intel/blorp: Use nir_format_bitcast_uint_vec_unmasked
[mesa.git] / src / intel / blorp / blorp_blit.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "blorp_nir_builder.h"
25 #include "compiler/nir/nir_format_convert.h"
26
27 #include "blorp_priv.h"
28
29 #include "util/format_rgb9e5.h"
30 /* header-only include needed for _mesa_unorm_to_float and friends. */
31 #include "mesa/main/format_utils.h"
32
33 #define FILE_DEBUG_FLAG DEBUG_BLORP
34
35 static const bool split_blorp_blit_debug = false;
36
37 /**
38 * Enum to specify the order of arguments in a sampler message
39 */
40 enum sampler_message_arg
41 {
42 SAMPLER_MESSAGE_ARG_U_FLOAT,
43 SAMPLER_MESSAGE_ARG_V_FLOAT,
44 SAMPLER_MESSAGE_ARG_U_INT,
45 SAMPLER_MESSAGE_ARG_V_INT,
46 SAMPLER_MESSAGE_ARG_R_INT,
47 SAMPLER_MESSAGE_ARG_SI_INT,
48 SAMPLER_MESSAGE_ARG_MCS_INT,
49 SAMPLER_MESSAGE_ARG_ZERO_INT,
50 };
51
52 struct brw_blorp_blit_vars {
53 /* Input values from brw_blorp_wm_inputs */
54 nir_variable *v_discard_rect;
55 nir_variable *v_rect_grid;
56 nir_variable *v_coord_transform;
57 nir_variable *v_src_z;
58 nir_variable *v_src_offset;
59 nir_variable *v_dst_offset;
60 nir_variable *v_src_inv_size;
61
62 /* gl_FragCoord */
63 nir_variable *frag_coord;
64
65 /* gl_FragColor */
66 nir_variable *color_out;
67 };
68
69 static void
70 brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
71 const struct brw_blorp_blit_prog_key *key)
72 {
73 /* Blended and scaled blits never use pixel discard. */
74 assert(!key->use_kill || !(key->blend && key->blit_scaled));
75
76 #define LOAD_INPUT(name, type)\
77 v->v_##name = BLORP_CREATE_NIR_INPUT(b->shader, name, type);
78
79 LOAD_INPUT(discard_rect, glsl_vec4_type())
80 LOAD_INPUT(rect_grid, glsl_vec4_type())
81 LOAD_INPUT(coord_transform, glsl_vec4_type())
82 LOAD_INPUT(src_z, glsl_uint_type())
83 LOAD_INPUT(src_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
84 LOAD_INPUT(dst_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
85 LOAD_INPUT(src_inv_size, glsl_vector_type(GLSL_TYPE_FLOAT, 2))
86
87 #undef LOAD_INPUT
88
89 v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
90 glsl_vec4_type(), "gl_FragCoord");
91 v->frag_coord->data.location = VARYING_SLOT_POS;
92 v->frag_coord->data.origin_upper_left = true;
93
94 v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
95 glsl_vec4_type(), "gl_FragColor");
96 v->color_out->data.location = FRAG_RESULT_COLOR;
97 }
98
99 static nir_ssa_def *
100 blorp_blit_get_frag_coords(nir_builder *b,
101 const struct brw_blorp_blit_prog_key *key,
102 struct brw_blorp_blit_vars *v)
103 {
104 nir_ssa_def *coord = nir_f2i32(b, nir_load_var(b, v->frag_coord));
105
106 /* Account for destination surface intratile offset
107 *
108 * Transformation parameters giving translation from destination to source
109 * coordinates don't take into account possible intra-tile destination
110 * offset. Therefore it has to be first subtracted from the incoming
111 * coordinates. Vertices are set up based on coordinates containing the
112 * intra-tile offset.
113 */
114 if (key->need_dst_offset)
115 coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset));
116
117 if (key->persample_msaa_dispatch) {
118 return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
119 nir_load_sample_id(b));
120 } else {
121 return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
122 }
123 }
124
125 /**
126 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
127 * coordinates.
128 */
129 static nir_ssa_def *
130 blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
131 struct brw_blorp_blit_vars *v)
132 {
133 nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
134
135 nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
136 nir_channel(b, coord_transform, 3));
137 nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
138 nir_channel(b, coord_transform, 2));
139
140 return nir_fadd(b, nir_fmul(b, src_pos, mul), offset);
141 }
142
143 static inline void
144 blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
145 struct brw_blorp_blit_vars *v)
146 {
147 nir_ssa_def *c0, *c1, *c2, *c3;
148 nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
149 nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
150 nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
151 nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
152 nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
153
154 c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
155 c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
156 c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
157 c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
158
159 nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
160
161 nir_intrinsic_instr *discard =
162 nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
163 discard->src[0] = nir_src_for_ssa(oob);
164 nir_builder_instr_insert(b, &discard->instr);
165 }
166
167 static nir_tex_instr *
168 blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
169 nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
170 nir_alu_type dst_type)
171 {
172 nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
173
174 tex->op = op;
175
176 tex->dest_type = dst_type;
177 tex->is_array = false;
178 tex->is_shadow = false;
179
180 /* Blorp only has one texture and it's bound at unit 0 */
181 tex->texture = NULL;
182 tex->sampler = NULL;
183 tex->texture_index = 0;
184 tex->sampler_index = 0;
185
186 /* To properly handle 3-D and 2-D array textures, we pull the Z component
187 * from an input. TODO: This is a bit magic; we should probably make this
188 * more explicit in the future.
189 */
190 assert(pos->num_components >= 2);
191 pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
192 nir_load_var(b, v->v_src_z));
193
194 tex->src[0].src_type = nir_tex_src_coord;
195 tex->src[0].src = nir_src_for_ssa(pos);
196 tex->coord_components = 3;
197
198 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
199
200 return tex;
201 }
202
203 static nir_ssa_def *
204 blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
205 const struct brw_blorp_blit_prog_key *key, nir_ssa_def *pos)
206 {
207 if (key->need_src_offset)
208 pos = nir_fadd(b, pos, nir_i2f32(b, nir_load_var(b, v->v_src_offset)));
209
210 /* If the sampler requires normalized coordinates, we need to compensate. */
211 if (key->src_coords_normalized)
212 pos = nir_fmul(b, pos, nir_load_var(b, v->v_src_inv_size));
213
214 nir_tex_instr *tex =
215 blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2,
216 key->texture_data_type);
217
218 assert(pos->num_components == 2);
219 tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
220 tex->src[1].src_type = nir_tex_src_lod;
221 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
222
223 nir_builder_instr_insert(b, &tex->instr);
224
225 return &tex->dest.ssa;
226 }
227
228 static nir_ssa_def *
229 blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
230 nir_ssa_def *pos, nir_alu_type dst_type)
231 {
232 nir_tex_instr *tex =
233 blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
234
235 tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
236 tex->src[1].src_type = nir_tex_src_lod;
237 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
238
239 nir_builder_instr_insert(b, &tex->instr);
240
241 return &tex->dest.ssa;
242 }
243
244 static nir_ssa_def *
245 blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
246 nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
247 {
248 nir_tex_instr *tex =
249 blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
250 mcs != NULL ? 3 : 2, dst_type);
251
252 tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
253
254 tex->src[1].src_type = nir_tex_src_ms_index;
255 if (pos->num_components == 2) {
256 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
257 } else {
258 assert(pos->num_components == 3);
259 tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
260 }
261
262 if (mcs) {
263 tex->src[2].src_type = nir_tex_src_ms_mcs;
264 tex->src[2].src = nir_src_for_ssa(mcs);
265 }
266
267 nir_builder_instr_insert(b, &tex->instr);
268
269 return &tex->dest.ssa;
270 }
271
272 static nir_ssa_def *
273 blorp_blit_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v,
274 nir_ssa_def *pos)
275 {
276 nir_tex_instr *tex =
277 blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
278 pos, 1, nir_type_int);
279
280 tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
281
282 nir_builder_instr_insert(b, &tex->instr);
283
284 return &tex->dest.ssa;
285 }
286
287 /**
288 * Emit code to compensate for the difference between Y and W tiling.
289 *
290 * This code modifies the X and Y coordinates according to the formula:
291 *
292 * (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
293 *
294 * (See brw_blorp_build_nir_shader).
295 */
296 static inline nir_ssa_def *
297 blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
298 {
299 assert(pos->num_components == 2);
300 nir_ssa_def *x_Y = nir_channel(b, pos, 0);
301 nir_ssa_def *y_Y = nir_channel(b, pos, 1);
302
303 /* Given X and Y coordinates that describe an address using Y tiling,
304 * translate to the X and Y coordinates that describe the same address
305 * using W tiling.
306 *
307 * If we break down the low order bits of X and Y, using a
308 * single letter to represent each low-order bit:
309 *
310 * X = A << 7 | 0bBCDEFGH
311 * Y = J << 5 | 0bKLMNP (1)
312 *
313 * Then we can apply the Y tiling formula to see the memory offset being
314 * addressed:
315 *
316 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
317 *
318 * If we apply the W detiling formula to this memory location, that the
319 * corresponding X' and Y' coordinates are:
320 *
321 * X' = A << 6 | 0bBCDPFH (3)
322 * Y' = J << 6 | 0bKLMNEG
323 *
324 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
325 * we need to make the following computation:
326 *
327 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
328 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
329 */
330 nir_ssa_def *x_W = nir_imm_int(b, 0);
331 x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
332 x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
333 x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
334
335 nir_ssa_def *y_W = nir_imm_int(b, 0);
336 y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
337 y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
338 y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
339
340 return nir_vec2(b, x_W, y_W);
341 }
342
343 /**
344 * Emit code to compensate for the difference between Y and W tiling.
345 *
346 * This code modifies the X and Y coordinates according to the formula:
347 *
348 * (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
349 *
350 * (See brw_blorp_build_nir_shader).
351 */
352 static inline nir_ssa_def *
353 blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
354 {
355 assert(pos->num_components == 2);
356 nir_ssa_def *x_W = nir_channel(b, pos, 0);
357 nir_ssa_def *y_W = nir_channel(b, pos, 1);
358
359 /* Applying the same logic as above, but in reverse, we obtain the
360 * formulas:
361 *
362 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
363 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
364 */
365 nir_ssa_def *x_Y = nir_imm_int(b, 0);
366 x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
367 x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
368 x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
369 x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
370
371 nir_ssa_def *y_Y = nir_imm_int(b, 0);
372 y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
373 y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
374
375 return nir_vec2(b, x_Y, y_Y);
376 }
377
378 /**
379 * Emit code to compensate for the difference between MSAA and non-MSAA
380 * surfaces.
381 *
382 * This code modifies the X and Y coordinates according to the formula:
383 *
384 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
385 *
386 * (See brw_blorp_blit_program).
387 */
388 static inline nir_ssa_def *
389 blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
390 unsigned num_samples, enum isl_msaa_layout layout)
391 {
392 assert(pos->num_components == 2 || pos->num_components == 3);
393
394 switch (layout) {
395 case ISL_MSAA_LAYOUT_NONE:
396 assert(pos->num_components == 2);
397 return pos;
398 case ISL_MSAA_LAYOUT_ARRAY:
399 /* No translation needed */
400 return pos;
401 case ISL_MSAA_LAYOUT_INTERLEAVED: {
402 nir_ssa_def *x_in = nir_channel(b, pos, 0);
403 nir_ssa_def *y_in = nir_channel(b, pos, 1);
404 nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
405 nir_channel(b, pos, 2);
406
407 nir_ssa_def *x_out = nir_imm_int(b, 0);
408 nir_ssa_def *y_out = nir_imm_int(b, 0);
409 switch (num_samples) {
410 case 2:
411 case 4:
412 /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
413 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
414 * Y' = Y
415 *
416 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
417 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
418 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
419 */
420 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
421 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
422 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
423 if (num_samples == 2) {
424 y_out = y_in;
425 } else {
426 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
427 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
428 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
429 }
430 break;
431
432 case 8:
433 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
434 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
435 * | (X & 0b1)
436 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
437 */
438 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
439 x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
440 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
441 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
442 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
443 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
444 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
445 break;
446
447 case 16:
448 /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
449 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
450 * | (X & 0b1)
451 * Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
452 * | (Y & 0b1)
453 */
454 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
455 x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
456 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
457 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
458 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
459 y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
460 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
461 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
462 break;
463
464 default:
465 unreachable("Invalid number of samples for IMS layout");
466 }
467
468 return nir_vec2(b, x_out, y_out);
469 }
470
471 default:
472 unreachable("Invalid MSAA layout");
473 }
474 }
475
476 /**
477 * Emit code to compensate for the difference between MSAA and non-MSAA
478 * surfaces.
479 *
480 * This code modifies the X and Y coordinates according to the formula:
481 *
482 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
483 *
484 * (See brw_blorp_blit_program).
485 */
486 static inline nir_ssa_def *
487 blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
488 unsigned num_samples, enum isl_msaa_layout layout)
489 {
490 assert(pos->num_components == 2 || pos->num_components == 3);
491
492 switch (layout) {
493 case ISL_MSAA_LAYOUT_NONE:
494 /* No translation necessary, and S should already be zero. */
495 assert(pos->num_components == 2);
496 return pos;
497 case ISL_MSAA_LAYOUT_ARRAY:
498 /* No translation necessary. */
499 return pos;
500 case ISL_MSAA_LAYOUT_INTERLEAVED: {
501 assert(pos->num_components == 2);
502
503 nir_ssa_def *x_in = nir_channel(b, pos, 0);
504 nir_ssa_def *y_in = nir_channel(b, pos, 1);
505
506 nir_ssa_def *x_out = nir_imm_int(b, 0);
507 nir_ssa_def *y_out = nir_imm_int(b, 0);
508 nir_ssa_def *s_out = nir_imm_int(b, 0);
509 switch (num_samples) {
510 case 2:
511 case 4:
512 /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
513 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
514 * S = (X & 0b10) >> 1
515 *
516 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
517 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
518 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
519 * S = (Y & 0b10) | (X & 0b10) >> 1
520 */
521 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
522 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
523 if (num_samples == 2) {
524 y_out = y_in;
525 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
526 } else {
527 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
528 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
529 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
530 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
531 }
532 break;
533
534 case 8:
535 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
536 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
537 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
538 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
539 */
540 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
541 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
542 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
543 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
544 s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
545 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
546 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
547 break;
548
549 case 16:
550 /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
551 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
552 * Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
553 * S = (Y & 0b100) << 1 | (X & 0b100) |
554 * (Y & 0b10) | (X & 0b10) >> 1
555 */
556 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
557 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
558 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
559 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
560 s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
561 s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
562 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
563 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
564 break;
565
566 default:
567 unreachable("Invalid number of samples for IMS layout");
568 }
569
570 return nir_vec3(b, x_out, y_out, s_out);
571 }
572
573 default:
574 unreachable("Invalid MSAA layout");
575 }
576 }
577
578 /**
579 * Count the number of trailing 1 bits in the given value. For example:
580 *
581 * count_trailing_one_bits(0) == 0
582 * count_trailing_one_bits(7) == 3
583 * count_trailing_one_bits(11) == 2
584 */
585 static inline int count_trailing_one_bits(unsigned value)
586 {
587 #ifdef HAVE___BUILTIN_CTZ
588 return __builtin_ctz(~value);
589 #else
590 return _mesa_bitcount(value & ~(value + 1));
591 #endif
592 }
593
594 static nir_ssa_def *
595 blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
596 nir_ssa_def *pos, unsigned tex_samples,
597 enum isl_aux_usage tex_aux_usage,
598 nir_alu_type dst_type)
599 {
600 /* If non-null, this is the outer-most if statement */
601 nir_if *outer_if = NULL;
602
603 nir_variable *color =
604 nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
605
606 nir_ssa_def *mcs = NULL;
607 if (tex_aux_usage == ISL_AUX_USAGE_MCS)
608 mcs = blorp_blit_txf_ms_mcs(b, v, pos);
609
610 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
611 *
612 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
613 *
614 * This ensures that when all samples have the same value, no numerical
615 * precision is lost, since each addition operation always adds two equal
616 * values, and summing two equal floating point values does not lose
617 * precision.
618 *
619 * We perform this computation by treating the texture_data array as a
620 * stack and performing the following operations:
621 *
622 * - push sample 0 onto stack
623 * - push sample 1 onto stack
624 * - add top two stack entries
625 * - push sample 2 onto stack
626 * - push sample 3 onto stack
627 * - add top two stack entries
628 * - add top two stack entries
629 * - divide top stack entry by 4
630 *
631 * Note that after pushing sample i onto the stack, the number of add
632 * operations we do is equal to the number of trailing 1 bits in i. This
633 * works provided the total number of samples is a power of two, which it
634 * always is for i965.
635 *
636 * For integer formats, we replace the add operations with average
637 * operations and skip the final division.
638 */
639 nir_ssa_def *texture_data[5];
640 unsigned stack_depth = 0;
641 for (unsigned i = 0; i < tex_samples; ++i) {
642 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
643
644 /* Push sample i onto the stack */
645 assert(stack_depth < ARRAY_SIZE(texture_data));
646
647 nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
648 nir_channel(b, pos, 1),
649 nir_imm_int(b, i));
650 texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
651
652 if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
653 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
654 * suggests an optimization:
655 *
656 * "A simple optimization with probable large return in
657 * performance is to compare the MCS value to zero (indicating
658 * all samples are on sample slice 0), and sample only from
659 * sample slice 0 using ld2dss if MCS is zero."
660 *
661 * Note that in the case where the MCS value is zero, sampling from
662 * sample slice 0 using ld2dss and sampling from sample 0 using
663 * ld2dms are equivalent (since all samples are on sample slice 0).
664 * Since we have already sampled from sample 0, all we need to do is
665 * skip the remaining fetches and averaging if MCS is zero.
666 *
667 * It's also trivial to detect when the MCS has the magic clear color
668 * value. In this case, the txf we did on sample 0 will return the
669 * clear color and we can skip the remaining fetches just like we do
670 * when MCS == 0.
671 */
672 nir_ssa_def *mcs_zero =
673 nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
674 if (tex_samples == 16) {
675 mcs_zero = nir_iand(b, mcs_zero,
676 nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
677 }
678 nir_ssa_def *mcs_clear =
679 blorp_nir_mcs_is_clear_color(b, mcs, tex_samples);
680
681 nir_if *if_stmt = nir_if_create(b->shader);
682 if_stmt->condition = nir_src_for_ssa(nir_ior(b, mcs_zero, mcs_clear));
683 nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
684
685 b->cursor = nir_after_cf_list(&if_stmt->then_list);
686 nir_store_var(b, color, texture_data[0], 0xf);
687
688 b->cursor = nir_after_cf_list(&if_stmt->else_list);
689 outer_if = if_stmt;
690 }
691
692 for (int j = 0; j < count_trailing_one_bits(i); j++) {
693 assert(stack_depth >= 2);
694 --stack_depth;
695
696 assert(dst_type == nir_type_float);
697 texture_data[stack_depth - 1] =
698 nir_fadd(b, texture_data[stack_depth - 1],
699 texture_data[stack_depth]);
700 }
701 }
702
703 /* We should have just 1 sample on the stack now. */
704 assert(stack_depth == 1);
705
706 texture_data[0] = nir_fmul(b, texture_data[0],
707 nir_imm_float(b, 1.0 / tex_samples));
708
709 nir_store_var(b, color, texture_data[0], 0xf);
710
711 if (outer_if)
712 b->cursor = nir_after_cf_node(&outer_if->cf_node);
713
714 return nir_load_var(b, color);
715 }
716
717 static inline nir_ssa_def *
718 nir_imm_vec2(nir_builder *build, float x, float y)
719 {
720 nir_const_value v;
721
722 memset(&v, 0, sizeof(v));
723 v.f32[0] = x;
724 v.f32[1] = y;
725
726 return nir_build_imm(build, 4, 32, v);
727 }
728
729 static nir_ssa_def *
730 blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
731 unsigned tex_samples,
732 const struct brw_blorp_blit_prog_key *key,
733 struct brw_blorp_blit_vars *v)
734 {
735 nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
736 nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
737 nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
738
739 /* Translate coordinates to lay out the samples in a rectangular grid
740 * roughly corresponding to sample locations.
741 */
742 pos_xy = nir_fmul(b, pos_xy, scale);
743 /* Adjust coordinates so that integers represent pixel centers rather
744 * than pixel edges.
745 */
746 pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
747 /* Clamp the X, Y texture coordinates to properly handle the sampling of
748 * texels on texture edges.
749 */
750 pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
751 nir_vec2(b, nir_channel(b, rect_grid, 0),
752 nir_channel(b, rect_grid, 1)));
753
754 /* Store the fractional parts to be used as bilinear interpolation
755 * coefficients.
756 */
757 nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
758 /* Round the float coordinates down to nearest integer */
759 pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
760
761 nir_ssa_def *tex_data[4];
762 for (unsigned i = 0; i < 4; ++i) {
763 float sample_off_x = (float)(i & 0x1) / key->x_scale;
764 float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
765 nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
766
767 nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
768 nir_ssa_def *sample_coords_int = nir_f2i32(b, sample_coords);
769
770 /* The MCS value we fetch has to match up with the pixel that we're
771 * sampling from. Since we sample from different pixels in each
772 * iteration of this "for" loop, the call to mcs_fetch() should be
773 * here inside the loop after computing the pixel coordinates.
774 */
775 nir_ssa_def *mcs = NULL;
776 if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
777 mcs = blorp_blit_txf_ms_mcs(b, v, sample_coords_int);
778
779 /* Compute sample index and map the sample index to a sample number.
780 * Sample index layout shows the numbering of slots in a rectangular
781 * grid of samples with in a pixel. Sample number layout shows the
782 * rectangular grid of samples roughly corresponding to the real sample
783 * locations with in a pixel.
784 * In case of 4x MSAA, layout of sample indices matches the layout of
785 * sample numbers:
786 * ---------
787 * | 0 | 1 |
788 * ---------
789 * | 2 | 3 |
790 * ---------
791 *
792 * In case of 8x MSAA the two layouts don't match.
793 * sample index layout : --------- sample number layout : ---------
794 * | 0 | 1 | | 3 | 7 |
795 * --------- ---------
796 * | 2 | 3 | | 5 | 0 |
797 * --------- ---------
798 * | 4 | 5 | | 1 | 2 |
799 * --------- ---------
800 * | 6 | 7 | | 4 | 6 |
801 * --------- ---------
802 *
803 * Fortunately, this can be done fairly easily as:
804 * S' = (0x17306425 >> (S * 4)) & 0xf
805 *
806 * In the case of 16x MSAA the two layouts don't match.
807 * Sample index layout: Sample number layout:
808 * --------------------- ---------------------
809 * | 0 | 1 | 2 | 3 | | 15 | 10 | 9 | 7 |
810 * --------------------- ---------------------
811 * | 4 | 5 | 6 | 7 | | 4 | 1 | 3 | 13 |
812 * --------------------- ---------------------
813 * | 8 | 9 | 10 | 11 | | 12 | 2 | 0 | 6 |
814 * --------------------- ---------------------
815 * | 12 | 13 | 14 | 15 | | 11 | 8 | 5 | 14 |
816 * --------------------- ---------------------
817 *
818 * This is equivalent to
819 * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
820 */
821 nir_ssa_def *frac = nir_ffract(b, sample_coords);
822 nir_ssa_def *sample =
823 nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
824 key->x_scale * key->y_scale));
825 sample = nir_f2i32(b, sample);
826
827 if (tex_samples == 8) {
828 sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
829 nir_ishl(b, sample, nir_imm_int(b, 2))),
830 nir_imm_int(b, 0xf));
831 } else if (tex_samples == 16) {
832 nir_ssa_def *sample_low =
833 nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
834 nir_ishl(b, sample, nir_imm_int(b, 2))),
835 nir_imm_int(b, 0xf));
836 nir_ssa_def *sample_high =
837 nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
838 nir_ishl(b, nir_iadd(b, sample,
839 nir_imm_int(b, -8)),
840 nir_imm_int(b, 2))),
841 nir_imm_int(b, 0xf));
842
843 sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
844 sample_low, sample_high);
845 }
846 nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
847 nir_channel(b, sample_coords_int, 1),
848 sample);
849 tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
850 }
851
852 nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
853 nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
854 return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
855 nir_flrp(b, tex_data[2], tex_data[3], frac_x),
856 frac_y);
857 }
858
859 /** Perform a color bit-cast operation
860 *
861 * For copy operations involving CCS, we may need to use different formats for
862 * the source and destination surfaces. The two formats must both be UINT
863 * formats and must have the same size but may have different bit layouts.
864 * For instance, we may be copying from R8G8B8A8_UINT to R32_UINT or R32_UINT
865 * to R16G16_UINT. This function generates code to shuffle bits around to get
866 * us from one to the other.
867 */
868 static nir_ssa_def *
869 bit_cast_color(struct nir_builder *b, nir_ssa_def *color,
870 const struct brw_blorp_blit_prog_key *key)
871 {
872 assert(key->texture_data_type == nir_type_uint);
873
874 /* We don't actually know how many source channels we have and NIR will
875 * assert if the number of destination channels ends up being more than 4.
876 * Choose the largest number of source channels that won't over-fill a
877 * destination vec4.
878 */
879 const unsigned src_channels =
880 MIN2(4, (4 * key->dst_bpc) / key->src_bpc);
881 color = nir_channels(b, color, (1 << src_channels) - 1);
882
883 color = nir_format_bitcast_uint_vec_unmasked(b, color, key->src_bpc,
884 key->dst_bpc);
885
886 /* Blorp likes to assume that colors are vec4s */
887 nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
888 nir_ssa_def *chans[4] = { u, u, u, u };
889 for (unsigned i = 0; i < color->num_components; i++)
890 chans[i] = nir_channel(b, color, i);
891 return nir_vec4(b, chans[0], chans[1], chans[2], chans[3]);
892 }
893
894 static nir_ssa_def *
895 select_color_channel(struct nir_builder *b, nir_ssa_def *color,
896 nir_alu_type data_type,
897 enum isl_channel_select chan)
898 {
899 if (chan == ISL_CHANNEL_SELECT_ZERO) {
900 return nir_imm_int(b, 0);
901 } else if (chan == ISL_CHANNEL_SELECT_ONE) {
902 switch (data_type) {
903 case nir_type_int:
904 case nir_type_uint:
905 return nir_imm_int(b, 1);
906 case nir_type_float:
907 return nir_imm_float(b, 1);
908 default:
909 unreachable("Invalid data type");
910 }
911 } else {
912 assert((unsigned)(chan - ISL_CHANNEL_SELECT_RED) < 4);
913 return nir_channel(b, color, chan - ISL_CHANNEL_SELECT_RED);
914 }
915 }
916
917 static nir_ssa_def *
918 swizzle_color(struct nir_builder *b, nir_ssa_def *color,
919 struct isl_swizzle swizzle, nir_alu_type data_type)
920 {
921 return nir_vec4(b,
922 select_color_channel(b, color, data_type, swizzle.r),
923 select_color_channel(b, color, data_type, swizzle.g),
924 select_color_channel(b, color, data_type, swizzle.b),
925 select_color_channel(b, color, data_type, swizzle.a));
926 }
927
928 static nir_ssa_def *
929 convert_color(struct nir_builder *b, nir_ssa_def *color,
930 const struct brw_blorp_blit_prog_key *key)
931 {
932 /* All of our color conversions end up generating a single-channel color
933 * value that we need to write out.
934 */
935 nir_ssa_def *value;
936
937 if (key->dst_format == ISL_FORMAT_R24_UNORM_X8_TYPELESS) {
938 /* The destination image is bound as R32_UNORM but the data needs to be
939 * in R24_UNORM_X8_TYPELESS. The bottom 24 are the actual data and the
940 * top 8 need to be zero. We can accomplish this by simply multiplying
941 * by a factor to scale things down.
942 */
943 float factor = (float)((1 << 24) - 1) / (float)UINT32_MAX;
944 value = nir_fmul(b, nir_fsat(b, nir_channel(b, color, 0)),
945 nir_imm_float(b, factor));
946 } else if (key->dst_format == ISL_FORMAT_L8_UNORM_SRGB) {
947 value = nir_format_linear_to_srgb(b, color);
948 } else if (key->dst_format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
949 value = nir_format_pack_r9g9b9e5(b, color);
950 } else {
951 unreachable("Unsupported format conversion");
952 }
953
954 nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
955 return nir_vec4(b, value, u, u, u);
956 }
957
958 /**
959 * Generator for WM programs used in BLORP blits.
960 *
961 * The bulk of the work done by the WM program is to wrap and unwrap the
962 * coordinate transformations used by the hardware to store surfaces in
963 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
964 * sample index for a multisampled surface) to a memory offset by the
965 * following formulas:
966 *
967 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
968 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
969 *
970 * For a single-sampled surface, or for a multisampled surface using
971 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
972 * function:
973 *
974 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
975 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
976 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
977 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
978 *
979 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
980 * embeds the sample number into bit 1 of the X and Y coordinates:
981 *
982 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
983 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
984 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
985 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
986 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
987 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
988 * S = (Y & 0b10) | (X & 0b10) >> 1
989 *
990 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
991 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
992 * the Y coordinate:
993 *
994 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
995 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
996 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
997 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
998 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
999 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1000 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1001 *
1002 * For X tiling, tile() combines together the low-order bits of the X and Y
1003 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
1004 * bytes wide and 8 rows high:
1005 *
1006 * tile(x_tiled, X, Y, S) = A
1007 * where A = tile_num << 12 | offset
1008 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
1009 * offset = (Y' & 0b111) << 9
1010 * | (X & 0b111111111)
1011 * X' = X * cpp
1012 * Y' = Y + S * qpitch
1013 * detile(x_tiled, A) = (X, Y, S)
1014 * where X = X' / cpp
1015 * Y = Y' % qpitch
1016 * S = Y' / qpitch
1017 * Y' = (tile_num / tile_pitch) << 3
1018 * | (A & 0b111000000000) >> 9
1019 * X' = (tile_num % tile_pitch) << 9
1020 * | (A & 0b111111111)
1021 *
1022 * (In all tiling formulas, cpp is the number of bytes occupied by a single
1023 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
1024 * to fill the width of the surface, and qpitch is the spacing (in rows)
1025 * between array slices).
1026 *
1027 * For Y tiling, tile() combines together the low-order bits of the X and Y
1028 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
1029 * bytes wide and 32 rows high:
1030 *
1031 * tile(y_tiled, X, Y, S) = A
1032 * where A = tile_num << 12 | offset
1033 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
1034 * offset = (X' & 0b1110000) << 5
1035 * | (Y' & 0b11111) << 4
1036 * | (X' & 0b1111)
1037 * X' = X * cpp
1038 * Y' = Y + S * qpitch
1039 * detile(y_tiled, A) = (X, Y, S)
1040 * where X = X' / cpp
1041 * Y = Y' % qpitch
1042 * S = Y' / qpitch
1043 * Y' = (tile_num / tile_pitch) << 5
1044 * | (A & 0b111110000) >> 4
1045 * X' = (tile_num % tile_pitch) << 7
1046 * | (A & 0b111000000000) >> 5
1047 * | (A & 0b1111)
1048 *
1049 * For W tiling, tile() combines together the low-order bits of the X and Y
1050 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
1051 * bytes wide and 64 rows high (note that W tiling is only used for stencil
1052 * buffers, which always have cpp = 1 and S=0):
1053 *
1054 * tile(w_tiled, X, Y, S) = A
1055 * where A = tile_num << 12 | offset
1056 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
1057 * offset = (X' & 0b111000) << 6
1058 * | (Y' & 0b111100) << 3
1059 * | (X' & 0b100) << 2
1060 * | (Y' & 0b10) << 2
1061 * | (X' & 0b10) << 1
1062 * | (Y' & 0b1) << 1
1063 * | (X' & 0b1)
1064 * X' = X * cpp = X
1065 * Y' = Y + S * qpitch
1066 * detile(w_tiled, A) = (X, Y, S)
1067 * where X = X' / cpp = X'
1068 * Y = Y' % qpitch = Y'
1069 * S = Y / qpitch = 0
1070 * Y' = (tile_num / tile_pitch) << 6
1071 * | (A & 0b111100000) >> 3
1072 * | (A & 0b1000) >> 2
1073 * | (A & 0b10) >> 1
1074 * X' = (tile_num % tile_pitch) << 6
1075 * | (A & 0b111000000000) >> 6
1076 * | (A & 0b10000) >> 2
1077 * | (A & 0b100) >> 1
1078 * | (A & 0b1)
1079 *
1080 * Finally, for a non-tiled surface, tile() simply combines together the X and
1081 * Y coordinates in the natural way:
1082 *
1083 * tile(untiled, X, Y, S) = A
1084 * where A = Y * pitch + X'
1085 * X' = X * cpp
1086 * Y' = Y + S * qpitch
1087 * detile(untiled, A) = (X, Y, S)
1088 * where X = X' / cpp
1089 * Y = Y' % qpitch
1090 * S = Y' / qpitch
1091 * X' = A % pitch
1092 * Y' = A / pitch
1093 *
1094 * (In these formulas, pitch is the number of bytes occupied by a single row
1095 * of samples).
1096 */
1097 static nir_shader *
1098 brw_blorp_build_nir_shader(struct blorp_context *blorp, void *mem_ctx,
1099 const struct brw_blorp_blit_prog_key *key)
1100 {
1101 const struct gen_device_info *devinfo = blorp->isl_dev->info;
1102 nir_ssa_def *src_pos, *dst_pos, *color;
1103
1104 /* Sanity checks */
1105 if (key->dst_tiled_w && key->rt_samples > 1) {
1106 /* If the destination image is W tiled and multisampled, then the thread
1107 * must be dispatched once per sample, not once per pixel. This is
1108 * necessary because after conversion between W and Y tiling, there's no
1109 * guarantee that all samples corresponding to a single pixel will still
1110 * be together.
1111 */
1112 assert(key->persample_msaa_dispatch);
1113 }
1114
1115 if (key->blend) {
1116 /* We are blending, which means we won't have an opportunity to
1117 * translate the tiling and sample count for the texture surface. So
1118 * the surface state for the texture must be configured with the correct
1119 * tiling and sample count.
1120 */
1121 assert(!key->src_tiled_w);
1122 assert(key->tex_samples == key->src_samples);
1123 assert(key->tex_layout == key->src_layout);
1124 assert(key->tex_samples > 0);
1125 }
1126
1127 if (key->persample_msaa_dispatch) {
1128 /* It only makes sense to do persample dispatch if the render target is
1129 * configured as multisampled.
1130 */
1131 assert(key->rt_samples > 0);
1132 }
1133
1134 /* Make sure layout is consistent with sample count */
1135 assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
1136 (key->tex_samples <= 1));
1137 assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
1138 (key->rt_samples <= 1));
1139 assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
1140 (key->src_samples <= 1));
1141 assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
1142 (key->dst_samples <= 1));
1143
1144 nir_builder b;
1145 nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
1146
1147 struct brw_blorp_blit_vars v;
1148 brw_blorp_blit_vars_init(&b, &v, key);
1149
1150 dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
1151
1152 /* Render target and texture hardware don't support W tiling until Gen8. */
1153 const bool rt_tiled_w = false;
1154 const bool tex_tiled_w = devinfo->gen >= 8 && key->src_tiled_w;
1155
1156 /* The address that data will be written to is determined by the
1157 * coordinates supplied to the WM thread and the tiling and sample count of
1158 * the render target, according to the formula:
1159 *
1160 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
1161 *
1162 * If the actual tiling and sample count of the destination surface are not
1163 * the same as the configuration of the render target, then these
1164 * coordinates are wrong and we have to adjust them to compensate for the
1165 * difference.
1166 */
1167 if (rt_tiled_w != key->dst_tiled_w ||
1168 key->rt_samples != key->dst_samples ||
1169 key->rt_layout != key->dst_layout) {
1170 dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
1171 key->rt_layout);
1172 /* Now (X, Y, S) = detile(rt_tiling, offset) */
1173 if (rt_tiled_w != key->dst_tiled_w)
1174 dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
1175 /* Now (X, Y, S) = detile(rt_tiling, offset) */
1176 dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
1177 key->dst_layout);
1178 }
1179
1180 nir_ssa_def *comp = NULL;
1181 if (key->dst_rgb) {
1182 /* The destination image is bound as a red texture three times as wide
1183 * as the actual image. Our shader is effectively running one color
1184 * component at a time. We need to save off the component and adjust
1185 * the destination position.
1186 */
1187 assert(dst_pos->num_components == 2);
1188 nir_ssa_def *dst_x = nir_channel(&b, dst_pos, 0);
1189 comp = nir_umod(&b, dst_x, nir_imm_int(&b, 3));
1190 dst_pos = nir_vec2(&b, nir_idiv(&b, dst_x, nir_imm_int(&b, 3)),
1191 nir_channel(&b, dst_pos, 1));
1192 }
1193
1194 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
1195 *
1196 * That is: X, Y and S now contain the true coordinates and sample index of
1197 * the data that the WM thread should output.
1198 *
1199 * If we need to kill pixels that are outside the destination rectangle,
1200 * now is the time to do it.
1201 */
1202 if (key->use_kill) {
1203 assert(!(key->blend && key->blit_scaled));
1204 blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
1205 }
1206
1207 src_pos = blorp_blit_apply_transform(&b, nir_i2f32(&b, dst_pos), &v);
1208 if (dst_pos->num_components == 3) {
1209 /* The sample coordinate is an integer that we want left alone but
1210 * blorp_blit_apply_transform() blindly applies the transform to all
1211 * three coordinates. Grab the original sample index.
1212 */
1213 src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
1214 nir_channel(&b, src_pos, 1),
1215 nir_channel(&b, dst_pos, 2));
1216 }
1217
1218 /* If the source image is not multisampled, then we want to fetch sample
1219 * number 0, because that's the only sample there is.
1220 */
1221 if (key->src_samples == 1)
1222 src_pos = nir_channels(&b, src_pos, 0x3);
1223
1224 /* X, Y, and S are now the coordinates of the pixel in the source image
1225 * that we want to texture from. Exception: if we are blending, then S is
1226 * irrelevant, because we are going to fetch all samples.
1227 */
1228 if (key->blend && !key->blit_scaled) {
1229 /* Resolves (effecively) use texelFetch, so we need integers and we
1230 * don't care about the sample index if we got one.
1231 */
1232 src_pos = nir_f2i32(&b, nir_channels(&b, src_pos, 0x3));
1233
1234 if (devinfo->gen == 6) {
1235 /* Because gen6 only supports 4x interleved MSAA, we can do all the
1236 * blending we need with a single linear-interpolated texture lookup
1237 * at the center of the sample. The texture coordinates to be odd
1238 * integers so that they correspond to the center of a 2x2 block
1239 * representing the four samples that maxe up a pixel. So we need
1240 * to multiply our X and Y coordinates each by 2 and then add 1.
1241 */
1242 assert(key->src_coords_normalized);
1243 src_pos = nir_fadd(&b,
1244 nir_i2f32(&b, src_pos),
1245 nir_imm_float(&b, 0.5f));
1246 color = blorp_nir_tex(&b, &v, key, src_pos);
1247 } else {
1248 /* Gen7+ hardware doesn't automaticaly blend. */
1249 color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
1250 key->tex_aux_usage,
1251 key->texture_data_type);
1252 }
1253 } else if (key->blend && key->blit_scaled) {
1254 assert(!key->use_kill);
1255 color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
1256 } else {
1257 if (key->bilinear_filter) {
1258 color = blorp_nir_tex(&b, &v, key, src_pos);
1259 } else {
1260 /* We're going to use texelFetch, so we need integers */
1261 if (src_pos->num_components == 2) {
1262 src_pos = nir_f2i32(&b, src_pos);
1263 } else {
1264 assert(src_pos->num_components == 3);
1265 src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i32(&b, src_pos), 0),
1266 nir_channel(&b, nir_f2i32(&b, src_pos), 1),
1267 nir_channel(&b, src_pos, 2));
1268 }
1269
1270 /* We aren't blending, which means we just want to fetch a single
1271 * sample from the source surface. The address that we want to fetch
1272 * from is related to the X, Y and S values according to the formula:
1273 *
1274 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
1275 *
1276 * If the actual tiling and sample count of the source surface are
1277 * not the same as the configuration of the texture, then we need to
1278 * adjust the coordinates to compensate for the difference.
1279 */
1280 if (tex_tiled_w != key->src_tiled_w ||
1281 key->tex_samples != key->src_samples ||
1282 key->tex_layout != key->src_layout) {
1283 src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
1284 key->src_layout);
1285 /* Now (X, Y, S) = detile(src_tiling, offset) */
1286 if (tex_tiled_w != key->src_tiled_w)
1287 src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
1288 /* Now (X, Y, S) = detile(tex_tiling, offset) */
1289 src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
1290 key->tex_layout);
1291 }
1292
1293 if (key->need_src_offset)
1294 src_pos = nir_iadd(&b, src_pos, nir_load_var(&b, v.v_src_offset));
1295
1296 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
1297 *
1298 * In other words: X, Y, and S now contain values which, when passed to
1299 * the texturing unit, will cause data to be read from the correct
1300 * memory location. So we can fetch the texel now.
1301 */
1302 if (key->src_samples == 1) {
1303 color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
1304 } else {
1305 nir_ssa_def *mcs = NULL;
1306 if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
1307 mcs = blorp_blit_txf_ms_mcs(&b, &v, src_pos);
1308
1309 color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
1310 }
1311 }
1312 }
1313
1314 if (!isl_swizzle_is_identity(key->src_swizzle)) {
1315 color = swizzle_color(&b, color, key->src_swizzle,
1316 key->texture_data_type);
1317 }
1318
1319 if (!isl_swizzle_is_identity(key->dst_swizzle)) {
1320 color = swizzle_color(&b, color, isl_swizzle_invert(key->dst_swizzle),
1321 nir_type_int);
1322 }
1323
1324 if (key->dst_bpc != key->src_bpc) {
1325 assert(isl_swizzle_is_identity(key->src_swizzle));
1326 assert(isl_swizzle_is_identity(key->dst_swizzle));
1327 color = bit_cast_color(&b, color, key);
1328 }
1329
1330 if (key->dst_format)
1331 color = convert_color(&b, color, key);
1332
1333 if (key->dst_rgb) {
1334 /* The destination image is bound as a red texture three times as wide
1335 * as the actual image. Our shader is effectively running one color
1336 * component at a time. We need to pick off the appropriate component
1337 * from the source color and write that to destination red.
1338 */
1339 assert(dst_pos->num_components == 2);
1340
1341 nir_ssa_def *color_component =
1342 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
1343 nir_channel(&b, color, 0),
1344 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
1345 nir_channel(&b, color, 1),
1346 nir_channel(&b, color, 2)));
1347
1348 nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
1349 color = nir_vec4(&b, color_component, u, u, u);
1350 }
1351
1352 nir_store_var(&b, v.color_out, color, 0xf);
1353
1354 return b.shader;
1355 }
1356
1357 static bool
1358 brw_blorp_get_blit_kernel(struct blorp_context *blorp,
1359 struct blorp_params *params,
1360 const struct brw_blorp_blit_prog_key *prog_key)
1361 {
1362 if (blorp->lookup_shader(blorp, prog_key, sizeof(*prog_key),
1363 &params->wm_prog_kernel, &params->wm_prog_data))
1364 return true;
1365
1366 void *mem_ctx = ralloc_context(NULL);
1367
1368 const unsigned *program;
1369 struct brw_wm_prog_data prog_data;
1370
1371 nir_shader *nir = brw_blorp_build_nir_shader(blorp, mem_ctx, prog_key);
1372 nir->info.name = ralloc_strdup(nir, "BLORP-blit");
1373
1374 struct brw_wm_prog_key wm_key;
1375 brw_blorp_init_wm_prog_key(&wm_key);
1376 wm_key.tex.compressed_multisample_layout_mask =
1377 prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
1378 wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
1379 wm_key.multisample_fbo = prog_key->rt_samples > 1;
1380
1381 program = blorp_compile_fs(blorp, mem_ctx, nir, &wm_key, false,
1382 &prog_data);
1383
1384 bool result =
1385 blorp->upload_shader(blorp, prog_key, sizeof(*prog_key),
1386 program, prog_data.base.program_size,
1387 &prog_data.base, sizeof(prog_data),
1388 &params->wm_prog_kernel, &params->wm_prog_data);
1389
1390 ralloc_free(mem_ctx);
1391 return result;
1392 }
1393
1394 static void
1395 brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
1396 GLfloat src0, GLfloat src1,
1397 GLfloat dst0, GLfloat dst1,
1398 bool mirror)
1399 {
1400 double scale = (double)(src1 - src0) / (double)(dst1 - dst0);
1401 if (!mirror) {
1402 /* When not mirroring a coordinate (say, X), we need:
1403 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1404 * Therefore:
1405 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1406 *
1407 * blorp program uses "round toward zero" to convert the
1408 * transformed floating point coordinates to integer coordinates,
1409 * whereas the behaviour we actually want is "round to nearest",
1410 * so 0.5 provides the necessary correction.
1411 */
1412 xform->multiplier = scale;
1413 xform->offset = src0 + (-(double)dst0 + 0.5) * scale;
1414 } else {
1415 /* When mirroring X we need:
1416 * src_x - src_x0 = dst_x1 - dst_x - 0.5
1417 * Therefore:
1418 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1419 */
1420 xform->multiplier = -scale;
1421 xform->offset = src0 + ((double)dst1 - 0.5) * scale;
1422 }
1423 }
1424
1425 static inline void
1426 surf_get_intratile_offset_px(struct brw_blorp_surface_info *info,
1427 uint32_t *tile_x_px, uint32_t *tile_y_px)
1428 {
1429 if (info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1430 struct isl_extent2d px_size_sa =
1431 isl_get_interleaved_msaa_px_size_sa(info->surf.samples);
1432 assert(info->tile_x_sa % px_size_sa.width == 0);
1433 assert(info->tile_y_sa % px_size_sa.height == 0);
1434 *tile_x_px = info->tile_x_sa / px_size_sa.width;
1435 *tile_y_px = info->tile_y_sa / px_size_sa.height;
1436 } else {
1437 *tile_x_px = info->tile_x_sa;
1438 *tile_y_px = info->tile_y_sa;
1439 }
1440 }
1441
1442 void
1443 blorp_surf_convert_to_single_slice(const struct isl_device *isl_dev,
1444 struct brw_blorp_surface_info *info)
1445 {
1446 bool ok UNUSED;
1447
1448 /* Just bail if we have nothing to do. */
1449 if (info->surf.dim == ISL_SURF_DIM_2D &&
1450 info->view.base_level == 0 && info->view.base_array_layer == 0 &&
1451 info->surf.levels == 1 && info->surf.logical_level0_px.array_len == 1)
1452 return;
1453
1454 /* If this gets triggered then we've gotten here twice which. This
1455 * shouldn't happen thanks to the above early return.
1456 */
1457 assert(info->tile_x_sa == 0 && info->tile_y_sa == 0);
1458
1459 uint32_t layer = 0, z = 0;
1460 if (info->surf.dim == ISL_SURF_DIM_3D)
1461 z = info->view.base_array_layer + info->z_offset;
1462 else
1463 layer = info->view.base_array_layer;
1464
1465 uint32_t byte_offset;
1466 isl_surf_get_image_surf(isl_dev, &info->surf,
1467 info->view.base_level, layer, z,
1468 &info->surf,
1469 &byte_offset, &info->tile_x_sa, &info->tile_y_sa);
1470 info->addr.offset += byte_offset;
1471
1472 uint32_t tile_x_px, tile_y_px;
1473 surf_get_intratile_offset_px(info, &tile_x_px, &tile_y_px);
1474
1475 /* Instead of using the X/Y Offset fields in RENDER_SURFACE_STATE, we place
1476 * the image at the tile boundary and offset our sampling or rendering.
1477 * For this reason, we need to grow the image by the offset to ensure that
1478 * the hardware doesn't think we've gone past the edge.
1479 */
1480 info->surf.logical_level0_px.w += tile_x_px;
1481 info->surf.logical_level0_px.h += tile_y_px;
1482 info->surf.phys_level0_sa.w += info->tile_x_sa;
1483 info->surf.phys_level0_sa.h += info->tile_y_sa;
1484
1485 /* The view is also different now. */
1486 info->view.base_level = 0;
1487 info->view.levels = 1;
1488 info->view.base_array_layer = 0;
1489 info->view.array_len = 1;
1490 info->z_offset = 0;
1491 }
1492
1493 static void
1494 surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
1495 struct brw_blorp_surface_info *info)
1496 {
1497 assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1498
1499 /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1500 blorp_surf_convert_to_single_slice(isl_dev, info);
1501
1502 info->surf.logical_level0_px = info->surf.phys_level0_sa;
1503 info->surf.samples = 1;
1504 info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
1505 }
1506
1507 static void
1508 surf_retile_w_to_y(const struct isl_device *isl_dev,
1509 struct brw_blorp_surface_info *info)
1510 {
1511 assert(info->surf.tiling == ISL_TILING_W);
1512
1513 /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1514 blorp_surf_convert_to_single_slice(isl_dev, info);
1515
1516 /* On gen7+, we don't have interleaved multisampling for color render
1517 * targets so we have to fake it.
1518 *
1519 * TODO: Are we sure we don't also need to fake it on gen6?
1520 */
1521 if (isl_dev->info->gen > 6 &&
1522 info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1523 surf_fake_interleaved_msaa(isl_dev, info);
1524 }
1525
1526 if (isl_dev->info->gen == 6) {
1527 /* Gen6 stencil buffers have a very large alignment coming in from the
1528 * miptree. It's out-of-bounds for what the surface state can handle.
1529 * Since we have a single layer and level, it doesn't really matter as
1530 * long as we don't pass a bogus value into isl_surf_fill_state().
1531 */
1532 info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
1533 }
1534
1535 /* Now that we've converted everything to a simple 2-D surface with only
1536 * one miplevel, we can go about retiling it.
1537 */
1538 const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
1539 info->surf.tiling = ISL_TILING_Y0;
1540 info->surf.logical_level0_px.width =
1541 ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
1542 info->surf.logical_level0_px.height =
1543 ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
1544 info->tile_x_sa *= 2;
1545 info->tile_y_sa /= 2;
1546 }
1547
1548 static bool
1549 can_shrink_surface(const struct brw_blorp_surface_info *surf)
1550 {
1551 /* The current code doesn't support offsets into the aux buffers. This
1552 * should be possible, but we need to make sure the offset is page
1553 * aligned for both the surface and the aux buffer surface. Generally
1554 * this mean using the page aligned offset for the aux buffer.
1555 *
1556 * Currently the cases where we must split the blit are limited to cases
1557 * where we don't have a aux buffer.
1558 */
1559 if (surf->aux_addr.buffer != NULL)
1560 return false;
1561
1562 /* We can't support splitting the blit for gen <= 7, because the qpitch
1563 * size is calculated by the hardware based on the surface height for
1564 * gen <= 7. In gen >= 8, the qpitch is controlled by the driver.
1565 */
1566 if (surf->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)
1567 return false;
1568
1569 return true;
1570 }
1571
1572 static bool
1573 can_shrink_surfaces(const struct blorp_params *params)
1574 {
1575 return
1576 can_shrink_surface(&params->src) &&
1577 can_shrink_surface(&params->dst);
1578 }
1579
1580 static unsigned
1581 get_max_surface_size(const struct gen_device_info *devinfo,
1582 const struct blorp_params *params)
1583 {
1584 const unsigned max = devinfo->gen >= 7 ? 16384 : 8192;
1585 if (split_blorp_blit_debug && can_shrink_surfaces(params))
1586 return max >> 4; /* A smaller restriction when debug is enabled */
1587 else
1588 return max;
1589 }
1590
1591 struct blt_axis {
1592 double src0, src1, dst0, dst1;
1593 bool mirror;
1594 };
1595
1596 struct blt_coords {
1597 struct blt_axis x, y;
1598 };
1599
1600 static enum isl_format
1601 get_red_format_for_rgb_format(enum isl_format format)
1602 {
1603 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1604
1605 switch (fmtl->channels.r.bits) {
1606 case 8:
1607 switch (fmtl->channels.r.type) {
1608 case ISL_UNORM:
1609 return ISL_FORMAT_R8_UNORM;
1610 case ISL_SNORM:
1611 return ISL_FORMAT_R8_SNORM;
1612 case ISL_UINT:
1613 return ISL_FORMAT_R8_UINT;
1614 case ISL_SINT:
1615 return ISL_FORMAT_R8_SINT;
1616 default:
1617 unreachable("Invalid 8-bit RGB channel type");
1618 }
1619 case 16:
1620 switch (fmtl->channels.r.type) {
1621 case ISL_UNORM:
1622 return ISL_FORMAT_R16_UNORM;
1623 case ISL_SNORM:
1624 return ISL_FORMAT_R16_SNORM;
1625 case ISL_SFLOAT:
1626 return ISL_FORMAT_R16_FLOAT;
1627 case ISL_UINT:
1628 return ISL_FORMAT_R16_UINT;
1629 case ISL_SINT:
1630 return ISL_FORMAT_R16_SINT;
1631 default:
1632 unreachable("Invalid 8-bit RGB channel type");
1633 }
1634 case 32:
1635 switch (fmtl->channels.r.type) {
1636 case ISL_SFLOAT:
1637 return ISL_FORMAT_R32_FLOAT;
1638 case ISL_UINT:
1639 return ISL_FORMAT_R32_UINT;
1640 case ISL_SINT:
1641 return ISL_FORMAT_R32_SINT;
1642 default:
1643 unreachable("Invalid 8-bit RGB channel type");
1644 }
1645 default:
1646 unreachable("Invalid number of red channel bits");
1647 }
1648 }
1649
1650 static void
1651 surf_fake_rgb_with_red(const struct isl_device *isl_dev,
1652 struct brw_blorp_surface_info *info)
1653 {
1654 blorp_surf_convert_to_single_slice(isl_dev, info);
1655
1656 info->surf.logical_level0_px.width *= 3;
1657 info->surf.phys_level0_sa.width *= 3;
1658 info->tile_x_sa *= 3;
1659
1660 enum isl_format red_format =
1661 get_red_format_for_rgb_format(info->view.format);
1662
1663 assert(isl_format_get_layout(red_format)->channels.r.type ==
1664 isl_format_get_layout(info->view.format)->channels.r.type);
1665 assert(isl_format_get_layout(red_format)->channels.r.bits ==
1666 isl_format_get_layout(info->view.format)->channels.r.bits);
1667
1668 info->surf.format = info->view.format = red_format;
1669 }
1670
1671 enum blit_shrink_status {
1672 BLIT_NO_SHRINK = 0,
1673 BLIT_WIDTH_SHRINK = 1,
1674 BLIT_HEIGHT_SHRINK = 2,
1675 };
1676
1677 /* Try to blit. If the surface parameters exceed the size allowed by hardware,
1678 * then enum blit_shrink_status will be returned. If BLIT_NO_SHRINK is
1679 * returned, then the blit was successful.
1680 */
1681 static enum blit_shrink_status
1682 try_blorp_blit(struct blorp_batch *batch,
1683 struct blorp_params *params,
1684 struct brw_blorp_blit_prog_key *wm_prog_key,
1685 struct blt_coords *coords)
1686 {
1687 const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
1688
1689 if (isl_format_has_sint_channel(params->src.view.format)) {
1690 wm_prog_key->texture_data_type = nir_type_int;
1691 } else if (isl_format_has_uint_channel(params->src.view.format)) {
1692 wm_prog_key->texture_data_type = nir_type_uint;
1693 } else {
1694 wm_prog_key->texture_data_type = nir_type_float;
1695 }
1696
1697 /* src_samples and dst_samples are the true sample counts */
1698 wm_prog_key->src_samples = params->src.surf.samples;
1699 wm_prog_key->dst_samples = params->dst.surf.samples;
1700
1701 wm_prog_key->tex_aux_usage = params->src.aux_usage;
1702
1703 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1704 * dst.
1705 */
1706 wm_prog_key->src_layout = params->src.surf.msaa_layout;
1707 wm_prog_key->dst_layout = params->dst.surf.msaa_layout;
1708
1709 /* Round floating point values to nearest integer to avoid "off by one texel"
1710 * kind of errors when blitting.
1711 */
1712 params->x0 = params->wm_inputs.discard_rect.x0 = round(coords->x.dst0);
1713 params->y0 = params->wm_inputs.discard_rect.y0 = round(coords->y.dst0);
1714 params->x1 = params->wm_inputs.discard_rect.x1 = round(coords->x.dst1);
1715 params->y1 = params->wm_inputs.discard_rect.y1 = round(coords->y.dst1);
1716
1717 brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[0],
1718 coords->x.src0, coords->x.src1,
1719 coords->x.dst0, coords->x.dst1,
1720 coords->x.mirror);
1721 brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[1],
1722 coords->y.src0, coords->y.src1,
1723 coords->y.dst0, coords->y.dst1,
1724 coords->y.mirror);
1725
1726
1727 if (devinfo->gen == 4) {
1728 /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
1729 * Convert them to a single slice on gen4.
1730 */
1731 if (params->dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
1732 blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->dst);
1733 wm_prog_key->need_dst_offset = true;
1734 }
1735
1736 if (params->src.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
1737 blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->src);
1738 wm_prog_key->need_src_offset = true;
1739 }
1740 }
1741
1742 if (devinfo->gen > 6 &&
1743 params->dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1744 assert(params->dst.surf.samples > 1);
1745
1746 /* We must expand the rectangle we send through the rendering pipeline,
1747 * to account for the fact that we are mapping the destination region as
1748 * single-sampled when it is in fact multisampled. We must also align
1749 * it to a multiple of the multisampling pattern, because the
1750 * differences between multisampled and single-sampled surface formats
1751 * will mean that pixels are scrambled within the multisampling pattern.
1752 * TODO: what if this makes the coordinates too large?
1753 *
1754 * Note: this only works if the destination surface uses the IMS layout.
1755 * If it's UMS, then we have no choice but to set up the rendering
1756 * pipeline as multisampled.
1757 */
1758 struct isl_extent2d px_size_sa =
1759 isl_get_interleaved_msaa_px_size_sa(params->dst.surf.samples);
1760 params->x0 = ROUND_DOWN_TO(params->x0, 2) * px_size_sa.width;
1761 params->y0 = ROUND_DOWN_TO(params->y0, 2) * px_size_sa.height;
1762 params->x1 = ALIGN(params->x1, 2) * px_size_sa.width;
1763 params->y1 = ALIGN(params->y1, 2) * px_size_sa.height;
1764
1765 surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params->dst);
1766
1767 wm_prog_key->use_kill = true;
1768 wm_prog_key->need_dst_offset = true;
1769 }
1770
1771 if (params->dst.surf.tiling == ISL_TILING_W) {
1772 /* We must modify the rectangle we send through the rendering pipeline
1773 * (and the size and x/y offset of the destination surface), to account
1774 * for the fact that we are mapping it as Y-tiled when it is in fact
1775 * W-tiled.
1776 *
1777 * Both Y tiling and W tiling can be understood as organizations of
1778 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
1779 * is different, but the layout of the 32-byte sub-tiles within the 4k
1780 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
1781 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
1782 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
1783 *
1784 * Therefore, to account for the layout differences within the 32-byte
1785 * sub-tiles, we must expand the rectangle so the X coordinates of its
1786 * edges are multiples of 8 (the W sub-tile width), and its Y
1787 * coordinates of its edges are multiples of 4 (the W sub-tile height).
1788 * Then we need to scale the X and Y coordinates of the rectangle to
1789 * account for the differences in aspect ratio between the Y and W
1790 * sub-tiles. We need to modify the layer width and height similarly.
1791 *
1792 * A correction needs to be applied when MSAA is in use: since
1793 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
1794 * we need to align the Y coordinates to multiples of 8, so that when
1795 * they are divided by two they are still multiples of 4.
1796 *
1797 * Note: Since the x/y offset of the surface will be applied using the
1798 * SURFACE_STATE command packet, it will be invisible to the swizzling
1799 * code in the shader; therefore it needs to be in a multiple of the
1800 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
1801 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
1802 * buffer), and the miplevel alignment used for stencil buffers is 8
1803 * pixels horizontally and either 4 or 8 pixels vertically (see
1804 * intel_horizontal_texture_alignment_unit() and
1805 * intel_vertical_texture_alignment_unit()).
1806 *
1807 * Note: Also, since the SURFACE_STATE command packet can only apply
1808 * offsets that are multiples of 4 pixels horizontally and 2 pixels
1809 * vertically, it is important that the offsets will be multiples of
1810 * these sizes after they are converted into Y-tiled coordinates.
1811 * Fortunately they will be, since we know from above that the offsets
1812 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
1813 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
1814 *
1815 * TODO: what if this makes the coordinates (or the texture size) too
1816 * large?
1817 */
1818 const unsigned x_align = 8;
1819 const unsigned y_align = params->dst.surf.samples != 0 ? 8 : 4;
1820 params->x0 = ROUND_DOWN_TO(params->x0, x_align) * 2;
1821 params->y0 = ROUND_DOWN_TO(params->y0, y_align) / 2;
1822 params->x1 = ALIGN(params->x1, x_align) * 2;
1823 params->y1 = ALIGN(params->y1, y_align) / 2;
1824
1825 /* Retile the surface to Y-tiled */
1826 surf_retile_w_to_y(batch->blorp->isl_dev, &params->dst);
1827
1828 wm_prog_key->dst_tiled_w = true;
1829 wm_prog_key->use_kill = true;
1830 wm_prog_key->need_dst_offset = true;
1831
1832 if (params->dst.surf.samples > 1) {
1833 /* If the destination surface is a W-tiled multisampled stencil
1834 * buffer that we're mapping as Y tiled, then we need to arrange for
1835 * the WM program to run once per sample rather than once per pixel,
1836 * because the memory layout of related samples doesn't match between
1837 * W and Y tiling.
1838 */
1839 wm_prog_key->persample_msaa_dispatch = true;
1840 }
1841 }
1842
1843 if (devinfo->gen < 8 && params->src.surf.tiling == ISL_TILING_W) {
1844 /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
1845 * Broadwell adds support for sampling from stencil.
1846 *
1847 * See the comments above concerning x/y offset alignment for the
1848 * destination surface.
1849 *
1850 * TODO: what if this makes the texture size too large?
1851 */
1852 surf_retile_w_to_y(batch->blorp->isl_dev, &params->src);
1853
1854 wm_prog_key->src_tiled_w = true;
1855 wm_prog_key->need_src_offset = true;
1856 }
1857
1858 /* tex_samples and rt_samples are the sample counts that are set up in
1859 * SURFACE_STATE.
1860 */
1861 wm_prog_key->tex_samples = params->src.surf.samples;
1862 wm_prog_key->rt_samples = params->dst.surf.samples;
1863
1864 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1865 * use to access the source and destination surfaces.
1866 */
1867 wm_prog_key->tex_layout = params->src.surf.msaa_layout;
1868 wm_prog_key->rt_layout = params->dst.surf.msaa_layout;
1869
1870 if (params->src.surf.samples > 0 && params->dst.surf.samples > 1) {
1871 /* We are blitting from a multisample buffer to a multisample buffer, so
1872 * we must preserve samples within a pixel. This means we have to
1873 * arrange for the WM program to run once per sample rather than once
1874 * per pixel.
1875 */
1876 wm_prog_key->persample_msaa_dispatch = true;
1877 }
1878
1879 params->num_samples = params->dst.surf.samples;
1880
1881 if ((wm_prog_key->bilinear_filter ||
1882 (wm_prog_key->blend && !wm_prog_key->blit_scaled)) &&
1883 batch->blorp->isl_dev->info->gen <= 6) {
1884 /* Gen4-5 don't support non-normalized texture coordinates */
1885 wm_prog_key->src_coords_normalized = true;
1886 params->wm_inputs.src_inv_size[0] =
1887 1.0f / minify(params->src.surf.logical_level0_px.width,
1888 params->src.view.base_level);
1889 params->wm_inputs.src_inv_size[1] =
1890 1.0f / minify(params->src.surf.logical_level0_px.height,
1891 params->src.view.base_level);
1892 }
1893
1894 if (isl_format_get_layout(params->dst.view.format)->bpb % 3 == 0) {
1895 /* We can't render to RGB formats natively because they aren't a
1896 * power-of-two size. Instead, we fake them by using a red format
1897 * with the same channel type and size and emitting shader code to
1898 * only write one channel at a time.
1899 */
1900 params->x0 *= 3;
1901 params->x1 *= 3;
1902
1903 surf_fake_rgb_with_red(batch->blorp->isl_dev, &params->dst);
1904
1905 wm_prog_key->dst_rgb = true;
1906 wm_prog_key->need_dst_offset = true;
1907 } else if (isl_format_is_rgbx(params->dst.view.format)) {
1908 /* We can handle RGBX formats easily enough by treating them as RGBA */
1909 params->dst.view.format =
1910 isl_format_rgbx_to_rgba(params->dst.view.format);
1911 } else if (params->dst.view.format == ISL_FORMAT_R24_UNORM_X8_TYPELESS) {
1912 wm_prog_key->dst_format = params->dst.view.format;
1913 params->dst.view.format = ISL_FORMAT_R32_UNORM;
1914 } else if (params->dst.view.format == ISL_FORMAT_A4B4G4R4_UNORM) {
1915 params->dst.view.swizzle =
1916 isl_swizzle_compose(params->dst.view.swizzle,
1917 ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE));
1918 params->dst.view.format = ISL_FORMAT_B4G4R4A4_UNORM;
1919 } else if (params->dst.view.format == ISL_FORMAT_L8_UNORM_SRGB) {
1920 wm_prog_key->dst_format = params->dst.view.format;
1921 params->dst.view.format = ISL_FORMAT_R8_UNORM;
1922 } else if (params->dst.view.format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
1923 wm_prog_key->dst_format = params->dst.view.format;
1924 params->dst.view.format = ISL_FORMAT_R32_UINT;
1925 }
1926
1927 if (devinfo->gen <= 7 && !devinfo->is_haswell &&
1928 !isl_swizzle_is_identity(params->src.view.swizzle)) {
1929 wm_prog_key->src_swizzle = params->src.view.swizzle;
1930 params->src.view.swizzle = ISL_SWIZZLE_IDENTITY;
1931 } else {
1932 wm_prog_key->src_swizzle = ISL_SWIZZLE_IDENTITY;
1933 }
1934
1935 if (!isl_swizzle_supports_rendering(devinfo, params->dst.view.swizzle)) {
1936 wm_prog_key->dst_swizzle = params->dst.view.swizzle;
1937 params->dst.view.swizzle = ISL_SWIZZLE_IDENTITY;
1938 } else {
1939 wm_prog_key->dst_swizzle = ISL_SWIZZLE_IDENTITY;
1940 }
1941
1942 if (params->src.tile_x_sa || params->src.tile_y_sa) {
1943 assert(wm_prog_key->need_src_offset);
1944 surf_get_intratile_offset_px(&params->src,
1945 &params->wm_inputs.src_offset.x,
1946 &params->wm_inputs.src_offset.y);
1947 }
1948
1949 if (params->dst.tile_x_sa || params->dst.tile_y_sa) {
1950 assert(wm_prog_key->need_dst_offset);
1951 surf_get_intratile_offset_px(&params->dst,
1952 &params->wm_inputs.dst_offset.x,
1953 &params->wm_inputs.dst_offset.y);
1954 params->x0 += params->wm_inputs.dst_offset.x;
1955 params->y0 += params->wm_inputs.dst_offset.y;
1956 params->x1 += params->wm_inputs.dst_offset.x;
1957 params->y1 += params->wm_inputs.dst_offset.y;
1958 }
1959
1960 /* For some texture types, we need to pass the layer through the sampler. */
1961 params->wm_inputs.src_z = params->src.z_offset;
1962
1963 if (!brw_blorp_get_blit_kernel(batch->blorp, params, wm_prog_key))
1964 return 0;
1965
1966 if (!blorp_ensure_sf_program(batch->blorp, params))
1967 return 0;
1968
1969 unsigned result = 0;
1970 unsigned max_surface_size = get_max_surface_size(devinfo, params);
1971 if (params->src.surf.logical_level0_px.width > max_surface_size ||
1972 params->dst.surf.logical_level0_px.width > max_surface_size)
1973 result |= BLIT_WIDTH_SHRINK;
1974 if (params->src.surf.logical_level0_px.height > max_surface_size ||
1975 params->dst.surf.logical_level0_px.height > max_surface_size)
1976 result |= BLIT_HEIGHT_SHRINK;
1977
1978 if (result == 0) {
1979 batch->blorp->exec(batch, params);
1980 }
1981
1982 return result;
1983 }
1984
1985 /* Adjust split blit source coordinates for the current destination
1986 * coordinates.
1987 */
1988 static void
1989 adjust_split_source_coords(const struct blt_axis *orig,
1990 struct blt_axis *split_coords,
1991 double scale)
1992 {
1993 /* When scale is greater than 0, then we are growing from the start, so
1994 * src0 uses delta0, and src1 uses delta1. When scale is less than 0, the
1995 * source range shrinks from the end. In that case src0 is adjusted by
1996 * delta1, and src1 is adjusted by delta0.
1997 */
1998 double delta0 = scale * (split_coords->dst0 - orig->dst0);
1999 double delta1 = scale * (split_coords->dst1 - orig->dst1);
2000 split_coords->src0 = orig->src0 + (scale >= 0.0 ? delta0 : delta1);
2001 split_coords->src1 = orig->src1 + (scale >= 0.0 ? delta1 : delta0);
2002 }
2003
2004 static struct isl_extent2d
2005 get_px_size_sa(const struct isl_surf *surf)
2006 {
2007 static const struct isl_extent2d one_to_one = { .w = 1, .h = 1 };
2008
2009 if (surf->msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED)
2010 return one_to_one;
2011 else
2012 return isl_get_interleaved_msaa_px_size_sa(surf->samples);
2013 }
2014
2015 static void
2016 shrink_surface_params(const struct isl_device *dev,
2017 struct brw_blorp_surface_info *info,
2018 double *x0, double *x1, double *y0, double *y1)
2019 {
2020 uint32_t byte_offset, x_offset_sa, y_offset_sa, size;
2021 struct isl_extent2d px_size_sa;
2022 int adjust;
2023
2024 blorp_surf_convert_to_single_slice(dev, info);
2025
2026 px_size_sa = get_px_size_sa(&info->surf);
2027
2028 /* Because this gets called after we lower compressed images, the tile
2029 * offsets may be non-zero and we need to incorporate them in our
2030 * calculations.
2031 */
2032 x_offset_sa = (uint32_t)*x0 * px_size_sa.w + info->tile_x_sa;
2033 y_offset_sa = (uint32_t)*y0 * px_size_sa.h + info->tile_y_sa;
2034 isl_tiling_get_intratile_offset_sa(info->surf.tiling,
2035 info->surf.format, info->surf.row_pitch,
2036 x_offset_sa, y_offset_sa,
2037 &byte_offset,
2038 &info->tile_x_sa, &info->tile_y_sa);
2039
2040 info->addr.offset += byte_offset;
2041
2042 adjust = (int)info->tile_x_sa / px_size_sa.w - (int)*x0;
2043 *x0 += adjust;
2044 *x1 += adjust;
2045 info->tile_x_sa = 0;
2046
2047 adjust = (int)info->tile_y_sa / px_size_sa.h - (int)*y0;
2048 *y0 += adjust;
2049 *y1 += adjust;
2050 info->tile_y_sa = 0;
2051
2052 size = MIN2((uint32_t)ceil(*x1), info->surf.logical_level0_px.width);
2053 info->surf.logical_level0_px.width = size;
2054 info->surf.phys_level0_sa.width = size * px_size_sa.w;
2055
2056 size = MIN2((uint32_t)ceil(*y1), info->surf.logical_level0_px.height);
2057 info->surf.logical_level0_px.height = size;
2058 info->surf.phys_level0_sa.height = size * px_size_sa.h;
2059 }
2060
2061 static void
2062 shrink_surfaces(const struct isl_device *dev,
2063 struct blorp_params *params,
2064 struct brw_blorp_blit_prog_key *wm_prog_key,
2065 struct blt_coords *coords)
2066 {
2067 /* Shrink source surface */
2068 shrink_surface_params(dev, &params->src, &coords->x.src0, &coords->x.src1,
2069 &coords->y.src0, &coords->y.src1);
2070 wm_prog_key->need_src_offset = false;
2071
2072 /* Shrink destination surface */
2073 shrink_surface_params(dev, &params->dst, &coords->x.dst0, &coords->x.dst1,
2074 &coords->y.dst0, &coords->y.dst1);
2075 wm_prog_key->need_dst_offset = false;
2076 }
2077
2078 static void
2079 do_blorp_blit(struct blorp_batch *batch,
2080 const struct blorp_params *orig_params,
2081 struct brw_blorp_blit_prog_key *wm_prog_key,
2082 const struct blt_coords *orig)
2083 {
2084 struct blorp_params params;
2085 struct blt_coords blit_coords;
2086 struct blt_coords split_coords = *orig;
2087 double w = orig->x.dst1 - orig->x.dst0;
2088 double h = orig->y.dst1 - orig->y.dst0;
2089 double x_scale = (orig->x.src1 - orig->x.src0) / w;
2090 double y_scale = (orig->y.src1 - orig->y.src0) / h;
2091 if (orig->x.mirror)
2092 x_scale = -x_scale;
2093 if (orig->y.mirror)
2094 y_scale = -y_scale;
2095
2096 bool x_done, y_done;
2097 bool shrink = split_blorp_blit_debug && can_shrink_surfaces(orig_params);
2098 do {
2099 params = *orig_params;
2100 blit_coords = split_coords;
2101 if (shrink)
2102 shrink_surfaces(batch->blorp->isl_dev, &params, wm_prog_key,
2103 &blit_coords);
2104 enum blit_shrink_status result =
2105 try_blorp_blit(batch, &params, wm_prog_key, &blit_coords);
2106
2107 if (result & BLIT_WIDTH_SHRINK) {
2108 w /= 2.0;
2109 assert(w >= 1.0);
2110 split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
2111 adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
2112 }
2113 if (result & BLIT_HEIGHT_SHRINK) {
2114 h /= 2.0;
2115 assert(h >= 1.0);
2116 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2117 adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
2118 }
2119
2120 if (result != 0) {
2121 assert(can_shrink_surfaces(orig_params));
2122 shrink = true;
2123 continue;
2124 }
2125
2126 y_done = (orig->y.dst1 - split_coords.y.dst1 < 0.5);
2127 x_done = y_done && (orig->x.dst1 - split_coords.x.dst1 < 0.5);
2128 if (x_done) {
2129 break;
2130 } else if (y_done) {
2131 split_coords.x.dst0 += w;
2132 split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
2133 split_coords.y.dst0 = orig->y.dst0;
2134 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2135 adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
2136 } else {
2137 split_coords.y.dst0 += h;
2138 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
2139 adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
2140 }
2141 } while (true);
2142 }
2143
2144 void
2145 blorp_blit(struct blorp_batch *batch,
2146 const struct blorp_surf *src_surf,
2147 unsigned src_level, unsigned src_layer,
2148 enum isl_format src_format, struct isl_swizzle src_swizzle,
2149 const struct blorp_surf *dst_surf,
2150 unsigned dst_level, unsigned dst_layer,
2151 enum isl_format dst_format, struct isl_swizzle dst_swizzle,
2152 float src_x0, float src_y0,
2153 float src_x1, float src_y1,
2154 float dst_x0, float dst_y0,
2155 float dst_x1, float dst_y1,
2156 GLenum filter, bool mirror_x, bool mirror_y)
2157 {
2158 struct blorp_params params;
2159 blorp_params_init(&params);
2160
2161 /* We cannot handle combined depth and stencil. */
2162 if (src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
2163 assert(src_surf->surf->format == ISL_FORMAT_R8_UINT);
2164 if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
2165 assert(dst_surf->surf->format == ISL_FORMAT_R8_UINT);
2166
2167 if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT) {
2168 assert(src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT);
2169 /* Prior to Broadwell, we can't render to R8_UINT */
2170 if (batch->blorp->isl_dev->info->gen < 8) {
2171 src_format = ISL_FORMAT_R8_UNORM;
2172 dst_format = ISL_FORMAT_R8_UNORM;
2173 }
2174 }
2175
2176 brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2177 src_layer, src_format, false);
2178 brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2179 dst_layer, dst_format, true);
2180
2181 params.src.view.swizzle = src_swizzle;
2182 params.dst.view.swizzle = dst_swizzle;
2183
2184 struct brw_blorp_blit_prog_key wm_prog_key = {
2185 .shader_type = BLORP_SHADER_TYPE_BLIT
2186 };
2187
2188 /* Scaled blitting or not. */
2189 wm_prog_key.blit_scaled =
2190 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
2191 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
2192
2193 /* Scaling factors used for bilinear filtering in multisample scaled
2194 * blits.
2195 */
2196 if (params.src.surf.samples == 16)
2197 wm_prog_key.x_scale = 4.0f;
2198 else
2199 wm_prog_key.x_scale = 2.0f;
2200 wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
2201
2202 if (filter == GL_LINEAR &&
2203 params.src.surf.samples <= 1 && params.dst.surf.samples <= 1) {
2204 wm_prog_key.bilinear_filter = true;
2205 }
2206
2207 if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
2208 (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
2209 !isl_format_has_int_channel(params.src.surf.format) &&
2210 params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
2211 /* We are downsampling a non-integer color buffer, so blend.
2212 *
2213 * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
2214 *
2215 * "If the source formats are integer types or stencil values, a
2216 * single sample's value is selected for each pixel."
2217 *
2218 * This implies we should not blend in that case.
2219 */
2220 wm_prog_key.blend = true;
2221 }
2222
2223 params.wm_inputs.rect_grid.x1 =
2224 minify(params.src.surf.logical_level0_px.width, src_level) *
2225 wm_prog_key.x_scale - 1.0f;
2226 params.wm_inputs.rect_grid.y1 =
2227 minify(params.src.surf.logical_level0_px.height, src_level) *
2228 wm_prog_key.y_scale - 1.0f;
2229
2230 struct blt_coords coords = {
2231 .x = {
2232 .src0 = src_x0,
2233 .src1 = src_x1,
2234 .dst0 = dst_x0,
2235 .dst1 = dst_x1,
2236 .mirror = mirror_x
2237 },
2238 .y = {
2239 .src0 = src_y0,
2240 .src1 = src_y1,
2241 .dst0 = dst_y0,
2242 .dst1 = dst_y1,
2243 .mirror = mirror_y
2244 }
2245 };
2246
2247 do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2248 }
2249
2250 static enum isl_format
2251 get_copy_format_for_bpb(const struct isl_device *isl_dev, unsigned bpb)
2252 {
2253 /* The choice of UNORM and UINT formats is very intentional here. Most
2254 * of the time, we want to use a UINT format to avoid any rounding error
2255 * in the blit. For stencil blits, R8_UINT is required by the hardware.
2256 * (It's the only format allowed in conjunction with W-tiling.) Also we
2257 * intentionally use the 4-channel formats whenever we can. This is so
2258 * that, when we do a RGB <-> RGBX copy, the two formats will line up
2259 * even though one of them is 3/4 the size of the other. The choice of
2260 * UNORM vs. UINT is also very intentional because we don't have 8 or
2261 * 16-bit RGB UINT formats until Sky Lake so we have to use UNORM there.
2262 * Fortunately, the only time we should ever use two different formats in
2263 * the table below is for RGB -> RGBA blits and so we will never have any
2264 * UNORM/UINT mismatch.
2265 */
2266 if (ISL_DEV_GEN(isl_dev) >= 9) {
2267 switch (bpb) {
2268 case 8: return ISL_FORMAT_R8_UINT;
2269 case 16: return ISL_FORMAT_R8G8_UINT;
2270 case 24: return ISL_FORMAT_R8G8B8_UINT;
2271 case 32: return ISL_FORMAT_R8G8B8A8_UINT;
2272 case 48: return ISL_FORMAT_R16G16B16_UINT;
2273 case 64: return ISL_FORMAT_R16G16B16A16_UINT;
2274 case 96: return ISL_FORMAT_R32G32B32_UINT;
2275 case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2276 default:
2277 unreachable("Unknown format bpb");
2278 }
2279 } else {
2280 switch (bpb) {
2281 case 8: return ISL_FORMAT_R8_UINT;
2282 case 16: return ISL_FORMAT_R8G8_UINT;
2283 case 24: return ISL_FORMAT_R8G8B8_UNORM;
2284 case 32: return ISL_FORMAT_R8G8B8A8_UNORM;
2285 case 48: return ISL_FORMAT_R16G16B16_UNORM;
2286 case 64: return ISL_FORMAT_R16G16B16A16_UNORM;
2287 case 96: return ISL_FORMAT_R32G32B32_UINT;
2288 case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2289 default:
2290 unreachable("Unknown format bpb");
2291 }
2292 }
2293 }
2294
2295 /** Returns a UINT format that is CCS-compatible with the given format
2296 *
2297 * The PRM's say absolutely nothing about how render compression works. The
2298 * only thing they provide is a list of formats on which it is and is not
2299 * supported. Empirical testing indicates that the compression is only based
2300 * on the bit-layout of the format and the channel encoding doesn't matter.
2301 * So, while texture views don't work in general, you can create a view as
2302 * long as the bit-layout of the formats are the same.
2303 *
2304 * Fortunately, for every render compression capable format, the UINT format
2305 * with the same bit layout also supports render compression. This means that
2306 * we only need to handle UINT formats for copy operations. In order to do
2307 * copies between formats with different bit layouts, we attach both with a
2308 * UINT format and use bit_cast_color() to generate code to do the bit-cast
2309 * operation between the two bit layouts.
2310 */
2311 static enum isl_format
2312 get_ccs_compatible_uint_format(const struct isl_format_layout *fmtl)
2313 {
2314 switch (fmtl->format) {
2315 case ISL_FORMAT_R32G32B32A32_FLOAT:
2316 case ISL_FORMAT_R32G32B32A32_SINT:
2317 case ISL_FORMAT_R32G32B32A32_UINT:
2318 case ISL_FORMAT_R32G32B32A32_UNORM:
2319 case ISL_FORMAT_R32G32B32A32_SNORM:
2320 case ISL_FORMAT_R32G32B32X32_FLOAT:
2321 return ISL_FORMAT_R32G32B32A32_UINT;
2322
2323 case ISL_FORMAT_R16G16B16A16_UNORM:
2324 case ISL_FORMAT_R16G16B16A16_SNORM:
2325 case ISL_FORMAT_R16G16B16A16_SINT:
2326 case ISL_FORMAT_R16G16B16A16_UINT:
2327 case ISL_FORMAT_R16G16B16A16_FLOAT:
2328 case ISL_FORMAT_R16G16B16X16_UNORM:
2329 case ISL_FORMAT_R16G16B16X16_FLOAT:
2330 return ISL_FORMAT_R16G16B16A16_UINT;
2331
2332 case ISL_FORMAT_R32G32_FLOAT:
2333 case ISL_FORMAT_R32G32_SINT:
2334 case ISL_FORMAT_R32G32_UINT:
2335 case ISL_FORMAT_R32G32_UNORM:
2336 case ISL_FORMAT_R32G32_SNORM:
2337 return ISL_FORMAT_R32G32_UINT;
2338
2339 case ISL_FORMAT_B8G8R8A8_UNORM:
2340 case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2341 case ISL_FORMAT_R8G8B8A8_UNORM:
2342 case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
2343 case ISL_FORMAT_R8G8B8A8_SNORM:
2344 case ISL_FORMAT_R8G8B8A8_SINT:
2345 case ISL_FORMAT_R8G8B8A8_UINT:
2346 case ISL_FORMAT_B8G8R8X8_UNORM:
2347 case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
2348 case ISL_FORMAT_R8G8B8X8_UNORM:
2349 case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
2350 return ISL_FORMAT_R8G8B8A8_UINT;
2351
2352 case ISL_FORMAT_R16G16_UNORM:
2353 case ISL_FORMAT_R16G16_SNORM:
2354 case ISL_FORMAT_R16G16_SINT:
2355 case ISL_FORMAT_R16G16_UINT:
2356 case ISL_FORMAT_R16G16_FLOAT:
2357 return ISL_FORMAT_R16G16_UINT;
2358
2359 case ISL_FORMAT_R32_SINT:
2360 case ISL_FORMAT_R32_UINT:
2361 case ISL_FORMAT_R32_FLOAT:
2362 case ISL_FORMAT_R32_UNORM:
2363 case ISL_FORMAT_R32_SNORM:
2364 return ISL_FORMAT_R32_UINT;
2365
2366 default:
2367 unreachable("Not a compressible format");
2368 }
2369 }
2370
2371 void
2372 blorp_surf_convert_to_uncompressed(const struct isl_device *isl_dev,
2373 struct brw_blorp_surface_info *info,
2374 uint32_t *x, uint32_t *y,
2375 uint32_t *width, uint32_t *height)
2376 {
2377 const struct isl_format_layout *fmtl =
2378 isl_format_get_layout(info->surf.format);
2379
2380 assert(fmtl->bw > 1 || fmtl->bh > 1);
2381
2382 /* This is a compressed surface. We need to convert it to a single
2383 * slice (because compressed layouts don't perfectly match uncompressed
2384 * ones with the same bpb) and divide x, y, width, and height by the
2385 * block size.
2386 */
2387 blorp_surf_convert_to_single_slice(isl_dev, info);
2388
2389 if (width && height) {
2390 #ifndef NDEBUG
2391 uint32_t right_edge_px = info->tile_x_sa + *x + *width;
2392 uint32_t bottom_edge_px = info->tile_y_sa + *y + *height;
2393 assert(*width % fmtl->bw == 0 ||
2394 right_edge_px == info->surf.logical_level0_px.width);
2395 assert(*height % fmtl->bh == 0 ||
2396 bottom_edge_px == info->surf.logical_level0_px.height);
2397 #endif
2398 *width = DIV_ROUND_UP(*width, fmtl->bw);
2399 *height = DIV_ROUND_UP(*height, fmtl->bh);
2400 }
2401
2402 if (x && y) {
2403 assert(*x % fmtl->bw == 0);
2404 assert(*y % fmtl->bh == 0);
2405 *x /= fmtl->bw;
2406 *y /= fmtl->bh;
2407 }
2408
2409 info->surf.logical_level0_px.width =
2410 DIV_ROUND_UP(info->surf.logical_level0_px.width, fmtl->bw);
2411 info->surf.logical_level0_px.height =
2412 DIV_ROUND_UP(info->surf.logical_level0_px.height, fmtl->bh);
2413
2414 assert(info->surf.phys_level0_sa.width % fmtl->bw == 0);
2415 assert(info->surf.phys_level0_sa.height % fmtl->bh == 0);
2416 info->surf.phys_level0_sa.width /= fmtl->bw;
2417 info->surf.phys_level0_sa.height /= fmtl->bh;
2418
2419 assert(info->tile_x_sa % fmtl->bw == 0);
2420 assert(info->tile_y_sa % fmtl->bh == 0);
2421 info->tile_x_sa /= fmtl->bw;
2422 info->tile_y_sa /= fmtl->bh;
2423
2424 /* It's now an uncompressed surface so we need an uncompressed format */
2425 info->surf.format = get_copy_format_for_bpb(isl_dev, fmtl->bpb);
2426 }
2427
2428 void
2429 blorp_copy(struct blorp_batch *batch,
2430 const struct blorp_surf *src_surf,
2431 unsigned src_level, unsigned src_layer,
2432 const struct blorp_surf *dst_surf,
2433 unsigned dst_level, unsigned dst_layer,
2434 uint32_t src_x, uint32_t src_y,
2435 uint32_t dst_x, uint32_t dst_y,
2436 uint32_t src_width, uint32_t src_height)
2437 {
2438 const struct isl_device *isl_dev = batch->blorp->isl_dev;
2439 struct blorp_params params;
2440
2441 if (src_width == 0 || src_height == 0)
2442 return;
2443
2444 blorp_params_init(&params);
2445 brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2446 src_layer, ISL_FORMAT_UNSUPPORTED, false);
2447 brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2448 dst_layer, ISL_FORMAT_UNSUPPORTED, true);
2449
2450 struct brw_blorp_blit_prog_key wm_prog_key = {
2451 .shader_type = BLORP_SHADER_TYPE_BLIT
2452 };
2453
2454 const struct isl_format_layout *src_fmtl =
2455 isl_format_get_layout(params.src.surf.format);
2456 const struct isl_format_layout *dst_fmtl =
2457 isl_format_get_layout(params.dst.surf.format);
2458
2459 assert(params.src.aux_usage == ISL_AUX_USAGE_NONE ||
2460 params.src.aux_usage == ISL_AUX_USAGE_MCS ||
2461 params.src.aux_usage == ISL_AUX_USAGE_CCS_E);
2462 assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE ||
2463 params.dst.aux_usage == ISL_AUX_USAGE_MCS ||
2464 params.dst.aux_usage == ISL_AUX_USAGE_CCS_E);
2465
2466 if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2467 params.dst.view.format = get_ccs_compatible_uint_format(dst_fmtl);
2468 if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2469 params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2470 } else if (src_fmtl->bpb == dst_fmtl->bpb) {
2471 params.src.view.format = params.dst.view.format;
2472 } else {
2473 params.src.view.format =
2474 get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2475 }
2476 } else if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2477 params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2478 if (src_fmtl->bpb == dst_fmtl->bpb) {
2479 params.dst.view.format = params.src.view.format;
2480 } else {
2481 params.dst.view.format =
2482 get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2483 }
2484 } else {
2485 params.dst.view.format = get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2486 params.src.view.format = get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2487 }
2488
2489 if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2490 /* It's safe to do a blorp_copy between things which are sRGB with CCS_E
2491 * enabled even though CCS_E doesn't technically do sRGB on SKL because
2492 * we stomp everything to UINT anyway. The one thing we have to be
2493 * careful of is clear colors. Because fast clear colors for sRGB on
2494 * gen9 are encoded as the float values between format conversion and
2495 * sRGB curve application, a given clear color float will convert to the
2496 * same bits regardless of whether the format is UNORM or sRGB.
2497 * Therefore, we can handle sRGB without any special cases.
2498 */
2499 UNUSED enum isl_format linear_src_format =
2500 isl_format_srgb_to_linear(src_surf->surf->format);
2501 assert(isl_formats_are_ccs_e_compatible(batch->blorp->isl_dev->info,
2502 linear_src_format,
2503 params.src.view.format));
2504 uint32_t packed[4];
2505 isl_color_value_pack(&params.src.clear_color,
2506 params.src.surf.format, packed);
2507 isl_color_value_unpack(&params.src.clear_color,
2508 params.src.view.format, packed);
2509 }
2510
2511 if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2512 /* See above where we handle linear_src_format */
2513 UNUSED enum isl_format linear_dst_format =
2514 isl_format_srgb_to_linear(dst_surf->surf->format);
2515 assert(isl_formats_are_ccs_e_compatible(batch->blorp->isl_dev->info,
2516 linear_dst_format,
2517 params.dst.view.format));
2518 uint32_t packed[4];
2519 isl_color_value_pack(&params.dst.clear_color,
2520 params.dst.surf.format, packed);
2521 isl_color_value_unpack(&params.dst.clear_color,
2522 params.dst.view.format, packed);
2523 }
2524
2525 wm_prog_key.src_bpc =
2526 isl_format_get_layout(params.src.view.format)->channels.r.bits;
2527 wm_prog_key.dst_bpc =
2528 isl_format_get_layout(params.dst.view.format)->channels.r.bits;
2529
2530 if (src_fmtl->bw > 1 || src_fmtl->bh > 1) {
2531 blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.src,
2532 &src_x, &src_y,
2533 &src_width, &src_height);
2534 wm_prog_key.need_src_offset = true;
2535 }
2536
2537 if (dst_fmtl->bw > 1 || dst_fmtl->bh > 1) {
2538 blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
2539 &dst_x, &dst_y, NULL, NULL);
2540 wm_prog_key.need_dst_offset = true;
2541 }
2542
2543 /* Once both surfaces are stompped to uncompressed as needed, the
2544 * destination size is the same as the source size.
2545 */
2546 uint32_t dst_width = src_width;
2547 uint32_t dst_height = src_height;
2548
2549 struct blt_coords coords = {
2550 .x = {
2551 .src0 = src_x,
2552 .src1 = src_x + src_width,
2553 .dst0 = dst_x,
2554 .dst1 = dst_x + dst_width,
2555 .mirror = false
2556 },
2557 .y = {
2558 .src0 = src_y,
2559 .src1 = src_y + src_height,
2560 .dst0 = dst_y,
2561 .dst1 = dst_y + dst_height,
2562 .mirror = false
2563 }
2564 };
2565
2566 do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2567 }
2568
2569 static enum isl_format
2570 isl_format_for_size(unsigned size_B)
2571 {
2572 switch (size_B) {
2573 case 1: return ISL_FORMAT_R8_UINT;
2574 case 2: return ISL_FORMAT_R8G8_UINT;
2575 case 4: return ISL_FORMAT_R8G8B8A8_UINT;
2576 case 8: return ISL_FORMAT_R16G16B16A16_UINT;
2577 case 16: return ISL_FORMAT_R32G32B32A32_UINT;
2578 default:
2579 unreachable("Not a power-of-two format size");
2580 }
2581 }
2582
2583 /**
2584 * Returns the greatest common divisor of a and b that is a power of two.
2585 */
2586 static uint64_t
2587 gcd_pow2_u64(uint64_t a, uint64_t b)
2588 {
2589 assert(a > 0 || b > 0);
2590
2591 unsigned a_log2 = ffsll(a) - 1;
2592 unsigned b_log2 = ffsll(b) - 1;
2593
2594 /* If either a or b is 0, then a_log2 or b_log2 till be UINT_MAX in which
2595 * case, the MIN2() will take the other one. If both are 0 then we will
2596 * hit the assert above.
2597 */
2598 return 1 << MIN2(a_log2, b_log2);
2599 }
2600
2601 static void
2602 do_buffer_copy(struct blorp_batch *batch,
2603 struct blorp_address *src,
2604 struct blorp_address *dst,
2605 int width, int height, int block_size)
2606 {
2607 /* The actual format we pick doesn't matter as blorp will throw it away.
2608 * The only thing that actually matters is the size.
2609 */
2610 enum isl_format format = isl_format_for_size(block_size);
2611
2612 UNUSED bool ok;
2613 struct isl_surf surf;
2614 ok = isl_surf_init(batch->blorp->isl_dev, &surf,
2615 .dim = ISL_SURF_DIM_2D,
2616 .format = format,
2617 .width = width,
2618 .height = height,
2619 .depth = 1,
2620 .levels = 1,
2621 .array_len = 1,
2622 .samples = 1,
2623 .row_pitch = width * block_size,
2624 .usage = ISL_SURF_USAGE_TEXTURE_BIT |
2625 ISL_SURF_USAGE_RENDER_TARGET_BIT,
2626 .tiling_flags = ISL_TILING_LINEAR_BIT);
2627 assert(ok);
2628
2629 struct blorp_surf src_blorp_surf = {
2630 .surf = &surf,
2631 .addr = *src,
2632 };
2633
2634 struct blorp_surf dst_blorp_surf = {
2635 .surf = &surf,
2636 .addr = *dst,
2637 };
2638
2639 blorp_copy(batch, &src_blorp_surf, 0, 0, &dst_blorp_surf, 0, 0,
2640 0, 0, 0, 0, width, height);
2641 }
2642
2643 void
2644 blorp_buffer_copy(struct blorp_batch *batch,
2645 struct blorp_address src,
2646 struct blorp_address dst,
2647 uint64_t size)
2648 {
2649 const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
2650 uint64_t copy_size = size;
2651
2652 /* This is maximum possible width/height our HW can handle */
2653 uint64_t max_surface_dim = 1 << (devinfo->gen >= 7 ? 14 : 13);
2654
2655 /* First, we compute the biggest format that can be used with the
2656 * given offsets and size.
2657 */
2658 int bs = 16;
2659 bs = gcd_pow2_u64(bs, src.offset);
2660 bs = gcd_pow2_u64(bs, dst.offset);
2661 bs = gcd_pow2_u64(bs, size);
2662
2663 /* First, we make a bunch of max-sized copies */
2664 uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
2665 while (copy_size >= max_copy_size) {
2666 do_buffer_copy(batch, &src, &dst, max_surface_dim, max_surface_dim, bs);
2667 copy_size -= max_copy_size;
2668 src.offset += max_copy_size;
2669 dst.offset += max_copy_size;
2670 }
2671
2672 /* Now make a max-width copy */
2673 uint64_t height = copy_size / (max_surface_dim * bs);
2674 assert(height < max_surface_dim);
2675 if (height != 0) {
2676 uint64_t rect_copy_size = height * max_surface_dim * bs;
2677 do_buffer_copy(batch, &src, &dst, max_surface_dim, height, bs);
2678 copy_size -= rect_copy_size;
2679 src.offset += rect_copy_size;
2680 dst.offset += rect_copy_size;
2681 }
2682
2683 /* Finally, make a small copy to finish it off */
2684 if (copy_size != 0) {
2685 do_buffer_copy(batch, &src, &dst, copy_size / bs, 1, bs);
2686 }
2687 }