intel/blorp: make upload_shader() return a bool indicating success or failure
[mesa.git] / src / intel / blorp / blorp_blit.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/nir/nir_builder.h"
25
26 #include "blorp_priv.h"
27
28 /* header-only include needed for _mesa_unorm_to_float and friends. */
29 #include "mesa/main/format_utils.h"
30
31 #define FILE_DEBUG_FLAG DEBUG_BLORP
32
33 static const bool split_blorp_blit_debug = false;
34
35 /**
36 * Enum to specify the order of arguments in a sampler message
37 */
38 enum sampler_message_arg
39 {
40 SAMPLER_MESSAGE_ARG_U_FLOAT,
41 SAMPLER_MESSAGE_ARG_V_FLOAT,
42 SAMPLER_MESSAGE_ARG_U_INT,
43 SAMPLER_MESSAGE_ARG_V_INT,
44 SAMPLER_MESSAGE_ARG_R_INT,
45 SAMPLER_MESSAGE_ARG_SI_INT,
46 SAMPLER_MESSAGE_ARG_MCS_INT,
47 SAMPLER_MESSAGE_ARG_ZERO_INT,
48 };
49
50 struct brw_blorp_blit_vars {
51 /* Input values from brw_blorp_wm_inputs */
52 nir_variable *v_discard_rect;
53 nir_variable *v_rect_grid;
54 nir_variable *v_coord_transform;
55 nir_variable *v_src_z;
56 nir_variable *v_src_offset;
57 nir_variable *v_dst_offset;
58
59 /* gl_FragCoord */
60 nir_variable *frag_coord;
61
62 /* gl_FragColor */
63 nir_variable *color_out;
64 };
65
66 static void
67 brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
68 const struct brw_blorp_blit_prog_key *key)
69 {
70 /* Blended and scaled blits never use pixel discard. */
71 assert(!key->use_kill || !(key->blend && key->blit_scaled));
72
73 #define LOAD_INPUT(name, type)\
74 v->v_##name = BLORP_CREATE_NIR_INPUT(b->shader, name, type);
75
76 LOAD_INPUT(discard_rect, glsl_vec4_type())
77 LOAD_INPUT(rect_grid, glsl_vec4_type())
78 LOAD_INPUT(coord_transform, glsl_vec4_type())
79 LOAD_INPUT(src_z, glsl_uint_type())
80 LOAD_INPUT(src_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
81 LOAD_INPUT(dst_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
82
83 #undef LOAD_INPUT
84
85 v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
86 glsl_vec4_type(), "gl_FragCoord");
87 v->frag_coord->data.location = VARYING_SLOT_POS;
88 v->frag_coord->data.origin_upper_left = true;
89
90 v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
91 glsl_vec4_type(), "gl_FragColor");
92 v->color_out->data.location = FRAG_RESULT_COLOR;
93 }
94
95 static nir_ssa_def *
96 blorp_blit_get_frag_coords(nir_builder *b,
97 const struct brw_blorp_blit_prog_key *key,
98 struct brw_blorp_blit_vars *v)
99 {
100 nir_ssa_def *coord = nir_f2i32(b, nir_load_var(b, v->frag_coord));
101
102 /* Account for destination surface intratile offset
103 *
104 * Transformation parameters giving translation from destination to source
105 * coordinates don't take into account possible intra-tile destination
106 * offset. Therefore it has to be first subtracted from the incoming
107 * coordinates. Vertices are set up based on coordinates containing the
108 * intra-tile offset.
109 */
110 if (key->need_dst_offset)
111 coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset));
112
113 if (key->persample_msaa_dispatch) {
114 return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
115 nir_load_sample_id(b));
116 } else {
117 return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
118 }
119 }
120
121 /**
122 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
123 * coordinates.
124 */
125 static nir_ssa_def *
126 blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
127 struct brw_blorp_blit_vars *v)
128 {
129 nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
130
131 nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
132 nir_channel(b, coord_transform, 3));
133 nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
134 nir_channel(b, coord_transform, 2));
135
136 return nir_ffma(b, src_pos, mul, offset);
137 }
138
139 static inline void
140 blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
141 struct brw_blorp_blit_vars *v)
142 {
143 nir_ssa_def *c0, *c1, *c2, *c3;
144 nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
145 nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
146 nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
147 nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
148 nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
149
150 c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
151 c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
152 c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
153 c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
154
155 nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
156
157 nir_intrinsic_instr *discard =
158 nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
159 discard->src[0] = nir_src_for_ssa(oob);
160 nir_builder_instr_insert(b, &discard->instr);
161 }
162
163 static nir_tex_instr *
164 blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
165 nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
166 nir_alu_type dst_type)
167 {
168 nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
169
170 tex->op = op;
171
172 tex->dest_type = dst_type;
173 tex->is_array = false;
174 tex->is_shadow = false;
175
176 /* Blorp only has one texture and it's bound at unit 0 */
177 tex->texture = NULL;
178 tex->sampler = NULL;
179 tex->texture_index = 0;
180 tex->sampler_index = 0;
181
182 /* To properly handle 3-D and 2-D array textures, we pull the Z component
183 * from an input. TODO: This is a bit magic; we should probably make this
184 * more explicit in the future.
185 */
186 assert(pos->num_components >= 2);
187 pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
188 nir_load_var(b, v->v_src_z));
189
190 tex->src[0].src_type = nir_tex_src_coord;
191 tex->src[0].src = nir_src_for_ssa(pos);
192 tex->coord_components = 3;
193
194 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
195
196 return tex;
197 }
198
199 static nir_ssa_def *
200 blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
201 nir_ssa_def *pos, nir_alu_type dst_type)
202 {
203 nir_tex_instr *tex =
204 blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, dst_type);
205
206 assert(pos->num_components == 2);
207 tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
208 tex->src[1].src_type = nir_tex_src_lod;
209 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
210
211 nir_builder_instr_insert(b, &tex->instr);
212
213 return &tex->dest.ssa;
214 }
215
216 static nir_ssa_def *
217 blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
218 nir_ssa_def *pos, nir_alu_type dst_type)
219 {
220 nir_tex_instr *tex =
221 blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
222
223 tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
224 tex->src[1].src_type = nir_tex_src_lod;
225 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
226
227 nir_builder_instr_insert(b, &tex->instr);
228
229 return &tex->dest.ssa;
230 }
231
232 static nir_ssa_def *
233 blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
234 nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
235 {
236 nir_tex_instr *tex =
237 blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
238 mcs != NULL ? 3 : 2, dst_type);
239
240 tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
241
242 tex->src[1].src_type = nir_tex_src_ms_index;
243 if (pos->num_components == 2) {
244 tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
245 } else {
246 assert(pos->num_components == 3);
247 tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
248 }
249
250 if (mcs) {
251 tex->src[2].src_type = nir_tex_src_ms_mcs;
252 tex->src[2].src = nir_src_for_ssa(mcs);
253 }
254
255 nir_builder_instr_insert(b, &tex->instr);
256
257 return &tex->dest.ssa;
258 }
259
260 static nir_ssa_def *
261 blorp_nir_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, nir_ssa_def *pos)
262 {
263 nir_tex_instr *tex =
264 blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
265 pos, 1, nir_type_int);
266
267 tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
268
269 nir_builder_instr_insert(b, &tex->instr);
270
271 return &tex->dest.ssa;
272 }
273
274 static nir_ssa_def *
275 nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
276 uint32_t src_mask, int src_left_shift)
277 {
278 nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
279
280 nir_ssa_def *shifted;
281 if (src_left_shift > 0) {
282 shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
283 } else if (src_left_shift < 0) {
284 shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
285 } else {
286 assert(src_left_shift == 0);
287 shifted = masked;
288 }
289
290 return nir_ior(b, dst, shifted);
291 }
292
293 /**
294 * Emit code to compensate for the difference between Y and W tiling.
295 *
296 * This code modifies the X and Y coordinates according to the formula:
297 *
298 * (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
299 *
300 * (See brw_blorp_build_nir_shader).
301 */
302 static inline nir_ssa_def *
303 blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
304 {
305 assert(pos->num_components == 2);
306 nir_ssa_def *x_Y = nir_channel(b, pos, 0);
307 nir_ssa_def *y_Y = nir_channel(b, pos, 1);
308
309 /* Given X and Y coordinates that describe an address using Y tiling,
310 * translate to the X and Y coordinates that describe the same address
311 * using W tiling.
312 *
313 * If we break down the low order bits of X and Y, using a
314 * single letter to represent each low-order bit:
315 *
316 * X = A << 7 | 0bBCDEFGH
317 * Y = J << 5 | 0bKLMNP (1)
318 *
319 * Then we can apply the Y tiling formula to see the memory offset being
320 * addressed:
321 *
322 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
323 *
324 * If we apply the W detiling formula to this memory location, that the
325 * corresponding X' and Y' coordinates are:
326 *
327 * X' = A << 6 | 0bBCDPFH (3)
328 * Y' = J << 6 | 0bKLMNEG
329 *
330 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
331 * we need to make the following computation:
332 *
333 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
334 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
335 */
336 nir_ssa_def *x_W = nir_imm_int(b, 0);
337 x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
338 x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
339 x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
340
341 nir_ssa_def *y_W = nir_imm_int(b, 0);
342 y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
343 y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
344 y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
345
346 return nir_vec2(b, x_W, y_W);
347 }
348
349 /**
350 * Emit code to compensate for the difference between Y and W tiling.
351 *
352 * This code modifies the X and Y coordinates according to the formula:
353 *
354 * (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
355 *
356 * (See brw_blorp_build_nir_shader).
357 */
358 static inline nir_ssa_def *
359 blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
360 {
361 assert(pos->num_components == 2);
362 nir_ssa_def *x_W = nir_channel(b, pos, 0);
363 nir_ssa_def *y_W = nir_channel(b, pos, 1);
364
365 /* Applying the same logic as above, but in reverse, we obtain the
366 * formulas:
367 *
368 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
369 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
370 */
371 nir_ssa_def *x_Y = nir_imm_int(b, 0);
372 x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
373 x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
374 x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
375 x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
376
377 nir_ssa_def *y_Y = nir_imm_int(b, 0);
378 y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
379 y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
380
381 return nir_vec2(b, x_Y, y_Y);
382 }
383
384 /**
385 * Emit code to compensate for the difference between MSAA and non-MSAA
386 * surfaces.
387 *
388 * This code modifies the X and Y coordinates according to the formula:
389 *
390 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
391 *
392 * (See brw_blorp_blit_program).
393 */
394 static inline nir_ssa_def *
395 blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
396 unsigned num_samples, enum isl_msaa_layout layout)
397 {
398 assert(pos->num_components == 2 || pos->num_components == 3);
399
400 switch (layout) {
401 case ISL_MSAA_LAYOUT_NONE:
402 assert(pos->num_components == 2);
403 return pos;
404 case ISL_MSAA_LAYOUT_ARRAY:
405 /* No translation needed */
406 return pos;
407 case ISL_MSAA_LAYOUT_INTERLEAVED: {
408 nir_ssa_def *x_in = nir_channel(b, pos, 0);
409 nir_ssa_def *y_in = nir_channel(b, pos, 1);
410 nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
411 nir_channel(b, pos, 2);
412
413 nir_ssa_def *x_out = nir_imm_int(b, 0);
414 nir_ssa_def *y_out = nir_imm_int(b, 0);
415 switch (num_samples) {
416 case 2:
417 case 4:
418 /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
419 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
420 * Y' = Y
421 *
422 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
423 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
424 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
425 */
426 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
427 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
428 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
429 if (num_samples == 2) {
430 y_out = y_in;
431 } else {
432 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
433 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
434 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
435 }
436 break;
437
438 case 8:
439 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
440 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
441 * | (X & 0b1)
442 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
443 */
444 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
445 x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
446 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
447 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
448 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
449 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
450 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
451 break;
452
453 case 16:
454 /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
455 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
456 * | (X & 0b1)
457 * Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
458 * | (Y & 0b1)
459 */
460 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
461 x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
462 x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
463 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
464 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
465 y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
466 y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
467 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
468 break;
469
470 default:
471 unreachable("Invalid number of samples for IMS layout");
472 }
473
474 return nir_vec2(b, x_out, y_out);
475 }
476
477 default:
478 unreachable("Invalid MSAA layout");
479 }
480 }
481
482 /**
483 * Emit code to compensate for the difference between MSAA and non-MSAA
484 * surfaces.
485 *
486 * This code modifies the X and Y coordinates according to the formula:
487 *
488 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
489 *
490 * (See brw_blorp_blit_program).
491 */
492 static inline nir_ssa_def *
493 blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
494 unsigned num_samples, enum isl_msaa_layout layout)
495 {
496 assert(pos->num_components == 2 || pos->num_components == 3);
497
498 switch (layout) {
499 case ISL_MSAA_LAYOUT_NONE:
500 /* No translation necessary, and S should already be zero. */
501 assert(pos->num_components == 2);
502 return pos;
503 case ISL_MSAA_LAYOUT_ARRAY:
504 /* No translation necessary. */
505 return pos;
506 case ISL_MSAA_LAYOUT_INTERLEAVED: {
507 assert(pos->num_components == 2);
508
509 nir_ssa_def *x_in = nir_channel(b, pos, 0);
510 nir_ssa_def *y_in = nir_channel(b, pos, 1);
511
512 nir_ssa_def *x_out = nir_imm_int(b, 0);
513 nir_ssa_def *y_out = nir_imm_int(b, 0);
514 nir_ssa_def *s_out = nir_imm_int(b, 0);
515 switch (num_samples) {
516 case 2:
517 case 4:
518 /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
519 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
520 * S = (X & 0b10) >> 1
521 *
522 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
523 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
524 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
525 * S = (Y & 0b10) | (X & 0b10) >> 1
526 */
527 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
528 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
529 if (num_samples == 2) {
530 y_out = y_in;
531 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
532 } else {
533 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
534 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
535 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
536 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
537 }
538 break;
539
540 case 8:
541 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
542 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
543 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
544 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
545 */
546 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
547 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
548 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
549 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
550 s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
551 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
552 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
553 break;
554
555 case 16:
556 /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
557 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
558 * Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
559 * S = (Y & 0b100) << 1 | (X & 0b100) |
560 * (Y & 0b10) | (X & 0b10) >> 1
561 */
562 x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
563 x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
564 y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
565 y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
566 s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
567 s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
568 s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
569 s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
570 break;
571
572 default:
573 unreachable("Invalid number of samples for IMS layout");
574 }
575
576 return nir_vec3(b, x_out, y_out, s_out);
577 }
578
579 default:
580 unreachable("Invalid MSAA layout");
581 }
582 }
583
584 /**
585 * Count the number of trailing 1 bits in the given value. For example:
586 *
587 * count_trailing_one_bits(0) == 0
588 * count_trailing_one_bits(7) == 3
589 * count_trailing_one_bits(11) == 2
590 */
591 static inline int count_trailing_one_bits(unsigned value)
592 {
593 #ifdef HAVE___BUILTIN_CTZ
594 return __builtin_ctz(~value);
595 #else
596 return _mesa_bitcount(value & ~(value + 1));
597 #endif
598 }
599
600 static nir_ssa_def *
601 blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
602 nir_ssa_def *pos, unsigned tex_samples,
603 enum isl_aux_usage tex_aux_usage,
604 nir_alu_type dst_type)
605 {
606 /* If non-null, this is the outer-most if statement */
607 nir_if *outer_if = NULL;
608
609 nir_variable *color =
610 nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
611
612 nir_ssa_def *mcs = NULL;
613 if (tex_aux_usage == ISL_AUX_USAGE_MCS)
614 mcs = blorp_nir_txf_ms_mcs(b, v, pos);
615
616 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
617 *
618 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
619 *
620 * This ensures that when all samples have the same value, no numerical
621 * precision is lost, since each addition operation always adds two equal
622 * values, and summing two equal floating point values does not lose
623 * precision.
624 *
625 * We perform this computation by treating the texture_data array as a
626 * stack and performing the following operations:
627 *
628 * - push sample 0 onto stack
629 * - push sample 1 onto stack
630 * - add top two stack entries
631 * - push sample 2 onto stack
632 * - push sample 3 onto stack
633 * - add top two stack entries
634 * - add top two stack entries
635 * - divide top stack entry by 4
636 *
637 * Note that after pushing sample i onto the stack, the number of add
638 * operations we do is equal to the number of trailing 1 bits in i. This
639 * works provided the total number of samples is a power of two, which it
640 * always is for i965.
641 *
642 * For integer formats, we replace the add operations with average
643 * operations and skip the final division.
644 */
645 nir_ssa_def *texture_data[5];
646 unsigned stack_depth = 0;
647 for (unsigned i = 0; i < tex_samples; ++i) {
648 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
649
650 /* Push sample i onto the stack */
651 assert(stack_depth < ARRAY_SIZE(texture_data));
652
653 nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
654 nir_channel(b, pos, 1),
655 nir_imm_int(b, i));
656 texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
657
658 if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
659 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
660 * suggests an optimization:
661 *
662 * "A simple optimization with probable large return in
663 * performance is to compare the MCS value to zero (indicating
664 * all samples are on sample slice 0), and sample only from
665 * sample slice 0 using ld2dss if MCS is zero."
666 *
667 * Note that in the case where the MCS value is zero, sampling from
668 * sample slice 0 using ld2dss and sampling from sample 0 using
669 * ld2dms are equivalent (since all samples are on sample slice 0).
670 * Since we have already sampled from sample 0, all we need to do is
671 * skip the remaining fetches and averaging if MCS is zero.
672 */
673 nir_ssa_def *mcs_zero =
674 nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
675 if (tex_samples == 16) {
676 mcs_zero = nir_iand(b, mcs_zero,
677 nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
678 }
679
680 nir_if *if_stmt = nir_if_create(b->shader);
681 if_stmt->condition = nir_src_for_ssa(mcs_zero);
682 nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
683
684 b->cursor = nir_after_cf_list(&if_stmt->then_list);
685 nir_store_var(b, color, texture_data[0], 0xf);
686
687 b->cursor = nir_after_cf_list(&if_stmt->else_list);
688 outer_if = if_stmt;
689 }
690
691 for (int j = 0; j < count_trailing_one_bits(i); j++) {
692 assert(stack_depth >= 2);
693 --stack_depth;
694
695 assert(dst_type == nir_type_float);
696 texture_data[stack_depth - 1] =
697 nir_fadd(b, texture_data[stack_depth - 1],
698 texture_data[stack_depth]);
699 }
700 }
701
702 /* We should have just 1 sample on the stack now. */
703 assert(stack_depth == 1);
704
705 texture_data[0] = nir_fmul(b, texture_data[0],
706 nir_imm_float(b, 1.0 / tex_samples));
707
708 nir_store_var(b, color, texture_data[0], 0xf);
709
710 if (outer_if)
711 b->cursor = nir_after_cf_node(&outer_if->cf_node);
712
713 return nir_load_var(b, color);
714 }
715
716 static inline nir_ssa_def *
717 nir_imm_vec2(nir_builder *build, float x, float y)
718 {
719 nir_const_value v;
720
721 memset(&v, 0, sizeof(v));
722 v.f32[0] = x;
723 v.f32[1] = y;
724
725 return nir_build_imm(build, 4, 32, v);
726 }
727
728 static nir_ssa_def *
729 blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
730 unsigned tex_samples,
731 const struct brw_blorp_blit_prog_key *key,
732 struct brw_blorp_blit_vars *v)
733 {
734 nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
735 nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
736 nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
737
738 /* Translate coordinates to lay out the samples in a rectangular grid
739 * roughly corresponding to sample locations.
740 */
741 pos_xy = nir_fmul(b, pos_xy, scale);
742 /* Adjust coordinates so that integers represent pixel centers rather
743 * than pixel edges.
744 */
745 pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
746 /* Clamp the X, Y texture coordinates to properly handle the sampling of
747 * texels on texture edges.
748 */
749 pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
750 nir_vec2(b, nir_channel(b, rect_grid, 0),
751 nir_channel(b, rect_grid, 1)));
752
753 /* Store the fractional parts to be used as bilinear interpolation
754 * coefficients.
755 */
756 nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
757 /* Round the float coordinates down to nearest integer */
758 pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
759
760 nir_ssa_def *tex_data[4];
761 for (unsigned i = 0; i < 4; ++i) {
762 float sample_off_x = (float)(i & 0x1) / key->x_scale;
763 float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
764 nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
765
766 nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
767 nir_ssa_def *sample_coords_int = nir_f2i32(b, sample_coords);
768
769 /* The MCS value we fetch has to match up with the pixel that we're
770 * sampling from. Since we sample from different pixels in each
771 * iteration of this "for" loop, the call to mcs_fetch() should be
772 * here inside the loop after computing the pixel coordinates.
773 */
774 nir_ssa_def *mcs = NULL;
775 if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
776 mcs = blorp_nir_txf_ms_mcs(b, v, sample_coords_int);
777
778 /* Compute sample index and map the sample index to a sample number.
779 * Sample index layout shows the numbering of slots in a rectangular
780 * grid of samples with in a pixel. Sample number layout shows the
781 * rectangular grid of samples roughly corresponding to the real sample
782 * locations with in a pixel.
783 * In case of 4x MSAA, layout of sample indices matches the layout of
784 * sample numbers:
785 * ---------
786 * | 0 | 1 |
787 * ---------
788 * | 2 | 3 |
789 * ---------
790 *
791 * In case of 8x MSAA the two layouts don't match.
792 * sample index layout : --------- sample number layout : ---------
793 * | 0 | 1 | | 3 | 7 |
794 * --------- ---------
795 * | 2 | 3 | | 5 | 0 |
796 * --------- ---------
797 * | 4 | 5 | | 1 | 2 |
798 * --------- ---------
799 * | 6 | 7 | | 4 | 6 |
800 * --------- ---------
801 *
802 * Fortunately, this can be done fairly easily as:
803 * S' = (0x17306425 >> (S * 4)) & 0xf
804 *
805 * In the case of 16x MSAA the two layouts don't match.
806 * Sample index layout: Sample number layout:
807 * --------------------- ---------------------
808 * | 0 | 1 | 2 | 3 | | 15 | 10 | 9 | 7 |
809 * --------------------- ---------------------
810 * | 4 | 5 | 6 | 7 | | 4 | 1 | 3 | 13 |
811 * --------------------- ---------------------
812 * | 8 | 9 | 10 | 11 | | 12 | 2 | 0 | 6 |
813 * --------------------- ---------------------
814 * | 12 | 13 | 14 | 15 | | 11 | 8 | 5 | 14 |
815 * --------------------- ---------------------
816 *
817 * This is equivalent to
818 * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
819 */
820 nir_ssa_def *frac = nir_ffract(b, sample_coords);
821 nir_ssa_def *sample =
822 nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
823 key->x_scale * key->y_scale));
824 sample = nir_f2i32(b, sample);
825
826 if (tex_samples == 8) {
827 sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
828 nir_ishl(b, sample, nir_imm_int(b, 2))),
829 nir_imm_int(b, 0xf));
830 } else if (tex_samples == 16) {
831 nir_ssa_def *sample_low =
832 nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
833 nir_ishl(b, sample, nir_imm_int(b, 2))),
834 nir_imm_int(b, 0xf));
835 nir_ssa_def *sample_high =
836 nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
837 nir_ishl(b, nir_iadd(b, sample,
838 nir_imm_int(b, -8)),
839 nir_imm_int(b, 2))),
840 nir_imm_int(b, 0xf));
841
842 sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
843 sample_low, sample_high);
844 }
845 nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
846 nir_channel(b, sample_coords_int, 1),
847 sample);
848 tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
849 }
850
851 nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
852 nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
853 return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
854 nir_flrp(b, tex_data[2], tex_data[3], frac_x),
855 frac_y);
856 }
857
858 /** Perform a color bit-cast operation
859 *
860 * For copy operations involving CCS, we may need to use different formats for
861 * the source and destination surfaces. The two formats must both be UINT
862 * formats and must have the same size but may have different bit layouts.
863 * For instance, we may be copying from R8G8B8A8_UINT to R32_UINT or R32_UINT
864 * to R16G16_UINT. This function generates code to shuffle bits around to get
865 * us from one to the other.
866 */
867 static nir_ssa_def *
868 bit_cast_color(struct nir_builder *b, nir_ssa_def *color,
869 const struct brw_blorp_blit_prog_key *key)
870 {
871 assert(key->texture_data_type == nir_type_uint);
872
873 if (key->dst_bpc > key->src_bpc) {
874 nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
875 nir_ssa_def *dst_chan[2] = { u, u };
876 unsigned shift = 0;
877 unsigned dst_idx = 0;
878 for (unsigned i = 0; i < 4; i++) {
879 nir_ssa_def *shifted = nir_ishl(b, nir_channel(b, color, i),
880 nir_imm_int(b, shift));
881 if (shift == 0) {
882 dst_chan[dst_idx] = shifted;
883 } else {
884 dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted);
885 }
886
887 shift += key->src_bpc;
888 if (shift >= key->dst_bpc) {
889 dst_idx++;
890 shift = 0;
891 }
892 }
893
894 return nir_vec4(b, dst_chan[0], dst_chan[1], u, u);
895 } else {
896 assert(key->dst_bpc < key->src_bpc);
897
898 nir_ssa_def *mask = nir_imm_int(b, ~0u >> (32 - key->dst_bpc));
899
900 nir_ssa_def *dst_chan[4];
901 unsigned src_idx = 0;
902 unsigned shift = 0;
903 for (unsigned i = 0; i < 4; i++) {
904 dst_chan[i] = nir_iand(b, nir_ushr(b, nir_channel(b, color, src_idx),
905 nir_imm_int(b, shift)),
906 mask);
907 shift += key->dst_bpc;
908 if (shift >= key->src_bpc) {
909 src_idx++;
910 shift = 0;
911 }
912 }
913
914 return nir_vec4(b, dst_chan[0], dst_chan[1], dst_chan[2], dst_chan[3]);
915 }
916 }
917
918 /**
919 * Generator for WM programs used in BLORP blits.
920 *
921 * The bulk of the work done by the WM program is to wrap and unwrap the
922 * coordinate transformations used by the hardware to store surfaces in
923 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
924 * sample index for a multisampled surface) to a memory offset by the
925 * following formulas:
926 *
927 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
928 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
929 *
930 * For a single-sampled surface, or for a multisampled surface using
931 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
932 * function:
933 *
934 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
935 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
936 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
937 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
938 *
939 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
940 * embeds the sample number into bit 1 of the X and Y coordinates:
941 *
942 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
943 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
944 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
945 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
946 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
947 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
948 * S = (Y & 0b10) | (X & 0b10) >> 1
949 *
950 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
951 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
952 * the Y coordinate:
953 *
954 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
955 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
956 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
957 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
958 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
959 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
960 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
961 *
962 * For X tiling, tile() combines together the low-order bits of the X and Y
963 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
964 * bytes wide and 8 rows high:
965 *
966 * tile(x_tiled, X, Y, S) = A
967 * where A = tile_num << 12 | offset
968 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
969 * offset = (Y' & 0b111) << 9
970 * | (X & 0b111111111)
971 * X' = X * cpp
972 * Y' = Y + S * qpitch
973 * detile(x_tiled, A) = (X, Y, S)
974 * where X = X' / cpp
975 * Y = Y' % qpitch
976 * S = Y' / qpitch
977 * Y' = (tile_num / tile_pitch) << 3
978 * | (A & 0b111000000000) >> 9
979 * X' = (tile_num % tile_pitch) << 9
980 * | (A & 0b111111111)
981 *
982 * (In all tiling formulas, cpp is the number of bytes occupied by a single
983 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
984 * to fill the width of the surface, and qpitch is the spacing (in rows)
985 * between array slices).
986 *
987 * For Y tiling, tile() combines together the low-order bits of the X and Y
988 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
989 * bytes wide and 32 rows high:
990 *
991 * tile(y_tiled, X, Y, S) = A
992 * where A = tile_num << 12 | offset
993 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
994 * offset = (X' & 0b1110000) << 5
995 * | (Y' & 0b11111) << 4
996 * | (X' & 0b1111)
997 * X' = X * cpp
998 * Y' = Y + S * qpitch
999 * detile(y_tiled, A) = (X, Y, S)
1000 * where X = X' / cpp
1001 * Y = Y' % qpitch
1002 * S = Y' / qpitch
1003 * Y' = (tile_num / tile_pitch) << 5
1004 * | (A & 0b111110000) >> 4
1005 * X' = (tile_num % tile_pitch) << 7
1006 * | (A & 0b111000000000) >> 5
1007 * | (A & 0b1111)
1008 *
1009 * For W tiling, tile() combines together the low-order bits of the X and Y
1010 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
1011 * bytes wide and 64 rows high (note that W tiling is only used for stencil
1012 * buffers, which always have cpp = 1 and S=0):
1013 *
1014 * tile(w_tiled, X, Y, S) = A
1015 * where A = tile_num << 12 | offset
1016 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
1017 * offset = (X' & 0b111000) << 6
1018 * | (Y' & 0b111100) << 3
1019 * | (X' & 0b100) << 2
1020 * | (Y' & 0b10) << 2
1021 * | (X' & 0b10) << 1
1022 * | (Y' & 0b1) << 1
1023 * | (X' & 0b1)
1024 * X' = X * cpp = X
1025 * Y' = Y + S * qpitch
1026 * detile(w_tiled, A) = (X, Y, S)
1027 * where X = X' / cpp = X'
1028 * Y = Y' % qpitch = Y'
1029 * S = Y / qpitch = 0
1030 * Y' = (tile_num / tile_pitch) << 6
1031 * | (A & 0b111100000) >> 3
1032 * | (A & 0b1000) >> 2
1033 * | (A & 0b10) >> 1
1034 * X' = (tile_num % tile_pitch) << 6
1035 * | (A & 0b111000000000) >> 6
1036 * | (A & 0b10000) >> 2
1037 * | (A & 0b100) >> 1
1038 * | (A & 0b1)
1039 *
1040 * Finally, for a non-tiled surface, tile() simply combines together the X and
1041 * Y coordinates in the natural way:
1042 *
1043 * tile(untiled, X, Y, S) = A
1044 * where A = Y * pitch + X'
1045 * X' = X * cpp
1046 * Y' = Y + S * qpitch
1047 * detile(untiled, A) = (X, Y, S)
1048 * where X = X' / cpp
1049 * Y = Y' % qpitch
1050 * S = Y' / qpitch
1051 * X' = A % pitch
1052 * Y' = A / pitch
1053 *
1054 * (In these formulas, pitch is the number of bytes occupied by a single row
1055 * of samples).
1056 */
1057 static nir_shader *
1058 brw_blorp_build_nir_shader(struct blorp_context *blorp, void *mem_ctx,
1059 const struct brw_blorp_blit_prog_key *key)
1060 {
1061 const struct gen_device_info *devinfo = blorp->isl_dev->info;
1062 nir_ssa_def *src_pos, *dst_pos, *color;
1063
1064 /* Sanity checks */
1065 if (key->dst_tiled_w && key->rt_samples > 1) {
1066 /* If the destination image is W tiled and multisampled, then the thread
1067 * must be dispatched once per sample, not once per pixel. This is
1068 * necessary because after conversion between W and Y tiling, there's no
1069 * guarantee that all samples corresponding to a single pixel will still
1070 * be together.
1071 */
1072 assert(key->persample_msaa_dispatch);
1073 }
1074
1075 if (key->blend) {
1076 /* We are blending, which means we won't have an opportunity to
1077 * translate the tiling and sample count for the texture surface. So
1078 * the surface state for the texture must be configured with the correct
1079 * tiling and sample count.
1080 */
1081 assert(!key->src_tiled_w);
1082 assert(key->tex_samples == key->src_samples);
1083 assert(key->tex_layout == key->src_layout);
1084 assert(key->tex_samples > 0);
1085 }
1086
1087 if (key->persample_msaa_dispatch) {
1088 /* It only makes sense to do persample dispatch if the render target is
1089 * configured as multisampled.
1090 */
1091 assert(key->rt_samples > 0);
1092 }
1093
1094 /* Make sure layout is consistent with sample count */
1095 assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
1096 (key->tex_samples <= 1));
1097 assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
1098 (key->rt_samples <= 1));
1099 assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
1100 (key->src_samples <= 1));
1101 assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
1102 (key->dst_samples <= 1));
1103
1104 nir_builder b;
1105 nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
1106
1107 struct brw_blorp_blit_vars v;
1108 brw_blorp_blit_vars_init(&b, &v, key);
1109
1110 dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
1111
1112 /* Render target and texture hardware don't support W tiling until Gen8. */
1113 const bool rt_tiled_w = false;
1114 const bool tex_tiled_w = devinfo->gen >= 8 && key->src_tiled_w;
1115
1116 /* The address that data will be written to is determined by the
1117 * coordinates supplied to the WM thread and the tiling and sample count of
1118 * the render target, according to the formula:
1119 *
1120 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
1121 *
1122 * If the actual tiling and sample count of the destination surface are not
1123 * the same as the configuration of the render target, then these
1124 * coordinates are wrong and we have to adjust them to compensate for the
1125 * difference.
1126 */
1127 if (rt_tiled_w != key->dst_tiled_w ||
1128 key->rt_samples != key->dst_samples ||
1129 key->rt_layout != key->dst_layout) {
1130 dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
1131 key->rt_layout);
1132 /* Now (X, Y, S) = detile(rt_tiling, offset) */
1133 if (rt_tiled_w != key->dst_tiled_w)
1134 dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
1135 /* Now (X, Y, S) = detile(rt_tiling, offset) */
1136 dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
1137 key->dst_layout);
1138 }
1139
1140 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
1141 *
1142 * That is: X, Y and S now contain the true coordinates and sample index of
1143 * the data that the WM thread should output.
1144 *
1145 * If we need to kill pixels that are outside the destination rectangle,
1146 * now is the time to do it.
1147 */
1148 if (key->use_kill) {
1149 assert(!(key->blend && key->blit_scaled));
1150 blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
1151 }
1152
1153 src_pos = blorp_blit_apply_transform(&b, nir_i2f32(&b, dst_pos), &v);
1154 if (dst_pos->num_components == 3) {
1155 /* The sample coordinate is an integer that we want left alone but
1156 * blorp_blit_apply_transform() blindly applies the transform to all
1157 * three coordinates. Grab the original sample index.
1158 */
1159 src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
1160 nir_channel(&b, src_pos, 1),
1161 nir_channel(&b, dst_pos, 2));
1162 }
1163
1164 /* If the source image is not multisampled, then we want to fetch sample
1165 * number 0, because that's the only sample there is.
1166 */
1167 if (key->src_samples == 1)
1168 src_pos = nir_channels(&b, src_pos, 0x3);
1169
1170 /* X, Y, and S are now the coordinates of the pixel in the source image
1171 * that we want to texture from. Exception: if we are blending, then S is
1172 * irrelevant, because we are going to fetch all samples.
1173 */
1174 if (key->blend && !key->blit_scaled) {
1175 /* Resolves (effecively) use texelFetch, so we need integers and we
1176 * don't care about the sample index if we got one.
1177 */
1178 src_pos = nir_f2i32(&b, nir_channels(&b, src_pos, 0x3));
1179
1180 if (devinfo->gen == 6) {
1181 /* Because gen6 only supports 4x interleved MSAA, we can do all the
1182 * blending we need with a single linear-interpolated texture lookup
1183 * at the center of the sample. The texture coordinates to be odd
1184 * integers so that they correspond to the center of a 2x2 block
1185 * representing the four samples that maxe up a pixel. So we need
1186 * to multiply our X and Y coordinates each by 2 and then add 1.
1187 */
1188 src_pos = nir_ishl(&b, src_pos, nir_imm_int(&b, 1));
1189 src_pos = nir_iadd(&b, src_pos, nir_imm_int(&b, 1));
1190 src_pos = nir_i2f32(&b, src_pos);
1191 color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
1192 } else {
1193 /* Gen7+ hardware doesn't automaticaly blend. */
1194 color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
1195 key->tex_aux_usage,
1196 key->texture_data_type);
1197 }
1198 } else if (key->blend && key->blit_scaled) {
1199 assert(!key->use_kill);
1200 color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
1201 } else {
1202 if (key->bilinear_filter) {
1203 color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
1204 } else {
1205 /* We're going to use texelFetch, so we need integers */
1206 if (src_pos->num_components == 2) {
1207 src_pos = nir_f2i32(&b, src_pos);
1208 } else {
1209 assert(src_pos->num_components == 3);
1210 src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i32(&b, src_pos), 0),
1211 nir_channel(&b, nir_f2i32(&b, src_pos), 1),
1212 nir_channel(&b, src_pos, 2));
1213 }
1214
1215 /* We aren't blending, which means we just want to fetch a single
1216 * sample from the source surface. The address that we want to fetch
1217 * from is related to the X, Y and S values according to the formula:
1218 *
1219 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
1220 *
1221 * If the actual tiling and sample count of the source surface are
1222 * not the same as the configuration of the texture, then we need to
1223 * adjust the coordinates to compensate for the difference.
1224 */
1225 if (tex_tiled_w != key->src_tiled_w ||
1226 key->tex_samples != key->src_samples ||
1227 key->tex_layout != key->src_layout) {
1228 src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
1229 key->src_layout);
1230 /* Now (X, Y, S) = detile(src_tiling, offset) */
1231 if (tex_tiled_w != key->src_tiled_w)
1232 src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
1233 /* Now (X, Y, S) = detile(tex_tiling, offset) */
1234 src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
1235 key->tex_layout);
1236 }
1237
1238 if (key->need_src_offset)
1239 src_pos = nir_iadd(&b, src_pos, nir_load_var(&b, v.v_src_offset));
1240
1241 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
1242 *
1243 * In other words: X, Y, and S now contain values which, when passed to
1244 * the texturing unit, will cause data to be read from the correct
1245 * memory location. So we can fetch the texel now.
1246 */
1247 if (key->src_samples == 1) {
1248 color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
1249 } else {
1250 nir_ssa_def *mcs = NULL;
1251 if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
1252 mcs = blorp_nir_txf_ms_mcs(&b, &v, src_pos);
1253
1254 color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
1255 }
1256 }
1257 }
1258
1259 if (key->dst_bpc != key->src_bpc)
1260 color = bit_cast_color(&b, color, key);
1261
1262 if (key->dst_rgb) {
1263 /* The destination image is bound as a red texture three times as wide
1264 * as the actual image. Our shader is effectively running one color
1265 * component at a time. We need to pick off the appropriate component
1266 * from the source color and write that to destination red.
1267 */
1268 assert(dst_pos->num_components == 2);
1269 nir_ssa_def *comp =
1270 nir_umod(&b, nir_channel(&b, dst_pos, 0), nir_imm_int(&b, 3));
1271
1272 nir_ssa_def *color_component =
1273 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
1274 nir_channel(&b, color, 0),
1275 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
1276 nir_channel(&b, color, 1),
1277 nir_channel(&b, color, 2)));
1278
1279 nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
1280 color = nir_vec4(&b, color_component, u, u, u);
1281 }
1282
1283 nir_store_var(&b, v.color_out, color, 0xf);
1284
1285 return b.shader;
1286 }
1287
1288 static bool
1289 brw_blorp_get_blit_kernel(struct blorp_context *blorp,
1290 struct blorp_params *params,
1291 const struct brw_blorp_blit_prog_key *prog_key)
1292 {
1293 if (blorp->lookup_shader(blorp, prog_key, sizeof(*prog_key),
1294 &params->wm_prog_kernel, &params->wm_prog_data))
1295 return true;
1296
1297 void *mem_ctx = ralloc_context(NULL);
1298
1299 const unsigned *program;
1300 unsigned program_size;
1301 struct brw_wm_prog_data prog_data;
1302
1303 nir_shader *nir = brw_blorp_build_nir_shader(blorp, mem_ctx, prog_key);
1304 nir->info->name = ralloc_strdup(nir, "BLORP-blit");
1305
1306 struct brw_wm_prog_key wm_key;
1307 brw_blorp_init_wm_prog_key(&wm_key);
1308 wm_key.tex.compressed_multisample_layout_mask =
1309 prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
1310 wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
1311 wm_key.multisample_fbo = prog_key->rt_samples > 1;
1312
1313 program = blorp_compile_fs(blorp, mem_ctx, nir, &wm_key, false,
1314 &prog_data, &program_size);
1315
1316 bool result =
1317 blorp->upload_shader(blorp, prog_key, sizeof(*prog_key),
1318 program, program_size,
1319 &prog_data.base, sizeof(prog_data),
1320 &params->wm_prog_kernel, &params->wm_prog_data);
1321
1322 ralloc_free(mem_ctx);
1323 return result;
1324 }
1325
1326 static void
1327 brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
1328 GLfloat src0, GLfloat src1,
1329 GLfloat dst0, GLfloat dst1,
1330 bool mirror)
1331 {
1332 double scale = (double)(src1 - src0) / (double)(dst1 - dst0);
1333 if (!mirror) {
1334 /* When not mirroring a coordinate (say, X), we need:
1335 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1336 * Therefore:
1337 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1338 *
1339 * blorp program uses "round toward zero" to convert the
1340 * transformed floating point coordinates to integer coordinates,
1341 * whereas the behaviour we actually want is "round to nearest",
1342 * so 0.5 provides the necessary correction.
1343 */
1344 xform->multiplier = scale;
1345 xform->offset = src0 + (-(double)dst0 + 0.5) * scale;
1346 } else {
1347 /* When mirroring X we need:
1348 * src_x - src_x0 = dst_x1 - dst_x - 0.5
1349 * Therefore:
1350 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1351 */
1352 xform->multiplier = -scale;
1353 xform->offset = src0 + ((double)dst1 - 0.5) * scale;
1354 }
1355 }
1356
1357 static inline void
1358 surf_get_intratile_offset_px(struct brw_blorp_surface_info *info,
1359 uint32_t *tile_x_px, uint32_t *tile_y_px)
1360 {
1361 if (info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1362 struct isl_extent2d px_size_sa =
1363 isl_get_interleaved_msaa_px_size_sa(info->surf.samples);
1364 assert(info->tile_x_sa % px_size_sa.width == 0);
1365 assert(info->tile_y_sa % px_size_sa.height == 0);
1366 *tile_x_px = info->tile_x_sa / px_size_sa.width;
1367 *tile_y_px = info->tile_y_sa / px_size_sa.height;
1368 } else {
1369 *tile_x_px = info->tile_x_sa;
1370 *tile_y_px = info->tile_y_sa;
1371 }
1372 }
1373
1374 static void
1375 surf_convert_to_single_slice(const struct isl_device *isl_dev,
1376 struct brw_blorp_surface_info *info)
1377 {
1378 /* Just bail if we have nothing to do. */
1379 if (info->surf.dim == ISL_SURF_DIM_2D &&
1380 info->view.base_level == 0 && info->view.base_array_layer == 0 &&
1381 info->surf.levels == 1 && info->surf.logical_level0_px.array_len == 1)
1382 return;
1383
1384 /* If this gets triggered then we've gotten here twice which. This
1385 * shouldn't happen thanks to the above early return.
1386 */
1387 assert(info->tile_x_sa == 0 && info->tile_y_sa == 0);
1388
1389 uint32_t layer = 0, z = 0;
1390 if (info->surf.dim == ISL_SURF_DIM_3D)
1391 z = info->view.base_array_layer + info->z_offset;
1392 else
1393 layer = info->view.base_array_layer;
1394
1395 uint32_t x_offset_sa, y_offset_sa;
1396 isl_surf_get_image_offset_sa(&info->surf, info->view.base_level,
1397 layer, z, &x_offset_sa, &y_offset_sa);
1398
1399 uint32_t byte_offset;
1400 isl_tiling_get_intratile_offset_sa(isl_dev, info->surf.tiling,
1401 info->surf.format, info->surf.row_pitch,
1402 x_offset_sa, y_offset_sa,
1403 &byte_offset,
1404 &info->tile_x_sa, &info->tile_y_sa);
1405 info->addr.offset += byte_offset;
1406
1407 const uint32_t slice_width_px =
1408 minify(info->surf.logical_level0_px.width, info->view.base_level);
1409 const uint32_t slice_height_px =
1410 minify(info->surf.logical_level0_px.height, info->view.base_level);
1411
1412 uint32_t tile_x_px, tile_y_px;
1413 surf_get_intratile_offset_px(info, &tile_x_px, &tile_y_px);
1414
1415 struct isl_surf_init_info init_info = {
1416 .dim = ISL_SURF_DIM_2D,
1417 .format = info->surf.format,
1418 .width = slice_width_px + tile_x_px,
1419 .height = slice_height_px + tile_y_px,
1420 .depth = 1,
1421 .levels = 1,
1422 .array_len = 1,
1423 .samples = info->surf.samples,
1424 .min_pitch = info->surf.row_pitch,
1425 .usage = info->surf.usage,
1426 .tiling_flags = 1 << info->surf.tiling,
1427 };
1428
1429 isl_surf_init_s(isl_dev, &info->surf, &init_info);
1430 assert(info->surf.row_pitch == init_info.min_pitch);
1431
1432 /* The view is also different now. */
1433 info->view.base_level = 0;
1434 info->view.levels = 1;
1435 info->view.base_array_layer = 0;
1436 info->view.array_len = 1;
1437 info->z_offset = 0;
1438 }
1439
1440 static void
1441 surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
1442 struct brw_blorp_surface_info *info)
1443 {
1444 assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1445
1446 /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1447 surf_convert_to_single_slice(isl_dev, info);
1448
1449 info->surf.logical_level0_px = info->surf.phys_level0_sa;
1450 info->surf.samples = 1;
1451 info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
1452 }
1453
1454 static void
1455 surf_retile_w_to_y(const struct isl_device *isl_dev,
1456 struct brw_blorp_surface_info *info)
1457 {
1458 assert(info->surf.tiling == ISL_TILING_W);
1459
1460 /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1461 surf_convert_to_single_slice(isl_dev, info);
1462
1463 /* On gen7+, we don't have interleaved multisampling for color render
1464 * targets so we have to fake it.
1465 *
1466 * TODO: Are we sure we don't also need to fake it on gen6?
1467 */
1468 if (isl_dev->info->gen > 6 &&
1469 info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1470 surf_fake_interleaved_msaa(isl_dev, info);
1471 }
1472
1473 if (isl_dev->info->gen == 6) {
1474 /* Gen6 stencil buffers have a very large alignment coming in from the
1475 * miptree. It's out-of-bounds for what the surface state can handle.
1476 * Since we have a single layer and level, it doesn't really matter as
1477 * long as we don't pass a bogus value into isl_surf_fill_state().
1478 */
1479 info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
1480 }
1481
1482 /* Now that we've converted everything to a simple 2-D surface with only
1483 * one miplevel, we can go about retiling it.
1484 */
1485 const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
1486 info->surf.tiling = ISL_TILING_Y0;
1487 info->surf.logical_level0_px.width =
1488 ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
1489 info->surf.logical_level0_px.height =
1490 ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
1491 info->tile_x_sa *= 2;
1492 info->tile_y_sa /= 2;
1493 }
1494
1495 static bool
1496 can_shrink_surface(const struct brw_blorp_surface_info *surf)
1497 {
1498 /* The current code doesn't support offsets into the aux buffers. This
1499 * should be possible, but we need to make sure the offset is page
1500 * aligned for both the surface and the aux buffer surface. Generally
1501 * this mean using the page aligned offset for the aux buffer.
1502 *
1503 * Currently the cases where we must split the blit are limited to cases
1504 * where we don't have a aux buffer.
1505 */
1506 if (surf->aux_addr.buffer != NULL)
1507 return false;
1508
1509 /* We can't support splitting the blit for gen <= 7, because the qpitch
1510 * size is calculated by the hardware based on the surface height for
1511 * gen <= 7. In gen >= 8, the qpitch is controlled by the driver.
1512 */
1513 if (surf->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)
1514 return false;
1515
1516 return true;
1517 }
1518
1519 static bool
1520 can_shrink_surfaces(const struct blorp_params *params)
1521 {
1522 return
1523 can_shrink_surface(&params->src) &&
1524 can_shrink_surface(&params->dst);
1525 }
1526
1527 static unsigned
1528 get_max_surface_size(const struct gen_device_info *devinfo,
1529 const struct blorp_params *params)
1530 {
1531 const unsigned max = devinfo->gen >= 7 ? 16384 : 8192;
1532 if (split_blorp_blit_debug && can_shrink_surfaces(params))
1533 return max >> 4; /* A smaller restriction when debug is enabled */
1534 else
1535 return max;
1536 }
1537
1538 struct blt_axis {
1539 double src0, src1, dst0, dst1;
1540 bool mirror;
1541 };
1542
1543 struct blt_coords {
1544 struct blt_axis x, y;
1545 };
1546
1547 static void
1548 surf_fake_rgb_with_red(const struct isl_device *isl_dev,
1549 struct brw_blorp_surface_info *info,
1550 uint32_t *x, uint32_t *width)
1551 {
1552 surf_convert_to_single_slice(isl_dev, info);
1553
1554 info->surf.logical_level0_px.width *= 3;
1555 info->surf.phys_level0_sa.width *= 3;
1556 *x *= 3;
1557 *width *= 3;
1558
1559 enum isl_format red_format;
1560 switch (info->view.format) {
1561 case ISL_FORMAT_R8G8B8_UNORM:
1562 red_format = ISL_FORMAT_R8_UNORM;
1563 break;
1564 case ISL_FORMAT_R8G8B8_UINT:
1565 red_format = ISL_FORMAT_R8_UINT;
1566 break;
1567 case ISL_FORMAT_R16G16B16_UNORM:
1568 red_format = ISL_FORMAT_R16_UNORM;
1569 break;
1570 case ISL_FORMAT_R16G16B16_UINT:
1571 red_format = ISL_FORMAT_R16_UINT;
1572 break;
1573 case ISL_FORMAT_R32G32B32_UINT:
1574 red_format = ISL_FORMAT_R32_UINT;
1575 break;
1576 default:
1577 unreachable("Invalid RGB copy destination format");
1578 }
1579 assert(isl_format_get_layout(red_format)->channels.r.type ==
1580 isl_format_get_layout(info->view.format)->channels.r.type);
1581 assert(isl_format_get_layout(red_format)->channels.r.bits ==
1582 isl_format_get_layout(info->view.format)->channels.r.bits);
1583
1584 info->surf.format = info->view.format = red_format;
1585 }
1586
1587 static void
1588 fake_dest_rgb_with_red(const struct isl_device *dev,
1589 struct blorp_params *params,
1590 struct brw_blorp_blit_prog_key *wm_prog_key,
1591 struct blt_coords *coords)
1592 {
1593 /* Handle RGB destinations for blorp_copy */
1594 const struct isl_format_layout *dst_fmtl =
1595 isl_format_get_layout(params->dst.surf.format);
1596
1597 if (dst_fmtl->bpb % 3 == 0) {
1598 uint32_t dst_x = coords->x.dst0;
1599 uint32_t dst_width = coords->x.dst1 - dst_x;
1600 surf_fake_rgb_with_red(dev, &params->dst,
1601 &dst_x, &dst_width);
1602 coords->x.dst0 = dst_x;
1603 coords->x.dst1 = dst_x + dst_width;
1604 wm_prog_key->dst_rgb = true;
1605 wm_prog_key->need_dst_offset = true;
1606 }
1607 }
1608
1609 enum blit_shrink_status {
1610 BLIT_NO_SHRINK = 0,
1611 BLIT_WIDTH_SHRINK = 1,
1612 BLIT_HEIGHT_SHRINK = 2,
1613 };
1614
1615 /* Try to blit. If the surface parameters exceed the size allowed by hardware,
1616 * then enum blit_shrink_status will be returned. If BLIT_NO_SHRINK is
1617 * returned, then the blit was successful.
1618 */
1619 static enum blit_shrink_status
1620 try_blorp_blit(struct blorp_batch *batch,
1621 struct blorp_params *params,
1622 struct brw_blorp_blit_prog_key *wm_prog_key,
1623 struct blt_coords *coords)
1624 {
1625 const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
1626
1627 fake_dest_rgb_with_red(batch->blorp->isl_dev, params, wm_prog_key, coords);
1628
1629 if (isl_format_has_sint_channel(params->src.view.format)) {
1630 wm_prog_key->texture_data_type = nir_type_int;
1631 } else if (isl_format_has_uint_channel(params->src.view.format)) {
1632 wm_prog_key->texture_data_type = nir_type_uint;
1633 } else {
1634 wm_prog_key->texture_data_type = nir_type_float;
1635 }
1636
1637 /* src_samples and dst_samples are the true sample counts */
1638 wm_prog_key->src_samples = params->src.surf.samples;
1639 wm_prog_key->dst_samples = params->dst.surf.samples;
1640
1641 wm_prog_key->tex_aux_usage = params->src.aux_usage;
1642
1643 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1644 * dst.
1645 */
1646 wm_prog_key->src_layout = params->src.surf.msaa_layout;
1647 wm_prog_key->dst_layout = params->dst.surf.msaa_layout;
1648
1649 /* Round floating point values to nearest integer to avoid "off by one texel"
1650 * kind of errors when blitting.
1651 */
1652 params->x0 = params->wm_inputs.discard_rect.x0 = round(coords->x.dst0);
1653 params->y0 = params->wm_inputs.discard_rect.y0 = round(coords->y.dst0);
1654 params->x1 = params->wm_inputs.discard_rect.x1 = round(coords->x.dst1);
1655 params->y1 = params->wm_inputs.discard_rect.y1 = round(coords->y.dst1);
1656
1657 brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[0],
1658 coords->x.src0, coords->x.src1,
1659 coords->x.dst0, coords->x.dst1,
1660 coords->x.mirror);
1661 brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[1],
1662 coords->y.src0, coords->y.src1,
1663 coords->y.dst0, coords->y.dst1,
1664 coords->y.mirror);
1665
1666 if (devinfo->gen > 6 &&
1667 params->dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1668 assert(params->dst.surf.samples > 1);
1669
1670 /* We must expand the rectangle we send through the rendering pipeline,
1671 * to account for the fact that we are mapping the destination region as
1672 * single-sampled when it is in fact multisampled. We must also align
1673 * it to a multiple of the multisampling pattern, because the
1674 * differences between multisampled and single-sampled surface formats
1675 * will mean that pixels are scrambled within the multisampling pattern.
1676 * TODO: what if this makes the coordinates too large?
1677 *
1678 * Note: this only works if the destination surface uses the IMS layout.
1679 * If it's UMS, then we have no choice but to set up the rendering
1680 * pipeline as multisampled.
1681 */
1682 struct isl_extent2d px_size_sa =
1683 isl_get_interleaved_msaa_px_size_sa(params->dst.surf.samples);
1684 params->x0 = ROUND_DOWN_TO(params->x0, 2) * px_size_sa.width;
1685 params->y0 = ROUND_DOWN_TO(params->y0, 2) * px_size_sa.height;
1686 params->x1 = ALIGN(params->x1, 2) * px_size_sa.width;
1687 params->y1 = ALIGN(params->y1, 2) * px_size_sa.height;
1688
1689 surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params->dst);
1690
1691 wm_prog_key->use_kill = true;
1692 wm_prog_key->need_dst_offset = true;
1693 }
1694
1695 if (params->dst.surf.tiling == ISL_TILING_W) {
1696 /* We must modify the rectangle we send through the rendering pipeline
1697 * (and the size and x/y offset of the destination surface), to account
1698 * for the fact that we are mapping it as Y-tiled when it is in fact
1699 * W-tiled.
1700 *
1701 * Both Y tiling and W tiling can be understood as organizations of
1702 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
1703 * is different, but the layout of the 32-byte sub-tiles within the 4k
1704 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
1705 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
1706 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
1707 *
1708 * Therefore, to account for the layout differences within the 32-byte
1709 * sub-tiles, we must expand the rectangle so the X coordinates of its
1710 * edges are multiples of 8 (the W sub-tile width), and its Y
1711 * coordinates of its edges are multiples of 4 (the W sub-tile height).
1712 * Then we need to scale the X and Y coordinates of the rectangle to
1713 * account for the differences in aspect ratio between the Y and W
1714 * sub-tiles. We need to modify the layer width and height similarly.
1715 *
1716 * A correction needs to be applied when MSAA is in use: since
1717 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
1718 * we need to align the Y coordinates to multiples of 8, so that when
1719 * they are divided by two they are still multiples of 4.
1720 *
1721 * Note: Since the x/y offset of the surface will be applied using the
1722 * SURFACE_STATE command packet, it will be invisible to the swizzling
1723 * code in the shader; therefore it needs to be in a multiple of the
1724 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
1725 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
1726 * buffer), and the miplevel alignment used for stencil buffers is 8
1727 * pixels horizontally and either 4 or 8 pixels vertically (see
1728 * intel_horizontal_texture_alignment_unit() and
1729 * intel_vertical_texture_alignment_unit()).
1730 *
1731 * Note: Also, since the SURFACE_STATE command packet can only apply
1732 * offsets that are multiples of 4 pixels horizontally and 2 pixels
1733 * vertically, it is important that the offsets will be multiples of
1734 * these sizes after they are converted into Y-tiled coordinates.
1735 * Fortunately they will be, since we know from above that the offsets
1736 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
1737 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
1738 *
1739 * TODO: what if this makes the coordinates (or the texture size) too
1740 * large?
1741 */
1742 const unsigned x_align = 8;
1743 const unsigned y_align = params->dst.surf.samples != 0 ? 8 : 4;
1744 params->x0 = ROUND_DOWN_TO(params->x0, x_align) * 2;
1745 params->y0 = ROUND_DOWN_TO(params->y0, y_align) / 2;
1746 params->x1 = ALIGN(params->x1, x_align) * 2;
1747 params->y1 = ALIGN(params->y1, y_align) / 2;
1748
1749 /* Retile the surface to Y-tiled */
1750 surf_retile_w_to_y(batch->blorp->isl_dev, &params->dst);
1751
1752 wm_prog_key->dst_tiled_w = true;
1753 wm_prog_key->use_kill = true;
1754 wm_prog_key->need_dst_offset = true;
1755
1756 if (params->dst.surf.samples > 1) {
1757 /* If the destination surface is a W-tiled multisampled stencil
1758 * buffer that we're mapping as Y tiled, then we need to arrange for
1759 * the WM program to run once per sample rather than once per pixel,
1760 * because the memory layout of related samples doesn't match between
1761 * W and Y tiling.
1762 */
1763 wm_prog_key->persample_msaa_dispatch = true;
1764 }
1765 }
1766
1767 if (devinfo->gen < 8 && params->src.surf.tiling == ISL_TILING_W) {
1768 /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
1769 * Broadwell adds support for sampling from stencil.
1770 *
1771 * See the comments above concerning x/y offset alignment for the
1772 * destination surface.
1773 *
1774 * TODO: what if this makes the texture size too large?
1775 */
1776 surf_retile_w_to_y(batch->blorp->isl_dev, &params->src);
1777
1778 wm_prog_key->src_tiled_w = true;
1779 wm_prog_key->need_src_offset = true;
1780 }
1781
1782 /* tex_samples and rt_samples are the sample counts that are set up in
1783 * SURFACE_STATE.
1784 */
1785 wm_prog_key->tex_samples = params->src.surf.samples;
1786 wm_prog_key->rt_samples = params->dst.surf.samples;
1787
1788 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1789 * use to access the source and destination surfaces.
1790 */
1791 wm_prog_key->tex_layout = params->src.surf.msaa_layout;
1792 wm_prog_key->rt_layout = params->dst.surf.msaa_layout;
1793
1794 if (params->src.surf.samples > 0 && params->dst.surf.samples > 1) {
1795 /* We are blitting from a multisample buffer to a multisample buffer, so
1796 * we must preserve samples within a pixel. This means we have to
1797 * arrange for the WM program to run once per sample rather than once
1798 * per pixel.
1799 */
1800 wm_prog_key->persample_msaa_dispatch = true;
1801 }
1802
1803 params->num_samples = params->dst.surf.samples;
1804
1805 if (params->src.tile_x_sa || params->src.tile_y_sa) {
1806 assert(wm_prog_key->need_src_offset);
1807 surf_get_intratile_offset_px(&params->src,
1808 &params->wm_inputs.src_offset.x,
1809 &params->wm_inputs.src_offset.y);
1810 }
1811
1812 if (params->dst.tile_x_sa || params->dst.tile_y_sa) {
1813 assert(wm_prog_key->need_dst_offset);
1814 surf_get_intratile_offset_px(&params->dst,
1815 &params->wm_inputs.dst_offset.x,
1816 &params->wm_inputs.dst_offset.y);
1817 params->x0 += params->wm_inputs.dst_offset.x;
1818 params->y0 += params->wm_inputs.dst_offset.y;
1819 params->x1 += params->wm_inputs.dst_offset.x;
1820 params->y1 += params->wm_inputs.dst_offset.y;
1821 }
1822
1823 /* For some texture types, we need to pass the layer through the sampler. */
1824 params->wm_inputs.src_z = params->src.z_offset;
1825
1826 if (!brw_blorp_get_blit_kernel(batch->blorp, params, wm_prog_key))
1827 return 0;
1828
1829 unsigned result = 0;
1830 unsigned max_surface_size = get_max_surface_size(devinfo, params);
1831 if (params->src.surf.logical_level0_px.width > max_surface_size ||
1832 params->dst.surf.logical_level0_px.width > max_surface_size)
1833 result |= BLIT_WIDTH_SHRINK;
1834 if (params->src.surf.logical_level0_px.height > max_surface_size ||
1835 params->dst.surf.logical_level0_px.height > max_surface_size)
1836 result |= BLIT_HEIGHT_SHRINK;
1837
1838 if (result == 0) {
1839 batch->blorp->exec(batch, params);
1840 }
1841
1842 return result;
1843 }
1844
1845 /* Adjust split blit source coordinates for the current destination
1846 * coordinates.
1847 */
1848 static void
1849 adjust_split_source_coords(const struct blt_axis *orig,
1850 struct blt_axis *split_coords,
1851 double scale)
1852 {
1853 /* When scale is greater than 0, then we are growing from the start, so
1854 * src0 uses delta0, and src1 uses delta1. When scale is less than 0, the
1855 * source range shrinks from the end. In that case src0 is adjusted by
1856 * delta1, and src1 is adjusted by delta0.
1857 */
1858 double delta0 = scale * (split_coords->dst0 - orig->dst0);
1859 double delta1 = scale * (split_coords->dst1 - orig->dst1);
1860 split_coords->src0 = orig->src0 + (scale >= 0.0 ? delta0 : delta1);
1861 split_coords->src1 = orig->src1 + (scale >= 0.0 ? delta1 : delta0);
1862 }
1863
1864 static struct isl_extent2d
1865 get_px_size_sa(const struct isl_surf *surf)
1866 {
1867 static const struct isl_extent2d one_to_one = { .w = 1, .h = 1 };
1868
1869 if (surf->msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED)
1870 return one_to_one;
1871 else
1872 return isl_get_interleaved_msaa_px_size_sa(surf->samples);
1873 }
1874
1875 static void
1876 shrink_surface_params(const struct isl_device *dev,
1877 struct brw_blorp_surface_info *info,
1878 double *x0, double *x1, double *y0, double *y1)
1879 {
1880 uint32_t byte_offset, x_offset_sa, y_offset_sa, size;
1881 struct isl_extent2d px_size_sa;
1882 int adjust;
1883
1884 surf_convert_to_single_slice(dev, info);
1885
1886 px_size_sa = get_px_size_sa(&info->surf);
1887
1888 /* Because this gets called after we lower compressed images, the tile
1889 * offsets may be non-zero and we need to incorporate them in our
1890 * calculations.
1891 */
1892 x_offset_sa = (uint32_t)*x0 * px_size_sa.w + info->tile_x_sa;
1893 y_offset_sa = (uint32_t)*y0 * px_size_sa.h + info->tile_y_sa;
1894 isl_tiling_get_intratile_offset_sa(dev, info->surf.tiling,
1895 info->surf.format, info->surf.row_pitch,
1896 x_offset_sa, y_offset_sa,
1897 &byte_offset,
1898 &info->tile_x_sa, &info->tile_y_sa);
1899
1900 info->addr.offset += byte_offset;
1901
1902 adjust = (int)info->tile_x_sa / px_size_sa.w - (int)*x0;
1903 *x0 += adjust;
1904 *x1 += adjust;
1905 info->tile_x_sa = 0;
1906
1907 adjust = (int)info->tile_y_sa / px_size_sa.h - (int)*y0;
1908 *y0 += adjust;
1909 *y1 += adjust;
1910 info->tile_y_sa = 0;
1911
1912 size = MIN2((uint32_t)ceil(*x1), info->surf.logical_level0_px.width);
1913 info->surf.logical_level0_px.width = size;
1914 info->surf.phys_level0_sa.width = size * px_size_sa.w;
1915
1916 size = MIN2((uint32_t)ceil(*y1), info->surf.logical_level0_px.height);
1917 info->surf.logical_level0_px.height = size;
1918 info->surf.phys_level0_sa.height = size * px_size_sa.h;
1919 }
1920
1921 static void
1922 shrink_surfaces(const struct isl_device *dev,
1923 struct blorp_params *params,
1924 struct brw_blorp_blit_prog_key *wm_prog_key,
1925 struct blt_coords *coords)
1926 {
1927 /* Shrink source surface */
1928 shrink_surface_params(dev, &params->src, &coords->x.src0, &coords->x.src1,
1929 &coords->y.src0, &coords->y.src1);
1930 wm_prog_key->need_src_offset = false;
1931
1932 /* Shrink destination surface */
1933 shrink_surface_params(dev, &params->dst, &coords->x.dst0, &coords->x.dst1,
1934 &coords->y.dst0, &coords->y.dst1);
1935 wm_prog_key->need_dst_offset = false;
1936 }
1937
1938 static void
1939 do_blorp_blit(struct blorp_batch *batch,
1940 const struct blorp_params *orig_params,
1941 struct brw_blorp_blit_prog_key *wm_prog_key,
1942 const struct blt_coords *orig)
1943 {
1944 struct blorp_params params;
1945 struct blt_coords blit_coords;
1946 struct blt_coords split_coords = *orig;
1947 double w = orig->x.dst1 - orig->x.dst0;
1948 double h = orig->y.dst1 - orig->y.dst0;
1949 double x_scale = (orig->x.src1 - orig->x.src0) / w;
1950 double y_scale = (orig->y.src1 - orig->y.src0) / h;
1951 if (orig->x.mirror)
1952 x_scale = -x_scale;
1953 if (orig->y.mirror)
1954 y_scale = -y_scale;
1955
1956 bool x_done, y_done;
1957 bool shrink = split_blorp_blit_debug && can_shrink_surfaces(orig_params);
1958 do {
1959 params = *orig_params;
1960 blit_coords = split_coords;
1961 if (shrink)
1962 shrink_surfaces(batch->blorp->isl_dev, &params, wm_prog_key,
1963 &blit_coords);
1964 enum blit_shrink_status result =
1965 try_blorp_blit(batch, &params, wm_prog_key, &blit_coords);
1966
1967 if (result & BLIT_WIDTH_SHRINK) {
1968 w /= 2.0;
1969 assert(w >= 1.0);
1970 split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
1971 adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
1972 }
1973 if (result & BLIT_HEIGHT_SHRINK) {
1974 h /= 2.0;
1975 assert(h >= 1.0);
1976 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
1977 adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
1978 }
1979
1980 if (result != 0) {
1981 assert(can_shrink_surfaces(orig_params));
1982 shrink = true;
1983 continue;
1984 }
1985
1986 y_done = (orig->y.dst1 - split_coords.y.dst1 < 0.5);
1987 x_done = y_done && (orig->x.dst1 - split_coords.x.dst1 < 0.5);
1988 if (x_done) {
1989 break;
1990 } else if (y_done) {
1991 split_coords.x.dst0 += w;
1992 split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
1993 split_coords.y.dst0 = orig->y.dst0;
1994 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
1995 adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
1996 } else {
1997 split_coords.y.dst0 += h;
1998 split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
1999 adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
2000 }
2001 } while (true);
2002 }
2003
2004 void
2005 blorp_blit(struct blorp_batch *batch,
2006 const struct blorp_surf *src_surf,
2007 unsigned src_level, unsigned src_layer,
2008 enum isl_format src_format, struct isl_swizzle src_swizzle,
2009 const struct blorp_surf *dst_surf,
2010 unsigned dst_level, unsigned dst_layer,
2011 enum isl_format dst_format, struct isl_swizzle dst_swizzle,
2012 float src_x0, float src_y0,
2013 float src_x1, float src_y1,
2014 float dst_x0, float dst_y0,
2015 float dst_x1, float dst_y1,
2016 GLenum filter, bool mirror_x, bool mirror_y)
2017 {
2018 struct blorp_params params;
2019 blorp_params_init(&params);
2020
2021 brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2022 src_layer, src_format, false);
2023 brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2024 dst_layer, dst_format, true);
2025
2026 params.src.view.swizzle = src_swizzle;
2027 params.dst.view.swizzle = dst_swizzle;
2028
2029 struct brw_blorp_blit_prog_key wm_prog_key = {
2030 .shader_type = BLORP_SHADER_TYPE_BLIT
2031 };
2032
2033 /* Scaled blitting or not. */
2034 wm_prog_key.blit_scaled =
2035 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
2036 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
2037
2038 /* Scaling factors used for bilinear filtering in multisample scaled
2039 * blits.
2040 */
2041 if (params.src.surf.samples == 16)
2042 wm_prog_key.x_scale = 4.0f;
2043 else
2044 wm_prog_key.x_scale = 2.0f;
2045 wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
2046
2047 if (filter == GL_LINEAR &&
2048 params.src.surf.samples <= 1 && params.dst.surf.samples <= 1)
2049 wm_prog_key.bilinear_filter = true;
2050
2051 if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
2052 (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
2053 !isl_format_has_int_channel(params.src.surf.format) &&
2054 params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
2055 /* We are downsampling a non-integer color buffer, so blend.
2056 *
2057 * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
2058 *
2059 * "If the source formats are integer types or stencil values, a
2060 * single sample's value is selected for each pixel."
2061 *
2062 * This implies we should not blend in that case.
2063 */
2064 wm_prog_key.blend = true;
2065 }
2066
2067 params.wm_inputs.rect_grid.x1 =
2068 minify(params.src.surf.logical_level0_px.width, src_level) *
2069 wm_prog_key.x_scale - 1.0f;
2070 params.wm_inputs.rect_grid.y1 =
2071 minify(params.src.surf.logical_level0_px.height, src_level) *
2072 wm_prog_key.y_scale - 1.0f;
2073
2074 struct blt_coords coords = {
2075 .x = {
2076 .src0 = src_x0,
2077 .src1 = src_x1,
2078 .dst0 = dst_x0,
2079 .dst1 = dst_x1,
2080 .mirror = mirror_x
2081 },
2082 .y = {
2083 .src0 = src_y0,
2084 .src1 = src_y1,
2085 .dst0 = dst_y0,
2086 .dst1 = dst_y1,
2087 .mirror = mirror_y
2088 }
2089 };
2090
2091 do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2092 }
2093
2094 static enum isl_format
2095 get_copy_format_for_bpb(const struct isl_device *isl_dev, unsigned bpb)
2096 {
2097 /* The choice of UNORM and UINT formats is very intentional here. Most
2098 * of the time, we want to use a UINT format to avoid any rounding error
2099 * in the blit. For stencil blits, R8_UINT is required by the hardware.
2100 * (It's the only format allowed in conjunction with W-tiling.) Also we
2101 * intentionally use the 4-channel formats whenever we can. This is so
2102 * that, when we do a RGB <-> RGBX copy, the two formats will line up
2103 * even though one of them is 3/4 the size of the other. The choice of
2104 * UNORM vs. UINT is also very intentional because we don't have 8 or
2105 * 16-bit RGB UINT formats until Sky Lake so we have to use UNORM there.
2106 * Fortunately, the only time we should ever use two different formats in
2107 * the table below is for RGB -> RGBA blits and so we will never have any
2108 * UNORM/UINT mismatch.
2109 */
2110 if (ISL_DEV_GEN(isl_dev) >= 9) {
2111 switch (bpb) {
2112 case 8: return ISL_FORMAT_R8_UINT;
2113 case 16: return ISL_FORMAT_R8G8_UINT;
2114 case 24: return ISL_FORMAT_R8G8B8_UINT;
2115 case 32: return ISL_FORMAT_R8G8B8A8_UINT;
2116 case 48: return ISL_FORMAT_R16G16B16_UINT;
2117 case 64: return ISL_FORMAT_R16G16B16A16_UINT;
2118 case 96: return ISL_FORMAT_R32G32B32_UINT;
2119 case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2120 default:
2121 unreachable("Unknown format bpb");
2122 }
2123 } else {
2124 switch (bpb) {
2125 case 8: return ISL_FORMAT_R8_UINT;
2126 case 16: return ISL_FORMAT_R8G8_UINT;
2127 case 24: return ISL_FORMAT_R8G8B8_UNORM;
2128 case 32: return ISL_FORMAT_R8G8B8A8_UNORM;
2129 case 48: return ISL_FORMAT_R16G16B16_UNORM;
2130 case 64: return ISL_FORMAT_R16G16B16A16_UNORM;
2131 case 96: return ISL_FORMAT_R32G32B32_UINT;
2132 case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2133 default:
2134 unreachable("Unknown format bpb");
2135 }
2136 }
2137 }
2138
2139 /** Returns a UINT format that is CCS-compatible with the given format
2140 *
2141 * The PRM's say absolutely nothing about how render compression works. The
2142 * only thing they provide is a list of formats on which it is and is not
2143 * supported. Empirical testing indicates that the compression is only based
2144 * on the bit-layout of the format and the channel encoding doesn't matter.
2145 * So, while texture views don't work in general, you can create a view as
2146 * long as the bit-layout of the formats are the same.
2147 *
2148 * Fortunately, for every render compression capable format, the UINT format
2149 * with the same bit layout also supports render compression. This means that
2150 * we only need to handle UINT formats for copy operations. In order to do
2151 * copies between formats with different bit layouts, we attach both with a
2152 * UINT format and use bit_cast_color() to generate code to do the bit-cast
2153 * operation between the two bit layouts.
2154 */
2155 static enum isl_format
2156 get_ccs_compatible_uint_format(const struct isl_format_layout *fmtl)
2157 {
2158 switch (fmtl->format) {
2159 case ISL_FORMAT_R32G32B32A32_FLOAT:
2160 case ISL_FORMAT_R32G32B32A32_SINT:
2161 case ISL_FORMAT_R32G32B32A32_UINT:
2162 case ISL_FORMAT_R32G32B32A32_UNORM:
2163 case ISL_FORMAT_R32G32B32A32_SNORM:
2164 return ISL_FORMAT_R32G32B32A32_UINT;
2165
2166 case ISL_FORMAT_R16G16B16A16_UNORM:
2167 case ISL_FORMAT_R16G16B16A16_SNORM:
2168 case ISL_FORMAT_R16G16B16A16_SINT:
2169 case ISL_FORMAT_R16G16B16A16_UINT:
2170 case ISL_FORMAT_R16G16B16A16_FLOAT:
2171 case ISL_FORMAT_R16G16B16X16_UNORM:
2172 case ISL_FORMAT_R16G16B16X16_FLOAT:
2173 return ISL_FORMAT_R16G16B16A16_UINT;
2174
2175 case ISL_FORMAT_R32G32_FLOAT:
2176 case ISL_FORMAT_R32G32_SINT:
2177 case ISL_FORMAT_R32G32_UINT:
2178 case ISL_FORMAT_R32G32_UNORM:
2179 case ISL_FORMAT_R32G32_SNORM:
2180 return ISL_FORMAT_R32G32_UINT;
2181
2182 case ISL_FORMAT_B8G8R8A8_UNORM:
2183 case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2184 case ISL_FORMAT_R8G8B8A8_UNORM:
2185 case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
2186 case ISL_FORMAT_R8G8B8A8_SNORM:
2187 case ISL_FORMAT_R8G8B8A8_SINT:
2188 case ISL_FORMAT_R8G8B8A8_UINT:
2189 case ISL_FORMAT_B8G8R8X8_UNORM:
2190 case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
2191 case ISL_FORMAT_R8G8B8X8_UNORM:
2192 case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
2193 return ISL_FORMAT_R8G8B8A8_UINT;
2194
2195 case ISL_FORMAT_R16G16_UNORM:
2196 case ISL_FORMAT_R16G16_SNORM:
2197 case ISL_FORMAT_R16G16_SINT:
2198 case ISL_FORMAT_R16G16_UINT:
2199 case ISL_FORMAT_R16G16_FLOAT:
2200 return ISL_FORMAT_R16G16_UINT;
2201
2202 case ISL_FORMAT_R32_SINT:
2203 case ISL_FORMAT_R32_UINT:
2204 case ISL_FORMAT_R32_FLOAT:
2205 case ISL_FORMAT_R32_UNORM:
2206 case ISL_FORMAT_R32_SNORM:
2207 return ISL_FORMAT_R32_UINT;
2208
2209 default:
2210 unreachable("Not a compressible format");
2211 }
2212 }
2213
2214 /* Takes an isl_color_value and returns a color value that is the original
2215 * color value only bit-casted to a UINT format. This value, together with
2216 * the format from get_ccs_compatible_uint_format, will yield the same bit
2217 * value as the original color and format.
2218 */
2219 static union isl_color_value
2220 bitcast_color_value_to_uint(union isl_color_value color,
2221 const struct isl_format_layout *fmtl)
2222 {
2223 /* All CCS formats have the same number of bits in each channel */
2224 const struct isl_channel_layout *chan = &fmtl->channels.r;
2225
2226 union isl_color_value bits;
2227 switch (chan->type) {
2228 case ISL_UINT:
2229 case ISL_SINT:
2230 /* Hardware will ignore the high bits so there's no need to cast */
2231 bits = color;
2232 break;
2233
2234 case ISL_UNORM:
2235 for (unsigned i = 0; i < 4; i++)
2236 bits.u32[i] = _mesa_float_to_unorm(color.f32[i], chan->bits);
2237 break;
2238
2239 case ISL_SNORM:
2240 for (unsigned i = 0; i < 4; i++)
2241 bits.i32[i] = _mesa_float_to_snorm(color.f32[i], chan->bits);
2242 break;
2243
2244 case ISL_SFLOAT:
2245 switch (chan->bits) {
2246 case 16:
2247 for (unsigned i = 0; i < 4; i++)
2248 bits.u32[i] = _mesa_float_to_half(color.f32[i]);
2249 break;
2250
2251 case 32:
2252 bits = color;
2253 break;
2254
2255 default:
2256 unreachable("Invalid float format size");
2257 }
2258 break;
2259
2260 default:
2261 unreachable("Invalid channel type");
2262 }
2263
2264 switch (fmtl->format) {
2265 case ISL_FORMAT_B8G8R8A8_UNORM:
2266 case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2267 case ISL_FORMAT_B8G8R8X8_UNORM:
2268 case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: {
2269 /* If it's a BGRA format, we need to swap blue and red */
2270 uint32_t tmp = bits.u32[0];
2271 bits.u32[0] = bits.u32[2];
2272 bits.u32[2] = tmp;
2273 break;
2274 }
2275
2276 default:
2277 break; /* Nothing to do */
2278 }
2279
2280 return bits;
2281 }
2282
2283 static void
2284 surf_convert_to_uncompressed(const struct isl_device *isl_dev,
2285 struct brw_blorp_surface_info *info,
2286 uint32_t *x, uint32_t *y,
2287 uint32_t *width, uint32_t *height)
2288 {
2289 const struct isl_format_layout *fmtl =
2290 isl_format_get_layout(info->surf.format);
2291
2292 assert(fmtl->bw > 1 || fmtl->bh > 1);
2293
2294 /* This is a compressed surface. We need to convert it to a single
2295 * slice (because compressed layouts don't perfectly match uncompressed
2296 * ones with the same bpb) and divide x, y, width, and height by the
2297 * block size.
2298 */
2299 surf_convert_to_single_slice(isl_dev, info);
2300
2301 if (width || height) {
2302 #ifndef NDEBUG
2303 uint32_t right_edge_px = info->tile_x_sa + *x + *width;
2304 uint32_t bottom_edge_px = info->tile_y_sa + *y + *height;
2305 assert(*width % fmtl->bw == 0 ||
2306 right_edge_px == info->surf.logical_level0_px.width);
2307 assert(*height % fmtl->bh == 0 ||
2308 bottom_edge_px == info->surf.logical_level0_px.height);
2309 #endif
2310 *width = DIV_ROUND_UP(*width, fmtl->bw);
2311 *height = DIV_ROUND_UP(*height, fmtl->bh);
2312 }
2313
2314 assert(*x % fmtl->bw == 0);
2315 assert(*y % fmtl->bh == 0);
2316 *x /= fmtl->bw;
2317 *y /= fmtl->bh;
2318
2319 info->surf.logical_level0_px.width =
2320 DIV_ROUND_UP(info->surf.logical_level0_px.width, fmtl->bw);
2321 info->surf.logical_level0_px.height =
2322 DIV_ROUND_UP(info->surf.logical_level0_px.height, fmtl->bh);
2323
2324 assert(info->surf.phys_level0_sa.width % fmtl->bw == 0);
2325 assert(info->surf.phys_level0_sa.height % fmtl->bh == 0);
2326 info->surf.phys_level0_sa.width /= fmtl->bw;
2327 info->surf.phys_level0_sa.height /= fmtl->bh;
2328
2329 assert(info->tile_x_sa % fmtl->bw == 0);
2330 assert(info->tile_y_sa % fmtl->bh == 0);
2331 info->tile_x_sa /= fmtl->bw;
2332 info->tile_y_sa /= fmtl->bh;
2333
2334 /* It's now an uncompressed surface so we need an uncompressed format */
2335 info->surf.format = get_copy_format_for_bpb(isl_dev, fmtl->bpb);
2336 }
2337
2338 void
2339 blorp_copy(struct blorp_batch *batch,
2340 const struct blorp_surf *src_surf,
2341 unsigned src_level, unsigned src_layer,
2342 const struct blorp_surf *dst_surf,
2343 unsigned dst_level, unsigned dst_layer,
2344 uint32_t src_x, uint32_t src_y,
2345 uint32_t dst_x, uint32_t dst_y,
2346 uint32_t src_width, uint32_t src_height)
2347 {
2348 const struct isl_device *isl_dev = batch->blorp->isl_dev;
2349 struct blorp_params params;
2350
2351 if (src_width == 0 || src_height == 0)
2352 return;
2353
2354 blorp_params_init(&params);
2355 brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2356 src_layer, ISL_FORMAT_UNSUPPORTED, false);
2357 brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2358 dst_layer, ISL_FORMAT_UNSUPPORTED, true);
2359
2360 struct brw_blorp_blit_prog_key wm_prog_key = {
2361 .shader_type = BLORP_SHADER_TYPE_BLIT
2362 };
2363
2364 const struct isl_format_layout *src_fmtl =
2365 isl_format_get_layout(params.src.surf.format);
2366 const struct isl_format_layout *dst_fmtl =
2367 isl_format_get_layout(params.dst.surf.format);
2368
2369 assert(params.src.aux_usage == ISL_AUX_USAGE_NONE ||
2370 params.src.aux_usage == ISL_AUX_USAGE_MCS ||
2371 params.src.aux_usage == ISL_AUX_USAGE_CCS_E);
2372 assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE ||
2373 params.dst.aux_usage == ISL_AUX_USAGE_MCS ||
2374 params.dst.aux_usage == ISL_AUX_USAGE_CCS_E);
2375
2376 if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2377 params.dst.view.format = get_ccs_compatible_uint_format(dst_fmtl);
2378 if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2379 params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2380 } else if (src_fmtl->bpb == dst_fmtl->bpb) {
2381 params.src.view.format = params.dst.view.format;
2382 } else {
2383 params.src.view.format =
2384 get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2385 }
2386 } else if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2387 params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2388 if (src_fmtl->bpb == dst_fmtl->bpb) {
2389 params.dst.view.format = params.src.view.format;
2390 } else {
2391 params.dst.view.format =
2392 get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2393 }
2394 } else {
2395 params.dst.view.format = get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2396 params.src.view.format = get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2397 }
2398
2399 if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2400 assert(isl_formats_are_ccs_e_compatible(batch->blorp->isl_dev->info,
2401 src_surf->surf->format,
2402 params.src.view.format));
2403 params.src.clear_color =
2404 bitcast_color_value_to_uint(params.src.clear_color, src_fmtl);
2405 }
2406
2407 if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2408 assert(isl_formats_are_ccs_e_compatible(batch->blorp->isl_dev->info,
2409 dst_surf->surf->format,
2410 params.dst.view.format));
2411 params.dst.clear_color =
2412 bitcast_color_value_to_uint(params.dst.clear_color, dst_fmtl);
2413 }
2414
2415 wm_prog_key.src_bpc =
2416 isl_format_get_layout(params.src.view.format)->channels.r.bits;
2417 wm_prog_key.dst_bpc =
2418 isl_format_get_layout(params.dst.view.format)->channels.r.bits;
2419
2420 if (src_fmtl->bw > 1 || src_fmtl->bh > 1) {
2421 surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.src,
2422 &src_x, &src_y, &src_width, &src_height);
2423 wm_prog_key.need_src_offset = true;
2424 }
2425
2426 if (dst_fmtl->bw > 1 || dst_fmtl->bh > 1) {
2427 surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
2428 &dst_x, &dst_y, NULL, NULL);
2429 wm_prog_key.need_dst_offset = true;
2430 }
2431
2432 /* Once both surfaces are stompped to uncompressed as needed, the
2433 * destination size is the same as the source size.
2434 */
2435 uint32_t dst_width = src_width;
2436 uint32_t dst_height = src_height;
2437
2438 struct blt_coords coords = {
2439 .x = {
2440 .src0 = src_x,
2441 .src1 = src_x + src_width,
2442 .dst0 = dst_x,
2443 .dst1 = dst_x + dst_width,
2444 .mirror = false
2445 },
2446 .y = {
2447 .src0 = src_y,
2448 .src1 = src_y + src_height,
2449 .dst0 = dst_y,
2450 .dst1 = dst_y + dst_height,
2451 .mirror = false
2452 }
2453 };
2454
2455 do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2456 }