intel/compiler: CSEL can do saturate
[mesa.git] / src / intel / blorp / blorp_clear.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/ralloc.h"
25
26 #include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
27 #include "util/format_rgb9e5.h"
28 #include "util/format_srgb.h"
29
30 #include "blorp_priv.h"
31 #include "compiler/brw_eu_defines.h"
32
33 #include "blorp_nir_builder.h"
34
35 #define FILE_DEBUG_FLAG DEBUG_BLORP
36
37 #pragma pack(push, 1)
38 struct brw_blorp_const_color_prog_key
39 {
40 enum blorp_shader_type shader_type; /* Must be BLORP_SHADER_TYPE_CLEAR */
41 bool use_simd16_replicated_data;
42 bool clear_rgb_as_red;
43 };
44 #pragma pack(pop)
45
46 static bool
47 blorp_params_get_clear_kernel(struct blorp_batch *batch,
48 struct blorp_params *params,
49 bool use_replicated_data,
50 bool clear_rgb_as_red)
51 {
52 struct blorp_context *blorp = batch->blorp;
53
54 const struct brw_blorp_const_color_prog_key blorp_key = {
55 .shader_type = BLORP_SHADER_TYPE_CLEAR,
56 .use_simd16_replicated_data = use_replicated_data,
57 .clear_rgb_as_red = clear_rgb_as_red,
58 };
59
60 if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
61 &params->wm_prog_kernel, &params->wm_prog_data))
62 return true;
63
64 void *mem_ctx = ralloc_context(NULL);
65
66 nir_builder b;
67 blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, "BLORP-clear");
68
69 nir_variable *v_color =
70 BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
71 nir_ssa_def *color = nir_load_var(&b, v_color);
72
73 if (clear_rgb_as_red) {
74 nir_ssa_def *pos = nir_f2i32(&b, nir_load_frag_coord(&b));
75 nir_ssa_def *comp = nir_umod(&b, nir_channel(&b, pos, 0),
76 nir_imm_int(&b, 3));
77 nir_ssa_def *color_component =
78 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
79 nir_channel(&b, color, 0),
80 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
81 nir_channel(&b, color, 1),
82 nir_channel(&b, color, 2)));
83
84 nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
85 color = nir_vec4(&b, color_component, u, u, u);
86 }
87
88 nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
89 glsl_vec4_type(),
90 "gl_FragColor");
91 frag_color->data.location = FRAG_RESULT_COLOR;
92 nir_store_var(&b, frag_color, color, 0xf);
93
94 struct brw_wm_prog_key wm_key;
95 brw_blorp_init_wm_prog_key(&wm_key);
96
97 struct brw_wm_prog_data prog_data;
98 const unsigned *program =
99 blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
100 &prog_data);
101
102 bool result =
103 blorp->upload_shader(batch, MESA_SHADER_FRAGMENT,
104 &blorp_key, sizeof(blorp_key),
105 program, prog_data.base.program_size,
106 &prog_data.base, sizeof(prog_data),
107 &params->wm_prog_kernel, &params->wm_prog_data);
108
109 ralloc_free(mem_ctx);
110 return result;
111 }
112
113 #pragma pack(push, 1)
114 struct layer_offset_vs_key {
115 enum blorp_shader_type shader_type;
116 unsigned num_inputs;
117 };
118 #pragma pack(pop)
119
120 /* In the case of doing attachment clears, we are using a surface state that
121 * is handed to us so we can't set (and don't even know) the base array layer.
122 * In order to do a layered clear in this scenario, we need some way of adding
123 * the base array layer to the instance id. Unfortunately, our hardware has
124 * no real concept of "base instance", so we have to do it manually in a
125 * vertex shader.
126 */
127 static bool
128 blorp_params_get_layer_offset_vs(struct blorp_batch *batch,
129 struct blorp_params *params)
130 {
131 struct blorp_context *blorp = batch->blorp;
132 struct layer_offset_vs_key blorp_key = {
133 .shader_type = BLORP_SHADER_TYPE_LAYER_OFFSET_VS,
134 };
135
136 if (params->wm_prog_data)
137 blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
138
139 if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
140 &params->vs_prog_kernel, &params->vs_prog_data))
141 return true;
142
143 void *mem_ctx = ralloc_context(NULL);
144
145 nir_builder b;
146 blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_VERTEX, "BLORP-layer-offset-vs");
147
148 const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
149
150 /* First we deal with the header which has instance and base instance */
151 nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
152 uvec4_type, "header");
153 a_header->data.location = VERT_ATTRIB_GENERIC0;
154
155 nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
156 glsl_int_type(), "layer_id");
157 v_layer->data.location = VARYING_SLOT_LAYER;
158
159 /* Compute the layer id */
160 nir_ssa_def *header = nir_load_var(&b, a_header);
161 nir_ssa_def *base_layer = nir_channel(&b, header, 0);
162 nir_ssa_def *instance = nir_channel(&b, header, 1);
163 nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
164
165 /* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
166 nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
167 glsl_vec4_type(), "a_vertex");
168 a_vertex->data.location = VERT_ATTRIB_GENERIC1;
169
170 nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
171 glsl_vec4_type(), "v_pos");
172 v_pos->data.location = VARYING_SLOT_POS;
173
174 nir_copy_var(&b, v_pos, a_vertex);
175
176 /* Then we copy everything else */
177 for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
178 nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
179 uvec4_type, "input");
180 a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
181
182 nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
183 uvec4_type, "output");
184 v_out->data.location = VARYING_SLOT_VAR0 + i;
185
186 nir_copy_var(&b, v_out, a_in);
187 }
188
189 struct brw_vs_prog_data vs_prog_data;
190 memset(&vs_prog_data, 0, sizeof(vs_prog_data));
191
192 const unsigned *program =
193 blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data);
194
195 bool result =
196 blorp->upload_shader(batch, MESA_SHADER_VERTEX,
197 &blorp_key, sizeof(blorp_key),
198 program, vs_prog_data.base.base.program_size,
199 &vs_prog_data.base.base, sizeof(vs_prog_data),
200 &params->vs_prog_kernel, &params->vs_prog_data);
201
202 ralloc_free(mem_ctx);
203 return result;
204 }
205
206 /* The x0, y0, x1, and y1 parameters must already be populated with the render
207 * area of the framebuffer to be cleared.
208 */
209 static void
210 get_fast_clear_rect(const struct isl_device *dev,
211 const struct isl_surf *aux_surf,
212 unsigned *x0, unsigned *y0,
213 unsigned *x1, unsigned *y1)
214 {
215 unsigned int x_align, y_align;
216 unsigned int x_scaledown, y_scaledown;
217
218 /* Only single sampled surfaces need to (and actually can) be resolved. */
219 if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
220 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
221 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
222 *
223 * Clear pass must have a clear rectangle that must follow
224 * alignment rules in terms of pixels and lines as shown in the
225 * table below. Further, the clear-rectangle height and width
226 * must be multiple of the following dimensions. If the height
227 * and width of the render target being cleared do not meet these
228 * requirements, an MCS buffer can be created such that it
229 * follows the requirement and covers the RT.
230 *
231 * The alignment size in the table that follows is related to the
232 * alignment size that is baked into the CCS surface format but with X
233 * alignment multiplied by 16 and Y alignment multiplied by 32.
234 */
235 x_align = isl_format_get_layout(aux_surf->format)->bw;
236 y_align = isl_format_get_layout(aux_surf->format)->bh;
237
238 x_align *= 16;
239
240 /* The line alignment requirement for Y-tiled is halved at SKL and again
241 * at TGL.
242 */
243 if (dev->info->gen >= 12)
244 y_align *= 8;
245 else if (dev->info->gen >= 9)
246 y_align *= 16;
247 else
248 y_align *= 32;
249
250 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
251 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
252 *
253 * In order to optimize the performance MCS buffer (when bound to
254 * 1X RT) clear similarly to MCS buffer clear for MSRT case,
255 * clear rect is required to be scaled by the following factors
256 * in the horizontal and vertical directions:
257 *
258 * The X and Y scale down factors in the table that follows are each
259 * equal to half the alignment value computed above.
260 */
261 x_scaledown = x_align / 2;
262 y_scaledown = y_align / 2;
263
264 if (ISL_DEV_IS_HASWELL(dev)) {
265 /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
266 * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
267 * Clear of Non-MultiSampled Render Target Restrictions":
268 *
269 * Clear rectangle must be aligned to two times the number of
270 * pixels in the table shown below due to 16x16 hashing across the
271 * slice.
272 *
273 * This restriction is only documented to exist on HSW GT3 but
274 * empirical evidence suggests that it's also needed GT2.
275 */
276 x_align *= 2;
277 y_align *= 2;
278 }
279 } else {
280 assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
281
282 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
283 * Target(s)", beneath the "MSAA Compression" bullet (p326):
284 *
285 * Clear pass for this case requires that scaled down primitive
286 * is sent down with upper left co-ordinate to coincide with
287 * actual rectangle being cleared. For MSAA, clear rectangle’s
288 * height and width need to as show in the following table in
289 * terms of (width,height) of the RT.
290 *
291 * MSAA Width of Clear Rect Height of Clear Rect
292 * 2X Ceil(1/8*width) Ceil(1/2*height)
293 * 4X Ceil(1/8*width) Ceil(1/2*height)
294 * 8X Ceil(1/2*width) Ceil(1/2*height)
295 * 16X width Ceil(1/2*height)
296 *
297 * The text "with upper left co-ordinate to coincide with actual
298 * rectangle being cleared" is a little confusing--it seems to imply
299 * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
300 * feed the pipeline using the rectangle (x,y) to
301 * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
302 * the number of samples. Experiments indicate that this is not
303 * quite correct; actually, what the hardware appears to do is to
304 * align whatever rectangle is sent down the pipeline to the nearest
305 * multiple of 2x2 blocks, and then scale it up by a factor of N
306 * horizontally and 2 vertically. So the resulting alignment is 4
307 * vertically and either 4 or 16 horizontally, and the scaledown
308 * factor is 2 vertically and either 2 or 8 horizontally.
309 */
310 switch (aux_surf->format) {
311 case ISL_FORMAT_MCS_2X:
312 case ISL_FORMAT_MCS_4X:
313 x_scaledown = 8;
314 break;
315 case ISL_FORMAT_MCS_8X:
316 x_scaledown = 2;
317 break;
318 case ISL_FORMAT_MCS_16X:
319 x_scaledown = 1;
320 break;
321 default:
322 unreachable("Unexpected MCS format for fast clear");
323 }
324 y_scaledown = 2;
325 x_align = x_scaledown * 2;
326 y_align = y_scaledown * 2;
327 }
328
329 *x0 = ROUND_DOWN_TO(*x0, x_align) / x_scaledown;
330 *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
331 *x1 = ALIGN(*x1, x_align) / x_scaledown;
332 *y1 = ALIGN(*y1, y_align) / y_scaledown;
333 }
334
335 void
336 blorp_fast_clear(struct blorp_batch *batch,
337 const struct blorp_surf *surf,
338 enum isl_format format, struct isl_swizzle swizzle,
339 uint32_t level, uint32_t start_layer, uint32_t num_layers,
340 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
341 {
342 struct blorp_params params;
343 blorp_params_init(&params);
344 params.num_layers = num_layers;
345
346 params.x0 = x0;
347 params.y0 = y0;
348 params.x1 = x1;
349 params.y1 = y1;
350
351 memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
352 params.fast_clear_op = ISL_AUX_OP_FAST_CLEAR;
353
354 get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
355 &params.x0, &params.y0, &params.x1, &params.y1);
356
357 if (!blorp_params_get_clear_kernel(batch, &params, true, false))
358 return;
359
360 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
361 start_layer, format, true);
362 params.num_samples = params.dst.surf.samples;
363
364 /* If a swizzle was provided, we need to swizzle the clear color so that
365 * the hardware color format conversion will work properly.
366 */
367 params.dst.clear_color = swizzle_color_value(params.dst.clear_color,
368 swizzle);
369
370 batch->blorp->exec(batch, &params);
371 }
372
373 union isl_color_value
374 swizzle_color_value(union isl_color_value src, struct isl_swizzle swizzle)
375 {
376 union isl_color_value dst = { .u32 = { 0, } };
377
378 /* We assign colors in ABGR order so that the first one will be taken in
379 * RGBA precedence order. According to the PRM docs for shader channel
380 * select, this matches Haswell hardware behavior.
381 */
382 if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
383 dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3];
384 if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
385 dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2];
386 if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
387 dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1];
388 if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
389 dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0];
390
391 return dst;
392 }
393
394 void
395 blorp_clear(struct blorp_batch *batch,
396 const struct blorp_surf *surf,
397 enum isl_format format, struct isl_swizzle swizzle,
398 uint32_t level, uint32_t start_layer, uint32_t num_layers,
399 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
400 union isl_color_value clear_color,
401 const bool color_write_disable[4])
402 {
403 struct blorp_params params;
404 blorp_params_init(&params);
405
406 /* Manually apply the clear destination swizzle. This way swizzled clears
407 * will work for swizzles which we can't normally use for rendering and it
408 * also ensures that they work on pre-Haswell hardware which can't swizlle
409 * at all.
410 */
411 clear_color = swizzle_color_value(clear_color, swizzle);
412 swizzle = ISL_SWIZZLE_IDENTITY;
413
414 bool clear_rgb_as_red = false;
415 if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
416 clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
417 format = ISL_FORMAT_R32_UINT;
418 } else if (format == ISL_FORMAT_L8_UNORM_SRGB) {
419 clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
420 format = ISL_FORMAT_R8_UNORM;
421 } else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
422 /* Broadwell and earlier cannot render to this format so we need to work
423 * around it by swapping the colors around and using B4G4R4A4 instead.
424 */
425 const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
426 clear_color = swizzle_color_value(clear_color, ARGB);
427 format = ISL_FORMAT_B4G4R4A4_UNORM;
428 } else if (isl_format_get_layout(format)->bpb % 3 == 0) {
429 clear_rgb_as_red = true;
430 if (format == ISL_FORMAT_R8G8B8_UNORM_SRGB) {
431 clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
432 clear_color.f32[1] = util_format_linear_to_srgb_float(clear_color.f32[1]);
433 clear_color.f32[2] = util_format_linear_to_srgb_float(clear_color.f32[2]);
434 }
435 }
436
437 memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
438
439 bool use_simd16_replicated_data = true;
440
441 /* From the SNB PRM (Vol4_Part1):
442 *
443 * "Replicated data (Message Type = 111) is only supported when
444 * accessing tiled memory. Using this Message Type to access linear
445 * (untiled) memory is UNDEFINED."
446 */
447 if (surf->surf->tiling == ISL_TILING_LINEAR)
448 use_simd16_replicated_data = false;
449
450 /* Replicated clears don't work yet before gen6 */
451 if (batch->blorp->isl_dev->info->gen < 6)
452 use_simd16_replicated_data = false;
453
454 /* Constant color writes ignore everyting in blend and color calculator
455 * state. This is not documented.
456 */
457 if (color_write_disable) {
458 for (unsigned i = 0; i < 4; i++) {
459 params.color_write_disable[i] = color_write_disable[i];
460 if (color_write_disable[i])
461 use_simd16_replicated_data = false;
462 }
463 }
464
465 if (!blorp_params_get_clear_kernel(batch, &params,
466 use_simd16_replicated_data,
467 clear_rgb_as_red))
468 return;
469
470 if (!blorp_ensure_sf_program(batch, &params))
471 return;
472
473 while (num_layers > 0) {
474 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
475 start_layer, format, true);
476 params.dst.view.swizzle = swizzle;
477
478 params.x0 = x0;
479 params.y0 = y0;
480 params.x1 = x1;
481 params.y1 = y1;
482
483 if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
484 assert(params.dst.surf.samples == 1);
485 assert(num_layers == 1);
486 params.x0 += params.dst.tile_x_sa;
487 params.y0 += params.dst.tile_y_sa;
488 params.x1 += params.dst.tile_x_sa;
489 params.y1 += params.dst.tile_y_sa;
490 }
491
492 /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
493 * Convert them to a single slice on gen4.
494 */
495 if (batch->blorp->isl_dev->info->gen == 4 &&
496 (params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) {
497 blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params.dst);
498 }
499
500 if (clear_rgb_as_red) {
501 surf_fake_rgb_with_red(batch->blorp->isl_dev, &params.dst);
502 params.x0 *= 3;
503 params.x1 *= 3;
504 }
505
506 if (isl_format_is_compressed(params.dst.surf.format)) {
507 blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
508 NULL, NULL, NULL, NULL);
509 //&dst_x, &dst_y, &dst_w, &dst_h);
510 }
511
512 if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
513 /* Either we're on gen4 where there is no multisampling or the
514 * surface is compressed which also implies no multisampling.
515 * Therefore, sa == px and we don't need to do a conversion.
516 */
517 assert(params.dst.surf.samples == 1);
518 params.x0 += params.dst.tile_x_sa;
519 params.y0 += params.dst.tile_y_sa;
520 params.x1 += params.dst.tile_x_sa;
521 params.y1 += params.dst.tile_y_sa;
522 }
523
524 params.num_samples = params.dst.surf.samples;
525
526 /* We may be restricted on the number of layers we can bind at any one
527 * time. In particular, Sandy Bridge has a maximum number of layers of
528 * 512 but a maximum 3D texture size is much larger.
529 */
530 params.num_layers = MIN2(params.dst.view.array_len, num_layers);
531
532 const unsigned max_image_width = 16 * 1024;
533 if (params.dst.surf.logical_level0_px.width > max_image_width) {
534 /* Clearing an RGB image as red multiplies the surface width by 3
535 * so it may now be too wide for the hardware surface limits. We
536 * have to break the clear up into pieces in order to clear wide
537 * images.
538 */
539 assert(clear_rgb_as_red);
540 assert(params.dst.surf.dim == ISL_SURF_DIM_2D);
541 assert(params.dst.surf.tiling == ISL_TILING_LINEAR);
542 assert(params.dst.surf.logical_level0_px.depth == 1);
543 assert(params.dst.surf.logical_level0_px.array_len == 1);
544 assert(params.dst.surf.levels == 1);
545 assert(params.dst.surf.samples == 1);
546 assert(params.dst.tile_x_sa == 0 || params.dst.tile_y_sa == 0);
547 assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE);
548
549 /* max_image_width rounded down to a multiple of 3 */
550 const unsigned max_fake_rgb_width = (max_image_width / 3) * 3;
551 const unsigned cpp =
552 isl_format_get_layout(params.dst.surf.format)->bpb / 8;
553
554 params.dst.surf.logical_level0_px.width = max_fake_rgb_width;
555 params.dst.surf.phys_level0_sa.width = max_fake_rgb_width;
556
557 uint32_t orig_x0 = params.x0, orig_x1 = params.x1;
558 uint64_t orig_offset = params.dst.addr.offset;
559 for (uint32_t x = orig_x0; x < orig_x1; x += max_fake_rgb_width) {
560 /* Offset to the surface. It's easy because we're linear */
561 params.dst.addr.offset = orig_offset + x * cpp;
562
563 params.x0 = 0;
564 params.x1 = MIN2(orig_x1 - x, max_image_width);
565
566 batch->blorp->exec(batch, &params);
567 }
568 } else {
569 batch->blorp->exec(batch, &params);
570 }
571
572 start_layer += params.num_layers;
573 num_layers -= params.num_layers;
574 }
575 }
576
577 static bool
578 blorp_clear_stencil_as_rgba(struct blorp_batch *batch,
579 const struct blorp_surf *surf,
580 uint32_t level, uint32_t start_layer,
581 uint32_t num_layers,
582 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
583 uint8_t stencil_mask, uint8_t stencil_value)
584 {
585 /* We only support separate W-tiled stencil for now */
586 if (surf->surf->format != ISL_FORMAT_R8_UINT ||
587 surf->surf->tiling != ISL_TILING_W)
588 return false;
589
590 /* Stencil mask support would require piles of shader magic */
591 if (stencil_mask != 0xff)
592 return false;
593
594 if (surf->surf->samples > 1) {
595 /* Adjust x0, y0, x1, and y1 to be in units of samples */
596 assert(surf->surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
597 struct isl_extent2d msaa_px_size_sa =
598 isl_get_interleaved_msaa_px_size_sa(surf->surf->samples);
599
600 x0 *= msaa_px_size_sa.w;
601 y0 *= msaa_px_size_sa.h;
602 x1 *= msaa_px_size_sa.w;
603 y1 *= msaa_px_size_sa.h;
604 }
605
606 /* W-tiles and Y-tiles have the same layout as far as cache lines are
607 * concerned: both are 8x8 cache lines laid out Y-major. The difference is
608 * entirely in how the data is arranged withing the cache line. W-tiling
609 * is 8x8 pixels in a swizzled pattern while Y-tiling is 16B by 4 rows
610 * regardless of image format size. As long as everything is aligned to 8,
611 * we can just treat the W-tiled image as Y-tiled, ignore the layout
612 * difference within a cache line, and blast out data.
613 */
614 if (x0 % 8 != 0 || y0 % 8 != 0 || x1 % 8 != 0 || y1 % 8 != 0)
615 return false;
616
617 struct blorp_params params;
618 blorp_params_init(&params);
619
620 if (!blorp_params_get_clear_kernel(batch, &params, true, false))
621 return false;
622
623 memset(&params.wm_inputs.clear_color, stencil_value,
624 sizeof(params.wm_inputs.clear_color));
625
626 /* The Sandy Bridge PRM Vol. 4 Pt. 2, section 2.11.2.1.1 has the
627 * following footnote to the format table:
628 *
629 * 128 BPE Formats cannot be Tiled Y when used as render targets
630 *
631 * We have to use RGBA16_UINT on SNB.
632 */
633 enum isl_format wide_format;
634 if (ISL_DEV_GEN(batch->blorp->isl_dev) <= 6) {
635 wide_format = ISL_FORMAT_R16G16B16A16_UINT;
636
637 /* For RGBA16_UINT, we need to mask the stencil value otherwise, we risk
638 * clamping giving us the wrong values
639 */
640 for (unsigned i = 0; i < 4; i++)
641 params.wm_inputs.clear_color[i] &= 0xffff;
642 } else {
643 wide_format = ISL_FORMAT_R32G32B32A32_UINT;
644 }
645
646 for (uint32_t a = 0; a < num_layers; a++) {
647 uint32_t layer = start_layer + a;
648
649 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
650 layer, ISL_FORMAT_UNSUPPORTED, true);
651
652 if (surf->surf->samples > 1)
653 blorp_surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params.dst);
654
655 /* Make it Y-tiled */
656 blorp_surf_retile_w_to_y(batch->blorp->isl_dev, &params.dst);
657
658 unsigned wide_Bpp =
659 isl_format_get_layout(wide_format)->bpb / 8;
660
661 params.dst.view.format = params.dst.surf.format = wide_format;
662 assert(params.dst.surf.logical_level0_px.width % wide_Bpp == 0);
663 params.dst.surf.logical_level0_px.width /= wide_Bpp;
664 assert(params.dst.tile_x_sa % wide_Bpp == 0);
665 params.dst.tile_x_sa /= wide_Bpp;
666
667 params.x0 = params.dst.tile_x_sa + x0 / (wide_Bpp / 2);
668 params.y0 = params.dst.tile_y_sa + y0 / 2;
669 params.x1 = params.dst.tile_x_sa + x1 / (wide_Bpp / 2);
670 params.y1 = params.dst.tile_y_sa + y1 / 2;
671
672 batch->blorp->exec(batch, &params);
673 }
674
675 return true;
676 }
677
678 void
679 blorp_clear_depth_stencil(struct blorp_batch *batch,
680 const struct blorp_surf *depth,
681 const struct blorp_surf *stencil,
682 uint32_t level, uint32_t start_layer,
683 uint32_t num_layers,
684 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
685 bool clear_depth, float depth_value,
686 uint8_t stencil_mask, uint8_t stencil_value)
687 {
688 if (!clear_depth && blorp_clear_stencil_as_rgba(batch, stencil, level,
689 start_layer, num_layers,
690 x0, y0, x1, y1,
691 stencil_mask,
692 stencil_value))
693 return;
694
695 struct blorp_params params;
696 blorp_params_init(&params);
697
698 params.x0 = x0;
699 params.y0 = y0;
700 params.x1 = x1;
701 params.y1 = y1;
702
703 if (ISL_DEV_GEN(batch->blorp->isl_dev) == 6) {
704 /* For some reason, Sandy Bridge gets occlusion queries wrong if we
705 * don't have a shader. In particular, it records samples even though
706 * we disable statistics in 3DSTATE_WM. Give it the usual clear shader
707 * to work around the issue.
708 */
709 if (!blorp_params_get_clear_kernel(batch, &params, false, false))
710 return;
711 }
712
713 while (num_layers > 0) {
714 params.num_layers = num_layers;
715
716 if (stencil_mask) {
717 brw_blorp_surface_info_init(batch->blorp, &params.stencil, stencil,
718 level, start_layer,
719 ISL_FORMAT_UNSUPPORTED, true);
720 params.stencil_mask = stencil_mask;
721 params.stencil_ref = stencil_value;
722
723 params.dst.surf.samples = params.stencil.surf.samples;
724 params.dst.surf.logical_level0_px =
725 params.stencil.surf.logical_level0_px;
726 params.dst.view = params.stencil.view;
727
728 params.num_samples = params.stencil.surf.samples;
729
730 /* We may be restricted on the number of layers we can bind at any
731 * one time. In particular, Sandy Bridge has a maximum number of
732 * layers of 512 but a maximum 3D texture size is much larger.
733 */
734 if (params.stencil.view.array_len < params.num_layers)
735 params.num_layers = params.stencil.view.array_len;
736 }
737
738 if (clear_depth) {
739 brw_blorp_surface_info_init(batch->blorp, &params.depth, depth,
740 level, start_layer,
741 ISL_FORMAT_UNSUPPORTED, true);
742 params.z = depth_value;
743 params.depth_format =
744 isl_format_get_depth_format(depth->surf->format, false);
745
746 params.dst.surf.samples = params.depth.surf.samples;
747 params.dst.surf.logical_level0_px =
748 params.depth.surf.logical_level0_px;
749 params.dst.view = params.depth.view;
750
751 params.num_samples = params.depth.surf.samples;
752
753 /* We may be restricted on the number of layers we can bind at any
754 * one time. In particular, Sandy Bridge has a maximum number of
755 * layers of 512 but a maximum 3D texture size is much larger.
756 */
757 if (params.depth.view.array_len < params.num_layers)
758 params.num_layers = params.depth.view.array_len;
759 }
760
761 batch->blorp->exec(batch, &params);
762
763 start_layer += params.num_layers;
764 num_layers -= params.num_layers;
765 }
766 }
767
768 bool
769 blorp_can_hiz_clear_depth(const struct gen_device_info *devinfo,
770 const struct isl_surf *surf,
771 enum isl_aux_usage aux_usage,
772 uint32_t level, uint32_t layer,
773 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
774 {
775 /* This function currently doesn't support any gen prior to gen8 */
776 assert(devinfo->gen >= 8);
777
778 if (devinfo->gen == 8 && surf->format == ISL_FORMAT_R16_UNORM) {
779 /* Apply the D16 alignment restrictions. On BDW, HiZ has an 8x4 sample
780 * block with the following property: as the number of samples increases,
781 * the number of pixels representable by this block decreases by a factor
782 * of the sample dimensions. Sample dimensions scale following the MSAA
783 * interleaved pattern.
784 *
785 * Sample|Sample|Pixel
786 * Count |Dim |Dim
787 * ===================
788 * 1 | 1x1 | 8x4
789 * 2 | 2x1 | 4x4
790 * 4 | 2x2 | 4x2
791 * 8 | 4x2 | 2x2
792 * 16 | 4x4 | 2x1
793 *
794 * Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
795 */
796 const struct isl_extent2d sa_block_dim =
797 isl_get_interleaved_msaa_px_size_sa(surf->samples);
798 const uint8_t align_px_w = 8 / sa_block_dim.w;
799 const uint8_t align_px_h = 4 / sa_block_dim.h;
800
801 /* Fast depth clears clear an entire sample block at a time. As a result,
802 * the rectangle must be aligned to the dimensions of the encompassing
803 * pixel block for a successful operation.
804 *
805 * Fast clears can still work if the upper-left corner is aligned and the
806 * bottom-rigtht corner touches the edge of a depth buffer whose extent
807 * is unaligned. This is because each miplevel in the depth buffer is
808 * padded by the Pixel Dim (similar to a standard compressed texture).
809 * In this case, the clear rectangle could be padded by to match the full
810 * depth buffer extent but to support multiple clearing techniques, we
811 * chose to be unaware of the depth buffer's extent and thus don't handle
812 * this case.
813 */
814 if (x0 % align_px_w || y0 % align_px_h ||
815 x1 % align_px_w || y1 % align_px_h)
816 return false;
817 } else if (aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT) {
818 /* We have to set the WM_HZ_OP::FullSurfaceDepthandStencilClear bit
819 * whenever we clear an uninitialized HIZ buffer (as some drivers
820 * currently do). However, this bit seems liable to clear 16x8 pixels in
821 * the ZCS on Gen12 - greater than the slice alignments for depth
822 * buffers.
823 */
824 assert(surf->image_alignment_el.w % 16 != 0 ||
825 surf->image_alignment_el.h % 8 != 0);
826
827 /* This is the hypothesis behind some corruption that was seen with the
828 * amd_vertex_shader_layer-layered-depth-texture-render piglit test.
829 *
830 * From the Compressed Depth Buffers section of the Bspec, under the
831 * Gen12 texture performant and ZCS columns:
832 *
833 * Update with clear at either 16x8 or 8x4 granularity, based on
834 * fs_clr or otherwise.
835 *
836 * There are a number of ways to avoid full surface CCS clears that
837 * overlap other slices, but for now we choose to disable fast-clears
838 * when an initializing clear could hit another miplevel.
839 *
840 * NOTE: Because the CCS compresses the depth buffer and not a version
841 * of it that has been rearranged with different alignments (like Gen8+
842 * HIZ), we have to make sure that the x0 and y0 are at least 16x8
843 * aligned in the context of the entire surface.
844 */
845 uint32_t slice_x0, slice_y0;
846 isl_surf_get_image_offset_el(surf, level,
847 surf->dim == ISL_SURF_DIM_3D ? 0 : layer,
848 surf->dim == ISL_SURF_DIM_3D ? layer: 0,
849 &slice_x0, &slice_y0);
850 const bool max_x1_y1 =
851 x1 == minify(surf->logical_level0_px.width, level) &&
852 y1 == minify(surf->logical_level0_px.height, level);
853 const uint32_t haligned_x1 = ALIGN(x1, surf->image_alignment_el.w);
854 const uint32_t valigned_y1 = ALIGN(y1, surf->image_alignment_el.h);
855 const bool unaligned = (slice_x0 + x0) % 16 || (slice_y0 + y0) % 8 ||
856 max_x1_y1 ? haligned_x1 % 16 || valigned_y1 % 8 :
857 x1 % 16 || y1 % 8;
858 const bool alignment_used = surf->levels > 1 ||
859 surf->logical_level0_px.depth > 1 ||
860 surf->logical_level0_px.array_len > 1;
861
862 if (unaligned && alignment_used)
863 return false;
864 }
865
866 return isl_aux_usage_has_hiz(aux_usage);
867 }
868
869 void
870 blorp_hiz_clear_depth_stencil(struct blorp_batch *batch,
871 const struct blorp_surf *depth,
872 const struct blorp_surf *stencil,
873 uint32_t level,
874 uint32_t start_layer, uint32_t num_layers,
875 uint32_t x0, uint32_t y0,
876 uint32_t x1, uint32_t y1,
877 bool clear_depth, float depth_value,
878 bool clear_stencil, uint8_t stencil_value)
879 {
880 struct blorp_params params;
881 blorp_params_init(&params);
882
883 /* This requires WM_HZ_OP which only exists on gen8+ */
884 assert(ISL_DEV_GEN(batch->blorp->isl_dev) >= 8);
885
886 params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
887 params.num_layers = 1;
888
889 params.x0 = x0;
890 params.y0 = y0;
891 params.x1 = x1;
892 params.y1 = y1;
893
894 for (uint32_t l = 0; l < num_layers; l++) {
895 const uint32_t layer = start_layer + l;
896 if (clear_stencil) {
897 brw_blorp_surface_info_init(batch->blorp, &params.stencil, stencil,
898 level, layer,
899 ISL_FORMAT_UNSUPPORTED, true);
900 params.stencil_mask = 0xff;
901 params.stencil_ref = stencil_value;
902 params.num_samples = params.stencil.surf.samples;
903 }
904
905 if (clear_depth) {
906 /* If we're clearing depth, we must have HiZ */
907 assert(depth && depth->aux_usage == ISL_AUX_USAGE_HIZ);
908
909 brw_blorp_surface_info_init(batch->blorp, &params.depth, depth,
910 level, layer,
911 ISL_FORMAT_UNSUPPORTED, true);
912 params.depth.clear_color.f32[0] = depth_value;
913 params.depth_format =
914 isl_format_get_depth_format(depth->surf->format, false);
915 params.num_samples = params.depth.surf.samples;
916 }
917
918 batch->blorp->exec(batch, &params);
919 }
920 }
921
922 /* Given a depth stencil attachment, this function performs a fast depth clear
923 * on a depth portion and a regular clear on the stencil portion. When
924 * performing a fast depth clear on the depth portion, the HiZ buffer is simply
925 * tagged as cleared so the depth clear value is not actually needed.
926 */
927 void
928 blorp_gen8_hiz_clear_attachments(struct blorp_batch *batch,
929 uint32_t num_samples,
930 uint32_t x0, uint32_t y0,
931 uint32_t x1, uint32_t y1,
932 bool clear_depth, bool clear_stencil,
933 uint8_t stencil_value)
934 {
935 assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
936
937 struct blorp_params params;
938 blorp_params_init(&params);
939 params.num_layers = 1;
940 params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
941 params.x0 = x0;
942 params.y0 = y0;
943 params.x1 = x1;
944 params.y1 = y1;
945 params.num_samples = num_samples;
946 params.depth.enabled = clear_depth;
947 params.stencil.enabled = clear_stencil;
948 params.stencil_ref = stencil_value;
949 batch->blorp->exec(batch, &params);
950 }
951
952 /** Clear active color/depth/stencili attachments
953 *
954 * This function performs a clear operation on the currently bound
955 * color/depth/stencil attachments. It is assumed that any information passed
956 * in here is valid, consistent, and in-bounds relative to the currently
957 * attached depth/stencil. The binding_table_offset parameter is the 32-bit
958 * offset relative to surface state base address where pre-baked binding table
959 * that we are to use lives. If clear_color is false, binding_table_offset
960 * must point to a binding table with one entry which is a valid null surface
961 * that matches the currently bound depth and stencil.
962 */
963 void
964 blorp_clear_attachments(struct blorp_batch *batch,
965 uint32_t binding_table_offset,
966 enum isl_format depth_format,
967 uint32_t num_samples,
968 uint32_t start_layer, uint32_t num_layers,
969 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
970 bool clear_color, union isl_color_value color_value,
971 bool clear_depth, float depth_value,
972 uint8_t stencil_mask, uint8_t stencil_value)
973 {
974 struct blorp_params params;
975 blorp_params_init(&params);
976
977 assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
978
979 params.x0 = x0;
980 params.y0 = y0;
981 params.x1 = x1;
982 params.y1 = y1;
983
984 params.use_pre_baked_binding_table = true;
985 params.pre_baked_binding_table_offset = binding_table_offset;
986
987 params.num_layers = num_layers;
988 params.num_samples = num_samples;
989
990 if (clear_color) {
991 params.dst.enabled = true;
992
993 memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
994
995 /* Unfortunately, without knowing whether or not our destination surface
996 * is tiled or not, we have to assume it may be linear. This means no
997 * SIMD16_REPDATA for us. :-(
998 */
999 if (!blorp_params_get_clear_kernel(batch, &params, false, false))
1000 return;
1001 }
1002
1003 if (clear_depth) {
1004 params.depth.enabled = true;
1005
1006 params.z = depth_value;
1007 params.depth_format = isl_format_get_depth_format(depth_format, false);
1008 }
1009
1010 if (stencil_mask) {
1011 params.stencil.enabled = true;
1012
1013 params.stencil_mask = stencil_mask;
1014 params.stencil_ref = stencil_value;
1015 }
1016
1017 if (!blorp_params_get_layer_offset_vs(batch, &params))
1018 return;
1019
1020 params.vs_inputs.base_layer = start_layer;
1021
1022 batch->blorp->exec(batch, &params);
1023 }
1024
1025 void
1026 blorp_ccs_resolve(struct blorp_batch *batch,
1027 struct blorp_surf *surf, uint32_t level,
1028 uint32_t start_layer, uint32_t num_layers,
1029 enum isl_format format,
1030 enum isl_aux_op resolve_op)
1031 {
1032 struct blorp_params params;
1033
1034 blorp_params_init(&params);
1035 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf,
1036 level, start_layer, format, true);
1037
1038 /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
1039 *
1040 * A rectangle primitive must be scaled down by the following factors
1041 * with respect to render target being resolved.
1042 *
1043 * The scaledown factors in the table that follows are related to the block
1044 * size of the CCS format. For IVB and HSW, we divide by two, for BDW we
1045 * multiply by 8 and 16. On Sky Lake, we multiply by 8.
1046 */
1047 const struct isl_format_layout *aux_fmtl =
1048 isl_format_get_layout(params.dst.aux_surf.format);
1049 assert(aux_fmtl->txc == ISL_TXC_CCS);
1050
1051 unsigned x_scaledown, y_scaledown;
1052 if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 12) {
1053 x_scaledown = aux_fmtl->bw * 8;
1054 y_scaledown = aux_fmtl->bh * 4;
1055 } else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) {
1056 x_scaledown = aux_fmtl->bw * 8;
1057 y_scaledown = aux_fmtl->bh * 8;
1058 } else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
1059 x_scaledown = aux_fmtl->bw * 8;
1060 y_scaledown = aux_fmtl->bh * 16;
1061 } else {
1062 x_scaledown = aux_fmtl->bw / 2;
1063 y_scaledown = aux_fmtl->bh / 2;
1064 }
1065 params.x0 = params.y0 = 0;
1066 params.x1 = minify(params.dst.surf.logical_level0_px.width, level);
1067 params.y1 = minify(params.dst.surf.logical_level0_px.height, level);
1068 params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
1069 params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
1070
1071 if (batch->blorp->isl_dev->info->gen >= 10) {
1072 assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
1073 resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE ||
1074 resolve_op == ISL_AUX_OP_AMBIGUATE);
1075 } else if (batch->blorp->isl_dev->info->gen >= 9) {
1076 assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
1077 resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
1078 } else {
1079 /* Broadwell and earlier do not have a partial resolve */
1080 assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE);
1081 }
1082 params.fast_clear_op = resolve_op;
1083 params.num_layers = num_layers;
1084
1085 /* Note: there is no need to initialize push constants because it doesn't
1086 * matter what data gets dispatched to the render target. However, we must
1087 * ensure that the fragment shader delivers the data using the "replicated
1088 * color" message.
1089 */
1090
1091 if (!blorp_params_get_clear_kernel(batch, &params, true, false))
1092 return;
1093
1094 batch->blorp->exec(batch, &params);
1095 }
1096
1097 static nir_ssa_def *
1098 blorp_nir_bit(nir_builder *b, nir_ssa_def *src, unsigned bit)
1099 {
1100 return nir_iand(b, nir_ushr(b, src, nir_imm_int(b, bit)),
1101 nir_imm_int(b, 1));
1102 }
1103
1104 #pragma pack(push, 1)
1105 struct blorp_mcs_partial_resolve_key
1106 {
1107 enum blorp_shader_type shader_type;
1108 bool indirect_clear_color;
1109 bool int_format;
1110 uint32_t num_samples;
1111 };
1112 #pragma pack(pop)
1113
1114 static bool
1115 blorp_params_get_mcs_partial_resolve_kernel(struct blorp_batch *batch,
1116 struct blorp_params *params)
1117 {
1118 struct blorp_context *blorp = batch->blorp;
1119 const struct blorp_mcs_partial_resolve_key blorp_key = {
1120 .shader_type = BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE,
1121 .indirect_clear_color = params->dst.clear_color_addr.buffer != NULL,
1122 .int_format = isl_format_has_int_channel(params->dst.view.format),
1123 .num_samples = params->num_samples,
1124 };
1125
1126 if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
1127 &params->wm_prog_kernel, &params->wm_prog_data))
1128 return true;
1129
1130 void *mem_ctx = ralloc_context(NULL);
1131
1132 nir_builder b;
1133 blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT,
1134 "BLORP-mcs-partial-resolve");
1135
1136 nir_variable *v_color =
1137 BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
1138
1139 nir_variable *frag_color =
1140 nir_variable_create(b.shader, nir_var_shader_out,
1141 glsl_vec4_type(), "gl_FragColor");
1142 frag_color->data.location = FRAG_RESULT_COLOR;
1143
1144 /* Do an MCS fetch and check if it is equal to the magic clear value */
1145 nir_ssa_def *mcs =
1146 blorp_nir_txf_ms_mcs(&b, nir_f2i32(&b, nir_load_frag_coord(&b)),
1147 nir_load_layer_id(&b));
1148 nir_ssa_def *is_clear =
1149 blorp_nir_mcs_is_clear_color(&b, mcs, blorp_key.num_samples);
1150
1151 /* If we aren't the clear value, discard. */
1152 nir_intrinsic_instr *discard =
1153 nir_intrinsic_instr_create(b.shader, nir_intrinsic_discard_if);
1154 discard->src[0] = nir_src_for_ssa(nir_inot(&b, is_clear));
1155 nir_builder_instr_insert(&b, &discard->instr);
1156
1157 nir_ssa_def *clear_color = nir_load_var(&b, v_color);
1158 if (blorp_key.indirect_clear_color && blorp->isl_dev->info->gen <= 8) {
1159 /* Gen7-8 clear colors are stored as single 0/1 bits */
1160 clear_color = nir_vec4(&b, blorp_nir_bit(&b, clear_color, 31),
1161 blorp_nir_bit(&b, clear_color, 30),
1162 blorp_nir_bit(&b, clear_color, 29),
1163 blorp_nir_bit(&b, clear_color, 28));
1164
1165 if (!blorp_key.int_format)
1166 clear_color = nir_i2f32(&b, clear_color);
1167 }
1168 nir_store_var(&b, frag_color, clear_color, 0xf);
1169
1170 struct brw_wm_prog_key wm_key;
1171 brw_blorp_init_wm_prog_key(&wm_key);
1172 wm_key.base.tex.compressed_multisample_layout_mask = 1;
1173 wm_key.base.tex.msaa_16 = blorp_key.num_samples == 16;
1174 wm_key.multisample_fbo = true;
1175
1176 struct brw_wm_prog_data prog_data;
1177 const unsigned *program =
1178 blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, false,
1179 &prog_data);
1180
1181 bool result =
1182 blorp->upload_shader(batch, MESA_SHADER_FRAGMENT,
1183 &blorp_key, sizeof(blorp_key),
1184 program, prog_data.base.program_size,
1185 &prog_data.base, sizeof(prog_data),
1186 &params->wm_prog_kernel, &params->wm_prog_data);
1187
1188 ralloc_free(mem_ctx);
1189 return result;
1190 }
1191
1192 void
1193 blorp_mcs_partial_resolve(struct blorp_batch *batch,
1194 struct blorp_surf *surf,
1195 enum isl_format format,
1196 uint32_t start_layer, uint32_t num_layers)
1197 {
1198 struct blorp_params params;
1199 blorp_params_init(&params);
1200
1201 assert(batch->blorp->isl_dev->info->gen >= 7);
1202
1203 params.x0 = 0;
1204 params.y0 = 0;
1205 params.x1 = surf->surf->logical_level0_px.width;
1206 params.y1 = surf->surf->logical_level0_px.height;
1207
1208 brw_blorp_surface_info_init(batch->blorp, &params.src, surf, 0,
1209 start_layer, format, false);
1210 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, 0,
1211 start_layer, format, true);
1212
1213 params.num_samples = params.dst.surf.samples;
1214 params.num_layers = num_layers;
1215 params.dst_clear_color_as_input = surf->clear_color_addr.buffer != NULL;
1216
1217 memcpy(&params.wm_inputs.clear_color,
1218 surf->clear_color.f32, sizeof(float) * 4);
1219
1220 if (!blorp_params_get_mcs_partial_resolve_kernel(batch, &params))
1221 return;
1222
1223 batch->blorp->exec(batch, &params);
1224 }
1225
1226 /** Clear a CCS to the "uncompressed" state
1227 *
1228 * This pass is the CCS equivalent of a "HiZ resolve". It sets the CCS values
1229 * for a given layer/level of a surface to 0x0 which is the "uncompressed"
1230 * state which tells the sampler to go look at the main surface.
1231 */
1232 void
1233 blorp_ccs_ambiguate(struct blorp_batch *batch,
1234 struct blorp_surf *surf,
1235 uint32_t level, uint32_t layer)
1236 {
1237 if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 10) {
1238 /* On gen10 and above, we have a hardware resolve op for this */
1239 return blorp_ccs_resolve(batch, surf, level, layer, 1,
1240 surf->surf->format, ISL_AUX_OP_AMBIGUATE);
1241 }
1242
1243 struct blorp_params params;
1244 blorp_params_init(&params);
1245
1246 assert(ISL_DEV_GEN(batch->blorp->isl_dev) >= 7);
1247
1248 const struct isl_format_layout *aux_fmtl =
1249 isl_format_get_layout(surf->aux_surf->format);
1250 assert(aux_fmtl->txc == ISL_TXC_CCS);
1251
1252 params.dst = (struct brw_blorp_surface_info) {
1253 .enabled = true,
1254 .addr = surf->aux_addr,
1255 .view = {
1256 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
1257 .format = ISL_FORMAT_R32G32B32A32_UINT,
1258 .base_level = 0,
1259 .base_array_layer = 0,
1260 .levels = 1,
1261 .array_len = 1,
1262 .swizzle = ISL_SWIZZLE_IDENTITY,
1263 },
1264 };
1265
1266 uint32_t z = 0;
1267 if (surf->surf->dim == ISL_SURF_DIM_3D) {
1268 z = layer;
1269 layer = 0;
1270 }
1271
1272 uint32_t offset_B, x_offset_el, y_offset_el;
1273 isl_surf_get_image_offset_el(surf->aux_surf, level, layer, z,
1274 &x_offset_el, &y_offset_el);
1275 isl_tiling_get_intratile_offset_el(surf->aux_surf->tiling, aux_fmtl->bpb,
1276 surf->aux_surf->row_pitch_B,
1277 x_offset_el, y_offset_el,
1278 &offset_B, &x_offset_el, &y_offset_el);
1279 params.dst.addr.offset += offset_B;
1280
1281 const uint32_t width_px =
1282 minify(surf->aux_surf->logical_level0_px.width, level);
1283 const uint32_t height_px =
1284 minify(surf->aux_surf->logical_level0_px.height, level);
1285 const uint32_t width_el = DIV_ROUND_UP(width_px, aux_fmtl->bw);
1286 const uint32_t height_el = DIV_ROUND_UP(height_px, aux_fmtl->bh);
1287
1288 struct isl_tile_info ccs_tile_info;
1289 isl_surf_get_tile_info(surf->aux_surf, &ccs_tile_info);
1290
1291 /* We're going to map it as a regular RGBA32_UINT surface. We need to
1292 * downscale a good deal. We start by computing the area on the CCS to
1293 * clear in units of Y-tiled cache lines.
1294 */
1295 uint32_t x_offset_cl, y_offset_cl, width_cl, height_cl;
1296 if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
1297 /* From the Sky Lake PRM Vol. 12 in the section on planes:
1298 *
1299 * "The Color Control Surface (CCS) contains the compression status
1300 * of the cache-line pairs. The compression state of the cache-line
1301 * pair is specified by 2 bits in the CCS. Each CCS cache-line
1302 * represents an area on the main surface of 16x16 sets of 128 byte
1303 * Y-tiled cache-line-pairs. CCS is always Y tiled."
1304 *
1305 * Each 2-bit surface element in the CCS corresponds to a single
1306 * cache-line pair in the main surface. This means that 16x16 el block
1307 * in the CCS maps to a Y-tiled cache line. Fortunately, CCS layouts
1308 * are calculated with a very large alignment so we can round up to a
1309 * whole cache line without worrying about overdraw.
1310 */
1311
1312 /* On Broadwell and above, a CCS tile is the same as a Y tile when
1313 * viewed at the cache-line granularity. Fortunately, the horizontal
1314 * and vertical alignment requirements of the CCS are such that we can
1315 * align to an entire cache line without worrying about crossing over
1316 * from one LOD to another.
1317 */
1318 const uint32_t x_el_per_cl = ccs_tile_info.logical_extent_el.w / 8;
1319 const uint32_t y_el_per_cl = ccs_tile_info.logical_extent_el.h / 8;
1320 assert(surf->aux_surf->image_alignment_el.w % x_el_per_cl == 0);
1321 assert(surf->aux_surf->image_alignment_el.h % y_el_per_cl == 0);
1322
1323 assert(x_offset_el % x_el_per_cl == 0);
1324 assert(y_offset_el % y_el_per_cl == 0);
1325 x_offset_cl = x_offset_el / x_el_per_cl;
1326 y_offset_cl = y_offset_el / y_el_per_cl;
1327 width_cl = DIV_ROUND_UP(width_el, x_el_per_cl);
1328 height_cl = DIV_ROUND_UP(height_el, y_el_per_cl);
1329 } else {
1330 /* On gen7, the CCS tiling is not so nice. However, there we are
1331 * guaranteed that we only have a single level and slice so we don't
1332 * have to worry about it and can just align to a whole tile.
1333 */
1334 assert(surf->aux_surf->logical_level0_px.depth == 1);
1335 assert(surf->aux_surf->logical_level0_px.array_len == 1);
1336 assert(x_offset_el == 0 && y_offset_el == 0);
1337 const uint32_t width_tl =
1338 DIV_ROUND_UP(width_el, ccs_tile_info.logical_extent_el.w);
1339 const uint32_t height_tl =
1340 DIV_ROUND_UP(height_el, ccs_tile_info.logical_extent_el.h);
1341 x_offset_cl = 0;
1342 y_offset_cl = 0;
1343 width_cl = width_tl * 8;
1344 height_cl = height_tl * 8;
1345 }
1346
1347 /* We're going to use a RGBA32 format so as to write data as quickly as
1348 * possible. A y-tiled cache line will then be 1x4 px.
1349 */
1350 const uint32_t x_offset_rgba_px = x_offset_cl;
1351 const uint32_t y_offset_rgba_px = y_offset_cl * 4;
1352 const uint32_t width_rgba_px = width_cl;
1353 const uint32_t height_rgba_px = height_cl * 4;
1354
1355 ASSERTED bool ok =
1356 isl_surf_init(batch->blorp->isl_dev, &params.dst.surf,
1357 .dim = ISL_SURF_DIM_2D,
1358 .format = ISL_FORMAT_R32G32B32A32_UINT,
1359 .width = width_rgba_px + x_offset_rgba_px,
1360 .height = height_rgba_px + y_offset_rgba_px,
1361 .depth = 1,
1362 .levels = 1,
1363 .array_len = 1,
1364 .samples = 1,
1365 .row_pitch_B = surf->aux_surf->row_pitch_B,
1366 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
1367 .tiling_flags = ISL_TILING_Y0_BIT);
1368 assert(ok);
1369
1370 params.x0 = x_offset_rgba_px;
1371 params.y0 = y_offset_rgba_px;
1372 params.x1 = x_offset_rgba_px + width_rgba_px;
1373 params.y1 = y_offset_rgba_px + height_rgba_px;
1374
1375 /* A CCS value of 0 means "uncompressed." */
1376 memset(&params.wm_inputs.clear_color, 0,
1377 sizeof(params.wm_inputs.clear_color));
1378
1379 if (!blorp_params_get_clear_kernel(batch, &params, true, false))
1380 return;
1381
1382 batch->blorp->exec(batch, &params);
1383 }