cd2d3b4315705982cc361fc89c2cbb92f9225327
[mesa.git] / src / intel / blorp / blorp_blit.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "blorp_nir_builder.h"
25 #include "compiler/nir/nir_format_convert.h"
26
27 #include "blorp_priv.h"
28
29 #include "util/format_rgb9e5.h"
30 /* header-only include needed for _mesa_unorm_to_float and friends. */
31 #include "mesa/main/format_utils.h"
32
33 #define FILE_DEBUG_FLAG DEBUG_BLORP
34
35 static const bool split_blorp_blit_debug = false;
36
37 /**
38 * Enum to specify the order of arguments in a sampler message
39 */
40 enum sampler_message_arg
41 {
42 SAMPLER_MESSAGE_ARG_U_FLOAT,
43 SAMPLER_MESSAGE_ARG_V_FLOAT,
44 SAMPLER_MESSAGE_ARG_U_INT,
45 SAMPLER_MESSAGE_ARG_V_INT,
46 SAMPLER_MESSAGE_ARG_R_INT,
47 SAMPLER_MESSAGE_ARG_SI_INT,
48 SAMPLER_MESSAGE_ARG_MCS_INT,
49 SAMPLER_MESSAGE_ARG_ZERO_INT,
50 };
51
52 struct brw_blorp_blit_vars {
53 /* Input values from brw_blorp_wm_inputs */
54 nir_variable *v_discard_rect;
55 nir_variable *v_rect_grid;
56 nir_variable *v_coord_transform;
57 nir_variable *v_src_z;
58 nir_variable *v_src_offset;
59 nir_variable *v_dst_offset;
60 nir_variable *v_src_inv_size;
61
62 /* gl_FragCoord */
63 nir_variable *frag_coord;
64
65 /* gl_FragColor */
66 nir_variable *color_out;
67 };
68
69 static void
70 brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
71 const struct brw_blorp_blit_prog_key *key)
72 {
73 /* Blended and scaled blits never use pixel discard. */
74 assert(!key->use_kill || !(key->blend && key->blit_scaled));
75
76 #define LOAD_INPUT(name, type)\
77 v->v_##name = BLORP_CREATE_NIR_INPUT(b->shader, name, type);
78
79 LOAD_INPUT(discard_rect, glsl_vec4_type())
80 LOAD_INPUT(rect_grid, glsl_vec4_type())
81 LOAD_INPUT(coord_transform, glsl_vec4_type())
82 LOAD_INPUT(src_z, glsl_uint_type())
83 LOAD_INPUT(src_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
84 LOAD_INPUT(dst_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
85 LOAD_INPUT(src_inv_size, glsl_vector_type(GLSL_TYPE_FLOAT, 2))
86
87 #undef LOAD_INPUT
88
89 v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
90 glsl_vec4_type(), "gl_FragCoord");
91 v->frag_coord->data.location = VARYING_SLOT_POS;
92 v->frag_coord->data.origin_upper_left = true;
93
94 v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
95 glsl_vec4_type(), "gl_FragColor");
96 v->color_out->data.location = FRAG_RESULT_COLOR;
97 }
98
99 static nir_ssa_def *
100 blorp_blit_get_frag_coords(nir_builder *b,
101 const struct brw_blorp_blit_prog_key *key,
102 struct brw_blorp_blit_vars *v)
103 {
104 nir_ssa_def *coord = nir_f2i32(b, nir_load_var(b, v->frag_coord));
105
106 /* Account for destination surface intratile offset
107 *
108 * Transformation parameters giving translation from destination to source
109 * coordinates don't take into account possible intra-tile destination
110 * offset. Therefore it has to be first subtracted from the incoming
111 * coordinates. Vertices are set up based on coordinates containing the
112 * intra-tile offset.
113 */
114 if (key->need_dst_offset)
115 coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset));
116
117 if (key->persample_msaa_dispatch) {
118 return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
119 nir_load_sample_id(b));
120 } else {
121 return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
122 }
123 }
124
125 /**
126 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
127 * coordinates.
128 */
129 static nir_ssa_def *
130 blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
131 struct brw_blorp_blit_vars *v)
132 {
133 nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
134
135 nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
136 nir_channel(b, coord_transform, 3));
137 nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
138 nir_channel(b, coord_transform, 2));
139
140 return nir_fadd(b, nir_fmul(b, src_pos, mul), offset);
141 }
142
143 static inline void
144 blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
145 struct brw_blorp_blit_vars *v)
146 {
147 nir_ssa_def *c0, *c1, *c2, *c3;
148 nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
149 nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
150 nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
151 nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
152 nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
153
154 c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
155 c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
156 c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
157 c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
158
159 nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
160
161 nir_intrinsic_instr *discard =
162 nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
163 discard->src[0] = nir_src_for_ssa(oob);
164 nir_builder_instr_insert(b, &discard->instr);
165 }
166
167 static nir_tex_instr *
168 blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
169 nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
170 nir_alu_type dst_type)
171 {
172 nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
173
174 tex->op = op;
175
176 tex->dest_type = dst_type;
177 tex->is_array = false;
178 tex->is_shadow = false;
179
180 /* Blorp only has one texture and it's bound at unit 0 */
181 tex->texture = NULL;
182 tex->sampler = NULL;
183 tex->texture_index = 0;
184 tex->sampler_index = 0;
185
186 /* To properly handle 3-D and 2-D array textures, we pull the Z component
187 * from an input. TODO: This is a bit magic; we should probably make this
188 * more explicit in the future.
189 */
190 assert(pos->num_components >= 2);
191 pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
192 nir_load_var(b, v->v_src_z));
193
194 tex->src[0].src_type = nir_tex_src_coord;
195 tex->src[0].src = nir_src_for_ssa(pos);
196 tex->coord_components = 3;
197
198 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
199
200 return tex;
201 }
202
203 static nir_ssa_def *
204 blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
205 const struct brw_blorp_blit_prog_key *key, nir_ssa_def *pos)
206 {
207 if (key->need_src_offset)
208 pos = nir_fadd(b, pos, nir_i2f32(b, nir_load_var(b, v->v_src_offset)));
209
210 /* If the sampler requires normalized coordinates, we need to compensate. */
211 if (key->src_coords_normalized)
212 pos = nir_fmul(b, pos, nir_load_var(b, v->v_src_inv_size));
213
214 nir_tex_instr *tex =
215 blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2,
216 key->texture_data_type);
217
218 assert(pos->num_components == 2);
219 tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
220 tex->src[1].src_type = nir_tex_src_lod;
221 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
222
223 nir_builder_instr_insert(b, &tex->instr);
224
225 return &tex->dest.ssa;
226 }
227
228 static nir_ssa_def *
229 blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
230 nir_ssa_def *pos, nir_alu_type dst_type)
231 {
232 nir_tex_instr *tex =
233 blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
234
235 tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
236 tex->src[1].src_type = nir_tex_src_lod;
237 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
238
239 nir_builder_instr_insert(b, &tex->instr);
240
241 return &tex->dest.ssa;
242 }
243
244 static nir_ssa_def *
245 blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
246 nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
247 {
248 nir_tex_instr *tex =
249 blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
250 mcs != NULL ? 3 : 2, dst_type);
251
252 tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
253
254 tex->src[1].src_type = nir_tex_src_ms_index;
255 if (pos->num_components == 2) {
256 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
257 } else {
258 assert(pos->num_components == 3);
259 tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
260 }
261
262 if (mcs) {
263 tex->src[2].src_type = nir_tex_src_ms_mcs;
264 tex->src[2].src = nir_src_for_ssa(mcs);
265 }
266
267 nir_builder_instr_insert(b, &tex->instr);
268
269 return &tex->dest.ssa;
270 }
271
272 static nir_ssa_def *
273 blorp_blit_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v,
274 nir_ssa_def *pos)
275 {
276 nir_tex_instr *tex =
277 blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
278 pos, 1, nir_type_int);
279
280 tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
281
282 nir_builder_instr_insert(b, &tex->instr);
283
284 return &tex->dest.ssa;
285 }
286
287 /**
288 * Emit code to compensate for the difference between Y and W tiling.
289 *
290 * This code modifies the X and Y coordinates according to the formula:
291 *
292 * (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
293 *
294 * (See brw_blorp_build_nir_shader).
295 */
296 static inline nir_ssa_def *
297 blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
298 {
299 assert(pos->num_components == 2);
300 nir_ssa_def *x_Y = nir_channel(b, pos, 0);
301 nir_ssa_def *y_Y = nir_channel(b, pos, 1);
302
303 /* Given X and Y coordinates that describe an address using Y tiling,
304 * translate to the X and Y coordinates that describe the same address
305 * using W tiling.
306 *
307 * If we break down the low order bits of X and Y, using a
308 * single letter to represent each low-order bit:
309 *
310 * X = A << 7 | 0bBCDEFGH
311 * Y = J << 5 | 0bKLMNP (1)
312 *
313 * Then we can apply the Y tiling formula to see the memory offset being
314 * addressed:
315 *
316 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
317 *
318 * If we apply the W detiling formula to this memory location, that the
319 * corresponding X' and Y' coordinates are:
320 *
321 * X' = A << 6 | 0bBCDPFH (3)
322 * Y' = J << 6 | 0bKLMNEG
323 *
324 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
325 * we need to make the following computation:
326 *
327 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
328 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
329 */
330 nir_ssa_def *x_W = nir_imm_int(b, 0);
331 x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
332 x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
333 x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
334
335 nir_ssa_def *y_W = nir_imm_int(b, 0);
336 y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
337 y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
338 y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
339
340 return nir_vec2(b, x_W, y_W);
341 }
342
343 /**
344 * Emit code to compensate for the difference between Y and W tiling.
345 *
346 * This code modifies the X and Y coordinates according to the formula:
347 *
348 * (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
349 *
350 * (See brw_blorp_build_nir_shader).
351 */
352 static inline nir_ssa_def *
353 blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
354 {
355 assert(pos->num_components == 2);
356 nir_ssa_def *x_W = nir_channel(b, pos, 0);
357 nir_ssa_def *y_W = nir_channel(b, pos, 1);
358
359 /* Applying the same logic as above, but in reverse, we obtain the
360 * formulas:
361 *
362 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
363 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
364 */
365 nir_ssa_def *x_Y = nir_imm_int(b, 0);
366 x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
367 x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
368 x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
369 x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
370
371 nir_ssa_def *y_Y = nir_imm_int(b, 0);
372 y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
373 y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
374
375 return nir_vec2(b, x_Y, y_Y);
376 }
377
378 /**
379 * Emit code to compensate for the difference between MSAA and non-MSAA
380 * surfaces.
381 *
382 * This code modifies the X and Y coordinates according to the formula:
383 *
384 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
385 *
386 * (See brw_blorp_blit_program).
387 */
388 static inline nir_ssa_def *
389 blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
390 unsigned num_samples, enum isl_msaa_layout layout)
391 {
392 assert(pos->num_components == 2 || pos->num_components == 3);
393
394 switch (layout) {
395 case ISL_MSAA_LAYOUT_NONE:
396 assert(pos->num_components == 2);
397 return pos;
398 case ISL_MSAA_LAYOUT_ARRAY:
399 /* No translation needed */
400 return pos;
401 case ISL_MSAA_LAYOUT_INTERLEAVED: {
402 nir_ssa_def *x_in = nir_channel(b, pos, 0);
403 nir_ssa_def *y_in = nir_channel(b, pos, 1);
404 nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
405 nir_channel(b, pos, 2);
406
407 nir_ssa_def *x_out = nir_imm_int(b, 0);
408 nir_ssa_def *y_out = nir_imm_int(b, 0);
409 switch (num_samples) {
410 case 2:
411 case 4:
412 /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
413 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
414 * Y' = Y
415 *
416 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
417 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
418 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
419 */
420 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
421 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
422 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
423 if (num_samples == 2) {
424 y_out = y_in;
425 } else {
426 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
427 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
428 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
429 }
430 break;
431
432 case 8:
433 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
434 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
435 * | (X & 0b1)
436 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
437 */
438 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
439 x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
440 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
441 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
442 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
443 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
444 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
445 break;
446
447 case 16:
448 /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
449 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
450 * | (X & 0b1)
451 * Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
452 * | (Y & 0b1)
453 */
454 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
455 x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
456 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
457 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
458 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
459 y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
460 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
461 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
462 break;
463
464 default:
465 unreachable("Invalid number of samples for IMS layout");
466 }
467
468 return nir_vec2(b, x_out, y_out);
469 }
470
471 default:
472 unreachable("Invalid MSAA layout");
473 }
474 }
475
476 /**
477 * Emit code to compensate for the difference between MSAA and non-MSAA
478 * surfaces.
479 *
480 * This code modifies the X and Y coordinates according to the formula:
481 *
482 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
483 *
484 * (See brw_blorp_blit_program).
485 */
486 static inline nir_ssa_def *
487 blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
488 unsigned num_samples, enum isl_msaa_layout layout)
489 {
490 assert(pos->num_components == 2 || pos->num_components == 3);
491
492 switch (layout) {
493 case ISL_MSAA_LAYOUT_NONE:
494 /* No translation necessary, and S should already be zero. */
495 assert(pos->num_components == 2);
496 return pos;
497 case ISL_MSAA_LAYOUT_ARRAY:
498 /* No translation necessary. */
499 return pos;
500 case ISL_MSAA_LAYOUT_INTERLEAVED: {
501 assert(pos->num_components == 2);
502
503 nir_ssa_def *x_in = nir_channel(b, pos, 0);
504 nir_ssa_def *y_in = nir_channel(b, pos, 1);
505
506 nir_ssa_def *x_out = nir_imm_int(b, 0);
507 nir_ssa_def *y_out = nir_imm_int(b, 0);
508 nir_ssa_def *s_out = nir_imm_int(b, 0);
509 switch (num_samples) {
510 case 2:
511 case 4:
512 /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
513 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
514 * S = (X & 0b10) >> 1
515 *
516 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
517 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
518 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
519 * S = (Y & 0b10) | (X & 0b10) >> 1
520 */
521 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
522 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
523 if (num_samples == 2) {
524 y_out = y_in;
525 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
526 } else {
527 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
528 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
529 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
530 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
531 }
532 break;
533
534 case 8:
535 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
536 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
537 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
538 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
539 */
540 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
541 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
542 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
543 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
544 s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
545 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
546 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
547 break;
548
549 case 16:
550 /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
551 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
552 * Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
553 * S = (Y & 0b100) << 1 | (X & 0b100) |
554 * (Y & 0b10) | (X & 0b10) >> 1
555 */
556 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
557 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
558 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
559 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
560 s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
561 s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
562 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
563 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
564 break;
565
566 default:
567 unreachable("Invalid number of samples for IMS layout");
568 }
569
570 return nir_vec3(b, x_out, y_out, s_out);
571 }
572
573 default:
574 unreachable("Invalid MSAA layout");
575 }
576 }
577
578 /**
579 * Count the number of trailing 1 bits in the given value. For example:
580 *
581 * count_trailing_one_bits(0) == 0
582 * count_trailing_one_bits(7) == 3
583 * count_trailing_one_bits(11) == 2
584 */
585 static inline int count_trailing_one_bits(unsigned value)
586 {
587 #ifdef HAVE___BUILTIN_CTZ
588 return __builtin_ctz(~value);
589 #else
590 return _mesa_bitcount(value & ~(value + 1));
591 #endif
592 }
593
594 static nir_ssa_def *
595 blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
596 nir_ssa_def *pos, unsigned tex_samples,
597 enum isl_aux_usage tex_aux_usage,
598 nir_alu_type dst_type)
599 {
600 /* If non-null, this is the outer-most if statement */
601 nir_if *outer_if = NULL;
602
603 nir_variable *color =
604 nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
605
606 nir_ssa_def *mcs = NULL;
607 if (tex_aux_usage == ISL_AUX_USAGE_MCS)
608 mcs = blorp_blit_txf_ms_mcs(b, v, pos);
609
610 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
611 *
612 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
613 *
614 * This ensures that when all samples have the same value, no numerical
615 * precision is lost, since each addition operation always adds two equal
616 * values, and summing two equal floating point values does not lose
617 * precision.
618 *
619 * We perform this computation by treating the texture_data array as a
620 * stack and performing the following operations:
621 *
622 * - push sample 0 onto stack
623 * - push sample 1 onto stack
624 * - add top two stack entries
625 * - push sample 2 onto stack
626 * - push sample 3 onto stack
627 * - add top two stack entries
628 * - add top two stack entries
629 * - divide top stack entry by 4
630 *
631 * Note that after pushing sample i onto the stack, the number of add
632 * operations we do is equal to the number of trailing 1 bits in i. This
633 * works provided the total number of samples is a power of two, which it
634 * always is for i965.
635 *
636 * For integer formats, we replace the add operations with average
637 * operations and skip the final division.
638 */
639 nir_ssa_def *texture_data[5];
640 unsigned stack_depth = 0;
641 for (unsigned i = 0; i < tex_samples; ++i) {
642 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
643
644 /* Push sample i onto the stack */
645 assert(stack_depth < ARRAY_SIZE(texture_data));
646
647 nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
648 nir_channel(b, pos, 1),
649 nir_imm_int(b, i));
650 texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
651
652 if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
653 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
654 * suggests an optimization:
655 *
656 * "A simple optimization with probable large return in
657 * performance is to compare the MCS value to zero (indicating
658 * all samples are on sample slice 0), and sample only from
659 * sample slice 0 using ld2dss if MCS is zero."
660 *
661 * Note that in the case where the MCS value is zero, sampling from
662 * sample slice 0 using ld2dss and sampling from sample 0 using
663 * ld2dms are equivalent (since all samples are on sample slice 0).
664 * Since we have already sampled from sample 0, all we need to do is
665 * skip the remaining fetches and averaging if MCS is zero.
666 *
667 * It's also trivial to detect when the MCS has the magic clear color
668 * value. In this case, the txf we did on sample 0 will return the
669 * clear color and we can skip the remaining fetches just like we do
670 * when MCS == 0.
671 */
672 nir_ssa_def *mcs_zero =
673 nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
674 if (tex_samples == 16) {
675 mcs_zero = nir_iand(b, mcs_zero,
676 nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
677 }
678 nir_ssa_def *mcs_clear =
679 blorp_nir_mcs_is_clear_color(b, mcs, tex_samples);
680
681 nir_if *if_stmt = nir_if_create(b->shader);
682 if_stmt->condition = nir_src_for_ssa(nir_ior(b, mcs_zero, mcs_clear));
683 nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
684
685 b->cursor = nir_after_cf_list(&if_stmt->then_list);
686 nir_store_var(b, color, texture_data[0], 0xf);
687
688 b->cursor = nir_after_cf_list(&if_stmt->else_list);
689 outer_if = if_stmt;
690 }
691
692 for (int j = 0; j < count_trailing_one_bits(i); j++) {
693 assert(stack_depth >= 2);
694 --stack_depth;
695
696 assert(dst_type == nir_type_float);
697 texture_data[stack_depth - 1] =
698 nir_fadd(b, texture_data[stack_depth - 1],
699 texture_data[stack_depth]);
700 }
701 }
702
703 /* We should have just 1 sample on the stack now. */
704 assert(stack_depth == 1);
705
706 texture_data[0] = nir_fmul(b, texture_data[0],
707 nir_imm_float(b, 1.0 / tex_samples));
708
709 nir_store_var(b, color, texture_data[0], 0xf);
710
711 if (outer_if)
712 b->cursor = nir_after_cf_node(&outer_if->cf_node);
713
714 return nir_load_var(b, color);
715 }
716
717 static inline nir_ssa_def *
718 nir_imm_vec2(nir_builder *build, float x, float y)
719 {
720 nir_const_value v;
721
722 memset(&v, 0, sizeof(v));
723 v.f32[0] = x;
724 v.f32[1] = y;
725
726 return nir_build_imm(build, 4, 32, v);
727 }
728
729 static nir_ssa_def *
730 blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
731 unsigned tex_samples,
732 const struct brw_blorp_blit_prog_key *key,
733 struct brw_blorp_blit_vars *v)
734 {
735 nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
736 nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
737 nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
738
739 /* Translate coordinates to lay out the samples in a rectangular grid
740 * roughly corresponding to sample locations.
741 */
742 pos_xy = nir_fmul(b, pos_xy, scale);
743 /* Adjust coordinates so that integers represent pixel centers rather
744 * than pixel edges.
745 */
746 pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
747 /* Clamp the X, Y texture coordinates to properly handle the sampling of
748 * texels on texture edges.
749 */
750 pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
751 nir_vec2(b, nir_channel(b, rect_grid, 0),
752 nir_channel(b, rect_grid, 1)));
753
754 /* Store the fractional parts to be used as bilinear interpolation
755 * coefficients.
756 */
757 nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
758 /* Round the float coordinates down to nearest integer */
759 pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
760
761 nir_ssa_def *tex_data[4];
762 for (unsigned i = 0; i < 4; ++i) {
763 float sample_off_x = (float)(i & 0x1) / key->x_scale;
764 float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
765 nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
766
767 nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
768 nir_ssa_def *sample_coords_int = nir_f2i32(b, sample_coords);
769
770 /* The MCS value we fetch has to match up with the pixel that we're
771 * sampling from. Since we sample from different pixels in each
772 * iteration of this "for" loop, the call to mcs_fetch() should be
773 * here inside the loop after computing the pixel coordinates.
774 */
775 nir_ssa_def *mcs = NULL;
776 if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
777 mcs = blorp_blit_txf_ms_mcs(b, v, sample_coords_int);
778
779 /* Compute sample index and map the sample index to a sample number.
780 * Sample index layout shows the numbering of slots in a rectangular
781 * grid of samples with in a pixel. Sample number layout shows the
782 * rectangular grid of samples roughly corresponding to the real sample
783 * locations with in a pixel.
784 * In case of 4x MSAA, layout of sample indices matches the layout of
785 * sample numbers:
786 * ---------
787 * | 0 | 1 |
788 * ---------
789 * | 2 | 3 |
790 * ---------
791 *
792 * In case of 8x MSAA the two layouts don't match.
793 * sample index layout : --------- sample number layout : ---------
794 * | 0 | 1 | | 3 | 7 |
795 * --------- ---------
796 * | 2 | 3 | | 5 | 0 |
797 * --------- ---------
798 * | 4 | 5 | | 1 | 2 |
799 * --------- ---------
800 * | 6 | 7 | | 4 | 6 |
801 * --------- ---------
802 *
803 * Fortunately, this can be done fairly easily as:
804 * S' = (0x17306425 >> (S * 4)) & 0xf
805 *
806 * In the case of 16x MSAA the two layouts don't match.
807 * Sample index layout: Sample number layout:
808 * --------------------- ---------------------
809 * | 0 | 1 | 2 | 3 | | 15 | 10 | 9 | 7 |
810 * --------------------- ---------------------
811 * | 4 | 5 | 6 | 7 | | 4 | 1 | 3 | 13 |
812 * --------------------- ---------------------
813 * | 8 | 9 | 10 | 11 | | 12 | 2 | 0 | 6 |
814 * --------------------- ---------------------
815 * | 12 | 13 | 14 | 15 | | 11 | 8 | 5 | 14 |
816 * --------------------- ---------------------
817 *
818 * This is equivalent to
819 * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
820 */
821 nir_ssa_def *frac = nir_ffract(b, sample_coords);
822 nir_ssa_def *sample =
823 nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
824 key->x_scale * key->y_scale));
825 sample = nir_f2i32(b, sample);
826
827 if (tex_samples == 8) {
828 sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
829 nir_ishl(b, sample, nir_imm_int(b, 2))),
830 nir_imm_int(b, 0xf));
831 } else if (tex_samples == 16) {
832 nir_ssa_def *sample_low =
833 nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
834 nir_ishl(b, sample, nir_imm_int(b, 2))),
835 nir_imm_int(b, 0xf));
836 nir_ssa_def *sample_high =
837 nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
838 nir_ishl(b, nir_iadd(b, sample,
839 nir_imm_int(b, -8)),
840 nir_imm_int(b, 2))),
841 nir_imm_int(b, 0xf));
842
843 sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
844 sample_low, sample_high);
845 }
846 nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
847 nir_channel(b, sample_coords_int, 1),
848 sample);
849 tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
850 }
851
852 nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
853 nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
854 return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
855 nir_flrp(b, tex_data[2], tex_data[3], frac_x),
856 frac_y);
857 }
858
859 /** Perform a color bit-cast operation
860 *
861 * For copy operations involving CCS, we may need to use different formats for
862 * the source and destination surfaces. The two formats must both be UINT
863 * formats and must have the same size but may have different bit layouts.
864 * For instance, we may be copying from R8G8B8A8_UINT to R32_UINT or R32_UINT
865 * to R16G16_UINT. This function generates code to shuffle bits around to get
866 * us from one to the other.
867 */
868 static nir_ssa_def *
869 bit_cast_color(struct nir_builder *b, nir_ssa_def *color,
870 const struct brw_blorp_blit_prog_key *key)
871 {
872 assert(key->texture_data_type == nir_type_uint);
873
874 if (key->dst_bpc > key->src_bpc) {
875 nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
876 nir_ssa_def *dst_chan[2] = { u, u };
877 unsigned shift = 0;
878 unsigned dst_idx = 0;
879 for (unsigned i = 0; i < 4; i++) {
880 nir_ssa_def *shifted = nir_ishl(b, nir_channel(b, color, i),
881 nir_imm_int(b, shift));
882 if (shift == 0) {
883 dst_chan[dst_idx] = shifted;
884 } else {
885 dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted);
886 }
887
888 shift += key->src_bpc;
889 if (shift >= key->dst_bpc) {
890 dst_idx++;
891 shift = 0;
892 }
893 }
894
895 return nir_vec4(b, dst_chan[0], dst_chan[1], u, u);
896 } else {
897 assert(key->dst_bpc < key->src_bpc);
898
899 nir_ssa_def *mask = nir_imm_int(b, ~0u >> (32 - key->dst_bpc));
900
901 nir_ssa_def *dst_chan[4];
902 unsigned src_idx = 0;
903 unsigned shift = 0;
904 for (unsigned i = 0; i < 4; i++) {
905 dst_chan[i] = nir_iand(b, nir_ushr(b, nir_channel(b, color, src_idx),
906 nir_imm_int(b, shift)),
907 mask);
908 shift += key->dst_bpc;
909 if (shift >= key->src_bpc) {
910 src_idx++;
911 shift = 0;
912 }
913 }
914
915 return nir_vec4(b, dst_chan[0], dst_chan[1], dst_chan[2], dst_chan[3]);
916 }
917 }
918
919 static nir_ssa_def *
920 select_color_channel(struct nir_builder *b, nir_ssa_def *color,
921 nir_alu_type data_type,
922 enum isl_channel_select chan)
923 {
924 if (chan == ISL_CHANNEL_SELECT_ZERO) {
925 return nir_imm_int(b, 0);
926 } else if (chan == ISL_CHANNEL_SELECT_ONE) {
927 switch (data_type) {
928 case nir_type_int:
929 case nir_type_uint:
930 return nir_imm_int(b, 1);
931 case nir_type_float:
932 return nir_imm_float(b, 1);
933 default:
934 unreachable("Invalid data type");
935 }
936 } else {
937 assert((unsigned)(chan - ISL_CHANNEL_SELECT_RED) < 4);
938 return nir_channel(b, color, chan - ISL_CHANNEL_SELECT_RED);
939 }
940 }
941
942 static nir_ssa_def *
943 swizzle_color(struct nir_builder *b, nir_ssa_def *color,
944 struct isl_swizzle swizzle, nir_alu_type data_type)
945 {
946 return nir_vec4(b,
947 select_color_channel(b, color, data_type, swizzle.r),
948 select_color_channel(b, color, data_type, swizzle.g),
949 select_color_channel(b, color, data_type, swizzle.b),
950 select_color_channel(b, color, data_type, swizzle.a));
951 }
952
953 static nir_ssa_def *
954 convert_color(struct nir_builder *b, nir_ssa_def *color,
955 const struct brw_blorp_blit_prog_key *key)
956 {
957 /* All of our color conversions end up generating a single-channel color
958 * value that we need to write out.
959 */
960 nir_ssa_def *value;
961
962 if (key->dst_format == ISL_FORMAT_R24_UNORM_X8_TYPELESS) {
963 /* The destination image is bound as R32_UNORM but the data needs to be
964 * in R24_UNORM_X8_TYPELESS. The bottom 24 are the actual data and the
965 * top 8 need to be zero. We can accomplish this by simply multiplying
966 * by a factor to scale things down.
967 */
968 float factor = (float)((1 << 24) - 1) / (float)UINT32_MAX;
969 value = nir_fmul(b, nir_fsat(b, nir_channel(b, color, 0)),
970 nir_imm_float(b, factor));
971 } else if (key->dst_format == ISL_FORMAT_L8_UNORM_SRGB) {
972 value = nir_format_linear_to_srgb(b, color);
973 } else if (key->dst_format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
974 value = nir_format_pack_r9g9b9e5(b, color);
975 } else {
976 unreachable("Unsupported format conversion");
977 }
978
979 nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
980 return nir_vec4(b, value, u, u, u);
981 }
982
983 /**
984 * Generator for WM programs used in BLORP blits.
985 *
986 * The bulk of the work done by the WM program is to wrap and unwrap the
987 * coordinate transformations used by the hardware to store surfaces in
988 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
989 * sample index for a multisampled surface) to a memory offset by the
990 * following formulas:
991 *
992 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
993 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
994 *
995 * For a single-sampled surface, or for a multisampled surface using
996 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
997 * function:
998 *
999 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
1000 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
1001 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
1002 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
1003 *
1004 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
1005 * embeds the sample number into bit 1 of the X and Y coordinates:
1006 *
1007 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1008 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1009 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
1010 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1011 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
1012 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1013 * S = (Y & 0b10) | (X & 0b10) >> 1
1014 *
1015 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
1016 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
1017 * the Y coordinate:
1018 *
1019 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1020 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
1021 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1022 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1023 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
1024 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1025 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1026 *
1027 * For X tiling, tile() combines together the low-order bits of the X and Y
1028 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
1029 * bytes wide and 8 rows high:
1030 *
1031 * tile(x_tiled, X, Y, S) = A
1032 * where A = tile_num << 12 | offset
1033 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
1034 * offset = (Y' & 0b111) << 9
1035 * | (X & 0b111111111)
1036 * X' = X * cpp
1037 * Y' = Y + S * qpitch
1038 * detile(x_tiled, A) = (X, Y, S)
1039 * where X = X' / cpp
1040 * Y = Y' % qpitch
1041 * S = Y' / qpitch
1042 * Y' = (tile_num / tile_pitch) << 3
1043 * | (A & 0b111000000000) >> 9
1044 * X' = (tile_num % tile_pitch) << 9
1045 * | (A & 0b111111111)
1046 *
1047 * (In all tiling formulas, cpp is the number of bytes occupied by a single
1048 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
1049 * to fill the width of the surface, and qpitch is the spacing (in rows)
1050 * between array slices).
1051 *
1052 * For Y tiling, tile() combines together the low-order bits of the X and Y
1053 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
1054 * bytes wide and 32 rows high:
1055 *
1056 * tile(y_tiled, X, Y, S) = A
1057 * where A = tile_num << 12 | offset
1058 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
1059 * offset = (X' & 0b1110000) << 5
1060 * | (Y' & 0b11111) << 4
1061 * | (X' & 0b1111)
1062 * X' = X * cpp
1063 * Y' = Y + S * qpitch
1064 * detile(y_tiled, A) = (X, Y, S)
1065 * where X = X' / cpp
1066 * Y = Y' % qpitch
1067 * S = Y' / qpitch
1068 * Y' = (tile_num / tile_pitch) << 5
1069 * | (A & 0b111110000) >> 4
1070 * X' = (tile_num % tile_pitch) << 7
1071 * | (A & 0b111000000000) >> 5
1072 * | (A & 0b1111)
1073 *
1074 * For W tiling, tile() combines together the low-order bits of the X and Y
1075 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
1076 * bytes wide and 64 rows high (note that W tiling is only used for stencil
1077 * buffers, which always have cpp = 1 and S=0):
1078 *
1079 * tile(w_tiled, X, Y, S) = A
1080 * where A = tile_num << 12 | offset
1081 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
1082 * offset = (X' & 0b111000) << 6
1083 * | (Y' & 0b111100) << 3
1084 * | (X' & 0b100) << 2
1085 * | (Y' & 0b10) << 2
1086 * | (X' & 0b10) << 1
1087 * | (Y' & 0b1) << 1
1088 * | (X' & 0b1)
1089 * X' = X * cpp = X
1090 * Y' = Y + S * qpitch
1091 * detile(w_tiled, A) = (X, Y, S)
1092 * where X = X' / cpp = X'
1093 * Y = Y' % qpitch = Y'
1094 * S = Y / qpitch = 0
1095 * Y' = (tile_num / tile_pitch) << 6
1096 * | (A & 0b111100000) >> 3
1097 * | (A & 0b1000) >> 2
1098 * | (A & 0b10) >> 1
1099 * X' = (tile_num % tile_pitch) << 6
1100 * | (A & 0b111000000000) >> 6
1101 * | (A & 0b10000) >> 2
1102 * | (A & 0b100) >> 1
1103 * | (A & 0b1)
1104 *
1105 * Finally, for a non-tiled surface, tile() simply combines together the X and
1106 * Y coordinates in the natural way:
1107 *
1108 * tile(untiled, X, Y, S) = A
1109 * where A = Y * pitch + X'
1110 * X' = X * cpp
1111 * Y' = Y + S * qpitch
1112 * detile(untiled, A) = (X, Y, S)
1113 * where X = X' / cpp
1114 * Y = Y' % qpitch
1115 * S = Y' / qpitch
1116 * X' = A % pitch
1117 * Y' = A / pitch
1118 *
1119 * (In these formulas, pitch is the number of bytes occupied by a single row
1120 * of samples).
1121 */
1122 static nir_shader *
1123 brw_blorp_build_nir_shader(struct blorp_context *blorp, void *mem_ctx,
1124 const struct brw_blorp_blit_prog_key *key)
1125 {
1126 const struct gen_device_info *devinfo = blorp->isl_dev->info;
1127 nir_ssa_def *src_pos, *dst_pos, *color;
1128
1129 /* Sanity checks */
1130 if (key->dst_tiled_w && key->rt_samples > 1) {
1131 /* If the destination image is W tiled and multisampled, then the thread
1132 * must be dispatched once per sample, not once per pixel. This is
1133 * necessary because after conversion between W and Y tiling, there's no
1134 * guarantee that all samples corresponding to a single pixel will still
1135 * be together.
1136 */
1137 assert(key->persample_msaa_dispatch);
1138 }
1139
1140 if (key->blend) {
1141 /* We are blending, which means we won't have an opportunity to
1142 * translate the tiling and sample count for the texture surface. So
1143 * the surface state for the texture must be configured with the correct
1144 * tiling and sample count.
1145 */
1146 assert(!key->src_tiled_w);
1147 assert(key->tex_samples == key->src_samples);
1148 assert(key->tex_layout == key->src_layout);
1149 assert(key->tex_samples > 0);
1150 }
1151
1152 if (key->persample_msaa_dispatch) {
1153 /* It only makes sense to do persample dispatch if the render target is
1154 * configured as multisampled.
1155 */
1156 assert(key->rt_samples > 0);
1157 }
1158
1159 /* Make sure layout is consistent with sample count */
1160 assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
1161 (key->tex_samples <= 1));
1162 assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
1163 (key->rt_samples <= 1));
1164 assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
1165 (key->src_samples <= 1));
1166 assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
1167 (key->dst_samples <= 1));
1168
1169 nir_builder b;
1170 nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
1171
1172 struct brw_blorp_blit_vars v;
1173 brw_blorp_blit_vars_init(&b, &v, key);
1174
1175 dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
1176
1177 /* Render target and texture hardware don't support W tiling until Gen8. */
1178 const bool rt_tiled_w = false;
1179 const bool tex_tiled_w = devinfo->gen >= 8 && key->src_tiled_w;
1180
1181 /* The address that data will be written to is determined by the
1182 * coordinates supplied to the WM thread and the tiling and sample count of
1183 * the render target, according to the formula:
1184 *
1185 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
1186 *
1187 * If the actual tiling and sample count of the destination surface are not
1188 * the same as the configuration of the render target, then these
1189 * coordinates are wrong and we have to adjust them to compensate for the
1190 * difference.
1191 */
1192 if (rt_tiled_w != key->dst_tiled_w ||
1193 key->rt_samples != key->dst_samples ||
1194 key->rt_layout != key->dst_layout) {
1195 dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
1196 key->rt_layout);
1197 /* Now (X, Y, S) = detile(rt_tiling, offset) */
1198 if (rt_tiled_w != key->dst_tiled_w)
1199 dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
1200 /* Now (X, Y, S) = detile(rt_tiling, offset) */
1201 dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
1202 key->dst_layout);
1203 }
1204
1205 nir_ssa_def *comp = NULL;
1206 if (key->dst_rgb) {
1207 /* The destination image is bound as a red texture three times as wide
1208 * as the actual image. Our shader is effectively running one color
1209 * component at a time. We need to save off the component and adjust
1210 * the destination position.
1211 */
1212 assert(dst_pos->num_components == 2);
1213 nir_ssa_def *dst_x = nir_channel(&b, dst_pos, 0);
1214 comp = nir_umod(&b, dst_x, nir_imm_int(&b, 3));
1215 dst_pos = nir_vec2(&b, nir_idiv(&b, dst_x, nir_imm_int(&b, 3)),
1216 nir_channel(&b, dst_pos, 1));
1217 }
1218
1219 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
1220 *
1221 * That is: X, Y and S now contain the true coordinates and sample index of
1222 * the data that the WM thread should output.
1223 *
1224 * If we need to kill pixels that are outside the destination rectangle,
1225 * now is the time to do it.
1226 */
1227 if (key->use_kill) {
1228 assert(!(key->blend && key->blit_scaled));
1229 blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
1230 }
1231
1232 src_pos = blorp_blit_apply_transform(&b, nir_i2f32(&b, dst_pos), &v);
1233 if (dst_pos->num_components == 3) {
1234 /* The sample coordinate is an integer that we want left alone but
1235 * blorp_blit_apply_transform() blindly applies the transform to all
1236 * three coordinates. Grab the original sample index.
1237 */
1238 src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
1239 nir_channel(&b, src_pos, 1),
1240 nir_channel(&b, dst_pos, 2));
1241 }
1242
1243 /* If the source image is not multisampled, then we want to fetch sample
1244 * number 0, because that's the only sample there is.
1245 */
1246 if (key->src_samples == 1)
1247 src_pos = nir_channels(&b, src_pos, 0x3);
1248
1249 /* X, Y, and S are now the coordinates of the pixel in the source image
1250 * that we want to texture from. Exception: if we are blending, then S is
1251 * irrelevant, because we are going to fetch all samples.
1252 */
1253 if (key->blend && !key->blit_scaled) {
1254 /* Resolves (effecively) use texelFetch, so we need integers and we
1255 * don't care about the sample index if we got one.
1256 */
1257 src_pos = nir_f2i32(&b, nir_channels(&b, src_pos, 0x3));
1258
1259 if (devinfo->gen == 6) {
1260 /* Because gen6 only supports 4x interleved MSAA, we can do all the
1261 * blending we need with a single linear-interpolated texture lookup
1262 * at the center of the sample. The texture coordinates to be odd
1263 * integers so that they correspond to the center of a 2x2 block
1264 * representing the four samples that maxe up a pixel. So we need
1265 * to multiply our X and Y coordinates each by 2 and then add 1.
1266 */
1267 assert(key->src_coords_normalized);
1268 src_pos = nir_fadd(&b,
1269 nir_i2f32(&b, src_pos),
1270 nir_imm_float(&b, 0.5f));
1271 color = blorp_nir_tex(&b, &v, key, src_pos);
1272 } else {
1273 /* Gen7+ hardware doesn't automaticaly blend. */
1274 color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
1275 key->tex_aux_usage,
1276 key->texture_data_type);
1277 }
1278 } else if (key->blend && key->blit_scaled) {
1279 assert(!key->use_kill);
1280 color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
1281 } else {
1282 if (key->bilinear_filter) {
1283 color = blorp_nir_tex(&b, &v, key, src_pos);
1284 } else {
1285 /* We're going to use texelFetch, so we need integers */
1286 if (src_pos->num_components == 2) {
1287 src_pos = nir_f2i32(&b, src_pos);
1288 } else {
1289 assert(src_pos->num_components == 3);
1290 src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i32(&b, src_pos), 0),
1291 nir_channel(&b, nir_f2i32(&b, src_pos), 1),
1292 nir_channel(&b, src_pos, 2));
1293 }
1294
1295 /* We aren't blending, which means we just want to fetch a single
1296 * sample from the source surface. The address that we want to fetch
1297 * from is related to the X, Y and S values according to the formula:
1298 *
1299 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
1300 *
1301 * If the actual tiling and sample count of the source surface are
1302 * not the same as the configuration of the texture, then we need to
1303 * adjust the coordinates to compensate for the difference.
1304 */
1305 if (tex_tiled_w != key->src_tiled_w ||
1306 key->tex_samples != key->src_samples ||
1307 key->tex_layout != key->src_layout) {
1308 src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
1309 key->src_layout);
1310 /* Now (X, Y, S) = detile(src_tiling, offset) */
1311 if (tex_tiled_w != key->src_tiled_w)
1312 src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
1313 /* Now (X, Y, S) = detile(tex_tiling, offset) */
1314 src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
1315 key->tex_layout);
1316 }
1317
1318 if (key->need_src_offset)
1319 src_pos = nir_iadd(&b, src_pos, nir_load_var(&b, v.v_src_offset));
1320
1321 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
1322 *
1323 * In other words: X, Y, and S now contain values which, when passed to
1324 * the texturing unit, will cause data to be read from the correct
1325 * memory location. So we can fetch the texel now.
1326 */
1327 if (key->src_samples == 1) {
1328 color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
1329 } else {
1330 nir_ssa_def *mcs = NULL;
1331 if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
1332 mcs = blorp_blit_txf_ms_mcs(&b, &v, src_pos);
1333
1334 color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
1335 }
1336 }
1337 }
1338
1339 if (!isl_swizzle_is_identity(key->src_swizzle)) {
1340 color = swizzle_color(&b, color, key->src_swizzle,
1341 key->texture_data_type);
1342 }
1343
1344 if (!isl_swizzle_is_identity(key->dst_swizzle)) {
1345 color = swizzle_color(&b, color, isl_swizzle_invert(key->dst_swizzle),
1346 nir_type_int);
1347 }
1348
1349 if (key->dst_bpc != key->src_bpc) {
1350 assert(isl_swizzle_is_identity(key->src_swizzle));
1351 assert(isl_swizzle_is_identity(key->dst_swizzle));
1352 color = bit_cast_color(&b, color, key);
1353 }
1354
1355 if (key->dst_format)
1356 color = convert_color(&b, color, key);
1357
1358 if (key->dst_rgb) {
1359 /* The destination image is bound as a red texture three times as wide
1360 * as the actual image. Our shader is effectively running one color
1361 * component at a time. We need to pick off the appropriate component
1362 * from the source color and write that to destination red.
1363 */
1364 assert(dst_pos->num_components == 2);
1365
1366 nir_ssa_def *color_component =
1367 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
1368 nir_channel(&b, color, 0),
1369 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
1370 nir_channel(&b, color, 1),
1371 nir_channel(&b, color, 2)));
1372
1373 nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
1374 color = nir_vec4(&b, color_component, u, u, u);
1375 }
1376
1377 nir_store_var(&b, v.color_out, color, 0xf);
1378
1379 return b.shader;
1380 }
1381
1382 static bool
1383 brw_blorp_get_blit_kernel(struct blorp_context *blorp,
1384 struct blorp_params *params,
1385 const struct brw_blorp_blit_prog_key *prog_key)
1386 {
1387 if (blorp->lookup_shader(blorp, prog_key, sizeof(*prog_key),
1388 &params->wm_prog_kernel, &params->wm_prog_data))
1389 return true;
1390
1391 void *mem_ctx = ralloc_context(NULL);
1392
1393 const unsigned *program;
1394 struct brw_wm_prog_data prog_data;
1395
1396 nir_shader *nir = brw_blorp_build_nir_shader(blorp, mem_ctx, prog_key);
1397 nir->info.name = ralloc_strdup(nir, "BLORP-blit");
1398
1399 struct brw_wm_prog_key wm_key;
1400 brw_blorp_init_wm_prog_key(&wm_key);
1401 wm_key.tex.compressed_multisample_layout_mask =
1402 prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
1403 wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
1404 wm_key.multisample_fbo = prog_key->rt_samples > 1;
1405
1406 program = blorp_compile_fs(blorp, mem_ctx, nir, &wm_key, false,
1407 &prog_data);
1408
1409 bool result =
1410 blorp->upload_shader(blorp, prog_key, sizeof(*prog_key),
1411 program, prog_data.base.program_size,
1412 &prog_data.base, sizeof(prog_data),
1413 &params->wm_prog_kernel, &params->wm_prog_data);
1414
1415 ralloc_free(mem_ctx);
1416 return result;
1417 }
1418
1419 static void
1420 brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
1421 GLfloat src0, GLfloat src1,
1422 GLfloat dst0, GLfloat dst1,
1423 bool mirror)
1424 {
1425 double scale = (double)(src1 - src0) / (double)(dst1 - dst0);
1426 if (!mirror) {
1427 /* When not mirroring a coordinate (say, X), we need:
1428 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1429 * Therefore:
1430 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1431 *
1432 * blorp program uses "round toward zero" to convert the
1433 * transformed floating point coordinates to integer coordinates,
1434 * whereas the behaviour we actually want is "round to nearest",
1435 * so 0.5 provides the necessary correction.
1436 */
1437 xform->multiplier = scale;
1438 xform->offset = src0 + (-(double)dst0 + 0.5) * scale;
1439 } else {
1440 /* When mirroring X we need:
1441 * src_x - src_x0 = dst_x1 - dst_x - 0.5
1442 * Therefore:
1443 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1444 */
1445 xform->multiplier = -scale;
1446 xform->offset = src0 + ((double)dst1 - 0.5) * scale;
1447 }
1448 }
1449
1450 static inline void
1451 surf_get_intratile_offset_px(struct brw_blorp_surface_info *info,
1452 uint32_t *tile_x_px, uint32_t *tile_y_px)
1453 {
1454 if (info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1455 struct isl_extent2d px_size_sa =
1456 isl_get_interleaved_msaa_px_size_sa(info->surf.samples);
1457 assert(info->tile_x_sa % px_size_sa.width == 0);
1458 assert(info->tile_y_sa % px_size_sa.height == 0);
1459 *tile_x_px = info->tile_x_sa / px_size_sa.width;
1460 *tile_y_px = info->tile_y_sa / px_size_sa.height;
1461 } else {
1462 *tile_x_px = info->tile_x_sa;
1463 *tile_y_px = info->tile_y_sa;
1464 }
1465 }
1466
1467 void
1468 blorp_surf_convert_to_single_slice(const struct isl_device *isl_dev,
1469 struct brw_blorp_surface_info *info)
1470 {
1471 bool ok UNUSED;
1472
1473 /* Just bail if we have nothing to do. */
1474 if (info->surf.dim == ISL_SURF_DIM_2D &&
1475 info->view.base_level == 0 && info->view.base_array_layer == 0 &&
1476 info->surf.levels == 1 && info->surf.logical_level0_px.array_len == 1)
1477 return;
1478
1479 /* If this gets triggered then we've gotten here twice which. This
1480 * shouldn't happen thanks to the above early return.
1481 */
1482 assert(info->tile_x_sa == 0 && info->tile_y_sa == 0);
1483
1484 uint32_t layer = 0, z = 0;
1485 if (info->surf.dim == ISL_SURF_DIM_3D)
1486 z = info->view.base_array_layer + info->z_offset;
1487 else
1488 layer = info->view.base_array_layer;
1489
1490 uint32_t byte_offset;
1491 isl_surf_get_image_surf(isl_dev, &info->surf,
1492 info->view.base_level, layer, z,
1493 &info->surf,
1494 &byte_offset, &info->tile_x_sa, &info->tile_y_sa);
1495 info->addr.offset += byte_offset;
1496
1497 uint32_t tile_x_px, tile_y_px;
1498 surf_get_intratile_offset_px(info, &tile_x_px, &tile_y_px);
1499
1500 /* Instead of using the X/Y Offset fields in RENDER_SURFACE_STATE, we place
1501 * the image at the tile boundary and offset our sampling or rendering.
1502 * For this reason, we need to grow the image by the offset to ensure that
1503 * the hardware doesn't think we've gone past the edge.
1504 */
1505 info->surf.logical_level0_px.w += tile_x_px;
1506 info->surf.logical_level0_px.h += tile_y_px;
1507 info->surf.phys_level0_sa.w += info->tile_x_sa;
1508 info->surf.phys_level0_sa.h += info->tile_y_sa;
1509
1510 /* The view is also different now. */
1511 info->view.base_level = 0;
1512 info->view.levels = 1;
1513 info->view.base_array_layer = 0;
1514 info->view.array_len = 1;
1515 info->z_offset = 0;
1516 }
1517
1518 static void
1519 surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
1520 struct brw_blorp_surface_info *info)
1521 {
1522 assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1523
1524 /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1525 blorp_surf_convert_to_single_slice(isl_dev, info);
1526
1527 info->surf.logical_level0_px = info->surf.phys_level0_sa;
1528 info->surf.samples = 1;
1529 info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
1530 }
1531
1532 static void
1533 surf_retile_w_to_y(const struct isl_device *isl_dev,
1534 struct brw_blorp_surface_info *info)
1535 {
1536 assert(info->surf.tiling == ISL_TILING_W);
1537
1538 /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1539 blorp_surf_convert_to_single_slice(isl_dev, info);
1540
1541 /* On gen7+, we don't have interleaved multisampling for color render
1542 * targets so we have to fake it.
1543 *
1544 * TODO: Are we sure we don't also need to fake it on gen6?
1545 */
1546 if (isl_dev->info->gen > 6 &&
1547 info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1548 surf_fake_interleaved_msaa(isl_dev, info);
1549 }
1550
1551 if (isl_dev->info->gen == 6) {
1552 /* Gen6 stencil buffers have a very large alignment coming in from the
1553 * miptree. It's out-of-bounds for what the surface state can handle.
1554 * Since we have a single layer and level, it doesn't really matter as
1555 * long as we don't pass a bogus value into isl_surf_fill_state().
1556 */
1557 info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
1558 }
1559
1560 /* Now that we've converted everything to a simple 2-D surface with only
1561 * one miplevel, we can go about retiling it.
1562 */
1563 const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
1564 info->surf.tiling = ISL_TILING_Y0;
1565 info->surf.logical_level0_px.width =
1566 ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
1567 info->surf.logical_level0_px.height =
1568 ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
1569 info->tile_x_sa *= 2;
1570 info->tile_y_sa /= 2;
1571 }
1572
1573 static bool
1574 can_shrink_surface(const struct brw_blorp_surface_info *surf)
1575 {
1576 /* The current code doesn't support offsets into the aux buffers. This
1577 * should be possible, but we need to make sure the offset is page
1578 * aligned for both the surface and the aux buffer surface. Generally
1579 * this mean using the page aligned offset for the aux buffer.
1580 *
1581 * Currently the cases where we must split the blit are limited to cases
1582 * where we don't have a aux buffer.
1583 */
1584 if (surf->aux_addr.buffer != NULL)
1585 return false;
1586
1587 /* We can't support splitting the blit for gen <= 7, because the qpitch
1588 * size is calculated by the hardware based on the surface height for
1589 * gen <= 7. In gen >= 8, the qpitch is controlled by the driver.
1590 */
1591 if (surf->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)
1592 return false;
1593
1594 return true;
1595 }
1596
1597 static bool
1598 can_shrink_surfaces(const struct blorp_params *params)
1599 {
1600 return
1601 can_shrink_surface(&params->src) &&
1602 can_shrink_surface(&params->dst);
1603 }
1604
1605 static unsigned
1606 get_max_surface_size(const struct gen_device_info *devinfo,
1607 const struct blorp_params *params)
1608 {
1609 const unsigned max = devinfo->gen >= 7 ? 16384 : 8192;
1610 if (split_blorp_blit_debug && can_shrink_surfaces(params))
1611 return max >> 4; /* A smaller restriction when debug is enabled */
1612 else
1613 return max;
1614 }
1615
1616 struct blt_axis {
1617 double src0, src1, dst0, dst1;
1618 bool mirror;
1619 };
1620
1621 struct blt_coords {
1622 struct blt_axis x, y;
1623 };
1624
1625 static void
1626 surf_fake_rgb_with_red(const struct isl_device *isl_dev,
1627 struct brw_blorp_surface_info *info)
1628 {
1629 blorp_surf_convert_to_single_slice(isl_dev, info);
1630
1631 info->surf.logical_level0_px.width *= 3;
1632 info->surf.phys_level0_sa.width *= 3;
1633 info->tile_x_sa *= 3;
1634
1635 enum isl_format red_format;
1636 switch (info->view.format) {
1637 case ISL_FORMAT_R8G8B8_UNORM:
1638 red_format = ISL_FORMAT_R8_UNORM;
1639 break;
1640 case ISL_FORMAT_R8G8B8_UINT:
1641 red_format = ISL_FORMAT_R8_UINT;
1642 break;
1643 case ISL_FORMAT_R16G16B16_UNORM:
1644 red_format = ISL_FORMAT_R16_UNORM;
1645 break;
1646 case ISL_FORMAT_R16G16B16_UINT:
1647 red_format = ISL_FORMAT_R16_UINT;
1648 break;
1649 case ISL_FORMAT_R32G32B32_UINT:
1650 red_format = ISL_FORMAT_R32_UINT;
1651 break;
1652 default:
1653 unreachable("Invalid RGB copy destination format");
1654 }
1655 assert(isl_format_get_layout(red_format)->channels.r.type ==
1656 isl_format_get_layout(info->view.format)->channels.r.type);
1657 assert(isl_format_get_layout(red_format)->channels.r.bits ==
1658 isl_format_get_layout(info->view.format)->channels.r.bits);
1659
1660 info->surf.format = info->view.format = red_format;
1661 }
1662
1663 enum blit_shrink_status {
1664 BLIT_NO_SHRINK = 0,
1665 BLIT_WIDTH_SHRINK = 1,
1666 BLIT_HEIGHT_SHRINK = 2,
1667 };
1668
1669 /* Try to blit. If the surface parameters exceed the size allowed by hardware,
1670 * then enum blit_shrink_status will be returned. If BLIT_NO_SHRINK is
1671 * returned, then the blit was successful.
1672 */
1673 static enum blit_shrink_status
1674 try_blorp_blit(struct blorp_batch *batch,
1675 struct blorp_params *params,
1676 struct brw_blorp_blit_prog_key *wm_prog_key,
1677 struct blt_coords *coords)
1678 {
1679 const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
1680
1681 if (isl_format_has_sint_channel(params->src.view.format)) {
1682 wm_prog_key->texture_data_type = nir_type_int;
1683 } else if (isl_format_has_uint_channel(params->src.view.format)) {
1684 wm_prog_key->texture_data_type = nir_type_uint;
1685 } else {
1686 wm_prog_key->texture_data_type = nir_type_float;
1687 }
1688
1689 /* src_samples and dst_samples are the true sample counts */
1690 wm_prog_key->src_samples = params->src.surf.samples;
1691 wm_prog_key->dst_samples = params->dst.surf.samples;
1692
1693 wm_prog_key->tex_aux_usage = params->src.aux_usage;
1694
1695 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1696 * dst.
1697 */
1698 wm_prog_key->src_layout = params->src.surf.msaa_layout;
1699 wm_prog_key->dst_layout = params->dst.surf.msaa_layout;
1700
1701 /* Round floating point values to nearest integer to avoid "off by one texel"
1702 * kind of errors when blitting.
1703 */
1704 params->x0 = params->wm_inputs.discard_rect.x0 = round(coords->x.dst0);
1705 params->y0 = params->wm_inputs.discard_rect.y0 = round(coords->y.dst0);
1706 params->x1 = params->wm_inputs.discard_rect.x1 = round(coords->x.dst1);
1707 params->y1 = params->wm_inputs.discard_rect.y1 = round(coords->y.dst1);
1708
1709 brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[0],
1710 coords->x.src0, coords->x.src1,
1711 coords->x.dst0, coords->x.dst1,
1712 coords->x.mirror);
1713 brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[1],
1714 coords->y.src0, coords->y.src1,
1715 coords->y.dst0, coords->y.dst1,
1716 coords->y.mirror);
1717
1718
1719 if (devinfo->gen == 4) {
1720 /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
1721 * Convert them to a single slice on gen4.
1722 */
1723 if (params->dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
1724 blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->dst);
1725 wm_prog_key->need_dst_offset = true;
1726 }
1727
1728 if (params->src.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
1729 blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->src);
1730 wm_prog_key->need_src_offset = true;
1731 }
1732 }
1733
1734 if (devinfo->gen > 6 &&
1735 params->dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1736 assert(params->dst.surf.samples > 1);
1737
1738 /* We must expand the rectangle we send through the rendering pipeline,
1739 * to account for the fact that we are mapping the destination region as
1740 * single-sampled when it is in fact multisampled. We must also align
1741 * it to a multiple of the multisampling pattern, because the
1742 * differences between multisampled and single-sampled surface formats
1743 * will mean that pixels are scrambled within the multisampling pattern.
1744 * TODO: what if this makes the coordinates too large?
1745 *
1746 * Note: this only works if the destination surface uses the IMS layout.
1747 * If it's UMS, then we have no choice but to set up the rendering
1748 * pipeline as multisampled.
1749 */
1750 struct isl_extent2d px_size_sa =
1751 isl_get_interleaved_msaa_px_size_sa(params->dst.surf.samples);
1752 params->x0 = ROUND_DOWN_TO(params->x0, 2) * px_size_sa.width;
1753 params->y0 = ROUND_DOWN_TO(params->y0, 2) * px_size_sa.height;
1754 params->x1 = ALIGN(params->x1, 2) * px_size_sa.width;
1755 params->y1 = ALIGN(params->y1, 2) * px_size_sa.height;
1756
1757 surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params->dst);
1758
1759 wm_prog_key->use_kill = true;
1760 wm_prog_key->need_dst_offset = true;
1761 }
1762
1763 if (params->dst.surf.tiling == ISL_TILING_W) {
1764 /* We must modify the rectangle we send through the rendering pipeline
1765 * (and the size and x/y offset of the destination surface), to account
1766 * for the fact that we are mapping it as Y-tiled when it is in fact
1767 * W-tiled.
1768 *
1769 * Both Y tiling and W tiling can be understood as organizations of
1770 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
1771 * is different, but the layout of the 32-byte sub-tiles within the 4k
1772 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
1773 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
1774 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
1775 *
1776 * Therefore, to account for the layout differences within the 32-byte
1777 * sub-tiles, we must expand the rectangle so the X coordinates of its
1778 * edges are multiples of 8 (the W sub-tile width), and its Y
1779 * coordinates of its edges are multiples of 4 (the W sub-tile height).
1780 * Then we need to scale the X and Y coordinates of the rectangle to
1781 * account for the differences in aspect ratio between the Y and W
1782 * sub-tiles. We need to modify the layer width and height similarly.
1783 *
1784 * A correction needs to be applied when MSAA is in use: since
1785 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
1786 * we need to align the Y coordinates to multiples of 8, so that when
1787 * they are divided by two they are still multiples of 4.
1788 *
1789 * Note: Since the x/y offset of the surface will be applied using the
1790 * SURFACE_STATE command packet, it will be invisible to the swizzling
1791 * code in the shader; therefore it needs to be in a multiple of the
1792 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
1793 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
1794 * buffer), and the miplevel alignment used for stencil buffers is 8
1795 * pixels horizontally and either 4 or 8 pixels vertically (see
1796 * intel_horizontal_texture_alignment_unit() and
1797 * intel_vertical_texture_alignment_unit()).
1798 *
1799 * Note: Also, since the SURFACE_STATE command packet can only apply
1800 * offsets that are multiples of 4 pixels horizontally and 2 pixels
1801 * vertically, it is important that the offsets will be multiples of
1802 * these sizes after they are converted into Y-tiled coordinates.
1803 * Fortunately they will be, since we know from above that the offsets
1804 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
1805 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
1806 *
1807 * TODO: what if this makes the coordinates (or the texture size) too
1808 * large?
1809 */
1810 const unsigned x_align = 8;
1811 const unsigned y_align = params->dst.surf.samples != 0 ? 8 : 4;
1812 params->x0 = ROUND_DOWN_TO(params->x0, x_align) * 2;
1813 params->y0 = ROUND_DOWN_TO(params->y0, y_align) / 2;
1814 params->x1 = ALIGN(params->x1, x_align) * 2;
1815 params->y1 = ALIGN(params->y1, y_align) / 2;
1816
1817 /* Retile the surface to Y-tiled */
1818 surf_retile_w_to_y(batch->blorp->isl_dev, &params->dst);
1819
1820 wm_prog_key->dst_tiled_w = true;
1821 wm_prog_key->use_kill = true;
1822 wm_prog_key->need_dst_offset = true;
1823
1824 if (params->dst.surf.samples > 1) {
1825 /* If the destination surface is a W-tiled multisampled stencil
1826 * buffer that we're mapping as Y tiled, then we need to arrange for
1827 * the WM program to run once per sample rather than once per pixel,
1828 * because the memory layout of related samples doesn't match between
1829 * W and Y tiling.
1830 */
1831 wm_prog_key->persample_msaa_dispatch = true;
1832 }
1833 }
1834
1835 if (devinfo->gen < 8 && params->src.surf.tiling == ISL_TILING_W) {
1836 /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
1837 * Broadwell adds support for sampling from stencil.
1838 *
1839 * See the comments above concerning x/y offset alignment for the
1840 * destination surface.
1841 *
1842 * TODO: what if this makes the texture size too large?
1843 */
1844 surf_retile_w_to_y(batch->blorp->isl_dev, &params->src);
1845
1846 wm_prog_key->src_tiled_w = true;
1847 wm_prog_key->need_src_offset = true;
1848 }
1849
1850 /* tex_samples and rt_samples are the sample counts that are set up in
1851 * SURFACE_STATE.
1852 */
1853 wm_prog_key->tex_samples = params->src.surf.samples;
1854 wm_prog_key->rt_samples = params->dst.surf.samples;
1855
1856 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1857 * use to access the source and destination surfaces.
1858 */
1859 wm_prog_key->tex_layout = params->src.surf.msaa_layout;
1860 wm_prog_key->rt_layout = params->dst.surf.msaa_layout;
1861
1862 if (params->src.surf.samples > 0 && params->dst.surf.samples > 1) {
1863 /* We are blitting from a multisample buffer to a multisample buffer, so
1864 * we must preserve samples within a pixel. This means we have to
1865 * arrange for the WM program to run once per sample rather than once
1866 * per pixel.
1867 */
1868 wm_prog_key->persample_msaa_dispatch = true;
1869 }
1870
1871 params->num_samples = params->dst.surf.samples;
1872
1873 if ((wm_prog_key->bilinear_filter ||
1874 (wm_prog_key->blend && !wm_prog_key->blit_scaled)) &&
1875 batch->blorp->isl_dev->info->gen <= 6) {
1876 /* Gen4-5 don't support non-normalized texture coordinates */
1877 wm_prog_key->src_coords_normalized = true;
1878 params->wm_inputs.src_inv_size[0] =
1879 1.0f / minify(params->src.surf.logical_level0_px.width,
1880 params->src.view.base_level);
1881 params->wm_inputs.src_inv_size[1] =
1882 1.0f / minify(params->src.surf.logical_level0_px.height,
1883 params->src.view.base_level);
1884 }
1885
1886 if (isl_format_get_layout(params->dst.view.format)->bpb % 3 == 0) {
1887 /* We can't render to RGB formats natively because they aren't a
1888 * power-of-two size. Instead, we fake them by using a red format
1889 * with the same channel type and size and emitting shader code to
1890 * only write one channel at a time.
1891 */
1892 params->x0 *= 3;
1893 params->x1 *= 3;
1894
1895 surf_fake_rgb_with_red(batch->blorp->isl_dev, &params->dst);
1896
1897 wm_prog_key->dst_rgb = true;
1898 wm_prog_key->need_dst_offset = true;
1899 } else if (isl_format_is_rgbx(params->dst.view.format)) {
1900 /* We can handle RGBX formats easily enough by treating them as RGBA */
1901 params->dst.view.format =
1902 isl_format_rgbx_to_rgba(params->dst.view.format);
1903 } else if (params->dst.view.format == ISL_FORMAT_R24_UNORM_X8_TYPELESS) {
1904 wm_prog_key->dst_format = params->dst.view.format;
1905 params->dst.view.format = ISL_FORMAT_R32_UNORM;
1906 } else if (params->dst.view.format == ISL_FORMAT_A4B4G4R4_UNORM) {
1907 params->dst.view.swizzle =
1908 isl_swizzle_compose(params->dst.view.swizzle,
1909 ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE));
1910 params->dst.view.format = ISL_FORMAT_B4G4R4A4_UNORM;
1911 } else if (params->dst.view.format == ISL_FORMAT_L8_UNORM_SRGB) {
1912 wm_prog_key->dst_format = params->dst.view.format;
1913 params->dst.view.format = ISL_FORMAT_R8_UNORM;
1914 } else if (params->dst.view.format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
1915 wm_prog_key->dst_format = params->dst.view.format;
1916 params->dst.view.format = ISL_FORMAT_R32_UINT;
1917 }
1918
1919 if (devinfo->gen <= 7 && !devinfo->is_haswell &&
1920 !isl_swizzle_is_identity(params->src.view.swizzle)) {
1921 wm_prog_key->src_swizzle = params->src.view.swizzle;
1922 params->src.view.swizzle = ISL_SWIZZLE_IDENTITY;
1923 } else {
1924 wm_prog_key->src_swizzle = ISL_SWIZZLE_IDENTITY;
1925 }
1926
1927 if (!isl_swizzle_supports_rendering(devinfo, params->dst.view.swizzle)) {
1928 wm_prog_key->dst_swizzle = params->dst.view.swizzle;
1929 params->dst.view.swizzle = ISL_SWIZZLE_IDENTITY;
1930 } else {
1931 wm_prog_key->dst_swizzle = ISL_SWIZZLE_IDENTITY;
1932 }
1933
1934 if (params->src.tile_x_sa || params->src.tile_y_sa) {
1935 assert(wm_prog_key->need_src_offset);
1936 surf_get_intratile_offset_px(&params->src,
1937 &params->wm_inputs.src_offset.x,
1938 &params->wm_inputs.src_offset.y);
1939 }
1940
1941 if (params->dst.tile_x_sa || params->dst.tile_y_sa) {
1942 assert(wm_prog_key->need_dst_offset);
1943 surf_get_intratile_offset_px(&params->dst,
1944 &params->wm_inputs.dst_offset.x,
1945 &params->wm_inputs.dst_offset.y);
1946 params->x0 += params->wm_inputs.dst_offset.x;
1947 params->y0 += params->wm_inputs.dst_offset.y;
1948 params->x1 += params->wm_inputs.dst_offset.x;
1949 params->y1 += params->wm_inputs.dst_offset.y;
1950 }
1951
1952 /* For some texture types, we need to pass the layer through the sampler. */
1953 params->wm_inputs.src_z = params->src.z_offset;
1954
1955 if (!brw_blorp_get_blit_kernel(batch->blorp, params, wm_prog_key))
1956 return 0;
1957
1958 if (!blorp_ensure_sf_program(batch->blorp, params))
1959 return 0;
1960
1961 unsigned result = 0;
1962 unsigned max_surface_size = get_max_surface_size(devinfo, params);
1963 if (params->src.surf.logical_level0_px.width > max_surface_size ||
1964 params->dst.surf.logical_level0_px.width > max_surface_size)
1965 result |= BLIT_WIDTH_SHRINK;
1966 if (params->src.surf.logical_level0_px.height > max_surface_size ||
1967 params->dst.surf.logical_level0_px.height > max_surface_size)
1968 result |= BLIT_HEIGHT_SHRINK;
1969
1970 if (result == 0) {
1971 batch->blorp->exec(batch, params);
1972 }
1973
1974 return result;
1975 }
1976
1977 /* Adjust split blit source coordinates for the current destination
1978 * coordinates.
1979 */
1980 static void
1981 adjust_split_source_coords(const struct blt_axis *orig,
1982 struct blt_axis *split_coords,
1983 double scale)
1984 {
1985 /* When scale is greater than 0, then we are growing from the start, so
1986 * src0 uses delta0, and src1 uses delta1. When scale is less than 0, the
1987 * source range shrinks from the end. In that case src0 is adjusted by
1988 * delta1, and src1 is adjusted by delta0.
1989 */
1990 double delta0 = scale * (split_coords->dst0 - orig->dst0);
1991 double delta1 = scale * (split_coords->dst1 - orig->dst1);
1992 split_coords->src0 = orig->src0 + (scale >= 0.0 ? delta0 : delta1);
1993 split_coords->src1 = orig->src1 + (scale >= 0.0 ? delta1 : delta0);
1994 }
1995
1996 static struct isl_extent2d
1997 get_px_size_sa(const struct isl_surf *surf)
1998 {
1999 static const struct isl_extent2d one_to_one = { .w = 1, .h = 1 };
2000
2001 if (surf->msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED)
2002 return one_to_one;
2003 else
2004 return isl_get_interleaved_msaa_px_size_sa(surf->samples);
2005 }
2006
2007 static void
2008 shrink_surface_params(const struct isl_device *dev,
2009 struct brw_blorp_surface_info *info,
2010 double *x0, double *x1, double *y0, double *y1)
2011 {
2012 uint32_t byte_offset, x_offset_sa, y_offset_sa, size;
2013 struct isl_extent2d px_size_sa;
2014 int adjust;
2015
2016 blorp_surf_convert_to_single_slice(dev, info);
2017
2018 px_size_sa = get_px_size_sa(&info->surf);
2019
2020 /* Because this gets called after we lower compressed images, the tile
2021 * offsets may be non-zero and we need to incorporate them in our
2022 * calculations.
2023 */
2024 x_offset_sa = (uint32_t)*x0 * px_size_sa.w + info->tile_x_sa;
2025 y_offset_sa = (uint32_t)*y0 * px_size_sa.h + info->tile_y_sa;
2026 isl_tiling_get_intratile_offset_sa(info->surf.tiling,
2027 info->surf.format, info->surf.row_pitch,
2028 x_offset_sa, y_offset_sa,
2029 &byte_offset,
2030 &info->tile_x_sa, &info->tile_y_sa);
2031
2032 info->addr.offset += byte_offset;
2033
2034 adjust = (int)info->tile_x_sa / px_size_sa.w - (int)*x0;
2035 *x0 += adjust;
2036 *x1 += adjust;
2037 info->tile_x_sa = 0;
2038
2039 adjust = (int)info->tile_y_sa / px_size_sa.h - (int)*y0;
2040 *y0 += adjust;
2041 *y1 += adjust;
2042 info->tile_y_sa = 0;
2043
2044 size = MIN2((uint32_t)ceil(*x1), info->surf.logical_level0_px.width);
2045 info->surf.logical_level0_px.width = size;
2046 info->surf.phys_level0_sa.width = size * px_size_sa.w;
2047
2048 size = MIN2((uint32_t)ceil(*y1), info->surf.logical_level0_px.height);
2049 info->surf.logical_level0_px.height = size;
2050 info->surf.phys_level0_sa.height = size * px_size_sa.h;
2051 }
2052
2053 static void
2054 shrink_surfaces(const struct isl_device *dev,
2055 struct blorp_params *params,
2056 struct brw_blorp_blit_prog_key *wm_prog_key,
2057 struct blt_coords *coords)
2058 {
2059 /* Shrink source surface */
2060 shrink_surface_params(dev, &params->src, &coords->x.src0, &coords->x.src1,
2061 &coords->y.src0, &coords->y.src1);
2062 wm_prog_key->need_src_offset = false;
2063
2064 /* Shrink destination surface */
2065 shrink_surface_params(dev, &params->dst, &coords->x.dst0, &coords->x.dst1,
2066 &coords->y.dst0, &coords->y.dst1);
2067 wm_prog_key->need_dst_offset = false;
2068 }
2069
2070 static void
2071 do_blorp_blit(struct blorp_batch *batch,
2072 const struct blorp_params *orig_params,
2073 struct brw_blorp_blit_prog_key *wm_prog_key,
2074 const struct blt_coords *orig)
2075 {
2076 struct blorp_params params;
2077 struct blt_coords blit_coords;
2078 struct blt_coords split_coords = *orig;
2079 double w = orig->x.dst1 - orig->x.dst0;
2080 double h = orig->y.dst1 - orig->y.dst0;
2081 double x_scale = (orig->x.src1 - orig->x.src0) / w;
2082 double y_scale = (orig->y.src1 - orig->y.src0) / h;
2083 if (orig->x.mirror)
2084 x_scale = -x_scale;
2085 if (orig->y.mirror)
2086 y_scale = -y_scale;
2087
2088 bool x_done, y_done;
2089 bool shrink = split_blorp_blit_debug && can_shrink_surfaces(orig_params);
2090 do {
2091 params = *orig_params;
2092 blit_coords = split_coords;
2093 if (shrink)
2094 shrink_surfaces(batch->blorp->isl_dev, &params, wm_prog_key,
2095 &blit_coords);
2096 enum blit_shrink_status result =
2097 try_blorp_blit(batch, &params, wm_prog_key, &blit_coords);
2098
2099 if (result & BLIT_WIDTH_SHRINK) {
2100 w /= 2.0;
2101 assert(w >= 1.0);
2102 split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
2103 adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
2104 }
2105 if (result & BLIT_HEIGHT_SHRINK) {
2106 h /= 2.0;
2107 assert(h >= 1.0);
2108 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2109 adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
2110 }
2111
2112 if (result != 0) {
2113 assert(can_shrink_surfaces(orig_params));
2114 shrink = true;
2115 continue;
2116 }
2117
2118 y_done = (orig->y.dst1 - split_coords.y.dst1 < 0.5);
2119 x_done = y_done && (orig->x.dst1 - split_coords.x.dst1 < 0.5);
2120 if (x_done) {
2121 break;
2122 } else if (y_done) {
2123 split_coords.x.dst0 += w;
2124 split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
2125 split_coords.y.dst0 = orig->y.dst0;
2126 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2127 adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
2128 } else {
2129 split_coords.y.dst0 += h;
2130 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2131 adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
2132 }
2133 } while (true);
2134 }
2135
2136 void
2137 blorp_blit(struct blorp_batch *batch,
2138 const struct blorp_surf *src_surf,
2139 unsigned src_level, unsigned src_layer,
2140 enum isl_format src_format, struct isl_swizzle src_swizzle,
2141 const struct blorp_surf *dst_surf,
2142 unsigned dst_level, unsigned dst_layer,
2143 enum isl_format dst_format, struct isl_swizzle dst_swizzle,
2144 float src_x0, float src_y0,
2145 float src_x1, float src_y1,
2146 float dst_x0, float dst_y0,
2147 float dst_x1, float dst_y1,
2148 GLenum filter, bool mirror_x, bool mirror_y)
2149 {
2150 struct blorp_params params;
2151 blorp_params_init(&params);
2152
2153 /* We cannot handle combined depth and stencil. */
2154 if (src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
2155 assert(src_surf->surf->format == ISL_FORMAT_R8_UINT);
2156 if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
2157 assert(dst_surf->surf->format == ISL_FORMAT_R8_UINT);
2158
2159 if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT) {
2160 assert(src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT);
2161 /* Prior to Broadwell, we can't render to R8_UINT */
2162 if (batch->blorp->isl_dev->info->gen < 8) {
2163 src_format = ISL_FORMAT_R8_UNORM;
2164 dst_format = ISL_FORMAT_R8_UNORM;
2165 }
2166 }
2167
2168 brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2169 src_layer, src_format, false);
2170 brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2171 dst_layer, dst_format, true);
2172
2173 params.src.view.swizzle = src_swizzle;
2174 params.dst.view.swizzle = dst_swizzle;
2175
2176 struct brw_blorp_blit_prog_key wm_prog_key = {
2177 .shader_type = BLORP_SHADER_TYPE_BLIT
2178 };
2179
2180 /* Scaled blitting or not. */
2181 wm_prog_key.blit_scaled =
2182 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
2183 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
2184
2185 /* Scaling factors used for bilinear filtering in multisample scaled
2186 * blits.
2187 */
2188 if (params.src.surf.samples == 16)
2189 wm_prog_key.x_scale = 4.0f;
2190 else
2191 wm_prog_key.x_scale = 2.0f;
2192 wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
2193
2194 if (filter == GL_LINEAR &&
2195 params.src.surf.samples <= 1 && params.dst.surf.samples <= 1) {
2196 wm_prog_key.bilinear_filter = true;
2197 }
2198
2199 if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
2200 (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
2201 !isl_format_has_int_channel(params.src.surf.format) &&
2202 params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
2203 /* We are downsampling a non-integer color buffer, so blend.
2204 *
2205 * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
2206 *
2207 * "If the source formats are integer types or stencil values, a
2208 * single sample's value is selected for each pixel."
2209 *
2210 * This implies we should not blend in that case.
2211 */
2212 wm_prog_key.blend = true;
2213 }
2214
2215 params.wm_inputs.rect_grid.x1 =
2216 minify(params.src.surf.logical_level0_px.width, src_level) *
2217 wm_prog_key.x_scale - 1.0f;
2218 params.wm_inputs.rect_grid.y1 =
2219 minify(params.src.surf.logical_level0_px.height, src_level) *
2220 wm_prog_key.y_scale - 1.0f;
2221
2222 struct blt_coords coords = {
2223 .x = {
2224 .src0 = src_x0,
2225 .src1 = src_x1,
2226 .dst0 = dst_x0,
2227 .dst1 = dst_x1,
2228 .mirror = mirror_x
2229 },
2230 .y = {
2231 .src0 = src_y0,
2232 .src1 = src_y1,
2233 .dst0 = dst_y0,
2234 .dst1 = dst_y1,
2235 .mirror = mirror_y
2236 }
2237 };
2238
2239 do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2240 }
2241
2242 static enum isl_format
2243 get_copy_format_for_bpb(const struct isl_device *isl_dev, unsigned bpb)
2244 {
2245 /* The choice of UNORM and UINT formats is very intentional here. Most
2246 * of the time, we want to use a UINT format to avoid any rounding error
2247 * in the blit. For stencil blits, R8_UINT is required by the hardware.
2248 * (It's the only format allowed in conjunction with W-tiling.) Also we
2249 * intentionally use the 4-channel formats whenever we can. This is so
2250 * that, when we do a RGB <-> RGBX copy, the two formats will line up
2251 * even though one of them is 3/4 the size of the other. The choice of
2252 * UNORM vs. UINT is also very intentional because we don't have 8 or
2253 * 16-bit RGB UINT formats until Sky Lake so we have to use UNORM there.
2254 * Fortunately, the only time we should ever use two different formats in
2255 * the table below is for RGB -> RGBA blits and so we will never have any
2256 * UNORM/UINT mismatch.
2257 */
2258 if (ISL_DEV_GEN(isl_dev) >= 9) {
2259 switch (bpb) {
2260 case 8: return ISL_FORMAT_R8_UINT;
2261 case 16: return ISL_FORMAT_R8G8_UINT;
2262 case 24: return ISL_FORMAT_R8G8B8_UINT;
2263 case 32: return ISL_FORMAT_R8G8B8A8_UINT;
2264 case 48: return ISL_FORMAT_R16G16B16_UINT;
2265 case 64: return ISL_FORMAT_R16G16B16A16_UINT;
2266 case 96: return ISL_FORMAT_R32G32B32_UINT;
2267 case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2268 default:
2269 unreachable("Unknown format bpb");
2270 }
2271 } else {
2272 switch (bpb) {
2273 case 8: return ISL_FORMAT_R8_UINT;
2274 case 16: return ISL_FORMAT_R8G8_UINT;
2275 case 24: return ISL_FORMAT_R8G8B8_UNORM;
2276 case 32: return ISL_FORMAT_R8G8B8A8_UNORM;
2277 case 48: return ISL_FORMAT_R16G16B16_UNORM;
2278 case 64: return ISL_FORMAT_R16G16B16A16_UNORM;
2279 case 96: return ISL_FORMAT_R32G32B32_UINT;
2280 case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2281 default:
2282 unreachable("Unknown format bpb");
2283 }
2284 }
2285 }
2286
2287 /** Returns a UINT format that is CCS-compatible with the given format
2288 *
2289 * The PRM's say absolutely nothing about how render compression works. The
2290 * only thing they provide is a list of formats on which it is and is not
2291 * supported. Empirical testing indicates that the compression is only based
2292 * on the bit-layout of the format and the channel encoding doesn't matter.
2293 * So, while texture views don't work in general, you can create a view as
2294 * long as the bit-layout of the formats are the same.
2295 *
2296 * Fortunately, for every render compression capable format, the UINT format
2297 * with the same bit layout also supports render compression. This means that
2298 * we only need to handle UINT formats for copy operations. In order to do
2299 * copies between formats with different bit layouts, we attach both with a
2300 * UINT format and use bit_cast_color() to generate code to do the bit-cast
2301 * operation between the two bit layouts.
2302 */
2303 static enum isl_format
2304 get_ccs_compatible_uint_format(const struct isl_format_layout *fmtl)
2305 {
2306 switch (fmtl->format) {
2307 case ISL_FORMAT_R32G32B32A32_FLOAT:
2308 case ISL_FORMAT_R32G32B32A32_SINT:
2309 case ISL_FORMAT_R32G32B32A32_UINT:
2310 case ISL_FORMAT_R32G32B32A32_UNORM:
2311 case ISL_FORMAT_R32G32B32A32_SNORM:
2312 case ISL_FORMAT_R32G32B32X32_FLOAT:
2313 return ISL_FORMAT_R32G32B32A32_UINT;
2314
2315 case ISL_FORMAT_R16G16B16A16_UNORM:
2316 case ISL_FORMAT_R16G16B16A16_SNORM:
2317 case ISL_FORMAT_R16G16B16A16_SINT:
2318 case ISL_FORMAT_R16G16B16A16_UINT:
2319 case ISL_FORMAT_R16G16B16A16_FLOAT:
2320 case ISL_FORMAT_R16G16B16X16_UNORM:
2321 case ISL_FORMAT_R16G16B16X16_FLOAT:
2322 return ISL_FORMAT_R16G16B16A16_UINT;
2323
2324 case ISL_FORMAT_R32G32_FLOAT:
2325 case ISL_FORMAT_R32G32_SINT:
2326 case ISL_FORMAT_R32G32_UINT:
2327 case ISL_FORMAT_R32G32_UNORM:
2328 case ISL_FORMAT_R32G32_SNORM:
2329 return ISL_FORMAT_R32G32_UINT;
2330
2331 case ISL_FORMAT_B8G8R8A8_UNORM:
2332 case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2333 case ISL_FORMAT_R8G8B8A8_UNORM:
2334 case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
2335 case ISL_FORMAT_R8G8B8A8_SNORM:
2336 case ISL_FORMAT_R8G8B8A8_SINT:
2337 case ISL_FORMAT_R8G8B8A8_UINT:
2338 case ISL_FORMAT_B8G8R8X8_UNORM:
2339 case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
2340 case ISL_FORMAT_R8G8B8X8_UNORM:
2341 case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
2342 return ISL_FORMAT_R8G8B8A8_UINT;
2343
2344 case ISL_FORMAT_R16G16_UNORM:
2345 case ISL_FORMAT_R16G16_SNORM:
2346 case ISL_FORMAT_R16G16_SINT:
2347 case ISL_FORMAT_R16G16_UINT:
2348 case ISL_FORMAT_R16G16_FLOAT:
2349 return ISL_FORMAT_R16G16_UINT;
2350
2351 case ISL_FORMAT_R32_SINT:
2352 case ISL_FORMAT_R32_UINT:
2353 case ISL_FORMAT_R32_FLOAT:
2354 case ISL_FORMAT_R32_UNORM:
2355 case ISL_FORMAT_R32_SNORM:
2356 return ISL_FORMAT_R32_UINT;
2357
2358 default:
2359 unreachable("Not a compressible format");
2360 }
2361 }
2362
2363 /* Takes an isl_color_value and returns a color value that is the original
2364 * color value only bit-casted to a UINT format. This value, together with
2365 * the format from get_ccs_compatible_uint_format, will yield the same bit
2366 * value as the original color and format.
2367 */
2368 static union isl_color_value
2369 bitcast_color_value_to_uint(union isl_color_value color,
2370 const struct isl_format_layout *fmtl)
2371 {
2372 /* All CCS formats have the same number of bits in each channel */
2373 const struct isl_channel_layout *chan = &fmtl->channels.r;
2374
2375 union isl_color_value bits;
2376 switch (chan->type) {
2377 case ISL_UINT:
2378 case ISL_SINT:
2379 /* Hardware will ignore the high bits so there's no need to cast */
2380 bits = color;
2381 break;
2382
2383 case ISL_UNORM:
2384 for (unsigned i = 0; i < 4; i++)
2385 bits.u32[i] = _mesa_float_to_unorm(color.f32[i], chan->bits);
2386 break;
2387
2388 case ISL_SNORM:
2389 for (unsigned i = 0; i < 4; i++)
2390 bits.i32[i] = _mesa_float_to_snorm(color.f32[i], chan->bits);
2391 break;
2392
2393 case ISL_SFLOAT:
2394 switch (chan->bits) {
2395 case 16:
2396 for (unsigned i = 0; i < 4; i++)
2397 bits.u32[i] = _mesa_float_to_half(color.f32[i]);
2398 break;
2399
2400 case 32:
2401 bits = color;
2402 break;
2403
2404 default:
2405 unreachable("Invalid float format size");
2406 }
2407 break;
2408
2409 default:
2410 unreachable("Invalid channel type");
2411 }
2412
2413 switch (fmtl->format) {
2414 case ISL_FORMAT_B8G8R8A8_UNORM:
2415 case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2416 case ISL_FORMAT_B8G8R8X8_UNORM:
2417 case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: {
2418 /* If it's a BGRA format, we need to swap blue and red */
2419 uint32_t tmp = bits.u32[0];
2420 bits.u32[0] = bits.u32[2];
2421 bits.u32[2] = tmp;
2422 break;
2423 }
2424
2425 default:
2426 break; /* Nothing to do */
2427 }
2428
2429 return bits;
2430 }
2431
2432 void
2433 blorp_surf_convert_to_uncompressed(const struct isl_device *isl_dev,
2434 struct brw_blorp_surface_info *info,
2435 uint32_t *x, uint32_t *y,
2436 uint32_t *width, uint32_t *height)
2437 {
2438 const struct isl_format_layout *fmtl =
2439 isl_format_get_layout(info->surf.format);
2440
2441 assert(fmtl->bw > 1 || fmtl->bh > 1);
2442
2443 /* This is a compressed surface. We need to convert it to a single
2444 * slice (because compressed layouts don't perfectly match uncompressed
2445 * ones with the same bpb) and divide x, y, width, and height by the
2446 * block size.
2447 */
2448 blorp_surf_convert_to_single_slice(isl_dev, info);
2449
2450 if (width && height) {
2451 #ifndef NDEBUG
2452 uint32_t right_edge_px = info->tile_x_sa + *x + *width;
2453 uint32_t bottom_edge_px = info->tile_y_sa + *y + *height;
2454 assert(*width % fmtl->bw == 0 ||
2455 right_edge_px == info->surf.logical_level0_px.width);
2456 assert(*height % fmtl->bh == 0 ||
2457 bottom_edge_px == info->surf.logical_level0_px.height);
2458 #endif
2459 *width = DIV_ROUND_UP(*width, fmtl->bw);
2460 *height = DIV_ROUND_UP(*height, fmtl->bh);
2461 }
2462
2463 if (x && y) {
2464 assert(*x % fmtl->bw == 0);
2465 assert(*y % fmtl->bh == 0);
2466 *x /= fmtl->bw;
2467 *y /= fmtl->bh;
2468 }
2469
2470 info->surf.logical_level0_px.width =
2471 DIV_ROUND_UP(info->surf.logical_level0_px.width, fmtl->bw);
2472 info->surf.logical_level0_px.height =
2473 DIV_ROUND_UP(info->surf.logical_level0_px.height, fmtl->bh);
2474
2475 assert(info->surf.phys_level0_sa.width % fmtl->bw == 0);
2476 assert(info->surf.phys_level0_sa.height % fmtl->bh == 0);
2477 info->surf.phys_level0_sa.width /= fmtl->bw;
2478 info->surf.phys_level0_sa.height /= fmtl->bh;
2479
2480 assert(info->tile_x_sa % fmtl->bw == 0);
2481 assert(info->tile_y_sa % fmtl->bh == 0);
2482 info->tile_x_sa /= fmtl->bw;
2483 info->tile_y_sa /= fmtl->bh;
2484
2485 /* It's now an uncompressed surface so we need an uncompressed format */
2486 info->surf.format = get_copy_format_for_bpb(isl_dev, fmtl->bpb);
2487 }
2488
2489 void
2490 blorp_copy(struct blorp_batch *batch,
2491 const struct blorp_surf *src_surf,
2492 unsigned src_level, unsigned src_layer,
2493 const struct blorp_surf *dst_surf,
2494 unsigned dst_level, unsigned dst_layer,
2495 uint32_t src_x, uint32_t src_y,
2496 uint32_t dst_x, uint32_t dst_y,
2497 uint32_t src_width, uint32_t src_height)
2498 {
2499 const struct isl_device *isl_dev = batch->blorp->isl_dev;
2500 struct blorp_params params;
2501
2502 if (src_width == 0 || src_height == 0)
2503 return;
2504
2505 blorp_params_init(&params);
2506 brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2507 src_layer, ISL_FORMAT_UNSUPPORTED, false);
2508 brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2509 dst_layer, ISL_FORMAT_UNSUPPORTED, true);
2510
2511 struct brw_blorp_blit_prog_key wm_prog_key = {
2512 .shader_type = BLORP_SHADER_TYPE_BLIT
2513 };
2514
2515 const struct isl_format_layout *src_fmtl =
2516 isl_format_get_layout(params.src.surf.format);
2517 const struct isl_format_layout *dst_fmtl =
2518 isl_format_get_layout(params.dst.surf.format);
2519
2520 assert(params.src.aux_usage == ISL_AUX_USAGE_NONE ||
2521 params.src.aux_usage == ISL_AUX_USAGE_MCS ||
2522 params.src.aux_usage == ISL_AUX_USAGE_CCS_E);
2523 assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE ||
2524 params.dst.aux_usage == ISL_AUX_USAGE_MCS ||
2525 params.dst.aux_usage == ISL_AUX_USAGE_CCS_E);
2526
2527 if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2528 params.dst.view.format = get_ccs_compatible_uint_format(dst_fmtl);
2529 if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2530 params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2531 } else if (src_fmtl->bpb == dst_fmtl->bpb) {
2532 params.src.view.format = params.dst.view.format;
2533 } else {
2534 params.src.view.format =
2535 get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2536 }
2537 } else if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2538 params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2539 if (src_fmtl->bpb == dst_fmtl->bpb) {
2540 params.dst.view.format = params.src.view.format;
2541 } else {
2542 params.dst.view.format =
2543 get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2544 }
2545 } else {
2546 params.dst.view.format = get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2547 params.src.view.format = get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2548 }
2549
2550 if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2551 /* It's safe to do a blorp_copy between things which are sRGB with CCS_E
2552 * enabled even though CCS_E doesn't technically do sRGB on SKL because
2553 * we stomp everything to UINT anyway. The one thing we have to be
2554 * careful of is clear colors. Because fast clear colors for sRGB on
2555 * gen9 are encoded as the float values between format conversion and
2556 * sRGB curve application, a given clear color float will convert to the
2557 * same bits regardless of whether the format is UNORM or sRGB.
2558 * Therefore, we can handle sRGB without any special cases.
2559 */
2560 UNUSED enum isl_format linear_src_format =
2561 isl_format_srgb_to_linear(src_surf->surf->format);
2562 assert(isl_formats_are_ccs_e_compatible(batch->blorp->isl_dev->info,
2563 linear_src_format,
2564 params.src.view.format));
2565 params.src.clear_color =
2566 bitcast_color_value_to_uint(params.src.clear_color, src_fmtl);
2567 }
2568
2569 if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2570 /* See above where we handle linear_src_format */
2571 UNUSED enum isl_format linear_dst_format =
2572 isl_format_srgb_to_linear(dst_surf->surf->format);
2573 assert(isl_formats_are_ccs_e_compatible(batch->blorp->isl_dev->info,
2574 linear_dst_format,
2575 params.dst.view.format));
2576 params.dst.clear_color =
2577 bitcast_color_value_to_uint(params.dst.clear_color, dst_fmtl);
2578 }
2579
2580 wm_prog_key.src_bpc =
2581 isl_format_get_layout(params.src.view.format)->channels.r.bits;
2582 wm_prog_key.dst_bpc =
2583 isl_format_get_layout(params.dst.view.format)->channels.r.bits;
2584
2585 if (src_fmtl->bw > 1 || src_fmtl->bh > 1) {
2586 blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.src,
2587 &src_x, &src_y,
2588 &src_width, &src_height);
2589 wm_prog_key.need_src_offset = true;
2590 }
2591
2592 if (dst_fmtl->bw > 1 || dst_fmtl->bh > 1) {
2593 blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
2594 &dst_x, &dst_y, NULL, NULL);
2595 wm_prog_key.need_dst_offset = true;
2596 }
2597
2598 /* Once both surfaces are stompped to uncompressed as needed, the
2599 * destination size is the same as the source size.
2600 */
2601 uint32_t dst_width = src_width;
2602 uint32_t dst_height = src_height;
2603
2604 struct blt_coords coords = {
2605 .x = {
2606 .src0 = src_x,
2607 .src1 = src_x + src_width,
2608 .dst0 = dst_x,
2609 .dst1 = dst_x + dst_width,
2610 .mirror = false
2611 },
2612 .y = {
2613 .src0 = src_y,
2614 .src1 = src_y + src_height,
2615 .dst0 = dst_y,
2616 .dst1 = dst_y + dst_height,
2617 .mirror = false
2618 }
2619 };
2620
2621 do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2622 }
2623
2624 static enum isl_format
2625 isl_format_for_size(unsigned size_B)
2626 {
2627 switch (size_B) {
2628 case 1: return ISL_FORMAT_R8_UINT;
2629 case 2: return ISL_FORMAT_R8G8_UINT;
2630 case 4: return ISL_FORMAT_R8G8B8A8_UINT;
2631 case 8: return ISL_FORMAT_R16G16B16A16_UINT;
2632 case 16: return ISL_FORMAT_R32G32B32A32_UINT;
2633 default:
2634 unreachable("Not a power-of-two format size");
2635 }
2636 }
2637
2638 /**
2639 * Returns the greatest common divisor of a and b that is a power of two.
2640 */
2641 static uint64_t
2642 gcd_pow2_u64(uint64_t a, uint64_t b)
2643 {
2644 assert(a > 0 || b > 0);
2645
2646 unsigned a_log2 = ffsll(a) - 1;
2647 unsigned b_log2 = ffsll(b) - 1;
2648
2649 /* If either a or b is 0, then a_log2 or b_log2 till be UINT_MAX in which
2650 * case, the MIN2() will take the other one. If both are 0 then we will
2651 * hit the assert above.
2652 */
2653 return 1 << MIN2(a_log2, b_log2);
2654 }
2655
2656 static void
2657 do_buffer_copy(struct blorp_batch *batch,
2658 struct blorp_address *src,
2659 struct blorp_address *dst,
2660 int width, int height, int block_size)
2661 {
2662 /* The actual format we pick doesn't matter as blorp will throw it away.
2663 * The only thing that actually matters is the size.
2664 */
2665 enum isl_format format = isl_format_for_size(block_size);
2666
2667 UNUSED bool ok;
2668 struct isl_surf surf;
2669 ok = isl_surf_init(batch->blorp->isl_dev, &surf,
2670 .dim = ISL_SURF_DIM_2D,
2671 .format = format,
2672 .width = width,
2673 .height = height,
2674 .depth = 1,
2675 .levels = 1,
2676 .array_len = 1,
2677 .samples = 1,
2678 .row_pitch = width * block_size,
2679 .usage = ISL_SURF_USAGE_TEXTURE_BIT |
2680 ISL_SURF_USAGE_RENDER_TARGET_BIT,
2681 .tiling_flags = ISL_TILING_LINEAR_BIT);
2682 assert(ok);
2683
2684 struct blorp_surf src_blorp_surf = {
2685 .surf = &surf,
2686 .addr = *src,
2687 };
2688
2689 struct blorp_surf dst_blorp_surf = {
2690 .surf = &surf,
2691 .addr = *dst,
2692 };
2693
2694 blorp_copy(batch, &src_blorp_surf, 0, 0, &dst_blorp_surf, 0, 0,
2695 0, 0, 0, 0, width, height);
2696 }
2697
2698 void
2699 blorp_buffer_copy(struct blorp_batch *batch,
2700 struct blorp_address src,
2701 struct blorp_address dst,
2702 uint64_t size)
2703 {
2704 const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
2705 uint64_t copy_size = size;
2706
2707 /* This is maximum possible width/height our HW can handle */
2708 uint64_t max_surface_dim = 1 << (devinfo->gen >= 7 ? 14 : 13);
2709
2710 /* First, we compute the biggest format that can be used with the
2711 * given offsets and size.
2712 */
2713 int bs = 16;
2714 bs = gcd_pow2_u64(bs, src.offset);
2715 bs = gcd_pow2_u64(bs, dst.offset);
2716 bs = gcd_pow2_u64(bs, size);
2717
2718 /* First, we make a bunch of max-sized copies */
2719 uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
2720 while (copy_size >= max_copy_size) {
2721 do_buffer_copy(batch, &src, &dst, max_surface_dim, max_surface_dim, bs);
2722 copy_size -= max_copy_size;
2723 src.offset += max_copy_size;
2724 dst.offset += max_copy_size;
2725 }
2726
2727 /* Now make a max-width copy */
2728 uint64_t height = copy_size / (max_surface_dim * bs);
2729 assert(height < max_surface_dim);
2730 if (height != 0) {
2731 uint64_t rect_copy_size = height * max_surface_dim * bs;
2732 do_buffer_copy(batch, &src, &dst, max_surface_dim, height, bs);
2733 copy_size -= rect_copy_size;
2734 src.offset += rect_copy_size;
2735 dst.offset += rect_copy_size;
2736 }
2737
2738 /* Finally, make a small copy to finish it off */
2739 if (copy_size != 0) {
2740 do_buffer_copy(batch, &src, &dst, copy_size / bs, 1, bs);
2741 }
2742 }