intel/blorp/dbg: Name blit shaders for easy recognition in dumps
[mesa.git] / src / intel / blorp / blorp_blit.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/nir/nir_builder.h"
25
26 #include "blorp_priv.h"
27 #include "brw_meta_util.h"
28
29 /* header-only include needed for _mesa_unorm_to_float and friends. */
30 #include "mesa/main/format_utils.h"
31
32 #define FILE_DEBUG_FLAG DEBUG_BLORP
33
34 static const bool split_blorp_blit_debug = false;
35
36 /**
37 * Enum to specify the order of arguments in a sampler message
38 */
39 enum sampler_message_arg
40 {
41 SAMPLER_MESSAGE_ARG_U_FLOAT,
42 SAMPLER_MESSAGE_ARG_V_FLOAT,
43 SAMPLER_MESSAGE_ARG_U_INT,
44 SAMPLER_MESSAGE_ARG_V_INT,
45 SAMPLER_MESSAGE_ARG_R_INT,
46 SAMPLER_MESSAGE_ARG_SI_INT,
47 SAMPLER_MESSAGE_ARG_MCS_INT,
48 SAMPLER_MESSAGE_ARG_ZERO_INT,
49 };
50
51 struct brw_blorp_blit_vars {
52 /* Input values from brw_blorp_wm_inputs */
53 nir_variable *v_discard_rect;
54 nir_variable *v_rect_grid;
55 nir_variable *v_coord_transform;
56 nir_variable *v_src_z;
57 nir_variable *v_src_offset;
58 nir_variable *v_dst_offset;
59
60 /* gl_FragCoord */
61 nir_variable *frag_coord;
62
63 /* gl_FragColor */
64 nir_variable *color_out;
65 };
66
67 static void
68 brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
69 const struct brw_blorp_blit_prog_key *key)
70 {
71 /* Blended and scaled blits never use pixel discard. */
72 assert(!key->use_kill || !(key->blend && key->blit_scaled));
73
74 #define LOAD_INPUT(name, type)\
75 v->v_##name = BLORP_CREATE_NIR_INPUT(b->shader, name, type);
76
77 LOAD_INPUT(discard_rect, glsl_vec4_type())
78 LOAD_INPUT(rect_grid, glsl_vec4_type())
79 LOAD_INPUT(coord_transform, glsl_vec4_type())
80 LOAD_INPUT(src_z, glsl_uint_type())
81 LOAD_INPUT(src_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
82 LOAD_INPUT(dst_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
83
84 #undef LOAD_INPUT
85
86 v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
87 glsl_vec4_type(), "gl_FragCoord");
88 v->frag_coord->data.location = VARYING_SLOT_POS;
89 v->frag_coord->data.origin_upper_left = true;
90
91 v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
92 glsl_vec4_type(), "gl_FragColor");
93 v->color_out->data.location = FRAG_RESULT_COLOR;
94 }
95
96 static nir_ssa_def *
97 blorp_blit_get_frag_coords(nir_builder *b,
98 const struct brw_blorp_blit_prog_key *key,
99 struct brw_blorp_blit_vars *v)
100 {
101 nir_ssa_def *coord = nir_f2i(b, nir_load_var(b, v->frag_coord));
102
103 /* Account for destination surface intratile offset
104 *
105 * Transformation parameters giving translation from destination to source
106 * coordinates don't take into account possible intra-tile destination
107 * offset. Therefore it has to be first subtracted from the incoming
108 * coordinates. Vertices are set up based on coordinates containing the
109 * intra-tile offset.
110 */
111 if (key->need_dst_offset)
112 coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset));
113
114 if (key->persample_msaa_dispatch) {
115 return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
116 nir_load_sample_id(b));
117 } else {
118 return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
119 }
120 }
121
122 /**
123 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
124 * coordinates.
125 */
126 static nir_ssa_def *
127 blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
128 struct brw_blorp_blit_vars *v)
129 {
130 nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
131
132 nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
133 nir_channel(b, coord_transform, 3));
134 nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
135 nir_channel(b, coord_transform, 2));
136
137 return nir_ffma(b, src_pos, mul, offset);
138 }
139
140 static inline void
141 blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
142 struct brw_blorp_blit_vars *v)
143 {
144 nir_ssa_def *c0, *c1, *c2, *c3;
145 nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
146 nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
147 nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
148 nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
149 nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
150
151 c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
152 c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
153 c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
154 c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
155
156 nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
157
158 nir_intrinsic_instr *discard =
159 nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
160 discard->src[0] = nir_src_for_ssa(oob);
161 nir_builder_instr_insert(b, &discard->instr);
162 }
163
164 static nir_tex_instr *
165 blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
166 nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
167 nir_alu_type dst_type)
168 {
169 nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
170
171 tex->op = op;
172
173 tex->dest_type = dst_type;
174 tex->is_array = false;
175 tex->is_shadow = false;
176
177 /* Blorp only has one texture and it's bound at unit 0 */
178 tex->texture = NULL;
179 tex->sampler = NULL;
180 tex->texture_index = 0;
181 tex->sampler_index = 0;
182
183 /* To properly handle 3-D and 2-D array textures, we pull the Z component
184 * from an input. TODO: This is a bit magic; we should probably make this
185 * more explicit in the future.
186 */
187 assert(pos->num_components >= 2);
188 pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
189 nir_load_var(b, v->v_src_z));
190
191 tex->src[0].src_type = nir_tex_src_coord;
192 tex->src[0].src = nir_src_for_ssa(pos);
193 tex->coord_components = 3;
194
195 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
196
197 return tex;
198 }
199
200 static nir_ssa_def *
201 blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
202 nir_ssa_def *pos, nir_alu_type dst_type)
203 {
204 nir_tex_instr *tex =
205 blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, dst_type);
206
207 assert(pos->num_components == 2);
208 tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
209 tex->src[1].src_type = nir_tex_src_lod;
210 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
211
212 nir_builder_instr_insert(b, &tex->instr);
213
214 return &tex->dest.ssa;
215 }
216
217 static nir_ssa_def *
218 blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
219 nir_ssa_def *pos, nir_alu_type dst_type)
220 {
221 nir_tex_instr *tex =
222 blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
223
224 tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
225 tex->src[1].src_type = nir_tex_src_lod;
226 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
227
228 nir_builder_instr_insert(b, &tex->instr);
229
230 return &tex->dest.ssa;
231 }
232
233 static nir_ssa_def *
234 blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
235 nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
236 {
237 nir_tex_instr *tex =
238 blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
239 mcs != NULL ? 3 : 2, dst_type);
240
241 tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
242
243 tex->src[1].src_type = nir_tex_src_ms_index;
244 if (pos->num_components == 2) {
245 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
246 } else {
247 assert(pos->num_components == 3);
248 tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
249 }
250
251 if (mcs) {
252 tex->src[2].src_type = nir_tex_src_ms_mcs;
253 tex->src[2].src = nir_src_for_ssa(mcs);
254 }
255
256 nir_builder_instr_insert(b, &tex->instr);
257
258 return &tex->dest.ssa;
259 }
260
261 static nir_ssa_def *
262 blorp_nir_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, nir_ssa_def *pos)
263 {
264 nir_tex_instr *tex =
265 blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
266 pos, 1, nir_type_int);
267
268 tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
269
270 nir_builder_instr_insert(b, &tex->instr);
271
272 return &tex->dest.ssa;
273 }
274
275 static nir_ssa_def *
276 nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
277 uint32_t src_mask, int src_left_shift)
278 {
279 nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
280
281 nir_ssa_def *shifted;
282 if (src_left_shift > 0) {
283 shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
284 } else if (src_left_shift < 0) {
285 shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
286 } else {
287 assert(src_left_shift == 0);
288 shifted = masked;
289 }
290
291 return nir_ior(b, dst, shifted);
292 }
293
294 /**
295 * Emit code to compensate for the difference between Y and W tiling.
296 *
297 * This code modifies the X and Y coordinates according to the formula:
298 *
299 * (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
300 *
301 * (See brw_blorp_build_nir_shader).
302 */
303 static inline nir_ssa_def *
304 blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
305 {
306 assert(pos->num_components == 2);
307 nir_ssa_def *x_Y = nir_channel(b, pos, 0);
308 nir_ssa_def *y_Y = nir_channel(b, pos, 1);
309
310 /* Given X and Y coordinates that describe an address using Y tiling,
311 * translate to the X and Y coordinates that describe the same address
312 * using W tiling.
313 *
314 * If we break down the low order bits of X and Y, using a
315 * single letter to represent each low-order bit:
316 *
317 * X = A << 7 | 0bBCDEFGH
318 * Y = J << 5 | 0bKLMNP (1)
319 *
320 * Then we can apply the Y tiling formula to see the memory offset being
321 * addressed:
322 *
323 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
324 *
325 * If we apply the W detiling formula to this memory location, that the
326 * corresponding X' and Y' coordinates are:
327 *
328 * X' = A << 6 | 0bBCDPFH (3)
329 * Y' = J << 6 | 0bKLMNEG
330 *
331 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
332 * we need to make the following computation:
333 *
334 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
335 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
336 */
337 nir_ssa_def *x_W = nir_imm_int(b, 0);
338 x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
339 x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
340 x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
341
342 nir_ssa_def *y_W = nir_imm_int(b, 0);
343 y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
344 y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
345 y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
346
347 return nir_vec2(b, x_W, y_W);
348 }
349
350 /**
351 * Emit code to compensate for the difference between Y and W tiling.
352 *
353 * This code modifies the X and Y coordinates according to the formula:
354 *
355 * (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
356 *
357 * (See brw_blorp_build_nir_shader).
358 */
359 static inline nir_ssa_def *
360 blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
361 {
362 assert(pos->num_components == 2);
363 nir_ssa_def *x_W = nir_channel(b, pos, 0);
364 nir_ssa_def *y_W = nir_channel(b, pos, 1);
365
366 /* Applying the same logic as above, but in reverse, we obtain the
367 * formulas:
368 *
369 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
370 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
371 */
372 nir_ssa_def *x_Y = nir_imm_int(b, 0);
373 x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
374 x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
375 x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
376 x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
377
378 nir_ssa_def *y_Y = nir_imm_int(b, 0);
379 y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
380 y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
381
382 return nir_vec2(b, x_Y, y_Y);
383 }
384
385 /**
386 * Emit code to compensate for the difference between MSAA and non-MSAA
387 * surfaces.
388 *
389 * This code modifies the X and Y coordinates according to the formula:
390 *
391 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
392 *
393 * (See brw_blorp_blit_program).
394 */
395 static inline nir_ssa_def *
396 blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
397 unsigned num_samples, enum isl_msaa_layout layout)
398 {
399 assert(pos->num_components == 2 || pos->num_components == 3);
400
401 switch (layout) {
402 case ISL_MSAA_LAYOUT_NONE:
403 assert(pos->num_components == 2);
404 return pos;
405 case ISL_MSAA_LAYOUT_ARRAY:
406 /* No translation needed */
407 return pos;
408 case ISL_MSAA_LAYOUT_INTERLEAVED: {
409 nir_ssa_def *x_in = nir_channel(b, pos, 0);
410 nir_ssa_def *y_in = nir_channel(b, pos, 1);
411 nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
412 nir_channel(b, pos, 2);
413
414 nir_ssa_def *x_out = nir_imm_int(b, 0);
415 nir_ssa_def *y_out = nir_imm_int(b, 0);
416 switch (num_samples) {
417 case 2:
418 case 4:
419 /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
420 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
421 * Y' = Y
422 *
423 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
424 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
425 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
426 */
427 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
428 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
429 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
430 if (num_samples == 2) {
431 y_out = y_in;
432 } else {
433 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
434 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
435 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
436 }
437 break;
438
439 case 8:
440 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
441 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
442 * | (X & 0b1)
443 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
444 */
445 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
446 x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
447 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
448 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
449 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
450 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
451 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
452 break;
453
454 case 16:
455 /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
456 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
457 * | (X & 0b1)
458 * Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
459 * | (Y & 0b1)
460 */
461 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
462 x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
463 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
464 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
465 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
466 y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
467 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
468 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
469 break;
470
471 default:
472 unreachable("Invalid number of samples for IMS layout");
473 }
474
475 return nir_vec2(b, x_out, y_out);
476 }
477
478 default:
479 unreachable("Invalid MSAA layout");
480 }
481 }
482
483 /**
484 * Emit code to compensate for the difference between MSAA and non-MSAA
485 * surfaces.
486 *
487 * This code modifies the X and Y coordinates according to the formula:
488 *
489 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
490 *
491 * (See brw_blorp_blit_program).
492 */
493 static inline nir_ssa_def *
494 blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
495 unsigned num_samples, enum isl_msaa_layout layout)
496 {
497 assert(pos->num_components == 2 || pos->num_components == 3);
498
499 switch (layout) {
500 case ISL_MSAA_LAYOUT_NONE:
501 /* No translation necessary, and S should already be zero. */
502 assert(pos->num_components == 2);
503 return pos;
504 case ISL_MSAA_LAYOUT_ARRAY:
505 /* No translation necessary. */
506 return pos;
507 case ISL_MSAA_LAYOUT_INTERLEAVED: {
508 assert(pos->num_components == 2);
509
510 nir_ssa_def *x_in = nir_channel(b, pos, 0);
511 nir_ssa_def *y_in = nir_channel(b, pos, 1);
512
513 nir_ssa_def *x_out = nir_imm_int(b, 0);
514 nir_ssa_def *y_out = nir_imm_int(b, 0);
515 nir_ssa_def *s_out = nir_imm_int(b, 0);
516 switch (num_samples) {
517 case 2:
518 case 4:
519 /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
520 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
521 * S = (X & 0b10) >> 1
522 *
523 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
524 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
525 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
526 * S = (Y & 0b10) | (X & 0b10) >> 1
527 */
528 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
529 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
530 if (num_samples == 2) {
531 y_out = y_in;
532 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
533 } else {
534 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
535 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
536 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
537 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
538 }
539 break;
540
541 case 8:
542 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
543 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
544 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
545 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
546 */
547 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
548 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
549 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
550 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
551 s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
552 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
553 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
554 break;
555
556 case 16:
557 /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
558 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
559 * Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
560 * S = (Y & 0b100) << 1 | (X & 0b100) |
561 * (Y & 0b10) | (X & 0b10) >> 1
562 */
563 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
564 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
565 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
566 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
567 s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
568 s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
569 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
570 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
571 break;
572
573 default:
574 unreachable("Invalid number of samples for IMS layout");
575 }
576
577 return nir_vec3(b, x_out, y_out, s_out);
578 }
579
580 default:
581 unreachable("Invalid MSAA layout");
582 }
583 }
584
585 /**
586 * Count the number of trailing 1 bits in the given value. For example:
587 *
588 * count_trailing_one_bits(0) == 0
589 * count_trailing_one_bits(7) == 3
590 * count_trailing_one_bits(11) == 2
591 */
592 static inline int count_trailing_one_bits(unsigned value)
593 {
594 #ifdef HAVE___BUILTIN_CTZ
595 return __builtin_ctz(~value);
596 #else
597 return _mesa_bitcount(value & ~(value + 1));
598 #endif
599 }
600
601 static nir_ssa_def *
602 blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
603 nir_ssa_def *pos, unsigned tex_samples,
604 enum isl_aux_usage tex_aux_usage,
605 nir_alu_type dst_type)
606 {
607 /* If non-null, this is the outer-most if statement */
608 nir_if *outer_if = NULL;
609
610 nir_variable *color =
611 nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
612
613 nir_ssa_def *mcs = NULL;
614 if (tex_aux_usage == ISL_AUX_USAGE_MCS)
615 mcs = blorp_nir_txf_ms_mcs(b, v, pos);
616
617 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
618 *
619 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
620 *
621 * This ensures that when all samples have the same value, no numerical
622 * precision is lost, since each addition operation always adds two equal
623 * values, and summing two equal floating point values does not lose
624 * precision.
625 *
626 * We perform this computation by treating the texture_data array as a
627 * stack and performing the following operations:
628 *
629 * - push sample 0 onto stack
630 * - push sample 1 onto stack
631 * - add top two stack entries
632 * - push sample 2 onto stack
633 * - push sample 3 onto stack
634 * - add top two stack entries
635 * - add top two stack entries
636 * - divide top stack entry by 4
637 *
638 * Note that after pushing sample i onto the stack, the number of add
639 * operations we do is equal to the number of trailing 1 bits in i. This
640 * works provided the total number of samples is a power of two, which it
641 * always is for i965.
642 *
643 * For integer formats, we replace the add operations with average
644 * operations and skip the final division.
645 */
646 nir_ssa_def *texture_data[5];
647 unsigned stack_depth = 0;
648 for (unsigned i = 0; i < tex_samples; ++i) {
649 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
650
651 /* Push sample i onto the stack */
652 assert(stack_depth < ARRAY_SIZE(texture_data));
653
654 nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
655 nir_channel(b, pos, 1),
656 nir_imm_int(b, i));
657 texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
658
659 if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
660 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
661 * suggests an optimization:
662 *
663 * "A simple optimization with probable large return in
664 * performance is to compare the MCS value to zero (indicating
665 * all samples are on sample slice 0), and sample only from
666 * sample slice 0 using ld2dss if MCS is zero."
667 *
668 * Note that in the case where the MCS value is zero, sampling from
669 * sample slice 0 using ld2dss and sampling from sample 0 using
670 * ld2dms are equivalent (since all samples are on sample slice 0).
671 * Since we have already sampled from sample 0, all we need to do is
672 * skip the remaining fetches and averaging if MCS is zero.
673 */
674 nir_ssa_def *mcs_zero =
675 nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
676 if (tex_samples == 16) {
677 mcs_zero = nir_iand(b, mcs_zero,
678 nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
679 }
680
681 nir_if *if_stmt = nir_if_create(b->shader);
682 if_stmt->condition = nir_src_for_ssa(mcs_zero);
683 nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
684
685 b->cursor = nir_after_cf_list(&if_stmt->then_list);
686 nir_store_var(b, color, texture_data[0], 0xf);
687
688 b->cursor = nir_after_cf_list(&if_stmt->else_list);
689 outer_if = if_stmt;
690 }
691
692 for (int j = 0; j < count_trailing_one_bits(i); j++) {
693 assert(stack_depth >= 2);
694 --stack_depth;
695
696 assert(dst_type == nir_type_float);
697 texture_data[stack_depth - 1] =
698 nir_fadd(b, texture_data[stack_depth - 1],
699 texture_data[stack_depth]);
700 }
701 }
702
703 /* We should have just 1 sample on the stack now. */
704 assert(stack_depth == 1);
705
706 texture_data[0] = nir_fmul(b, texture_data[0],
707 nir_imm_float(b, 1.0 / tex_samples));
708
709 nir_store_var(b, color, texture_data[0], 0xf);
710
711 if (outer_if)
712 b->cursor = nir_after_cf_node(&outer_if->cf_node);
713
714 return nir_load_var(b, color);
715 }
716
717 static inline nir_ssa_def *
718 nir_imm_vec2(nir_builder *build, float x, float y)
719 {
720 nir_const_value v;
721
722 memset(&v, 0, sizeof(v));
723 v.f32[0] = x;
724 v.f32[1] = y;
725
726 return nir_build_imm(build, 4, 32, v);
727 }
728
729 static nir_ssa_def *
730 blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
731 unsigned tex_samples,
732 const struct brw_blorp_blit_prog_key *key,
733 struct brw_blorp_blit_vars *v)
734 {
735 nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
736 nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
737 nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
738
739 /* Translate coordinates to lay out the samples in a rectangular grid
740 * roughly corresponding to sample locations.
741 */
742 pos_xy = nir_fmul(b, pos_xy, scale);
743 /* Adjust coordinates so that integers represent pixel centers rather
744 * than pixel edges.
745 */
746 pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
747 /* Clamp the X, Y texture coordinates to properly handle the sampling of
748 * texels on texture edges.
749 */
750 pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
751 nir_vec2(b, nir_channel(b, rect_grid, 0),
752 nir_channel(b, rect_grid, 1)));
753
754 /* Store the fractional parts to be used as bilinear interpolation
755 * coefficients.
756 */
757 nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
758 /* Round the float coordinates down to nearest integer */
759 pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
760
761 nir_ssa_def *tex_data[4];
762 for (unsigned i = 0; i < 4; ++i) {
763 float sample_off_x = (float)(i & 0x1) / key->x_scale;
764 float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
765 nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
766
767 nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
768 nir_ssa_def *sample_coords_int = nir_f2i(b, sample_coords);
769
770 /* The MCS value we fetch has to match up with the pixel that we're
771 * sampling from. Since we sample from different pixels in each
772 * iteration of this "for" loop, the call to mcs_fetch() should be
773 * here inside the loop after computing the pixel coordinates.
774 */
775 nir_ssa_def *mcs = NULL;
776 if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
777 mcs = blorp_nir_txf_ms_mcs(b, v, sample_coords_int);
778
779 /* Compute sample index and map the sample index to a sample number.
780 * Sample index layout shows the numbering of slots in a rectangular
781 * grid of samples with in a pixel. Sample number layout shows the
782 * rectangular grid of samples roughly corresponding to the real sample
783 * locations with in a pixel.
784 * In case of 4x MSAA, layout of sample indices matches the layout of
785 * sample numbers:
786 * ---------
787 * | 0 | 1 |
788 * ---------
789 * | 2 | 3 |
790 * ---------
791 *
792 * In case of 8x MSAA the two layouts don't match.
793 * sample index layout : --------- sample number layout : ---------
794 * | 0 | 1 | | 3 | 7 |
795 * --------- ---------
796 * | 2 | 3 | | 5 | 0 |
797 * --------- ---------
798 * | 4 | 5 | | 1 | 2 |
799 * --------- ---------
800 * | 6 | 7 | | 4 | 6 |
801 * --------- ---------
802 *
803 * Fortunately, this can be done fairly easily as:
804 * S' = (0x17306425 >> (S * 4)) & 0xf
805 *
806 * In the case of 16x MSAA the two layouts don't match.
807 * Sample index layout: Sample number layout:
808 * --------------------- ---------------------
809 * | 0 | 1 | 2 | 3 | | 15 | 10 | 9 | 7 |
810 * --------------------- ---------------------
811 * | 4 | 5 | 6 | 7 | | 4 | 1 | 3 | 13 |
812 * --------------------- ---------------------
813 * | 8 | 9 | 10 | 11 | | 12 | 2 | 0 | 6 |
814 * --------------------- ---------------------
815 * | 12 | 13 | 14 | 15 | | 11 | 8 | 5 | 14 |
816 * --------------------- ---------------------
817 *
818 * This is equivalent to
819 * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
820 */
821 nir_ssa_def *frac = nir_ffract(b, sample_coords);
822 nir_ssa_def *sample =
823 nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
824 key->x_scale * key->y_scale));
825 sample = nir_f2i(b, sample);
826
827 if (tex_samples == 8) {
828 sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
829 nir_ishl(b, sample, nir_imm_int(b, 2))),
830 nir_imm_int(b, 0xf));
831 } else if (tex_samples == 16) {
832 nir_ssa_def *sample_low =
833 nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
834 nir_ishl(b, sample, nir_imm_int(b, 2))),
835 nir_imm_int(b, 0xf));
836 nir_ssa_def *sample_high =
837 nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
838 nir_ishl(b, nir_iadd(b, sample,
839 nir_imm_int(b, -8)),
840 nir_imm_int(b, 2))),
841 nir_imm_int(b, 0xf));
842
843 sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
844 sample_low, sample_high);
845 }
846 nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
847 nir_channel(b, sample_coords_int, 1),
848 sample);
849 tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
850 }
851
852 nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
853 nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
854 return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
855 nir_flrp(b, tex_data[2], tex_data[3], frac_x),
856 frac_y);
857 }
858
859 /** Perform a color bit-cast operation
860 *
861 * For copy operations involving CCS, we may need to use different formats for
862 * the source and destination surfaces. The two formats must both be UINT
863 * formats and must have the same size but may have different bit layouts.
864 * For instance, we may be copying from R8G8B8A8_UINT to R32_UINT or R32_UINT
865 * to R16G16_UINT. This function generates code to shuffle bits around to get
866 * us from one to the other.
867 */
868 static nir_ssa_def *
869 bit_cast_color(struct nir_builder *b, nir_ssa_def *color,
870 const struct brw_blorp_blit_prog_key *key)
871 {
872 assert(key->texture_data_type == nir_type_uint);
873
874 if (key->dst_bpc > key->src_bpc) {
875 nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
876 nir_ssa_def *dst_chan[2] = { u, u };
877 unsigned shift = 0;
878 unsigned dst_idx = 0;
879 for (unsigned i = 0; i < 4; i++) {
880 nir_ssa_def *shifted = nir_ishl(b, nir_channel(b, color, i),
881 nir_imm_int(b, shift));
882 if (shift == 0) {
883 dst_chan[dst_idx] = shifted;
884 } else {
885 dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted);
886 }
887
888 shift += key->src_bpc;
889 if (shift >= key->dst_bpc) {
890 dst_idx++;
891 shift = 0;
892 }
893 }
894
895 return nir_vec4(b, dst_chan[0], dst_chan[1], u, u);
896 } else {
897 assert(key->dst_bpc < key->src_bpc);
898
899 nir_ssa_def *mask = nir_imm_int(b, ~0u >> (32 - key->dst_bpc));
900
901 nir_ssa_def *dst_chan[4];
902 unsigned src_idx = 0;
903 unsigned shift = 0;
904 for (unsigned i = 0; i < 4; i++) {
905 dst_chan[i] = nir_iand(b, nir_ushr(b, nir_channel(b, color, src_idx),
906 nir_imm_int(b, shift)),
907 mask);
908 shift += key->dst_bpc;
909 if (shift >= key->src_bpc) {
910 src_idx++;
911 shift = 0;
912 }
913 }
914
915 return nir_vec4(b, dst_chan[0], dst_chan[1], dst_chan[2], dst_chan[3]);
916 }
917 }
918
919 /**
920 * Generator for WM programs used in BLORP blits.
921 *
922 * The bulk of the work done by the WM program is to wrap and unwrap the
923 * coordinate transformations used by the hardware to store surfaces in
924 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
925 * sample index for a multisampled surface) to a memory offset by the
926 * following formulas:
927 *
928 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
929 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
930 *
931 * For a single-sampled surface, or for a multisampled surface using
932 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
933 * function:
934 *
935 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
936 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
937 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
938 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
939 *
940 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
941 * embeds the sample number into bit 1 of the X and Y coordinates:
942 *
943 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
944 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
945 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
946 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
947 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
948 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
949 * S = (Y & 0b10) | (X & 0b10) >> 1
950 *
951 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
952 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
953 * the Y coordinate:
954 *
955 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
956 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
957 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
958 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
959 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
960 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
961 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
962 *
963 * For X tiling, tile() combines together the low-order bits of the X and Y
964 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
965 * bytes wide and 8 rows high:
966 *
967 * tile(x_tiled, X, Y, S) = A
968 * where A = tile_num << 12 | offset
969 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
970 * offset = (Y' & 0b111) << 9
971 * | (X & 0b111111111)
972 * X' = X * cpp
973 * Y' = Y + S * qpitch
974 * detile(x_tiled, A) = (X, Y, S)
975 * where X = X' / cpp
976 * Y = Y' % qpitch
977 * S = Y' / qpitch
978 * Y' = (tile_num / tile_pitch) << 3
979 * | (A & 0b111000000000) >> 9
980 * X' = (tile_num % tile_pitch) << 9
981 * | (A & 0b111111111)
982 *
983 * (In all tiling formulas, cpp is the number of bytes occupied by a single
984 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
985 * to fill the width of the surface, and qpitch is the spacing (in rows)
986 * between array slices).
987 *
988 * For Y tiling, tile() combines together the low-order bits of the X and Y
989 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
990 * bytes wide and 32 rows high:
991 *
992 * tile(y_tiled, X, Y, S) = A
993 * where A = tile_num << 12 | offset
994 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
995 * offset = (X' & 0b1110000) << 5
996 * | (Y' & 0b11111) << 4
997 * | (X' & 0b1111)
998 * X' = X * cpp
999 * Y' = Y + S * qpitch
1000 * detile(y_tiled, A) = (X, Y, S)
1001 * where X = X' / cpp
1002 * Y = Y' % qpitch
1003 * S = Y' / qpitch
1004 * Y' = (tile_num / tile_pitch) << 5
1005 * | (A & 0b111110000) >> 4
1006 * X' = (tile_num % tile_pitch) << 7
1007 * | (A & 0b111000000000) >> 5
1008 * | (A & 0b1111)
1009 *
1010 * For W tiling, tile() combines together the low-order bits of the X and Y
1011 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
1012 * bytes wide and 64 rows high (note that W tiling is only used for stencil
1013 * buffers, which always have cpp = 1 and S=0):
1014 *
1015 * tile(w_tiled, X, Y, S) = A
1016 * where A = tile_num << 12 | offset
1017 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
1018 * offset = (X' & 0b111000) << 6
1019 * | (Y' & 0b111100) << 3
1020 * | (X' & 0b100) << 2
1021 * | (Y' & 0b10) << 2
1022 * | (X' & 0b10) << 1
1023 * | (Y' & 0b1) << 1
1024 * | (X' & 0b1)
1025 * X' = X * cpp = X
1026 * Y' = Y + S * qpitch
1027 * detile(w_tiled, A) = (X, Y, S)
1028 * where X = X' / cpp = X'
1029 * Y = Y' % qpitch = Y'
1030 * S = Y / qpitch = 0
1031 * Y' = (tile_num / tile_pitch) << 6
1032 * | (A & 0b111100000) >> 3
1033 * | (A & 0b1000) >> 2
1034 * | (A & 0b10) >> 1
1035 * X' = (tile_num % tile_pitch) << 6
1036 * | (A & 0b111000000000) >> 6
1037 * | (A & 0b10000) >> 2
1038 * | (A & 0b100) >> 1
1039 * | (A & 0b1)
1040 *
1041 * Finally, for a non-tiled surface, tile() simply combines together the X and
1042 * Y coordinates in the natural way:
1043 *
1044 * tile(untiled, X, Y, S) = A
1045 * where A = Y * pitch + X'
1046 * X' = X * cpp
1047 * Y' = Y + S * qpitch
1048 * detile(untiled, A) = (X, Y, S)
1049 * where X = X' / cpp
1050 * Y = Y' % qpitch
1051 * S = Y' / qpitch
1052 * X' = A % pitch
1053 * Y' = A / pitch
1054 *
1055 * (In these formulas, pitch is the number of bytes occupied by a single row
1056 * of samples).
1057 */
1058 static nir_shader *
1059 brw_blorp_build_nir_shader(struct blorp_context *blorp, void *mem_ctx,
1060 const struct brw_blorp_blit_prog_key *key)
1061 {
1062 const struct gen_device_info *devinfo = blorp->isl_dev->info;
1063 nir_ssa_def *src_pos, *dst_pos, *color;
1064
1065 /* Sanity checks */
1066 if (key->dst_tiled_w && key->rt_samples > 1) {
1067 /* If the destination image is W tiled and multisampled, then the thread
1068 * must be dispatched once per sample, not once per pixel. This is
1069 * necessary because after conversion between W and Y tiling, there's no
1070 * guarantee that all samples corresponding to a single pixel will still
1071 * be together.
1072 */
1073 assert(key->persample_msaa_dispatch);
1074 }
1075
1076 if (key->blend) {
1077 /* We are blending, which means we won't have an opportunity to
1078 * translate the tiling and sample count for the texture surface. So
1079 * the surface state for the texture must be configured with the correct
1080 * tiling and sample count.
1081 */
1082 assert(!key->src_tiled_w);
1083 assert(key->tex_samples == key->src_samples);
1084 assert(key->tex_layout == key->src_layout);
1085 assert(key->tex_samples > 0);
1086 }
1087
1088 if (key->persample_msaa_dispatch) {
1089 /* It only makes sense to do persample dispatch if the render target is
1090 * configured as multisampled.
1091 */
1092 assert(key->rt_samples > 0);
1093 }
1094
1095 /* Make sure layout is consistent with sample count */
1096 assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
1097 (key->tex_samples <= 1));
1098 assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
1099 (key->rt_samples <= 1));
1100 assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
1101 (key->src_samples <= 1));
1102 assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
1103 (key->dst_samples <= 1));
1104
1105 nir_builder b;
1106 nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
1107
1108 struct brw_blorp_blit_vars v;
1109 brw_blorp_blit_vars_init(&b, &v, key);
1110
1111 dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
1112
1113 /* Render target and texture hardware don't support W tiling until Gen8. */
1114 const bool rt_tiled_w = false;
1115 const bool tex_tiled_w = devinfo->gen >= 8 && key->src_tiled_w;
1116
1117 /* The address that data will be written to is determined by the
1118 * coordinates supplied to the WM thread and the tiling and sample count of
1119 * the render target, according to the formula:
1120 *
1121 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
1122 *
1123 * If the actual tiling and sample count of the destination surface are not
1124 * the same as the configuration of the render target, then these
1125 * coordinates are wrong and we have to adjust them to compensate for the
1126 * difference.
1127 */
1128 if (rt_tiled_w != key->dst_tiled_w ||
1129 key->rt_samples != key->dst_samples ||
1130 key->rt_layout != key->dst_layout) {
1131 dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
1132 key->rt_layout);
1133 /* Now (X, Y, S) = detile(rt_tiling, offset) */
1134 if (rt_tiled_w != key->dst_tiled_w)
1135 dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
1136 /* Now (X, Y, S) = detile(rt_tiling, offset) */
1137 dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
1138 key->dst_layout);
1139 }
1140
1141 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
1142 *
1143 * That is: X, Y and S now contain the true coordinates and sample index of
1144 * the data that the WM thread should output.
1145 *
1146 * If we need to kill pixels that are outside the destination rectangle,
1147 * now is the time to do it.
1148 */
1149 if (key->use_kill) {
1150 assert(!(key->blend && key->blit_scaled));
1151 blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
1152 }
1153
1154 src_pos = blorp_blit_apply_transform(&b, nir_i2f(&b, dst_pos), &v);
1155 if (dst_pos->num_components == 3) {
1156 /* The sample coordinate is an integer that we want left alone but
1157 * blorp_blit_apply_transform() blindly applies the transform to all
1158 * three coordinates. Grab the original sample index.
1159 */
1160 src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
1161 nir_channel(&b, src_pos, 1),
1162 nir_channel(&b, dst_pos, 2));
1163 }
1164
1165 /* If the source image is not multisampled, then we want to fetch sample
1166 * number 0, because that's the only sample there is.
1167 */
1168 if (key->src_samples == 1)
1169 src_pos = nir_channels(&b, src_pos, 0x3);
1170
1171 /* X, Y, and S are now the coordinates of the pixel in the source image
1172 * that we want to texture from. Exception: if we are blending, then S is
1173 * irrelevant, because we are going to fetch all samples.
1174 */
1175 if (key->blend && !key->blit_scaled) {
1176 /* Resolves (effecively) use texelFetch, so we need integers and we
1177 * don't care about the sample index if we got one.
1178 */
1179 src_pos = nir_f2i(&b, nir_channels(&b, src_pos, 0x3));
1180
1181 if (devinfo->gen == 6) {
1182 /* Because gen6 only supports 4x interleved MSAA, we can do all the
1183 * blending we need with a single linear-interpolated texture lookup
1184 * at the center of the sample. The texture coordinates to be odd
1185 * integers so that they correspond to the center of a 2x2 block
1186 * representing the four samples that maxe up a pixel. So we need
1187 * to multiply our X and Y coordinates each by 2 and then add 1.
1188 */
1189 src_pos = nir_ishl(&b, src_pos, nir_imm_int(&b, 1));
1190 src_pos = nir_iadd(&b, src_pos, nir_imm_int(&b, 1));
1191 src_pos = nir_i2f(&b, src_pos);
1192 color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
1193 } else {
1194 /* Gen7+ hardware doesn't automaticaly blend. */
1195 color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
1196 key->tex_aux_usage,
1197 key->texture_data_type);
1198 }
1199 } else if (key->blend && key->blit_scaled) {
1200 assert(!key->use_kill);
1201 color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
1202 } else {
1203 if (key->bilinear_filter) {
1204 color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
1205 } else {
1206 /* We're going to use texelFetch, so we need integers */
1207 if (src_pos->num_components == 2) {
1208 src_pos = nir_f2i(&b, src_pos);
1209 } else {
1210 assert(src_pos->num_components == 3);
1211 src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i(&b, src_pos), 0),
1212 nir_channel(&b, nir_f2i(&b, src_pos), 1),
1213 nir_channel(&b, src_pos, 2));
1214 }
1215
1216 /* We aren't blending, which means we just want to fetch a single
1217 * sample from the source surface. The address that we want to fetch
1218 * from is related to the X, Y and S values according to the formula:
1219 *
1220 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
1221 *
1222 * If the actual tiling and sample count of the source surface are
1223 * not the same as the configuration of the texture, then we need to
1224 * adjust the coordinates to compensate for the difference.
1225 */
1226 if (tex_tiled_w != key->src_tiled_w ||
1227 key->tex_samples != key->src_samples ||
1228 key->tex_layout != key->src_layout) {
1229 src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
1230 key->src_layout);
1231 /* Now (X, Y, S) = detile(src_tiling, offset) */
1232 if (tex_tiled_w != key->src_tiled_w)
1233 src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
1234 /* Now (X, Y, S) = detile(tex_tiling, offset) */
1235 src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
1236 key->tex_layout);
1237 }
1238
1239 if (key->need_src_offset)
1240 src_pos = nir_iadd(&b, src_pos, nir_load_var(&b, v.v_src_offset));
1241
1242 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
1243 *
1244 * In other words: X, Y, and S now contain values which, when passed to
1245 * the texturing unit, will cause data to be read from the correct
1246 * memory location. So we can fetch the texel now.
1247 */
1248 if (key->src_samples == 1) {
1249 color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
1250 } else {
1251 nir_ssa_def *mcs = NULL;
1252 if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
1253 mcs = blorp_nir_txf_ms_mcs(&b, &v, src_pos);
1254
1255 color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
1256 }
1257 }
1258 }
1259
1260 if (key->dst_bpc != key->src_bpc)
1261 color = bit_cast_color(&b, color, key);
1262
1263 if (key->dst_rgb) {
1264 /* The destination image is bound as a red texture three times as wide
1265 * as the actual image. Our shader is effectively running one color
1266 * component at a time. We need to pick off the appropriate component
1267 * from the source color and write that to destination red.
1268 */
1269 assert(dst_pos->num_components == 2);
1270 nir_ssa_def *comp =
1271 nir_umod(&b, nir_channel(&b, dst_pos, 0), nir_imm_int(&b, 3));
1272
1273 nir_ssa_def *color_component =
1274 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
1275 nir_channel(&b, color, 0),
1276 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
1277 nir_channel(&b, color, 1),
1278 nir_channel(&b, color, 2)));
1279
1280 nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
1281 color = nir_vec4(&b, color_component, u, u, u);
1282 }
1283
1284 nir_store_var(&b, v.color_out, color, 0xf);
1285
1286 return b.shader;
1287 }
1288
1289 static void
1290 brw_blorp_get_blit_kernel(struct blorp_context *blorp,
1291 struct blorp_params *params,
1292 const struct brw_blorp_blit_prog_key *prog_key)
1293 {
1294 if (blorp->lookup_shader(blorp, prog_key, sizeof(*prog_key),
1295 &params->wm_prog_kernel, &params->wm_prog_data))
1296 return;
1297
1298 void *mem_ctx = ralloc_context(NULL);
1299
1300 const unsigned *program;
1301 unsigned program_size;
1302 struct brw_wm_prog_data prog_data;
1303
1304 nir_shader *nir = brw_blorp_build_nir_shader(blorp, mem_ctx, prog_key);
1305 nir->info->name = ralloc_strdup(nir, "BLORP-blit");
1306
1307 struct brw_wm_prog_key wm_key;
1308 brw_blorp_init_wm_prog_key(&wm_key);
1309 wm_key.tex.compressed_multisample_layout_mask =
1310 prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
1311 wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
1312 wm_key.multisample_fbo = prog_key->rt_samples > 1;
1313
1314 program = blorp_compile_fs(blorp, mem_ctx, nir, &wm_key, false,
1315 &prog_data, &program_size);
1316
1317 blorp->upload_shader(blorp, prog_key, sizeof(*prog_key),
1318 program, program_size,
1319 &prog_data.base, sizeof(prog_data),
1320 &params->wm_prog_kernel, &params->wm_prog_data);
1321
1322 ralloc_free(mem_ctx);
1323 }
1324
1325 static void
1326 brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
1327 GLfloat src0, GLfloat src1,
1328 GLfloat dst0, GLfloat dst1,
1329 bool mirror)
1330 {
1331 double scale = (double)(src1 - src0) / (double)(dst1 - dst0);
1332 if (!mirror) {
1333 /* When not mirroring a coordinate (say, X), we need:
1334 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1335 * Therefore:
1336 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1337 *
1338 * blorp program uses "round toward zero" to convert the
1339 * transformed floating point coordinates to integer coordinates,
1340 * whereas the behaviour we actually want is "round to nearest",
1341 * so 0.5 provides the necessary correction.
1342 */
1343 xform->multiplier = scale;
1344 xform->offset = src0 + (-(double)dst0 + 0.5) * scale;
1345 } else {
1346 /* When mirroring X we need:
1347 * src_x - src_x0 = dst_x1 - dst_x - 0.5
1348 * Therefore:
1349 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1350 */
1351 xform->multiplier = -scale;
1352 xform->offset = src0 + ((double)dst1 - 0.5) * scale;
1353 }
1354 }
1355
1356 static inline void
1357 surf_get_intratile_offset_px(struct brw_blorp_surface_info *info,
1358 uint32_t *tile_x_px, uint32_t *tile_y_px)
1359 {
1360 if (info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1361 struct isl_extent2d px_size_sa =
1362 isl_get_interleaved_msaa_px_size_sa(info->surf.samples);
1363 assert(info->tile_x_sa % px_size_sa.width == 0);
1364 assert(info->tile_y_sa % px_size_sa.height == 0);
1365 *tile_x_px = info->tile_x_sa / px_size_sa.width;
1366 *tile_y_px = info->tile_y_sa / px_size_sa.height;
1367 } else {
1368 *tile_x_px = info->tile_x_sa;
1369 *tile_y_px = info->tile_y_sa;
1370 }
1371 }
1372
1373 static void
1374 surf_convert_to_single_slice(const struct isl_device *isl_dev,
1375 struct brw_blorp_surface_info *info)
1376 {
1377 /* Just bail if we have nothing to do. */
1378 if (info->surf.dim == ISL_SURF_DIM_2D &&
1379 info->view.base_level == 0 && info->view.base_array_layer == 0 &&
1380 info->surf.levels == 1 && info->surf.logical_level0_px.array_len == 1)
1381 return;
1382
1383 /* If this gets triggered then we've gotten here twice which. This
1384 * shouldn't happen thanks to the above early return.
1385 */
1386 assert(info->tile_x_sa == 0 && info->tile_y_sa == 0);
1387
1388 uint32_t layer = 0, z = 0;
1389 if (info->surf.dim == ISL_SURF_DIM_3D)
1390 z = info->view.base_array_layer + info->z_offset;
1391 else
1392 layer = info->view.base_array_layer;
1393
1394 uint32_t x_offset_sa, y_offset_sa;
1395 isl_surf_get_image_offset_sa(&info->surf, info->view.base_level,
1396 layer, z, &x_offset_sa, &y_offset_sa);
1397
1398 uint32_t byte_offset;
1399 isl_tiling_get_intratile_offset_sa(isl_dev, info->surf.tiling,
1400 info->surf.format, info->surf.row_pitch,
1401 x_offset_sa, y_offset_sa,
1402 &byte_offset,
1403 &info->tile_x_sa, &info->tile_y_sa);
1404 info->addr.offset += byte_offset;
1405
1406 const uint32_t slice_width_px =
1407 minify(info->surf.logical_level0_px.width, info->view.base_level);
1408 const uint32_t slice_height_px =
1409 minify(info->surf.logical_level0_px.height, info->view.base_level);
1410
1411 uint32_t tile_x_px, tile_y_px;
1412 surf_get_intratile_offset_px(info, &tile_x_px, &tile_y_px);
1413
1414 struct isl_surf_init_info init_info = {
1415 .dim = ISL_SURF_DIM_2D,
1416 .format = info->surf.format,
1417 .width = slice_width_px + tile_x_px,
1418 .height = slice_height_px + tile_y_px,
1419 .depth = 1,
1420 .levels = 1,
1421 .array_len = 1,
1422 .samples = info->surf.samples,
1423 .min_pitch = info->surf.row_pitch,
1424 .usage = info->surf.usage,
1425 .tiling_flags = 1 << info->surf.tiling,
1426 };
1427
1428 isl_surf_init_s(isl_dev, &info->surf, &init_info);
1429 assert(info->surf.row_pitch == init_info.min_pitch);
1430
1431 /* The view is also different now. */
1432 info->view.base_level = 0;
1433 info->view.levels = 1;
1434 info->view.base_array_layer = 0;
1435 info->view.array_len = 1;
1436 info->z_offset = 0;
1437 }
1438
1439 static void
1440 surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
1441 struct brw_blorp_surface_info *info)
1442 {
1443 assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1444
1445 /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1446 surf_convert_to_single_slice(isl_dev, info);
1447
1448 info->surf.logical_level0_px = info->surf.phys_level0_sa;
1449 info->surf.samples = 1;
1450 info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
1451 }
1452
1453 static void
1454 surf_retile_w_to_y(const struct isl_device *isl_dev,
1455 struct brw_blorp_surface_info *info)
1456 {
1457 assert(info->surf.tiling == ISL_TILING_W);
1458
1459 /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1460 surf_convert_to_single_slice(isl_dev, info);
1461
1462 /* On gen7+, we don't have interleaved multisampling for color render
1463 * targets so we have to fake it.
1464 *
1465 * TODO: Are we sure we don't also need to fake it on gen6?
1466 */
1467 if (isl_dev->info->gen > 6 &&
1468 info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1469 surf_fake_interleaved_msaa(isl_dev, info);
1470 }
1471
1472 if (isl_dev->info->gen == 6) {
1473 /* Gen6 stencil buffers have a very large alignment coming in from the
1474 * miptree. It's out-of-bounds for what the surface state can handle.
1475 * Since we have a single layer and level, it doesn't really matter as
1476 * long as we don't pass a bogus value into isl_surf_fill_state().
1477 */
1478 info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
1479 }
1480
1481 /* Now that we've converted everything to a simple 2-D surface with only
1482 * one miplevel, we can go about retiling it.
1483 */
1484 const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
1485 info->surf.tiling = ISL_TILING_Y0;
1486 info->surf.logical_level0_px.width =
1487 ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
1488 info->surf.logical_level0_px.height =
1489 ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
1490 info->tile_x_sa *= 2;
1491 info->tile_y_sa /= 2;
1492 }
1493
1494 static bool
1495 can_shrink_surface(const struct brw_blorp_surface_info *surf)
1496 {
1497 /* The current code doesn't support offsets into the aux buffers. This
1498 * should be possible, but we need to make sure the offset is page
1499 * aligned for both the surface and the aux buffer surface. Generally
1500 * this mean using the page aligned offset for the aux buffer.
1501 *
1502 * Currently the cases where we must split the blit are limited to cases
1503 * where we don't have a aux buffer.
1504 */
1505 if (surf->aux_addr.buffer != NULL)
1506 return false;
1507
1508 /* We can't support splitting the blit for gen <= 7, because the qpitch
1509 * size is calculated by the hardware based on the surface height for
1510 * gen <= 7. In gen >= 8, the qpitch is controlled by the driver.
1511 */
1512 if (surf->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)
1513 return false;
1514
1515 return true;
1516 }
1517
1518 static bool
1519 can_shrink_surfaces(const struct blorp_params *params)
1520 {
1521 return
1522 can_shrink_surface(&params->src) &&
1523 can_shrink_surface(&params->dst);
1524 }
1525
1526 static unsigned
1527 get_max_surface_size(const struct gen_device_info *devinfo,
1528 const struct blorp_params *params)
1529 {
1530 const unsigned max = devinfo->gen >= 7 ? 16384 : 8192;
1531 if (split_blorp_blit_debug && can_shrink_surfaces(params))
1532 return max >> 4; /* A smaller restriction when debug is enabled */
1533 else
1534 return max;
1535 }
1536
1537 struct blt_axis {
1538 double src0, src1, dst0, dst1;
1539 bool mirror;
1540 };
1541
1542 struct blt_coords {
1543 struct blt_axis x, y;
1544 };
1545
1546 static void
1547 surf_fake_rgb_with_red(const struct isl_device *isl_dev,
1548 struct brw_blorp_surface_info *info,
1549 uint32_t *x, uint32_t *width)
1550 {
1551 surf_convert_to_single_slice(isl_dev, info);
1552
1553 info->surf.logical_level0_px.width *= 3;
1554 info->surf.phys_level0_sa.width *= 3;
1555 *x *= 3;
1556 *width *= 3;
1557
1558 enum isl_format red_format;
1559 switch (info->view.format) {
1560 case ISL_FORMAT_R8G8B8_UNORM:
1561 red_format = ISL_FORMAT_R8_UNORM;
1562 break;
1563 case ISL_FORMAT_R8G8B8_UINT:
1564 red_format = ISL_FORMAT_R8_UINT;
1565 break;
1566 case ISL_FORMAT_R16G16B16_UNORM:
1567 red_format = ISL_FORMAT_R16_UNORM;
1568 break;
1569 case ISL_FORMAT_R16G16B16_UINT:
1570 red_format = ISL_FORMAT_R16_UINT;
1571 break;
1572 case ISL_FORMAT_R32G32B32_UINT:
1573 red_format = ISL_FORMAT_R32_UINT;
1574 break;
1575 default:
1576 unreachable("Invalid RGB copy destination format");
1577 }
1578 assert(isl_format_get_layout(red_format)->channels.r.type ==
1579 isl_format_get_layout(info->view.format)->channels.r.type);
1580 assert(isl_format_get_layout(red_format)->channels.r.bits ==
1581 isl_format_get_layout(info->view.format)->channels.r.bits);
1582
1583 info->surf.format = info->view.format = red_format;
1584 }
1585
1586 static void
1587 fake_dest_rgb_with_red(const struct isl_device *dev,
1588 struct blorp_params *params,
1589 struct brw_blorp_blit_prog_key *wm_prog_key,
1590 struct blt_coords *coords)
1591 {
1592 /* Handle RGB destinations for blorp_copy */
1593 const struct isl_format_layout *dst_fmtl =
1594 isl_format_get_layout(params->dst.surf.format);
1595
1596 if (dst_fmtl->bpb % 3 == 0) {
1597 uint32_t dst_x = coords->x.dst0;
1598 uint32_t dst_width = coords->x.dst1 - dst_x;
1599 surf_fake_rgb_with_red(dev, &params->dst,
1600 &dst_x, &dst_width);
1601 coords->x.dst0 = dst_x;
1602 coords->x.dst1 = dst_x + dst_width;
1603 wm_prog_key->dst_rgb = true;
1604 wm_prog_key->need_dst_offset = true;
1605 }
1606 }
1607
1608 enum blit_shrink_status {
1609 BLIT_NO_SHRINK = 0,
1610 BLIT_WIDTH_SHRINK = 1,
1611 BLIT_HEIGHT_SHRINK = 2,
1612 };
1613
1614 /* Try to blit. If the surface parameters exceed the size allowed by hardware,
1615 * then enum blit_shrink_status will be returned. If BLIT_NO_SHRINK is
1616 * returned, then the blit was successful.
1617 */
1618 static enum blit_shrink_status
1619 try_blorp_blit(struct blorp_batch *batch,
1620 struct blorp_params *params,
1621 struct brw_blorp_blit_prog_key *wm_prog_key,
1622 struct blt_coords *coords)
1623 {
1624 const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
1625
1626 fake_dest_rgb_with_red(batch->blorp->isl_dev, params, wm_prog_key, coords);
1627
1628 if (isl_format_has_sint_channel(params->src.view.format)) {
1629 wm_prog_key->texture_data_type = nir_type_int;
1630 } else if (isl_format_has_uint_channel(params->src.view.format)) {
1631 wm_prog_key->texture_data_type = nir_type_uint;
1632 } else {
1633 wm_prog_key->texture_data_type = nir_type_float;
1634 }
1635
1636 /* src_samples and dst_samples are the true sample counts */
1637 wm_prog_key->src_samples = params->src.surf.samples;
1638 wm_prog_key->dst_samples = params->dst.surf.samples;
1639
1640 wm_prog_key->tex_aux_usage = params->src.aux_usage;
1641
1642 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1643 * dst.
1644 */
1645 wm_prog_key->src_layout = params->src.surf.msaa_layout;
1646 wm_prog_key->dst_layout = params->dst.surf.msaa_layout;
1647
1648 /* Round floating point values to nearest integer to avoid "off by one texel"
1649 * kind of errors when blitting.
1650 */
1651 params->x0 = params->wm_inputs.discard_rect.x0 = round(coords->x.dst0);
1652 params->y0 = params->wm_inputs.discard_rect.y0 = round(coords->y.dst0);
1653 params->x1 = params->wm_inputs.discard_rect.x1 = round(coords->x.dst1);
1654 params->y1 = params->wm_inputs.discard_rect.y1 = round(coords->y.dst1);
1655
1656 brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[0],
1657 coords->x.src0, coords->x.src1,
1658 coords->x.dst0, coords->x.dst1,
1659 coords->x.mirror);
1660 brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[1],
1661 coords->y.src0, coords->y.src1,
1662 coords->y.dst0, coords->y.dst1,
1663 coords->y.mirror);
1664
1665 if (devinfo->gen > 6 &&
1666 params->dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1667 assert(params->dst.surf.samples > 1);
1668
1669 /* We must expand the rectangle we send through the rendering pipeline,
1670 * to account for the fact that we are mapping the destination region as
1671 * single-sampled when it is in fact multisampled. We must also align
1672 * it to a multiple of the multisampling pattern, because the
1673 * differences between multisampled and single-sampled surface formats
1674 * will mean that pixels are scrambled within the multisampling pattern.
1675 * TODO: what if this makes the coordinates too large?
1676 *
1677 * Note: this only works if the destination surface uses the IMS layout.
1678 * If it's UMS, then we have no choice but to set up the rendering
1679 * pipeline as multisampled.
1680 */
1681 struct isl_extent2d px_size_sa =
1682 isl_get_interleaved_msaa_px_size_sa(params->dst.surf.samples);
1683 params->x0 = ROUND_DOWN_TO(params->x0, 2) * px_size_sa.width;
1684 params->y0 = ROUND_DOWN_TO(params->y0, 2) * px_size_sa.height;
1685 params->x1 = ALIGN(params->x1, 2) * px_size_sa.width;
1686 params->y1 = ALIGN(params->y1, 2) * px_size_sa.height;
1687
1688 surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params->dst);
1689
1690 wm_prog_key->use_kill = true;
1691 wm_prog_key->need_dst_offset = true;
1692 }
1693
1694 if (params->dst.surf.tiling == ISL_TILING_W) {
1695 /* We must modify the rectangle we send through the rendering pipeline
1696 * (and the size and x/y offset of the destination surface), to account
1697 * for the fact that we are mapping it as Y-tiled when it is in fact
1698 * W-tiled.
1699 *
1700 * Both Y tiling and W tiling can be understood as organizations of
1701 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
1702 * is different, but the layout of the 32-byte sub-tiles within the 4k
1703 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
1704 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
1705 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
1706 *
1707 * Therefore, to account for the layout differences within the 32-byte
1708 * sub-tiles, we must expand the rectangle so the X coordinates of its
1709 * edges are multiples of 8 (the W sub-tile width), and its Y
1710 * coordinates of its edges are multiples of 4 (the W sub-tile height).
1711 * Then we need to scale the X and Y coordinates of the rectangle to
1712 * account for the differences in aspect ratio between the Y and W
1713 * sub-tiles. We need to modify the layer width and height similarly.
1714 *
1715 * A correction needs to be applied when MSAA is in use: since
1716 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
1717 * we need to align the Y coordinates to multiples of 8, so that when
1718 * they are divided by two they are still multiples of 4.
1719 *
1720 * Note: Since the x/y offset of the surface will be applied using the
1721 * SURFACE_STATE command packet, it will be invisible to the swizzling
1722 * code in the shader; therefore it needs to be in a multiple of the
1723 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
1724 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
1725 * buffer), and the miplevel alignment used for stencil buffers is 8
1726 * pixels horizontally and either 4 or 8 pixels vertically (see
1727 * intel_horizontal_texture_alignment_unit() and
1728 * intel_vertical_texture_alignment_unit()).
1729 *
1730 * Note: Also, since the SURFACE_STATE command packet can only apply
1731 * offsets that are multiples of 4 pixels horizontally and 2 pixels
1732 * vertically, it is important that the offsets will be multiples of
1733 * these sizes after they are converted into Y-tiled coordinates.
1734 * Fortunately they will be, since we know from above that the offsets
1735 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
1736 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
1737 *
1738 * TODO: what if this makes the coordinates (or the texture size) too
1739 * large?
1740 */
1741 const unsigned x_align = 8;
1742 const unsigned y_align = params->dst.surf.samples != 0 ? 8 : 4;
1743 params->x0 = ROUND_DOWN_TO(params->x0, x_align) * 2;
1744 params->y0 = ROUND_DOWN_TO(params->y0, y_align) / 2;
1745 params->x1 = ALIGN(params->x1, x_align) * 2;
1746 params->y1 = ALIGN(params->y1, y_align) / 2;
1747
1748 /* Retile the surface to Y-tiled */
1749 surf_retile_w_to_y(batch->blorp->isl_dev, &params->dst);
1750
1751 wm_prog_key->dst_tiled_w = true;
1752 wm_prog_key->use_kill = true;
1753 wm_prog_key->need_dst_offset = true;
1754
1755 if (params->dst.surf.samples > 1) {
1756 /* If the destination surface is a W-tiled multisampled stencil
1757 * buffer that we're mapping as Y tiled, then we need to arrange for
1758 * the WM program to run once per sample rather than once per pixel,
1759 * because the memory layout of related samples doesn't match between
1760 * W and Y tiling.
1761 */
1762 wm_prog_key->persample_msaa_dispatch = true;
1763 }
1764 }
1765
1766 if (devinfo->gen < 8 && params->src.surf.tiling == ISL_TILING_W) {
1767 /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
1768 * Broadwell adds support for sampling from stencil.
1769 *
1770 * See the comments above concerning x/y offset alignment for the
1771 * destination surface.
1772 *
1773 * TODO: what if this makes the texture size too large?
1774 */
1775 surf_retile_w_to_y(batch->blorp->isl_dev, &params->src);
1776
1777 wm_prog_key->src_tiled_w = true;
1778 wm_prog_key->need_src_offset = true;
1779 }
1780
1781 /* tex_samples and rt_samples are the sample counts that are set up in
1782 * SURFACE_STATE.
1783 */
1784 wm_prog_key->tex_samples = params->src.surf.samples;
1785 wm_prog_key->rt_samples = params->dst.surf.samples;
1786
1787 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1788 * use to access the source and destination surfaces.
1789 */
1790 wm_prog_key->tex_layout = params->src.surf.msaa_layout;
1791 wm_prog_key->rt_layout = params->dst.surf.msaa_layout;
1792
1793 if (params->src.surf.samples > 0 && params->dst.surf.samples > 1) {
1794 /* We are blitting from a multisample buffer to a multisample buffer, so
1795 * we must preserve samples within a pixel. This means we have to
1796 * arrange for the WM program to run once per sample rather than once
1797 * per pixel.
1798 */
1799 wm_prog_key->persample_msaa_dispatch = true;
1800 }
1801
1802 params->num_samples = params->dst.surf.samples;
1803
1804 if (params->src.tile_x_sa || params->src.tile_y_sa) {
1805 assert(wm_prog_key->need_src_offset);
1806 surf_get_intratile_offset_px(&params->src,
1807 &params->wm_inputs.src_offset.x,
1808 &params->wm_inputs.src_offset.y);
1809 }
1810
1811 if (params->dst.tile_x_sa || params->dst.tile_y_sa) {
1812 assert(wm_prog_key->need_dst_offset);
1813 surf_get_intratile_offset_px(&params->dst,
1814 &params->wm_inputs.dst_offset.x,
1815 &params->wm_inputs.dst_offset.y);
1816 params->x0 += params->wm_inputs.dst_offset.x;
1817 params->y0 += params->wm_inputs.dst_offset.y;
1818 params->x1 += params->wm_inputs.dst_offset.x;
1819 params->y1 += params->wm_inputs.dst_offset.y;
1820 }
1821
1822 /* For some texture types, we need to pass the layer through the sampler. */
1823 params->wm_inputs.src_z = params->src.z_offset;
1824
1825 brw_blorp_get_blit_kernel(batch->blorp, params, wm_prog_key);
1826
1827 unsigned result = 0;
1828 unsigned max_surface_size = get_max_surface_size(devinfo, params);
1829 if (params->src.surf.logical_level0_px.width > max_surface_size ||
1830 params->dst.surf.logical_level0_px.width > max_surface_size)
1831 result |= BLIT_WIDTH_SHRINK;
1832 if (params->src.surf.logical_level0_px.height > max_surface_size ||
1833 params->dst.surf.logical_level0_px.height > max_surface_size)
1834 result |= BLIT_HEIGHT_SHRINK;
1835
1836 if (result == 0) {
1837 batch->blorp->exec(batch, params);
1838 }
1839
1840 return result;
1841 }
1842
1843 /* Adjust split blit source coordinates for the current destination
1844 * coordinates.
1845 */
1846 static void
1847 adjust_split_source_coords(const struct blt_axis *orig,
1848 struct blt_axis *split_coords,
1849 double scale)
1850 {
1851 /* When scale is greater than 0, then we are growing from the start, so
1852 * src0 uses delta0, and src1 uses delta1. When scale is less than 0, the
1853 * source range shrinks from the end. In that case src0 is adjusted by
1854 * delta1, and src1 is adjusted by delta0.
1855 */
1856 double delta0 = scale * (split_coords->dst0 - orig->dst0);
1857 double delta1 = scale * (split_coords->dst1 - orig->dst1);
1858 split_coords->src0 = orig->src0 + (scale >= 0.0 ? delta0 : delta1);
1859 split_coords->src1 = orig->src1 + (scale >= 0.0 ? delta1 : delta0);
1860 }
1861
1862 static const struct isl_extent2d
1863 get_px_size_sa(const struct isl_surf *surf)
1864 {
1865 static const struct isl_extent2d one_to_one = { .w = 1, .h = 1 };
1866
1867 if (surf->msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED)
1868 return one_to_one;
1869 else
1870 return isl_get_interleaved_msaa_px_size_sa(surf->samples);
1871 }
1872
1873 static void
1874 shrink_surface_params(const struct isl_device *dev,
1875 struct brw_blorp_surface_info *info,
1876 double *x0, double *x1, double *y0, double *y1)
1877 {
1878 uint32_t byte_offset, x_offset_sa, y_offset_sa, size;
1879 struct isl_extent2d px_size_sa;
1880 int adjust;
1881
1882 surf_convert_to_single_slice(dev, info);
1883
1884 px_size_sa = get_px_size_sa(&info->surf);
1885
1886 /* Because this gets called after we lower compressed images, the tile
1887 * offsets may be non-zero and we need to incorporate them in our
1888 * calculations.
1889 */
1890 x_offset_sa = (uint32_t)*x0 * px_size_sa.w + info->tile_x_sa;
1891 y_offset_sa = (uint32_t)*y0 * px_size_sa.h + info->tile_y_sa;
1892 isl_tiling_get_intratile_offset_sa(dev, info->surf.tiling,
1893 info->surf.format, info->surf.row_pitch,
1894 x_offset_sa, y_offset_sa,
1895 &byte_offset,
1896 &info->tile_x_sa, &info->tile_y_sa);
1897
1898 info->addr.offset += byte_offset;
1899
1900 adjust = (int)info->tile_x_sa / px_size_sa.w - (int)*x0;
1901 *x0 += adjust;
1902 *x1 += adjust;
1903 info->tile_x_sa = 0;
1904
1905 adjust = (int)info->tile_y_sa / px_size_sa.h - (int)*y0;
1906 *y0 += adjust;
1907 *y1 += adjust;
1908 info->tile_y_sa = 0;
1909
1910 size = MIN2((uint32_t)ceil(*x1), info->surf.logical_level0_px.width);
1911 info->surf.logical_level0_px.width = size;
1912 info->surf.phys_level0_sa.width = size * px_size_sa.w;
1913
1914 size = MIN2((uint32_t)ceil(*y1), info->surf.logical_level0_px.height);
1915 info->surf.logical_level0_px.height = size;
1916 info->surf.phys_level0_sa.height = size * px_size_sa.h;
1917 }
1918
1919 static void
1920 shrink_surfaces(const struct isl_device *dev,
1921 struct blorp_params *params,
1922 struct brw_blorp_blit_prog_key *wm_prog_key,
1923 struct blt_coords *coords)
1924 {
1925 /* Shrink source surface */
1926 shrink_surface_params(dev, &params->src, &coords->x.src0, &coords->x.src1,
1927 &coords->y.src0, &coords->y.src1);
1928 wm_prog_key->need_src_offset = false;
1929
1930 /* Shrink destination surface */
1931 shrink_surface_params(dev, &params->dst, &coords->x.dst0, &coords->x.dst1,
1932 &coords->y.dst0, &coords->y.dst1);
1933 wm_prog_key->need_dst_offset = false;
1934 }
1935
1936 static void
1937 do_blorp_blit(struct blorp_batch *batch,
1938 const struct blorp_params *orig_params,
1939 struct brw_blorp_blit_prog_key *wm_prog_key,
1940 const struct blt_coords *orig)
1941 {
1942 struct blorp_params params;
1943 struct blt_coords blit_coords;
1944 struct blt_coords split_coords = *orig;
1945 double w = orig->x.dst1 - orig->x.dst0;
1946 double h = orig->y.dst1 - orig->y.dst0;
1947 double x_scale = (orig->x.src1 - orig->x.src0) / w;
1948 double y_scale = (orig->y.src1 - orig->y.src0) / h;
1949 if (orig->x.mirror)
1950 x_scale = -x_scale;
1951 if (orig->y.mirror)
1952 y_scale = -y_scale;
1953
1954 bool x_done, y_done;
1955 bool shrink = split_blorp_blit_debug && can_shrink_surfaces(orig_params);
1956 do {
1957 params = *orig_params;
1958 blit_coords = split_coords;
1959 if (shrink)
1960 shrink_surfaces(batch->blorp->isl_dev, &params, wm_prog_key,
1961 &blit_coords);
1962 enum blit_shrink_status result =
1963 try_blorp_blit(batch, &params, wm_prog_key, &blit_coords);
1964
1965 if (result & BLIT_WIDTH_SHRINK) {
1966 w /= 2.0;
1967 assert(w >= 1.0);
1968 split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
1969 adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
1970 }
1971 if (result & BLIT_HEIGHT_SHRINK) {
1972 h /= 2.0;
1973 assert(h >= 1.0);
1974 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
1975 adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
1976 }
1977
1978 if (result != 0) {
1979 assert(can_shrink_surfaces(orig_params));
1980 shrink = true;
1981 continue;
1982 }
1983
1984 y_done = (orig->y.dst1 - split_coords.y.dst1 < 0.5);
1985 x_done = y_done && (orig->x.dst1 - split_coords.x.dst1 < 0.5);
1986 if (x_done) {
1987 break;
1988 } else if (y_done) {
1989 split_coords.x.dst0 += w;
1990 split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
1991 split_coords.y.dst0 = orig->y.dst0;
1992 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
1993 adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
1994 } else {
1995 split_coords.y.dst0 += h;
1996 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
1997 adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
1998 }
1999 } while (true);
2000 }
2001
2002 void
2003 blorp_blit(struct blorp_batch *batch,
2004 const struct blorp_surf *src_surf,
2005 unsigned src_level, unsigned src_layer,
2006 enum isl_format src_format, struct isl_swizzle src_swizzle,
2007 const struct blorp_surf *dst_surf,
2008 unsigned dst_level, unsigned dst_layer,
2009 enum isl_format dst_format, struct isl_swizzle dst_swizzle,
2010 float src_x0, float src_y0,
2011 float src_x1, float src_y1,
2012 float dst_x0, float dst_y0,
2013 float dst_x1, float dst_y1,
2014 GLenum filter, bool mirror_x, bool mirror_y)
2015 {
2016 struct blorp_params params;
2017 blorp_params_init(&params);
2018
2019 brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2020 src_layer, src_format, false);
2021 brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2022 dst_layer, dst_format, true);
2023
2024 params.src.view.swizzle = src_swizzle;
2025 params.dst.view.swizzle = dst_swizzle;
2026
2027 struct brw_blorp_blit_prog_key wm_prog_key = {
2028 .shader_type = BLORP_SHADER_TYPE_BLIT
2029 };
2030
2031 /* Scaled blitting or not. */
2032 wm_prog_key.blit_scaled =
2033 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
2034 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
2035
2036 /* Scaling factors used for bilinear filtering in multisample scaled
2037 * blits.
2038 */
2039 if (params.src.surf.samples == 16)
2040 wm_prog_key.x_scale = 4.0f;
2041 else
2042 wm_prog_key.x_scale = 2.0f;
2043 wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
2044
2045 if (filter == GL_LINEAR &&
2046 params.src.surf.samples <= 1 && params.dst.surf.samples <= 1)
2047 wm_prog_key.bilinear_filter = true;
2048
2049 if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
2050 (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
2051 !isl_format_has_int_channel(params.src.surf.format) &&
2052 params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
2053 /* We are downsampling a non-integer color buffer, so blend.
2054 *
2055 * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
2056 *
2057 * "If the source formats are integer types or stencil values, a
2058 * single sample's value is selected for each pixel."
2059 *
2060 * This implies we should not blend in that case.
2061 */
2062 wm_prog_key.blend = true;
2063 }
2064
2065 params.wm_inputs.rect_grid.x1 =
2066 minify(params.src.surf.logical_level0_px.width, src_level) *
2067 wm_prog_key.x_scale - 1.0f;
2068 params.wm_inputs.rect_grid.y1 =
2069 minify(params.src.surf.logical_level0_px.height, src_level) *
2070 wm_prog_key.y_scale - 1.0f;
2071
2072 struct blt_coords coords = {
2073 .x = {
2074 .src0 = src_x0,
2075 .src1 = src_x1,
2076 .dst0 = dst_x0,
2077 .dst1 = dst_x1,
2078 .mirror = mirror_x
2079 },
2080 .y = {
2081 .src0 = src_y0,
2082 .src1 = src_y1,
2083 .dst0 = dst_y0,
2084 .dst1 = dst_y1,
2085 .mirror = mirror_y
2086 }
2087 };
2088
2089 do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2090 }
2091
2092 static enum isl_format
2093 get_copy_format_for_bpb(const struct isl_device *isl_dev, unsigned bpb)
2094 {
2095 /* The choice of UNORM and UINT formats is very intentional here. Most
2096 * of the time, we want to use a UINT format to avoid any rounding error
2097 * in the blit. For stencil blits, R8_UINT is required by the hardware.
2098 * (It's the only format allowed in conjunction with W-tiling.) Also we
2099 * intentionally use the 4-channel formats whenever we can. This is so
2100 * that, when we do a RGB <-> RGBX copy, the two formats will line up
2101 * even though one of them is 3/4 the size of the other. The choice of
2102 * UNORM vs. UINT is also very intentional because we don't have 8 or
2103 * 16-bit RGB UINT formats until Sky Lake so we have to use UNORM there.
2104 * Fortunately, the only time we should ever use two different formats in
2105 * the table below is for RGB -> RGBA blits and so we will never have any
2106 * UNORM/UINT mismatch.
2107 */
2108 if (ISL_DEV_GEN(isl_dev) >= 9) {
2109 switch (bpb) {
2110 case 8: return ISL_FORMAT_R8_UINT;
2111 case 16: return ISL_FORMAT_R8G8_UINT;
2112 case 24: return ISL_FORMAT_R8G8B8_UINT;
2113 case 32: return ISL_FORMAT_R8G8B8A8_UINT;
2114 case 48: return ISL_FORMAT_R16G16B16_UINT;
2115 case 64: return ISL_FORMAT_R16G16B16A16_UINT;
2116 case 96: return ISL_FORMAT_R32G32B32_UINT;
2117 case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2118 default:
2119 unreachable("Unknown format bpb");
2120 }
2121 } else {
2122 switch (bpb) {
2123 case 8: return ISL_FORMAT_R8_UINT;
2124 case 16: return ISL_FORMAT_R8G8_UINT;
2125 case 24: return ISL_FORMAT_R8G8B8_UNORM;
2126 case 32: return ISL_FORMAT_R8G8B8A8_UNORM;
2127 case 48: return ISL_FORMAT_R16G16B16_UNORM;
2128 case 64: return ISL_FORMAT_R16G16B16A16_UNORM;
2129 case 96: return ISL_FORMAT_R32G32B32_UINT;
2130 case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2131 default:
2132 unreachable("Unknown format bpb");
2133 }
2134 }
2135 }
2136
2137 /** Returns a UINT format that is CCS-compatible with the given format
2138 *
2139 * The PRM's say absolutely nothing about how render compression works. The
2140 * only thing they provide is a list of formats on which it is and is not
2141 * supported. Empirical testing indicates that the compression is only based
2142 * on the bit-layout of the format and the channel encoding doesn't matter.
2143 * So, while texture views don't work in general, you can create a view as
2144 * long as the bit-layout of the formats are the same.
2145 *
2146 * Fortunately, for every render compression capable format, the UINT format
2147 * with the same bit layout also supports render compression. This means that
2148 * we only need to handle UINT formats for copy operations. In order to do
2149 * copies between formats with different bit layouts, we attach both with a
2150 * UINT format and use bit_cast_color() to generate code to do the bit-cast
2151 * operation between the two bit layouts.
2152 */
2153 static enum isl_format
2154 get_ccs_compatible_uint_format(const struct isl_format_layout *fmtl)
2155 {
2156 switch (fmtl->format) {
2157 case ISL_FORMAT_R32G32B32A32_FLOAT:
2158 case ISL_FORMAT_R32G32B32A32_SINT:
2159 case ISL_FORMAT_R32G32B32A32_UINT:
2160 case ISL_FORMAT_R32G32B32A32_UNORM:
2161 case ISL_FORMAT_R32G32B32A32_SNORM:
2162 return ISL_FORMAT_R32G32B32A32_UINT;
2163
2164 case ISL_FORMAT_R16G16B16A16_UNORM:
2165 case ISL_FORMAT_R16G16B16A16_SNORM:
2166 case ISL_FORMAT_R16G16B16A16_SINT:
2167 case ISL_FORMAT_R16G16B16A16_UINT:
2168 case ISL_FORMAT_R16G16B16A16_FLOAT:
2169 case ISL_FORMAT_R16G16B16X16_UNORM:
2170 case ISL_FORMAT_R16G16B16X16_FLOAT:
2171 return ISL_FORMAT_R16G16B16A16_UINT;
2172
2173 case ISL_FORMAT_R32G32_FLOAT:
2174 case ISL_FORMAT_R32G32_SINT:
2175 case ISL_FORMAT_R32G32_UINT:
2176 case ISL_FORMAT_R32G32_UNORM:
2177 case ISL_FORMAT_R32G32_SNORM:
2178 return ISL_FORMAT_R32G32_UINT;
2179
2180 case ISL_FORMAT_B8G8R8A8_UNORM:
2181 case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2182 case ISL_FORMAT_R8G8B8A8_UNORM:
2183 case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
2184 case ISL_FORMAT_R8G8B8A8_SNORM:
2185 case ISL_FORMAT_R8G8B8A8_SINT:
2186 case ISL_FORMAT_R8G8B8A8_UINT:
2187 case ISL_FORMAT_B8G8R8X8_UNORM:
2188 case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
2189 case ISL_FORMAT_R8G8B8X8_UNORM:
2190 case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
2191 return ISL_FORMAT_R8G8B8A8_UINT;
2192
2193 case ISL_FORMAT_R16G16_UNORM:
2194 case ISL_FORMAT_R16G16_SNORM:
2195 case ISL_FORMAT_R16G16_SINT:
2196 case ISL_FORMAT_R16G16_UINT:
2197 case ISL_FORMAT_R16G16_FLOAT:
2198 return ISL_FORMAT_R16G16_UINT;
2199
2200 case ISL_FORMAT_R32_SINT:
2201 case ISL_FORMAT_R32_UINT:
2202 case ISL_FORMAT_R32_FLOAT:
2203 case ISL_FORMAT_R32_UNORM:
2204 case ISL_FORMAT_R32_SNORM:
2205 return ISL_FORMAT_R32_UINT;
2206
2207 default:
2208 unreachable("Not a compressible format");
2209 }
2210 }
2211
2212 /* Takes an isl_color_value and returns a color value that is the original
2213 * color value only bit-casted to a UINT format. This value, together with
2214 * the format from get_ccs_compatible_uint_format, will yield the same bit
2215 * value as the original color and format.
2216 */
2217 static union isl_color_value
2218 bitcast_color_value_to_uint(union isl_color_value color,
2219 const struct isl_format_layout *fmtl)
2220 {
2221 /* All CCS formats have the same number of bits in each channel */
2222 const struct isl_channel_layout *chan = &fmtl->channels.r;
2223
2224 union isl_color_value bits;
2225 switch (chan->type) {
2226 case ISL_UINT:
2227 case ISL_SINT:
2228 /* Hardware will ignore the high bits so there's no need to cast */
2229 bits = color;
2230 break;
2231
2232 case ISL_UNORM:
2233 for (unsigned i = 0; i < 4; i++)
2234 bits.u32[i] = _mesa_float_to_unorm(color.f32[i], chan->bits);
2235 break;
2236
2237 case ISL_SNORM:
2238 for (unsigned i = 0; i < 4; i++)
2239 bits.i32[i] = _mesa_float_to_snorm(color.f32[i], chan->bits);
2240 break;
2241
2242 case ISL_SFLOAT:
2243 switch (chan->bits) {
2244 case 16:
2245 for (unsigned i = 0; i < 4; i++)
2246 bits.u32[i] = _mesa_float_to_half(color.f32[i]);
2247 break;
2248
2249 case 32:
2250 bits = color;
2251 break;
2252
2253 default:
2254 unreachable("Invalid float format size");
2255 }
2256 break;
2257
2258 default:
2259 unreachable("Invalid channel type");
2260 }
2261
2262 switch (fmtl->format) {
2263 case ISL_FORMAT_B8G8R8A8_UNORM:
2264 case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2265 case ISL_FORMAT_B8G8R8X8_UNORM:
2266 case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: {
2267 /* If it's a BGRA format, we need to swap blue and red */
2268 uint32_t tmp = bits.u32[0];
2269 bits.u32[0] = bits.u32[2];
2270 bits.u32[2] = tmp;
2271 break;
2272 }
2273
2274 default:
2275 break; /* Nothing to do */
2276 }
2277
2278 return bits;
2279 }
2280
2281 static void
2282 surf_convert_to_uncompressed(const struct isl_device *isl_dev,
2283 struct brw_blorp_surface_info *info,
2284 uint32_t *x, uint32_t *y,
2285 uint32_t *width, uint32_t *height)
2286 {
2287 const struct isl_format_layout *fmtl =
2288 isl_format_get_layout(info->surf.format);
2289
2290 assert(fmtl->bw > 1 || fmtl->bh > 1);
2291
2292 /* This is a compressed surface. We need to convert it to a single
2293 * slice (because compressed layouts don't perfectly match uncompressed
2294 * ones with the same bpb) and divide x, y, width, and height by the
2295 * block size.
2296 */
2297 surf_convert_to_single_slice(isl_dev, info);
2298
2299 if (width || height) {
2300 #ifndef NDEBUG
2301 uint32_t right_edge_px = info->tile_x_sa + *x + *width;
2302 uint32_t bottom_edge_px = info->tile_y_sa + *y + *height;
2303 assert(*width % fmtl->bw == 0 ||
2304 right_edge_px == info->surf.logical_level0_px.width);
2305 assert(*height % fmtl->bh == 0 ||
2306 bottom_edge_px == info->surf.logical_level0_px.height);
2307 #endif
2308 *width = DIV_ROUND_UP(*width, fmtl->bw);
2309 *height = DIV_ROUND_UP(*height, fmtl->bh);
2310 }
2311
2312 assert(*x % fmtl->bw == 0);
2313 assert(*y % fmtl->bh == 0);
2314 *x /= fmtl->bw;
2315 *y /= fmtl->bh;
2316
2317 info->surf.logical_level0_px.width =
2318 DIV_ROUND_UP(info->surf.logical_level0_px.width, fmtl->bw);
2319 info->surf.logical_level0_px.height =
2320 DIV_ROUND_UP(info->surf.logical_level0_px.height, fmtl->bh);
2321
2322 assert(info->surf.phys_level0_sa.width % fmtl->bw == 0);
2323 assert(info->surf.phys_level0_sa.height % fmtl->bh == 0);
2324 info->surf.phys_level0_sa.width /= fmtl->bw;
2325 info->surf.phys_level0_sa.height /= fmtl->bh;
2326
2327 assert(info->tile_x_sa % fmtl->bw == 0);
2328 assert(info->tile_y_sa % fmtl->bh == 0);
2329 info->tile_x_sa /= fmtl->bw;
2330 info->tile_y_sa /= fmtl->bh;
2331
2332 /* It's now an uncompressed surface so we need an uncompressed format */
2333 info->surf.format = get_copy_format_for_bpb(isl_dev, fmtl->bpb);
2334 }
2335
2336 void
2337 blorp_copy(struct blorp_batch *batch,
2338 const struct blorp_surf *src_surf,
2339 unsigned src_level, unsigned src_layer,
2340 const struct blorp_surf *dst_surf,
2341 unsigned dst_level, unsigned dst_layer,
2342 uint32_t src_x, uint32_t src_y,
2343 uint32_t dst_x, uint32_t dst_y,
2344 uint32_t src_width, uint32_t src_height)
2345 {
2346 const struct isl_device *isl_dev = batch->blorp->isl_dev;
2347 struct blorp_params params;
2348
2349 if (src_width == 0 || src_height == 0)
2350 return;
2351
2352 blorp_params_init(&params);
2353 brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2354 src_layer, ISL_FORMAT_UNSUPPORTED, false);
2355 brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2356 dst_layer, ISL_FORMAT_UNSUPPORTED, true);
2357
2358 struct brw_blorp_blit_prog_key wm_prog_key = {
2359 .shader_type = BLORP_SHADER_TYPE_BLIT
2360 };
2361
2362 const struct isl_format_layout *src_fmtl =
2363 isl_format_get_layout(params.src.surf.format);
2364 const struct isl_format_layout *dst_fmtl =
2365 isl_format_get_layout(params.dst.surf.format);
2366
2367 assert(params.src.aux_usage == ISL_AUX_USAGE_NONE ||
2368 params.src.aux_usage == ISL_AUX_USAGE_MCS ||
2369 params.src.aux_usage == ISL_AUX_USAGE_CCS_E);
2370 assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE ||
2371 params.dst.aux_usage == ISL_AUX_USAGE_MCS ||
2372 params.dst.aux_usage == ISL_AUX_USAGE_CCS_E);
2373
2374 if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2375 params.dst.view.format = get_ccs_compatible_uint_format(dst_fmtl);
2376 if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2377 params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2378 } else if (src_fmtl->bpb == dst_fmtl->bpb) {
2379 params.src.view.format = params.dst.view.format;
2380 } else {
2381 params.src.view.format =
2382 get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2383 }
2384 } else if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2385 params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2386 if (src_fmtl->bpb == dst_fmtl->bpb) {
2387 params.dst.view.format = params.src.view.format;
2388 } else {
2389 params.dst.view.format =
2390 get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2391 }
2392 } else {
2393 params.dst.view.format = get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2394 params.src.view.format = get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2395 }
2396
2397 if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2398 params.src.clear_color =
2399 bitcast_color_value_to_uint(params.src.clear_color, src_fmtl);
2400 }
2401
2402 if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2403 params.dst.clear_color =
2404 bitcast_color_value_to_uint(params.dst.clear_color, dst_fmtl);
2405 }
2406
2407 wm_prog_key.src_bpc =
2408 isl_format_get_layout(params.src.view.format)->channels.r.bits;
2409 wm_prog_key.dst_bpc =
2410 isl_format_get_layout(params.dst.view.format)->channels.r.bits;
2411
2412 if (src_fmtl->bw > 1 || src_fmtl->bh > 1) {
2413 surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.src,
2414 &src_x, &src_y, &src_width, &src_height);
2415 wm_prog_key.need_src_offset = true;
2416 }
2417
2418 if (dst_fmtl->bw > 1 || dst_fmtl->bh > 1) {
2419 surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
2420 &dst_x, &dst_y, NULL, NULL);
2421 wm_prog_key.need_dst_offset = true;
2422 }
2423
2424 /* Once both surfaces are stompped to uncompressed as needed, the
2425 * destination size is the same as the source size.
2426 */
2427 uint32_t dst_width = src_width;
2428 uint32_t dst_height = src_height;
2429
2430 struct blt_coords coords = {
2431 .x = {
2432 .src0 = src_x,
2433 .src1 = src_x + src_width,
2434 .dst0 = dst_x,
2435 .dst1 = dst_x + dst_width,
2436 .mirror = false
2437 },
2438 .y = {
2439 .src0 = src_y,
2440 .src1 = src_y + src_height,
2441 .dst0 = dst_y,
2442 .dst1 = dst_y + dst_height,
2443 .mirror = false
2444 }
2445 };
2446
2447 do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2448 }