2;
361 break;
362 case 0x205:
363 regNum = MISCREG_MTRR_PHYS_MASK_2;
364 break;
365 case 0x206:
366 regNum = MISCREG_MTRR_PHYS_BASE_3;
367 break;
368 case 0x207:
369 regNum = MISCREG_MTRR_PHYS_MASK_3;
370 break;
371 case 0x208:
372 regNum = MISCREG_MTRR_PHYS_BASE_4;
373 break;
374 case 0x209:
375 regNum = MISCREG_MTRR_PHYS_MASK_4;
376 break;
377 case 0x20A:
378 regNum = MISCREG_MTRR_PHYS_BASE_5;
379 break;
380 case 0x20B:
381 regNum = MISCREG_MTRR_PHYS_MASK_5;
382 break;
383 case 0x20C:
384 regNum = MISCREG_MTRR_PHYS_BASE_6;
385 break;
386 case 0x20D:
387 regNum = MISCREG_MTRR_PHYS_MASK_6;
388 break;
389 case 0x20E:
390 regNum = MISCREG_MTRR_PHYS_BASE_7;
391 break;
392 case 0x20F:
393 regNum = MISCREG_MTRR_PHYS_MASK_7;
394 break;
395 case 0x250:
396 regNum = MISCREG_MTRR_FIX_64K_00000;
397 break;
398 case 0x258:
399 regNum = MISCREG_MTRR_FIX_16K_80000;
400 break;
401 case 0x259:
402 regNum = MISCREG_MTRR_FIX_16K_A0000;
403 break;
404 case 0x268:
405 regNum = MISCREG_MTRR_FIX_4K_C0000;
406 break;
407 case 0x269:
408 regNum = MISCREG_MTRR_FIX_4K_C8000;
409 break;
410 case 0x26A:
411 regNum = MISCREG_MTRR_FIX_4K_D0000;
412 break;
413 case 0x26B:
414 regNum = MISCREG_MTRR_FIX_4K_D8000;
415 break;
416 case 0x26C:
417 regNum = MISCREG_MTRR_FIX_4K_E0000;
418 break;
419 case 0x26D:
420 regNum = MISCREG_MTRR_FIX_4K_E8000;
421 break;
422 case 0x26E:
423 regNum = MISCREG_MTRR_FIX_4K_F0000;
424 break;
425 case 0x26F:
426 regNum = MISCREG_MTRR_FIX_4K_F8000;
427 break;
428 case 0x277:
429 regNum = MISCREG_PAT;
430 break;
431 case 0x2FF:
432 regNum = MISCREG_DEF_TYPE;
433 break;
434 case 0x400:
435 regNum = MISCREG_MC0_CTL;
436 break;
437 case 0x404:
438 regNum = MISCREG_MC1_CTL;
439 break;
440 case 0x408:
441 regNum = MISCREG_MC2_CTL;
442 break;
443 case 0x40C:
444 regNum = MISCREG_MC3_CTL;
445 break;
446 case 0x410:
447 regNum = MISCREG_MC4_CTL;
448 break;
449 case 0x414:
450 regNum = MISCREG_MC5_CTL;
451 break;
452 case 0x418:
453 regNum = MISCREG_MC6_CTL;
454 break;
455 case 0x41C:
456 regNum = MISCREG_MC7_CTL;
457 break;
458 case 0x401:
459 regNum = MISCREG_MC0_STATUS;
460 break;
461 case 0x405:
462 regNum = MISCREG_MC1_STATUS;
463 break;
464 case 0x409:
465 regNum = MISCREG_MC2_STATUS;
466 break;
467 case 0x40D:
468 regNum = MISCREG_MC3_STATUS;
469 break;
470 case 0x411:
471 regNum = MISCREG_MC4_STATUS;
472 break;
473 case 0x415:
474 regNum = MISCREG_MC5_STATUS;
475 break;
476 case 0x419:
477 regNum = MISCREG_MC6_STATUS;
478 break;
479 case 0x41D:
480 regNum = MISCREG_MC7_STATUS;
481 break;
482 case 0x402:
483 regNum = MISCREG_MC0_ADDR;
484 break;
485 case 0x406:
486 regNum = MISCREG_MC1_ADDR;
487 break;
488 case 0x40A:
489 regNum = MISCREG_MC2_ADDR;
490 break;
491 case 0x40E:
492 regNum = MISCREG_MC3_ADDR;
493 break;
494 case 0x412:
495 regNum = MISCREG_MC4_ADDR;
496 break;
497 case 0x416:
498 regNum = MISCREG_MC5_ADDR;
499 break;
500 case 0x41A:
501 regNum = MISCREG_MC6_ADDR;
502 break;
503 case 0x41E:
504 regNum = MISCREG_MC7_ADDR;
505 break;
506 case 0x403:
507 regNum = MISCREG_MC0_MISC;
508 break;
509 case 0x407:
510 regNum = MISCREG_MC1_MISC;
511 break;
512 case 0x40B:
513 regNum = MISCREG_MC2_MISC;
514 break;
515 case 0x40F:
516 regNum = MISCREG_MC3_MISC;
517 break;
518 case 0x413:
519 regNum = MISCREG_MC4_MISC;
520 break;
521 case 0x417:
522 regNum = MISCREG_MC5_MISC;
523 break;
524 case 0x41B:
525 regNum = MISCREG_MC6_MISC;
526 break;
527 case 0x41F:
528 regNum = MISCREG_MC7_MISC;
529 break;
530 case 0xC0000080:
531 regNum = MISCREG_EFER;
532 break;
533 case 0xC0000081:
534 regNum = MISCREG_STAR;
535 break;
536 case 0xC0000082:
537 regNum = MISCREG_LSTAR;
538 break;
539 case 0xC0000083:
540 regNum = MISCREG_CSTAR;
541 break;
542 case 0xC0000084:
543 regNum = MISCREG_SF_MASK;
544 break;
545 case 0xC0000100:
546 regNum = MISCREG_FS_BASE;
547 break;
548 case 0xC0000101:
549 regNum = MISCREG_GS_BASE;
550 break;
551 case 0xC0000102:
552 regNum = MISCREG_KERNEL_GS_BASE;
553 break;
554 case 0xC0000103:
555 regNum = MISCREG_TSC_AUX;
556 break;
557 case 0xC0010000:
558 regNum = MISCREG_PERF_EVT_SEL0;
559 break;
560 case 0xC0010001:
561 regNum = MISCREG_PERF_EVT_SEL1;
562 break;
563 case 0xC0010002:
564 regNum = MISCREG_PERF_EVT_SEL2;
565 break;
566 case 0xC0010003:
567 regNum = MISCREG_PERF_EVT_SEL3;
568 break;
569 case 0xC0010004:
570 regNum = MISCREG_PERF_EVT_CTR0;
571 break;
572 case 0xC0010005:
573 regNum = MISCREG_PERF_EVT_CTR1;
574 break;
575 case 0xC0010006:
576 regNum = MISCREG_PERF_EVT_CTR2;
577 break;
578 case 0xC0010007:
579 regNum = MISCREG_PERF_EVT_CTR3;
580 break;
581 case 0xC0010010:
582 regNum = MISCREG_SYSCFG;
583 break;
584 case 0xC0010016:
585 regNum = MISCREG_IORR_BASE0;
586 break;
587 case 0xC0010017:
588 regNum = MISCREG_IORR_BASE1;
589 break;
590 case 0xC0010018:
591 regNum = MISCREG_IORR_MASK0;
592 break;
593 case 0xC0010019:
594 regNum = MISCREG_IORR_MASK1;
595 break;
596 case 0xC001001A:
597 regNum = MISCREG_TOP_MEM;
598 break;
599 case 0xC001001D:
600 regNum = MISCREG_TOP_MEM2;
601 break;
602 case 0xC0010114:
603 regNum = MISCREG_VM_CR;
604 break;
605 case 0xC0010115:
606 regNum = MISCREG_IGNNE;
607 break;
608 case 0xC0010116:
609 regNum = MISCREG_SMM_CTL;
610 break;
611 case 0xC0010117:
612 regNum = MISCREG_VM_HSAVE_PA;
613 break;
614 default:
615 return std::make_shared<GeneralProtection>(0);
616 }
617 //The index is multiplied by the size of a MiscReg so that
618 //any memory dependence calculations will not see these as
619 //overlapping.
620 req->setPaddr(regNum * sizeof(RegVal));
621 return NoFault;
622 } else if (prefix == IntAddrPrefixIO) {
623 // TODO If CPL > IOPL or in virtual mode, check the I/O permission
624 // bitmap in the TSS.
625
626 Addr IOPort = vaddr & ~IntAddrPrefixMask;
627 // Make sure the address fits in the expected 16 bit IO address
628 // space.
629 assert(!(IOPort & ~0xFFFF));
630
631 if (IOPort == 0xCF8 && req->getSize() == 4) {
632 req->setFlags(Request::MMAPPED_IPR);
633 req->setPaddr(MISCREG_PCI_CONFIG_ADDRESS * sizeof(RegVal));
634 } else if ((IOPort & ~mask(2)) == 0xCFC) {
635 req->setFlags(Request::UNCACHEABLE);
636
637 Addr configAddress =
638 tc->readMiscRegNoEffect(MISCREG_PCI_CONFIG_ADDRESS);
639
640 if (bits(configAddress, 31, 31)) {
641 req->setPaddr(PhysAddrPrefixPciConfig |
642 mbits(configAddress, 30, 2) |
643 (IOPort & mask(2)));
644 } else {
645 req->setPaddr(PhysAddrPrefixIO | IOPort);
646 }
647 } else {
648 req->setFlags(Request::UNCACHEABLE);
649 req->setPaddr(PhysAddrPrefixIO | IOPort);
650 }
651 return NoFault;
652 } else {
653 panic("Access to unrecognized internal address space %#x.\n",
654 prefix);
655 }
656 }
657
658 /**
659 * TLB_lookup will only perform a TLB lookup returning true on a TLB hit
660 * and false on a TLB miss.
661 * Many of the checks about different modes have been converted to
662 * assertions, since these parts of the code are not really used.
663 * On a hit it will update the LRU stack.
664 */
665 bool
666 GpuTLB::tlbLookup(const RequestPtr &req,
667 ThreadContext *tc, bool update_stats)
668 {
669 bool tlb_hit = false;
670 #ifndef NDEBUG
671 uint32_t flags = req->getFlags();
672 int seg = flags & SegmentFlagMask;
673 #endif
674
675 assert(seg != SEGMENT_REG_MS);
676 Addr vaddr = req->getVaddr();
677 DPRINTF(GPUTLB, "TLB Lookup for vaddr %#x.\n", vaddr);
678 HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
679
680 if (m5Reg.prot) {
681 DPRINTF(GPUTLB, "In protected mode.\n");
682 // make sure we are in 64-bit mode
683 assert(m5Reg.mode == LongMode);
684
685 // If paging is enabled, do the translation.
686 if (m5Reg.paging) {
687 DPRINTF(GPUTLB, "Paging enabled.\n");
688 //update LRU stack on a hit
689 TlbEntry *entry = lookup(vaddr, true);
690
691 if (entry)
692 tlb_hit = true;
693
694 if (!update_stats) {
695 // functional tlb access for memory initialization
696 // i.e., memory seeding or instr. seeding -> don't update
697 // TLB and stats
698 return tlb_hit;
699 }
700
701 localNumTLBAccesses++;
702
703 if (!entry) {
704 localNumTLBMisses++;
705 } else {
706 localNumTLBHits++;
707 }
708 }
709 }
710
711 return tlb_hit;
712 }
713
714 Fault
715 GpuTLB::translate(const RequestPtr &req, ThreadContext *tc,
716 Translation *translation, Mode mode,
717 bool &delayedResponse, bool timing, int &latency)
718 {
719 uint32_t flags = req->getFlags();
720 int seg = flags & SegmentFlagMask;
721 bool storeCheck = flags & (StoreCheck << FlagShift);
722
723 // If this is true, we're dealing with a request
724 // to a non-memory address space.
725 if (seg == SEGMENT_REG_MS) {
726 return translateInt(req, tc);
727 }
728
729 delayedResponse = false;
730 Addr vaddr = req->getVaddr();
731 DPRINTF(GPUTLB, "Translating vaddr %#x.\n", vaddr);
732
733 HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
734
735 // If protected mode has been enabled...
736 if (m5Reg.prot) {
737 DPRINTF(GPUTLB, "In protected mode.\n");
738 // If we're not in 64-bit mode, do protection/limit checks
739 if (m5Reg.mode != LongMode) {
740 DPRINTF(GPUTLB, "Not in long mode. Checking segment "
741 "protection.\n");
742
743 // Check for a null segment selector.
744 if (!(seg == SEGMENT_REG_TSG || seg == SYS_SEGMENT_REG_IDTR ||
745 seg == SEGMENT_REG_HS || seg == SEGMENT_REG_LS)
746 && !tc->readMiscRegNoEffect(MISCREG_SEG_SEL(seg))) {
747 return std::make_shared<GeneralProtection>(0);
748 }
749
750 bool expandDown = false;
751 SegAttr attr = tc->readMiscRegNoEffect(MISCREG_SEG_ATTR(seg));
752
753 if (seg >= SEGMENT_REG_ES && seg <= SEGMENT_REG_HS) {
754 if (!attr.writable && (mode == BaseTLB::Write ||
755 storeCheck))
756 return std::make_shared<GeneralProtection>(0);
757
758 if (!attr.readable && mode == BaseTLB::Read)
759 return std::make_shared<GeneralProtection>(0);
760
761 expandDown = attr.expandDown;
762
763 }
764
765 Addr base = tc->readMiscRegNoEffect(MISCREG_SEG_BASE(seg));
766 Addr limit = tc->readMiscRegNoEffect(MISCREG_SEG_LIMIT(seg));
767 // This assumes we're not in 64 bit mode. If we were, the
768 // default address size is 64 bits, overridable to 32.
769 int size = 32;
770 bool sizeOverride = (flags & (AddrSizeFlagBit << FlagShift));
771 SegAttr csAttr = tc->readMiscRegNoEffect(MISCREG_CS_ATTR);
772
773 if ((csAttr.defaultSize && sizeOverride) ||
774 (!csAttr.defaultSize && !sizeOverride)) {
775 size = 16;
776 }
777
778 Addr offset = bits(vaddr - base, size - 1, 0);
779 Addr endOffset = offset + req->getSize() - 1;
780
781 if (expandDown) {
782 DPRINTF(GPUTLB, "Checking an expand down segment.\n");
783 warn_once("Expand down segments are untested.\n");
784
785 if (offset <= limit || endOffset <= limit)
786 return std::make_shared<GeneralProtection>(0);
787 } else {
788 if (offset > limit || endOffset > limit)
789 return std::make_shared<GeneralProtection>(0);
790 }
791 }
792
793 // If paging is enabled, do the translation.
794 if (m5Reg.paging) {
795 DPRINTF(GPUTLB, "Paging enabled.\n");
796 // The vaddr already has the segment base applied.
797 TlbEntry *entry = lookup(vaddr);
798 localNumTLBAccesses++;
799
800 if (!entry) {
801 localNumTLBMisses++;
802 if (timing) {
803 latency = missLatency1;
804 }
805
806 if (FullSystem) {
807 fatal("GpuTLB doesn't support full-system mode\n");
808 } else {
809 DPRINTF(GPUTLB, "Handling a TLB miss for address %#x "
810 "at pc %#x.\n", vaddr, tc->instAddr());
811
812 Process *p = tc->getProcessPtr();
813 const EmulationPageTable::Entry *pte =
814 p->pTable->lookup(vaddr);
815
816 if (!pte && mode != BaseTLB::Execute) {
817 // penalize a "page fault" more
818 if (timing)
819 latency += missLatency2;
820
821 if (p->fixupStackFault(vaddr))
822 pte = p->pTable->lookup(vaddr);
823 }
824
825 if (!pte) {
826 return std::make_shared<PageFault>(vaddr, true,
827 mode, true,
828 false);
829 } else {
830 Addr alignedVaddr = p->pTable->pageAlign(vaddr);
831
832 DPRINTF(GPUTLB, "Mapping %#x to %#x\n",
833 alignedVaddr, pte->paddr);
834
835 TlbEntry gpuEntry(p->pid(), alignedVaddr,
836 pte->paddr, false, false);
837 entry = insert(alignedVaddr, gpuEntry);
838 }
839
840 DPRINTF(GPUTLB, "Miss was serviced.\n");
841 }
842 } else {
843 localNumTLBHits++;
844
845 if (timing) {
846 latency = hitLatency;
847 }
848 }
849
850 // Do paging protection checks.
851 bool inUser = (m5Reg.cpl == 3 &&
852 !(flags & (CPL0FlagBit << FlagShift)));
853
854 CR0 cr0 = tc->readMiscRegNoEffect(MISCREG_CR0);
855 bool badWrite = (!entry->writable && (inUser || cr0.wp));
856
857 if ((inUser && !entry->user) || (mode == BaseTLB::Write &&
858 badWrite)) {
859 // The page must have been present to get into the TLB in
860 // the first place. We'll assume the reserved bits are
861 // fine even though we're not checking them.
862 return std::make_shared<PageFault>(vaddr, true, mode,
863 inUser, false);
864 }
865
866 if (storeCheck && badWrite) {
867 // This would fault if this were a write, so return a page
868 // fault that reflects that happening.
869 return std::make_shared<PageFault>(vaddr, true,
870 BaseTLB::Write,
871 inUser, false);
872 }
873
874
875 DPRINTF(GPUTLB, "Entry found with paddr %#x, doing protection "
876 "checks.\n", entry->paddr);
877
878 int page_size = entry->size();
879 Addr paddr = entry->paddr | (vaddr & (page_size - 1));
880 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
881 req->setPaddr(paddr);
882
883 if (entry->uncacheable)
884 req->setFlags(Request::UNCACHEABLE);
885 } else {
886 //Use the address which already has segmentation applied.
887 DPRINTF(GPUTLB, "Paging disabled.\n");
888 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, vaddr);
889 req->setPaddr(vaddr);
890 }
891 } else {
892 // Real mode
893 DPRINTF(GPUTLB, "In real mode.\n");
894 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, vaddr);
895 req->setPaddr(vaddr);
896 }
897
898 // Check for an access to the local APIC
899 if (FullSystem) {
900 LocalApicBase localApicBase =
901 tc->readMiscRegNoEffect(MISCREG_APIC_BASE);
902
903 Addr baseAddr = localApicBase.base * PageBytes;
904 Addr paddr = req->getPaddr();
905
906 if (baseAddr <= paddr && baseAddr + PageBytes > paddr) {
907 // Force the access to be uncacheable.
908 req->setFlags(Request::UNCACHEABLE);
909 req->setPaddr(x86LocalAPICAddress(tc->contextId(),
910 paddr - baseAddr));
911 }
912 }
913
914 return NoFault;
915 };
916
917 Fault
918 GpuTLB::translateAtomic(const RequestPtr &req, ThreadContext *tc,
919 Mode mode, int &latency)
920 {
921 bool delayedResponse;
922
923 return GpuTLB::translate(req, tc, nullptr, mode, delayedResponse, false,
924 latency);
925 }
926
927 void
928 GpuTLB::translateTiming(const RequestPtr &req, ThreadContext *tc,
929 Translation *translation, Mode mode, int &latency)
930 {
931 bool delayedResponse;
932 assert(translation);
933
934 Fault fault = GpuTLB::translate(req, tc, translation, mode,
935 delayedResponse, true, latency);
936
937 if (!delayedResponse)
938 translation->finish(fault, req, tc, mode);
939 }
940
941 Walker*
942 GpuTLB::getWalker()
943 {
944 return walker;
945 }
946
947
948 void
949 GpuTLB::serialize(CheckpointOut &cp) const
950 {
951 }
952
953 void
954 GpuTLB::unserialize(CheckpointIn &cp)
955 {
956 }
957
958 void
959 GpuTLB::regStats()
960 {
961 MemObject::regStats();
962
963 localNumTLBAccesses
964 .name(name() + ".local_TLB_accesses")
965 .desc("Number of TLB accesses")
966 ;
967
968 localNumTLBHits
969 .name(name() + ".local_TLB_hits")
970 .desc("Number of TLB hits")
971 ;
972
973 localNumTLBMisses
974 .name(name() + ".local_TLB_misses")
975 .desc("Number of TLB misses")
976 ;
977
978 localTLBMissRate
979 .name(name() + ".local_TLB_miss_rate")
980 .desc("TLB miss rate")
981 ;
982
983 accessCycles
984 .name(name() + ".access_cycles")
985 .desc("Cycles spent accessing this TLB level")
986 ;
987
988 pageTableCycles
989 .name(name() + ".page_table_cycles")
990 .desc("Cycles spent accessing the page table")
991 ;
992
993 localTLBMissRate = 100 * localNumTLBMisses / localNumTLBAccesses;
994
995 numUniquePages
996 .name(name() + ".unique_pages")
997 .desc("Number of unique pages touched")
998 ;
999
1000 localCycles
1001 .name(name() + ".local_cycles")
1002 .desc("Number of cycles spent in queue for all incoming reqs")
1003 ;
1004
1005 localLatency
1006 .name(name() + ".local_latency")
1007 .desc("Avg. latency over incoming coalesced reqs")
1008 ;
1009
1010 localLatency = localCycles / localNumTLBAccesses;
1011
1012 globalNumTLBAccesses
1013 .name(name() + ".global_TLB_accesses")
1014 .desc("Number of TLB accesses")
1015 ;
1016
1017 globalNumTLBHits
1018 .name(name() + ".global_TLB_hits")
1019 .desc("Number of TLB hits")
1020 ;
1021
1022 globalNumTLBMisses
1023 .name(name() + ".global_TLB_misses")
1024 .desc("Number of TLB misses")
1025 ;
1026
1027 globalTLBMissRate
1028 .name(name() + ".global_TLB_miss_rate")
1029 .desc("TLB miss rate")
1030 ;
1031
1032 globalTLBMissRate = 100 * globalNumTLBMisses / globalNumTLBAccesses;
1033
1034 avgReuseDistance
1035 .name(name() + ".avg_reuse_distance")
1036 .desc("avg. reuse distance over all pages (in ticks)")
1037 ;
1038
1039 }
1040
1041 /**
1042 * Do the TLB lookup for this coalesced request and schedule
1043 * another event <TLB access latency> cycles later.
1044 */
1045
1046 void
1047 GpuTLB::issueTLBLookup(PacketPtr pkt)
1048 {
1049 assert(pkt);
1050 assert(pkt->senderState);
1051
1052 Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1053 TheISA::PageBytes);
1054
1055 TranslationState *sender_state =
1056 safe_cast<TranslationState*>(pkt->senderState);
1057
1058 bool update_stats = !sender_state->prefetch;
1059 ThreadContext * tmp_tc = sender_state->tc;
1060
1061 DPRINTF(GPUTLB, "Translation req. for virt. page addr %#x\n",
1062 virt_page_addr);
1063
1064 int req_cnt = sender_state->reqCnt.back();
1065
1066 if (update_stats) {
1067 accessCycles -= (curTick() * req_cnt);
1068 localCycles -= curTick();
1069 updatePageFootprint(virt_page_addr);
1070 globalNumTLBAccesses += req_cnt;
1071 }
1072
1073 tlbOutcome lookup_outcome = TLB_MISS;
1074 const RequestPtr &tmp_req = pkt->req;
1075
1076 // Access the TLB and figure out if it's a hit or a miss.
1077 bool success = tlbLookup(tmp_req, tmp_tc, update_stats);
1078
1079 if (success) {
1080 lookup_outcome = TLB_HIT;
1081 // Put the entry in SenderState
1082 TlbEntry *entry = lookup(tmp_req->getVaddr(), false);
1083 assert(entry);
1084
1085 auto p = sender_state->tc->getProcessPtr();
1086 sender_state->tlbEntry =
1087 new TlbEntry(p->pid(), entry->vaddr, entry->paddr,
1088 false, false);
1089
1090 if (update_stats) {
1091 // the reqCnt has an entry per level, so its size tells us
1092 // which level we are in
1093 sender_state->hitLevel = sender_state->reqCnt.size();
1094 globalNumTLBHits += req_cnt;
1095 }
1096 } else {
1097 if (update_stats)
1098 globalNumTLBMisses += req_cnt;
1099 }
1100
1101 /*
1102 * We now know the TLB lookup outcome (if it's a hit or a miss), as well
1103 * as the TLB access latency.
1104 *
1105 * We create and schedule a new TLBEvent which will help us take the
1106 * appropriate actions (e.g., update TLB on a hit, send request to lower
1107 * level TLB on a miss, or start a page walk if this was the last-level
1108 * TLB)
1109 */
1110 TLBEvent *tlb_event =
1111 new TLBEvent(this, virt_page_addr, lookup_outcome, pkt);
1112
1113 if (translationReturnEvent.count(virt_page_addr)) {
1114 panic("Virtual Page Address %#x already has a return event\n",
1115 virt_page_addr);
1116 }
1117
1118 translationReturnEvent[virt_page_addr] = tlb_event;
1119 assert(tlb_event);
1120
1121 DPRINTF(GPUTLB, "schedule translationReturnEvent @ curTick %d\n",
1122 curTick() + this->ticks(hitLatency));
1123
1124 schedule(tlb_event, curTick() + this->ticks(hitLatency));
1125 }
1126
1127 GpuTLB::TLBEvent::TLBEvent(GpuTLB* _tlb, Addr _addr, tlbOutcome tlb_outcome,
1128 PacketPtr _pkt)
1129 : Event(CPU_Tick_Pri), tlb(_tlb), virtPageAddr(_addr),
1130 outcome(tlb_outcome), pkt(_pkt)
1131 {
1132 }
1133
1134 /**
1135 * Do Paging protection checks. If we encounter a page fault, then
1136 * an assertion is fired.
1137 */
1138 void
1139 GpuTLB::pagingProtectionChecks(ThreadContext *tc, PacketPtr pkt,
1140 TlbEntry * tlb_entry, Mode mode)
1141 {
1142 HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
1143 uint32_t flags = pkt->req->getFlags();
1144 bool storeCheck = flags & (StoreCheck << FlagShift);
1145
1146 // Do paging protection checks.
1147 bool inUser = (m5Reg.cpl == 3 && !(flags & (CPL0FlagBit << FlagShift)));
1148 CR0 cr0 = tc->readMiscRegNoEffect(MISCREG_CR0);
1149
1150 bool badWrite = (!tlb_entry->writable && (inUser || cr0.wp));
1151
1152 if ((inUser && !tlb_entry->user) ||
1153 (mode == BaseTLB::Write && badWrite)) {
1154 // The page must have been present to get into the TLB in
1155 // the first place. We'll assume the reserved bits are
1156 // fine even though we're not checking them.
1157 panic("Page fault detected");
1158 }
1159
1160 if (storeCheck && badWrite) {
1161 // This would fault if this were a write, so return a page
1162 // fault that reflects that happening.
1163 panic("Page fault detected");
1164 }
1165 }
1166
1167 /**
1168 * handleTranslationReturn is called on a TLB hit,
1169 * when a TLB miss returns or when a page fault returns.
1170 * The latter calls handelHit with TLB miss as tlbOutcome.
1171 */
1172 void
1173 GpuTLB::handleTranslationReturn(Addr virt_page_addr, tlbOutcome tlb_outcome,
1174 PacketPtr pkt)
1175 {
1176
1177 assert(pkt);
1178 Addr vaddr = pkt->req->getVaddr();
1179
1180 TranslationState *sender_state =
1181 safe_cast<TranslationState*>(pkt->senderState);
1182
1183 ThreadContext *tc = sender_state->tc;
1184 Mode mode = sender_state->tlbMode;
1185
1186 TlbEntry *local_entry, *new_entry;
1187
1188 if (tlb_outcome == TLB_HIT) {
1189 DPRINTF(GPUTLB, "Translation Done - TLB Hit for addr %#x\n", vaddr);
1190 local_entry = sender_state->tlbEntry;
1191 } else {
1192 DPRINTF(GPUTLB, "Translation Done - TLB Miss for addr %#x\n",
1193 vaddr);
1194
1195 // We are returning either from a page walk or from a hit at a lower
1196 // TLB level. The senderState should be "carrying" a pointer to the
1197 // correct TLBEntry.
1198 new_entry = sender_state->tlbEntry;
1199 assert(new_entry);
1200 local_entry = new_entry;
1201
1202 if (allocationPolicy) {
1203 DPRINTF(GPUTLB, "allocating entry w/ addr %#x\n",
1204 virt_page_addr);
1205
1206 local_entry = insert(virt_page_addr, *new_entry);
1207 }
1208
1209 assert(local_entry);
1210 }
1211
1212 /**
1213 * At this point the packet carries an up-to-date tlbEntry pointer
1214 * in its senderState.
1215 * Next step is to do the paging protection checks.
1216 */
1217 DPRINTF(GPUTLB, "Entry found with vaddr %#x, doing protection checks "
1218 "while paddr was %#x.\n", local_entry->vaddr,
1219 local_entry->paddr);
1220
1221 pagingProtectionChecks(tc, pkt, local_entry, mode);
1222 int page_size = local_entry->size();
1223 Addr paddr = local_entry->paddr | (vaddr & (page_size - 1));
1224 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
1225
1226 // Since this packet will be sent through the cpu side slave port,
1227 // it must be converted to a response pkt if it is not one already
1228 if (pkt->isRequest()) {
1229 pkt->makeTimingResponse();
1230 }
1231
1232 pkt->req->setPaddr(paddr);
1233
1234 if (local_entry->uncacheable) {
1235 pkt->req->setFlags(Request::UNCACHEABLE);
1236 }
1237
1238 //send packet back to coalescer
1239 cpuSidePort[0]->sendTimingResp(pkt);
1240 //schedule cleanup event
1241 cleanupQueue.push(virt_page_addr);
1242
1243 // schedule this only once per cycle.
1244 // The check is required because we might have multiple translations
1245 // returning the same cycle
1246 // this is a maximum priority event and must be on the same cycle
1247 // as the cleanup event in TLBCoalescer to avoid a race with
1248 // IssueProbeEvent caused by TLBCoalescer::MemSidePort::recvReqRetry
1249 if (!cleanupEvent.scheduled())
1250 schedule(cleanupEvent, curTick());
1251 }
1252
1253 /**
1254 * Here we take the appropriate actions based on the result of the
1255 * TLB lookup.
1256 */
1257 void
1258 GpuTLB::translationReturn(Addr virtPageAddr, tlbOutcome outcome,
1259 PacketPtr pkt)
1260 {
1261 DPRINTF(GPUTLB, "Triggered TLBEvent for addr %#x\n", virtPageAddr);
1262
1263 assert(translationReturnEvent[virtPageAddr]);
1264 assert(pkt);
1265
1266 TranslationState *tmp_sender_state =
1267 safe_cast<TranslationState*>(pkt->senderState);
1268
1269 int req_cnt = tmp_sender_state->reqCnt.back();
1270 bool update_stats = !tmp_sender_state->prefetch;
1271
1272
1273 if (outcome == TLB_HIT) {
1274 handleTranslationReturn(virtPageAddr, TLB_HIT, pkt);
1275
1276 if (update_stats) {
1277 accessCycles += (req_cnt * curTick());
1278 localCycles += curTick();
1279 }
1280
1281 } else if (outcome == TLB_MISS) {
1282
1283 DPRINTF(GPUTLB, "This is a TLB miss\n");
1284 if (update_stats) {
1285 accessCycles += (req_cnt*curTick());
1286 localCycles += curTick();
1287 }
1288
1289 if (hasMemSidePort) {
1290 // the one cyle added here represent the delay from when we get
1291 // the reply back till when we propagate it to the coalescer
1292 // above.
1293 if (update_stats) {
1294 accessCycles += (req_cnt * 1);
1295 localCycles += 1;
1296 }
1297
1298 /**
1299 * There is a TLB below. Send the coalesced request.
1300 * We actually send the very first packet of all the
1301 * pending packets for this virtual page address.
1302 */
1303 if (!memSidePort[0]->sendTimingReq(pkt)) {
1304 DPRINTF(GPUTLB, "Failed sending translation request to "
1305 "lower level TLB for addr %#x\n", virtPageAddr);
1306
1307 memSidePort[0]->retries.push_back(pkt);
1308 } else {
1309 DPRINTF(GPUTLB, "Sent translation request to lower level "
1310 "TLB for addr %#x\n", virtPageAddr);
1311 }
1312 } else {
1313 //this is the last level TLB. Start a page walk
1314 DPRINTF(GPUTLB, "Last level TLB - start a page walk for "
1315 "addr %#x\n", virtPageAddr);
1316
1317 if (update_stats)
1318 pageTableCycles -= (req_cnt*curTick());
1319
1320 TLBEvent *tlb_event = translationReturnEvent[virtPageAddr];
1321 assert(tlb_event);
1322 tlb_event->updateOutcome(PAGE_WALK);
1323 schedule(tlb_event, curTick() + ticks(missLatency2));
1324 }
1325 } else if (outcome == PAGE_WALK) {
1326 if (update_stats)
1327 pageTableCycles += (req_cnt*curTick());
1328
1329 // Need to access the page table and update the TLB
1330 DPRINTF(GPUTLB, "Doing a page walk for address %#x\n",
1331 virtPageAddr);
1332
1333 TranslationState *sender_state =
1334 safe_cast<TranslationState*>(pkt->senderState);
1335
1336 Process *p = sender_state->tc->getProcessPtr();
1337 Addr vaddr = pkt->req->getVaddr();
1338 #ifndef NDEBUG
1339 Addr alignedVaddr = p->pTable->pageAlign(vaddr);
1340 assert(alignedVaddr == virtPageAddr);
1341 #endif
1342 const EmulationPageTable::Entry *pte = p->pTable->lookup(vaddr);
1343 if (!pte && sender_state->tlbMode != BaseTLB::Execute &&
1344 p->fixupStackFault(vaddr)) {
1345 pte = p->pTable->lookup(vaddr);
1346 }
1347
1348 if (pte) {
1349 DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1350 pte->paddr);
1351
1352 sender_state->tlbEntry =
1353 new TlbEntry(p->pid(), virtPageAddr, pte->paddr, false,
1354 false);
1355 } else {
1356 sender_state->tlbEntry = nullptr;
1357 }
1358
1359 handleTranslationReturn(virtPageAddr, TLB_MISS, pkt);
1360 } else if (outcome == MISS_RETURN) {
1361 /** we add an extra cycle in the return path of the translation
1362 * requests in between the various TLB levels.
1363 */
1364 handleTranslationReturn(virtPageAddr, TLB_MISS, pkt);
1365 } else {
1366 panic("Unexpected TLB outcome %d", outcome);
1367 }
1368 }
1369
1370 void
1371 GpuTLB::TLBEvent::process()
1372 {
1373 tlb->translationReturn(virtPageAddr, outcome, pkt);
1374 }
1375
1376 const char*
1377 GpuTLB::TLBEvent::description() const
1378 {
1379 return "trigger translationDoneEvent";
1380 }
1381
1382 void
1383 GpuTLB::TLBEvent::updateOutcome(tlbOutcome _outcome)
1384 {
1385 outcome = _outcome;
1386 }
1387
1388 Addr
1389 GpuTLB::TLBEvent::getTLBEventVaddr()
1390 {
1391 return virtPageAddr;
1392 }
1393
1394 /*
1395 * recvTiming receives a coalesced timing request from a TLBCoalescer
1396 * and it calls issueTLBLookup()
1397 * It only rejects the packet if we have exceeded the max
1398 * outstanding number of requests for the TLB
1399 */
1400 bool
1401 GpuTLB::CpuSidePort::recvTimingReq(PacketPtr pkt)
1402 {
1403 if (tlb->outstandingReqs < tlb->maxCoalescedReqs) {
1404 tlb->issueTLBLookup(pkt);
1405 // update number of outstanding translation requests
1406 tlb->outstandingReqs++;
1407 return true;
1408 } else {
1409 DPRINTF(GPUTLB, "Reached maxCoalescedReqs number %d\n",
1410 tlb->outstandingReqs);
1411 return false;
1412 }
1413 }
1414
1415 /**
1416 * handleFuncTranslationReturn is called on a TLB hit,
1417 * when a TLB miss returns or when a page fault returns.
1418 * It updates LRU, inserts the TLB entry on a miss
1419 * depending on the allocation policy and does the required
1420 * protection checks. It does NOT create a new packet to
1421 * update the packet's addr; this is done in hsail-gpu code.
1422 */
1423 void
1424 GpuTLB::handleFuncTranslationReturn(PacketPtr pkt, tlbOutcome tlb_outcome)
1425 {
1426 TranslationState *sender_state =
1427 safe_cast<TranslationState*>(pkt->senderState);
1428
1429 ThreadContext *tc = sender_state->tc;
1430 Mode mode = sender_state->tlbMode;
1431 Addr vaddr = pkt->req->getVaddr();
1432
1433 TlbEntry *local_entry, *new_entry;
1434
1435 if (tlb_outcome == TLB_HIT) {
1436 DPRINTF(GPUTLB, "Functional Translation Done - TLB hit for addr "
1437 "%#x\n", vaddr);
1438
1439 local_entry = sender_state->tlbEntry;
1440 } else {
1441 DPRINTF(GPUTLB, "Functional Translation Done - TLB miss for addr "
1442 "%#x\n", vaddr);
1443
1444 // We are returning either from a page walk or from a hit at a lower
1445 // TLB level. The senderState should be "carrying" a pointer to the
1446 // correct TLBEntry.
1447 new_entry = sender_state->tlbEntry;
1448 assert(new_entry);
1449 local_entry = new_entry;
1450
1451 if (allocationPolicy) {
1452 Addr virt_page_addr = roundDown(vaddr, TheISA::PageBytes);
1453
1454 DPRINTF(GPUTLB, "allocating entry w/ addr %#x\n",
1455 virt_page_addr);
1456
1457 local_entry = insert(virt_page_addr, *new_entry);
1458 }
1459
1460 assert(local_entry);
1461 }
1462
1463 DPRINTF(GPUTLB, "Entry found with vaddr %#x, doing protection checks "
1464 "while paddr was %#x.\n", local_entry->vaddr,
1465 local_entry->paddr);
1466
1467 /**
1468 * Do paging checks if it's a normal functional access. If it's for a
1469 * prefetch, then sometimes you can try to prefetch something that
1470 * won't pass protection. We don't actually want to fault becuase there
1471 * is no demand access to deem this a violation. Just put it in the
1472 * TLB and it will fault if indeed a future demand access touches it in
1473 * violation.
1474 *
1475 * This feature could be used to explore security issues around
1476 * speculative memory accesses.
1477 */
1478 if (!sender_state->prefetch && sender_state->tlbEntry)
1479 pagingProtectionChecks(tc, pkt, local_entry, mode);
1480
1481 int page_size = local_entry->size();
1482 Addr paddr = local_entry->paddr | (vaddr & (page_size - 1));
1483 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
1484
1485 pkt->req->setPaddr(paddr);
1486
1487 if (local_entry->uncacheable)
1488 pkt->req->setFlags(Request::UNCACHEABLE);
1489 }
1490
1491 // This is used for atomic translations. Need to
1492 // make it all happen during the same cycle.
1493 void
1494 GpuTLB::CpuSidePort::recvFunctional(PacketPtr pkt)
1495 {
1496 TranslationState *sender_state =
1497 safe_cast<TranslationState*>(pkt->senderState);
1498
1499 ThreadContext *tc = sender_state->tc;
1500 bool update_stats = !sender_state->prefetch;
1501
1502 Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1503 TheISA::PageBytes);
1504
1505 if (update_stats)
1506 tlb->updatePageFootprint(virt_page_addr);
1507
1508 // do the TLB lookup without updating the stats
1509 bool success = tlb->tlbLookup(pkt->req, tc, update_stats);
1510 tlbOutcome tlb_outcome = success ? TLB_HIT : TLB_MISS;
1511
1512 // functional mode means no coalescing
1513 // global metrics are the same as the local metrics
1514 if (update_stats) {
1515 tlb->globalNumTLBAccesses++;
1516
1517 if (success) {
1518 sender_state->hitLevel = sender_state->reqCnt.size();
1519 tlb->globalNumTLBHits++;
1520 }
1521 }
1522
1523 if (!success) {
1524 if (update_stats)
1525 tlb->globalNumTLBMisses++;
1526 if (tlb->hasMemSidePort) {
1527 // there is a TLB below -> propagate down the TLB hierarchy
1528 tlb->memSidePort[0]->sendFunctional(pkt);
1529 // If no valid translation from a prefetch, then just return
1530 if (sender_state->prefetch && !pkt->req->hasPaddr())
1531 return;
1532 } else {
1533 // Need to access the page table and update the TLB
1534 DPRINTF(GPUTLB, "Doing a page walk for address %#x\n",
1535 virt_page_addr);
1536
1537 Process *p = tc->getProcessPtr();
1538
1539 Addr vaddr = pkt->req->getVaddr();
1540 #ifndef NDEBUG
1541 Addr alignedVaddr = p->pTable->pageAlign(vaddr);
1542 assert(alignedVaddr == virt_page_addr);
1543 #endif
1544
1545 const EmulationPageTable::Entry *pte =
1546 p->pTable->lookup(vaddr);
1547 if (!pte && sender_state->tlbMode != BaseTLB::Execute &&
1548 p->fixupStackFault(vaddr)) {
1549 pte = p->pTable->lookup(vaddr);
1550 }
1551
1552 if (!sender_state->prefetch) {
1553 // no PageFaults are permitted after
1554 // the second page table lookup
1555 assert(pte);
1556
1557 DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1558 pte->paddr);
1559
1560 sender_state->tlbEntry =
1561 new TlbEntry(p->pid(), virt_page_addr,
1562 pte->paddr, false, false);
1563 } else {
1564 // If this was a prefetch, then do the normal thing if it
1565 // was a successful translation. Otherwise, send an empty
1566 // TLB entry back so that it can be figured out as empty and
1567 // handled accordingly.
1568 if (pte) {
1569 DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1570 pte->paddr);
1571
1572 sender_state->tlbEntry =
1573 new TlbEntry(p->pid(), virt_page_addr,
1574 pte->paddr, false, false);
1575 } else {
1576 DPRINTF(GPUPrefetch, "Prefetch failed %#x\n",
1577 alignedVaddr);
1578
1579 sender_state->tlbEntry = nullptr;
1580
1581 return;
1582 }
1583 }
1584 }
1585 } else {
1586 DPRINTF(GPUPrefetch, "Functional Hit for vaddr %#x\n",
1587 tlb->lookup(pkt->req->getVaddr()));
1588
1589 TlbEntry *entry = tlb->lookup(pkt->req->getVaddr(),
1590 update_stats);
1591
1592 assert(entry);
1593
1594 auto p = sender_state->tc->getProcessPtr();
1595 sender_state->tlbEntry =
1596 new TlbEntry(p->pid(), entry->vaddr, entry->paddr,
1597 false, false);
1598 }
1599 // This is the function that would populate pkt->req with the paddr of
1600 // the translation. But if no translation happens (i.e Prefetch fails)
1601 // then the early returns in the above code wiill keep this function
1602 // from executing.
1603 tlb->handleFuncTranslationReturn(pkt, tlb_outcome);
1604 }
1605
1606 void
1607 GpuTLB::CpuSidePort::recvReqRetry()
1608 {
1609 // The CPUSidePort never sends anything but replies. No retries
1610 // expected.
1611 panic("recvReqRetry called");
1612 }
1613
1614 AddrRangeList
1615 GpuTLB::CpuSidePort::getAddrRanges() const
1616 {
1617 // currently not checked by the master
1618 AddrRangeList ranges;
1619
1620 return ranges;
1621 }
1622
1623 /**
1624 * MemSidePort receives the packet back.
1625 * We need to call the handleTranslationReturn
1626 * and propagate up the hierarchy.
1627 */
1628 bool
1629 GpuTLB::MemSidePort::recvTimingResp(PacketPtr pkt)
1630 {
1631 Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1632 TheISA::PageBytes);
1633
1634 DPRINTF(GPUTLB, "MemSidePort recvTiming for virt_page_addr %#x\n",
1635 virt_page_addr);
1636
1637 TLBEvent *tlb_event = tlb->translationReturnEvent[virt_page_addr];
1638 assert(tlb_event);
1639 assert(virt_page_addr == tlb_event->getTLBEventVaddr());
1640
1641 tlb_event->updateOutcome(MISS_RETURN);
1642 tlb->schedule(tlb_event, curTick()+tlb->ticks(1));
1643
1644 return true;
1645 }
1646
1647 void
1648 GpuTLB::MemSidePort::recvReqRetry()
1649 {
1650 // No retries should reach the TLB. The retries
1651 // should only reach the TLBCoalescer.
1652 panic("recvReqRetry called");
1653 }
1654
1655 void
1656 GpuTLB::cleanup()
1657 {
1658 while (!cleanupQueue.empty()) {
1659 Addr cleanup_addr = cleanupQueue.front();
1660 cleanupQueue.pop();
1661
1662 // delete TLBEvent
1663 TLBEvent * old_tlb_event = translationReturnEvent[cleanup_addr];
1664 delete old_tlb_event;
1665 translationReturnEvent.erase(cleanup_addr);
1666
1667 // update number of outstanding requests
1668 outstandingReqs--;
1669 }
1670
1671 /** the higher level coalescer should retry if it has
1672 * any pending requests.
1673 */
1674 for (int i = 0; i < cpuSidePort.size(); ++i) {
1675 cpuSidePort[i]->sendRetryReq();
1676 }
1677 }
1678
1679 void
1680 GpuTLB::updatePageFootprint(Addr virt_page_addr)
1681 {
1682
1683 std::pair<AccessPatternTable::iterator, bool> ret;
1684
1685 AccessInfo tmp_access_info;
1686 tmp_access_info.lastTimeAccessed = 0;
1687 tmp_access_info.accessesPerPage = 0;
1688 tmp_access_info.totalReuseDistance = 0;
1689 tmp_access_info.sumDistance = 0;
1690 tmp_access_info.meanDistance = 0;
1691
1692 ret = TLBFootprint.insert(AccessPatternTable::value_type(virt_page_addr,
1693 tmp_access_info));
1694
1695 bool first_page_access = ret.second;
1696
1697 if (first_page_access) {
1698 numUniquePages++;
1699 } else {
1700 int accessed_before;
1701 accessed_before = curTick() - ret.first->second.lastTimeAccessed;
1702 ret.first->second.totalReuseDistance += accessed_before;
1703 }
1704
1705 ret.first->second.accessesPerPage++;
1706 ret.first->second.lastTimeAccessed = curTick();
1707
1708 if (accessDistance) {
1709 ret.first->second.localTLBAccesses
1710 .push_back(localNumTLBAccesses.value());
1711 }
1712 }
1713
1714 void
1715 GpuTLB::exitCallback()
1716 {
1717 std::ostream *page_stat_file = nullptr;
1718
1719 if (accessDistance) {
1720
1721 // print per page statistics to a separate file (.csv format)
1722 // simout is the gem5 output directory (default is m5out or the one
1723 // specified with -d
1724 page_stat_file = simout.create(name().c_str())->stream();
1725
1726 // print header
1727 *page_stat_file << "page,max_access_distance,mean_access_distance, "
1728 << "stddev_distance" << std::endl;
1729 }
1730
1731 // update avg. reuse distance footprint
1732 AccessPatternTable::iterator iter, iter_begin, iter_end;
1733 unsigned int sum_avg_reuse_distance_per_page = 0;
1734
1735 // iterate through all pages seen by this TLB
1736 for (iter = TLBFootprint.begin(); iter != TLBFootprint.end(); iter++) {
1737 sum_avg_reuse_distance_per_page += iter->second.totalReuseDistance /
1738 iter->second.accessesPerPage;
1739
1740 if (accessDistance) {
1741 unsigned int tmp = iter->second.localTLBAccesses[0];
1742 unsigned int prev = tmp;
1743
1744 for (int i = 0; i < iter->second.localTLBAccesses.size(); ++i) {
1745 if (i) {
1746 tmp = prev + 1;
1747 }
1748
1749 prev = iter->second.localTLBAccesses[i];
1750 // update the localTLBAccesses value
1751 // with the actual differece
1752 iter->second.localTLBAccesses[i] -= tmp;
1753 // compute the sum of AccessDistance per page
1754 // used later for mean
1755 iter->second.sumDistance +=
1756 iter->second.localTLBAccesses[i];
1757 }
1758
1759 iter->second.meanDistance =
1760 iter->second.sumDistance / iter->second.accessesPerPage;
1761
1762 // compute std_dev and max (we need a second round because we
1763 // need to know the mean value
1764 unsigned int max_distance = 0;
1765 unsigned int stddev_distance = 0;
1766
1767 for (int i = 0; i < iter->second.localTLBAccesses.size(); ++i) {
1768 unsigned int tmp_access_distance =
1769 iter->second.localTLBAccesses[i];
1770
1771 if (tmp_access_distance > max_distance) {
1772 max_distance = tmp_access_distance;
1773 }
1774
1775 unsigned int diff =
1776 tmp_access_distance - iter->second.meanDistance;
1777 stddev_distance += pow(diff, 2);
1778
1779 }
1780
1781 stddev_distance =
1782 sqrt(stddev_distance/iter->second.accessesPerPage);
1783
1784 if (page_stat_file) {
1785 *page_stat_file << std::hex << iter->first << ",";
1786 *page_stat_file << std::dec << max_distance << ",";
1787 *page_stat_file << std::dec << iter->second.meanDistance
1788 << ",";
1789 *page_stat_file << std::dec << stddev_distance;
1790 *page_stat_file << std::endl;
1791 }
1792
1793 // erase the localTLBAccesses array
1794 iter->second.localTLBAccesses.clear();
1795 }
1796 }
1797
1798 if (!TLBFootprint.empty()) {
1799 avgReuseDistance =
1800 sum_avg_reuse_distance_per_page / TLBFootprint.size();
1801 }
1802
1803 //clear the TLBFootprint map
1804 TLBFootprint.clear();
1805 }
1806 } // namespace X86ISA
1807
1808 X86ISA::GpuTLB*
1809 X86GPUTLBParams::create()
1810 {
1811 return new X86ISA::GpuTLB(this);
1812 }
1813