intel/blorp: Apply Gen4 coord. normalization after cubemap sizes are adjusted
[mesa.git] / src / intel / blorp / blorp_clear.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/ralloc.h"
25
26 #include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
27 #include "util/format_rgb9e5.h"
28
29 #include "blorp_priv.h"
30 #include "compiler/brw_eu_defines.h"
31
32 #include "compiler/nir/nir_builder.h"
33
34 #define FILE_DEBUG_FLAG DEBUG_BLORP
35
36 struct brw_blorp_const_color_prog_key
37 {
38 enum blorp_shader_type shader_type; /* Must be BLORP_SHADER_TYPE_CLEAR */
39 bool use_simd16_replicated_data;
40 bool pad[3];
41 };
42
43 static bool
44 blorp_params_get_clear_kernel(struct blorp_context *blorp,
45 struct blorp_params *params,
46 bool use_replicated_data)
47 {
48 const struct brw_blorp_const_color_prog_key blorp_key = {
49 .shader_type = BLORP_SHADER_TYPE_CLEAR,
50 .use_simd16_replicated_data = use_replicated_data,
51 };
52
53 if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
54 &params->wm_prog_kernel, &params->wm_prog_data))
55 return true;
56
57 void *mem_ctx = ralloc_context(NULL);
58
59 nir_builder b;
60 nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
61 b.shader->info.name = ralloc_strdup(b.shader, "BLORP-clear");
62
63 nir_variable *v_color =
64 BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
65
66 nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
67 glsl_vec4_type(),
68 "gl_FragColor");
69 frag_color->data.location = FRAG_RESULT_COLOR;
70
71 nir_copy_var(&b, frag_color, v_color);
72
73 struct brw_wm_prog_key wm_key;
74 brw_blorp_init_wm_prog_key(&wm_key);
75
76 struct brw_wm_prog_data prog_data;
77 unsigned program_size;
78 const unsigned *program =
79 blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
80 &prog_data, &program_size);
81
82 bool result =
83 blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
84 program, program_size,
85 &prog_data.base, sizeof(prog_data),
86 &params->wm_prog_kernel, &params->wm_prog_data);
87
88 ralloc_free(mem_ctx);
89 return result;
90 }
91
92 struct layer_offset_vs_key {
93 enum blorp_shader_type shader_type;
94 unsigned num_inputs;
95 };
96
97 /* In the case of doing attachment clears, we are using a surface state that
98 * is handed to us so we can't set (and don't even know) the base array layer.
99 * In order to do a layered clear in this scenario, we need some way of adding
100 * the base array layer to the instance id. Unfortunately, our hardware has
101 * no real concept of "base instance", so we have to do it manually in a
102 * vertex shader.
103 */
104 static bool
105 blorp_params_get_layer_offset_vs(struct blorp_context *blorp,
106 struct blorp_params *params)
107 {
108 struct layer_offset_vs_key blorp_key = {
109 .shader_type = BLORP_SHADER_TYPE_LAYER_OFFSET_VS,
110 };
111
112 if (params->wm_prog_data)
113 blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
114
115 if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
116 &params->vs_prog_kernel, &params->vs_prog_data))
117 return true;
118
119 void *mem_ctx = ralloc_context(NULL);
120
121 nir_builder b;
122 nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_VERTEX, NULL);
123 b.shader->info.name = ralloc_strdup(b.shader, "BLORP-layer-offset-vs");
124
125 const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
126
127 /* First we deal with the header which has instance and base instance */
128 nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
129 uvec4_type, "header");
130 a_header->data.location = VERT_ATTRIB_GENERIC0;
131
132 nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
133 glsl_int_type(), "layer_id");
134 v_layer->data.location = VARYING_SLOT_LAYER;
135
136 /* Compute the layer id */
137 nir_ssa_def *header = nir_load_var(&b, a_header);
138 nir_ssa_def *base_layer = nir_channel(&b, header, 0);
139 nir_ssa_def *instance = nir_channel(&b, header, 1);
140 nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
141
142 /* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
143 nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
144 glsl_vec4_type(), "a_vertex");
145 a_vertex->data.location = VERT_ATTRIB_GENERIC1;
146
147 nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
148 glsl_vec4_type(), "v_pos");
149 v_pos->data.location = VARYING_SLOT_POS;
150
151 nir_copy_var(&b, v_pos, a_vertex);
152
153 /* Then we copy everything else */
154 for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
155 nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
156 uvec4_type, "input");
157 a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
158
159 nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
160 uvec4_type, "output");
161 v_out->data.location = VARYING_SLOT_VAR0 + i;
162
163 nir_copy_var(&b, v_out, a_in);
164 }
165
166 struct brw_vs_prog_data vs_prog_data;
167 memset(&vs_prog_data, 0, sizeof(vs_prog_data));
168
169 unsigned program_size;
170 const unsigned *program =
171 blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data, &program_size);
172
173 bool result =
174 blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
175 program, program_size,
176 &vs_prog_data.base.base, sizeof(vs_prog_data),
177 &params->vs_prog_kernel, &params->vs_prog_data);
178
179 ralloc_free(mem_ctx);
180 return result;
181 }
182
183 /* The x0, y0, x1, and y1 parameters must already be populated with the render
184 * area of the framebuffer to be cleared.
185 */
186 static void
187 get_fast_clear_rect(const struct isl_device *dev,
188 const struct isl_surf *aux_surf,
189 unsigned *x0, unsigned *y0,
190 unsigned *x1, unsigned *y1)
191 {
192 unsigned int x_align, y_align;
193 unsigned int x_scaledown, y_scaledown;
194
195 /* Only single sampled surfaces need to (and actually can) be resolved. */
196 if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
197 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
198 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
199 *
200 * Clear pass must have a clear rectangle that must follow
201 * alignment rules in terms of pixels and lines as shown in the
202 * table below. Further, the clear-rectangle height and width
203 * must be multiple of the following dimensions. If the height
204 * and width of the render target being cleared do not meet these
205 * requirements, an MCS buffer can be created such that it
206 * follows the requirement and covers the RT.
207 *
208 * The alignment size in the table that follows is related to the
209 * alignment size that is baked into the CCS surface format but with X
210 * alignment multiplied by 16 and Y alignment multiplied by 32.
211 */
212 x_align = isl_format_get_layout(aux_surf->format)->bw;
213 y_align = isl_format_get_layout(aux_surf->format)->bh;
214
215 x_align *= 16;
216
217 /* SKL+ line alignment requirement for Y-tiled are half those of the prior
218 * generations.
219 */
220 if (dev->info->gen >= 9)
221 y_align *= 16;
222 else
223 y_align *= 32;
224
225 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
226 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
227 *
228 * In order to optimize the performance MCS buffer (when bound to
229 * 1X RT) clear similarly to MCS buffer clear for MSRT case,
230 * clear rect is required to be scaled by the following factors
231 * in the horizontal and vertical directions:
232 *
233 * The X and Y scale down factors in the table that follows are each
234 * equal to half the alignment value computed above.
235 */
236 x_scaledown = x_align / 2;
237 y_scaledown = y_align / 2;
238
239 /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
240 * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
241 * Clear of Non-MultiSampled Render Target Restrictions":
242 *
243 * Clear rectangle must be aligned to two times the number of
244 * pixels in the table shown below due to 16x16 hashing across the
245 * slice.
246 */
247 x_align *= 2;
248 y_align *= 2;
249 } else {
250 assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
251
252 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
253 * Target(s)", beneath the "MSAA Compression" bullet (p326):
254 *
255 * Clear pass for this case requires that scaled down primitive
256 * is sent down with upper left co-ordinate to coincide with
257 * actual rectangle being cleared. For MSAA, clear rectangle’s
258 * height and width need to as show in the following table in
259 * terms of (width,height) of the RT.
260 *
261 * MSAA Width of Clear Rect Height of Clear Rect
262 * 2X Ceil(1/8*width) Ceil(1/2*height)
263 * 4X Ceil(1/8*width) Ceil(1/2*height)
264 * 8X Ceil(1/2*width) Ceil(1/2*height)
265 * 16X width Ceil(1/2*height)
266 *
267 * The text "with upper left co-ordinate to coincide with actual
268 * rectangle being cleared" is a little confusing--it seems to imply
269 * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
270 * feed the pipeline using the rectangle (x,y) to
271 * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
272 * the number of samples. Experiments indicate that this is not
273 * quite correct; actually, what the hardware appears to do is to
274 * align whatever rectangle is sent down the pipeline to the nearest
275 * multiple of 2x2 blocks, and then scale it up by a factor of N
276 * horizontally and 2 vertically. So the resulting alignment is 4
277 * vertically and either 4 or 16 horizontally, and the scaledown
278 * factor is 2 vertically and either 2 or 8 horizontally.
279 */
280 switch (aux_surf->format) {
281 case ISL_FORMAT_MCS_2X:
282 case ISL_FORMAT_MCS_4X:
283 x_scaledown = 8;
284 break;
285 case ISL_FORMAT_MCS_8X:
286 x_scaledown = 2;
287 break;
288 case ISL_FORMAT_MCS_16X:
289 x_scaledown = 1;
290 break;
291 default:
292 unreachable("Unexpected MCS format for fast clear");
293 }
294 y_scaledown = 2;
295 x_align = x_scaledown * 2;
296 y_align = y_scaledown * 2;
297 }
298
299 *x0 = ROUND_DOWN_TO(*x0, x_align) / x_scaledown;
300 *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
301 *x1 = ALIGN(*x1, x_align) / x_scaledown;
302 *y1 = ALIGN(*y1, y_align) / y_scaledown;
303 }
304
305 void
306 blorp_fast_clear(struct blorp_batch *batch,
307 const struct blorp_surf *surf, enum isl_format format,
308 uint32_t level, uint32_t start_layer, uint32_t num_layers,
309 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
310 {
311 struct blorp_params params;
312 blorp_params_init(&params);
313 params.num_layers = num_layers;
314
315 params.x0 = x0;
316 params.y0 = y0;
317 params.x1 = x1;
318 params.y1 = y1;
319
320 memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
321 params.fast_clear_op = BLORP_FAST_CLEAR_OP_CLEAR;
322
323 get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
324 &params.x0, &params.y0, &params.x1, &params.y1);
325
326 if (!blorp_params_get_clear_kernel(batch->blorp, &params, true))
327 return;
328
329 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
330 start_layer, format, true);
331 params.num_samples = params.dst.surf.samples;
332
333 batch->blorp->exec(batch, &params);
334 }
335
336 static union isl_color_value
337 swizzle_color_value(union isl_color_value src, struct isl_swizzle swizzle)
338 {
339 union isl_color_value dst = { .u32 = { 0, } };
340
341 /* We assign colors in ABGR order so that the first one will be taken in
342 * RGBA precedence order. According to the PRM docs for shader channel
343 * select, this matches Haswell hardware behavior.
344 */
345 if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
346 dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3];
347 if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
348 dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2];
349 if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
350 dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1];
351 if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
352 dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0];
353
354 return dst;
355 }
356
357 void
358 blorp_clear(struct blorp_batch *batch,
359 const struct blorp_surf *surf,
360 enum isl_format format, struct isl_swizzle swizzle,
361 uint32_t level, uint32_t start_layer, uint32_t num_layers,
362 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
363 union isl_color_value clear_color,
364 const bool color_write_disable[4])
365 {
366 struct blorp_params params;
367 blorp_params_init(&params);
368
369 /* Manually apply the clear destination swizzle. This way swizzled clears
370 * will work for swizzles which we can't normally use for rendering and it
371 * also ensures that they work on pre-Haswell hardware which can't swizlle
372 * at all.
373 */
374 clear_color = swizzle_color_value(clear_color, swizzle);
375 swizzle = ISL_SWIZZLE_IDENTITY;
376
377 if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
378 clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
379 format = ISL_FORMAT_R32_UINT;
380 } else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
381 /* Broadwell and earlier cannot render to this format so we need to work
382 * around it by swapping the colors around and using B4G4R4A4 instead.
383 */
384 const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
385 clear_color = swizzle_color_value(clear_color, ARGB);
386 format = ISL_FORMAT_B4G4R4A4_UNORM;
387 }
388
389 memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
390
391 bool use_simd16_replicated_data = true;
392
393 /* From the SNB PRM (Vol4_Part1):
394 *
395 * "Replicated data (Message Type = 111) is only supported when
396 * accessing tiled memory. Using this Message Type to access linear
397 * (untiled) memory is UNDEFINED."
398 */
399 if (surf->surf->tiling == ISL_TILING_LINEAR)
400 use_simd16_replicated_data = false;
401
402 /* Replicated clears don't work yet before gen6 */
403 if (batch->blorp->isl_dev->info->gen < 6)
404 use_simd16_replicated_data = false;
405
406 /* Constant color writes ignore everyting in blend and color calculator
407 * state. This is not documented.
408 */
409 if (color_write_disable) {
410 for (unsigned i = 0; i < 4; i++) {
411 params.color_write_disable[i] = color_write_disable[i];
412 if (color_write_disable[i])
413 use_simd16_replicated_data = false;
414 }
415 }
416
417 if (!blorp_params_get_clear_kernel(batch->blorp, &params,
418 use_simd16_replicated_data))
419 return;
420
421 if (!blorp_ensure_sf_program(batch->blorp, &params))
422 return;
423
424 while (num_layers > 0) {
425 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
426 start_layer, format, true);
427 params.dst.view.swizzle = swizzle;
428
429 params.x0 = x0;
430 params.y0 = y0;
431 params.x1 = x1;
432 params.y1 = y1;
433
434 /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
435 * Convert them to a single slice on gen4.
436 */
437 if (batch->blorp->isl_dev->info->gen == 4 &&
438 (params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) {
439 blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params.dst);
440
441 if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
442 /* This is gen4 so there is no multisampling and sa == px. */
443 params.x0 += params.dst.tile_x_sa;
444 params.y0 += params.dst.tile_y_sa;
445 params.x1 += params.dst.tile_x_sa;
446 params.y1 += params.dst.tile_y_sa;
447 }
448 }
449
450 params.num_samples = params.dst.surf.samples;
451
452 /* We may be restricted on the number of layers we can bind at any one
453 * time. In particular, Sandy Bridge has a maximum number of layers of
454 * 512 but a maximum 3D texture size is much larger.
455 */
456 params.num_layers = MIN2(params.dst.view.array_len, num_layers);
457 batch->blorp->exec(batch, &params);
458
459 start_layer += params.num_layers;
460 num_layers -= params.num_layers;
461 }
462 }
463
464 void
465 blorp_clear_depth_stencil(struct blorp_batch *batch,
466 const struct blorp_surf *depth,
467 const struct blorp_surf *stencil,
468 uint32_t level, uint32_t start_layer,
469 uint32_t num_layers,
470 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
471 bool clear_depth, float depth_value,
472 uint8_t stencil_mask, uint8_t stencil_value)
473 {
474 struct blorp_params params;
475 blorp_params_init(&params);
476
477 params.x0 = x0;
478 params.y0 = y0;
479 params.x1 = x1;
480 params.y1 = y1;
481
482 if (ISL_DEV_GEN(batch->blorp->isl_dev) == 6) {
483 /* For some reason, Sandy Bridge gets occlusion queries wrong if we
484 * don't have a shader. In particular, it records samples even though
485 * we disable statistics in 3DSTATE_WM. Give it the usual clear shader
486 * to work around the issue.
487 */
488 if (!blorp_params_get_clear_kernel(batch->blorp, &params, false))
489 return;
490 }
491
492 while (num_layers > 0) {
493 params.num_layers = num_layers;
494
495 if (stencil_mask) {
496 brw_blorp_surface_info_init(batch->blorp, &params.stencil, stencil,
497 level, start_layer,
498 ISL_FORMAT_UNSUPPORTED, true);
499 params.stencil_mask = stencil_mask;
500 params.stencil_ref = stencil_value;
501
502 params.dst.surf.samples = params.stencil.surf.samples;
503 params.dst.surf.logical_level0_px =
504 params.stencil.surf.logical_level0_px;
505 params.dst.view = params.depth.view;
506
507 params.num_samples = params.stencil.surf.samples;
508
509 /* We may be restricted on the number of layers we can bind at any
510 * one time. In particular, Sandy Bridge has a maximum number of
511 * layers of 512 but a maximum 3D texture size is much larger.
512 */
513 if (params.stencil.view.array_len < params.num_layers)
514 params.num_layers = params.stencil.view.array_len;
515 }
516
517 if (clear_depth) {
518 brw_blorp_surface_info_init(batch->blorp, &params.depth, depth,
519 level, start_layer,
520 ISL_FORMAT_UNSUPPORTED, true);
521 params.z = depth_value;
522 params.depth_format =
523 isl_format_get_depth_format(depth->surf->format, false);
524
525 params.dst.surf.samples = params.depth.surf.samples;
526 params.dst.surf.logical_level0_px =
527 params.depth.surf.logical_level0_px;
528 params.dst.view = params.depth.view;
529
530 params.num_samples = params.depth.surf.samples;
531
532 /* We may be restricted on the number of layers we can bind at any
533 * one time. In particular, Sandy Bridge has a maximum number of
534 * layers of 512 but a maximum 3D texture size is much larger.
535 */
536 if (params.depth.view.array_len < params.num_layers)
537 params.num_layers = params.depth.view.array_len;
538 }
539
540 batch->blorp->exec(batch, &params);
541
542 start_layer += params.num_layers;
543 num_layers -= params.num_layers;
544 }
545 }
546
547 bool
548 blorp_can_hiz_clear_depth(uint8_t gen, enum isl_format format,
549 uint32_t num_samples,
550 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
551 {
552 /* This function currently doesn't support any gen prior to gen8 */
553 assert(gen >= 8);
554
555 if (gen == 8 && format == ISL_FORMAT_R16_UNORM) {
556 /* Apply the D16 alignment restrictions. On BDW, HiZ has an 8x4 sample
557 * block with the following property: as the number of samples increases,
558 * the number of pixels representable by this block decreases by a factor
559 * of the sample dimensions. Sample dimensions scale following the MSAA
560 * interleaved pattern.
561 *
562 * Sample|Sample|Pixel
563 * Count |Dim |Dim
564 * ===================
565 * 1 | 1x1 | 8x4
566 * 2 | 2x1 | 4x4
567 * 4 | 2x2 | 4x2
568 * 8 | 4x2 | 2x2
569 * 16 | 4x4 | 2x1
570 *
571 * Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
572 */
573 const struct isl_extent2d sa_block_dim =
574 isl_get_interleaved_msaa_px_size_sa(num_samples);
575 const uint8_t align_px_w = 8 / sa_block_dim.w;
576 const uint8_t align_px_h = 4 / sa_block_dim.h;
577
578 /* Fast depth clears clear an entire sample block at a time. As a result,
579 * the rectangle must be aligned to the dimensions of the encompassing
580 * pixel block for a successful operation.
581 *
582 * Fast clears can still work if the upper-left corner is aligned and the
583 * bottom-rigtht corner touches the edge of a depth buffer whose extent
584 * is unaligned. This is because each miplevel in the depth buffer is
585 * padded by the Pixel Dim (similar to a standard compressed texture).
586 * In this case, the clear rectangle could be padded by to match the full
587 * depth buffer extent but to support multiple clearing techniques, we
588 * chose to be unaware of the depth buffer's extent and thus don't handle
589 * this case.
590 */
591 if (x0 % align_px_w || y0 % align_px_h ||
592 x1 % align_px_w || y1 % align_px_h)
593 return false;
594 }
595 return true;
596 }
597
598 /* Given a depth stencil attachment, this function performs a fast depth clear
599 * on a depth portion and a regular clear on the stencil portion. When
600 * performing a fast depth clear on the depth portion, the HiZ buffer is simply
601 * tagged as cleared so the depth clear value is not actually needed.
602 */
603 void
604 blorp_gen8_hiz_clear_attachments(struct blorp_batch *batch,
605 uint32_t num_samples,
606 uint32_t x0, uint32_t y0,
607 uint32_t x1, uint32_t y1,
608 bool clear_depth, bool clear_stencil,
609 uint8_t stencil_value)
610 {
611 assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
612
613 struct blorp_params params;
614 blorp_params_init(&params);
615 params.num_layers = 1;
616 params.hiz_op = BLORP_HIZ_OP_DEPTH_CLEAR;
617 params.x0 = x0;
618 params.y0 = y0;
619 params.x1 = x1;
620 params.y1 = y1;
621 params.num_samples = num_samples;
622 params.depth.enabled = clear_depth;
623 params.stencil.enabled = clear_stencil;
624 params.stencil_ref = stencil_value;
625 batch->blorp->exec(batch, &params);
626 }
627
628 /** Clear active color/depth/stencili attachments
629 *
630 * This function performs a clear operation on the currently bound
631 * color/depth/stencil attachments. It is assumed that any information passed
632 * in here is valid, consistent, and in-bounds relative to the currently
633 * attached depth/stencil. The binding_table_offset parameter is the 32-bit
634 * offset relative to surface state base address where pre-baked binding table
635 * that we are to use lives. If clear_color is false, binding_table_offset
636 * must point to a binding table with one entry which is a valid null surface
637 * that matches the currently bound depth and stencil.
638 */
639 void
640 blorp_clear_attachments(struct blorp_batch *batch,
641 uint32_t binding_table_offset,
642 enum isl_format depth_format,
643 uint32_t num_samples,
644 uint32_t start_layer, uint32_t num_layers,
645 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
646 bool clear_color, union isl_color_value color_value,
647 bool clear_depth, float depth_value,
648 uint8_t stencil_mask, uint8_t stencil_value)
649 {
650 struct blorp_params params;
651 blorp_params_init(&params);
652
653 assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
654
655 params.x0 = x0;
656 params.y0 = y0;
657 params.x1 = x1;
658 params.y1 = y1;
659
660 params.use_pre_baked_binding_table = true;
661 params.pre_baked_binding_table_offset = binding_table_offset;
662
663 params.num_layers = num_layers;
664 params.num_samples = num_samples;
665
666 if (clear_color) {
667 params.dst.enabled = true;
668
669 memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
670
671 /* Unfortunately, without knowing whether or not our destination surface
672 * is tiled or not, we have to assume it may be linear. This means no
673 * SIMD16_REPDATA for us. :-(
674 */
675 if (!blorp_params_get_clear_kernel(batch->blorp, &params, false))
676 return;
677 }
678
679 if (clear_depth) {
680 params.depth.enabled = true;
681
682 params.z = depth_value;
683 params.depth_format = isl_format_get_depth_format(depth_format, false);
684 }
685
686 if (stencil_mask) {
687 params.stencil.enabled = true;
688
689 params.stencil_mask = stencil_mask;
690 params.stencil_ref = stencil_value;
691 }
692
693 if (!blorp_params_get_layer_offset_vs(batch->blorp, &params))
694 return;
695
696 params.vs_inputs.base_layer = start_layer;
697
698 batch->blorp->exec(batch, &params);
699 }
700
701 void
702 blorp_ccs_resolve(struct blorp_batch *batch,
703 struct blorp_surf *surf, uint32_t level, uint32_t layer,
704 enum isl_format format,
705 enum blorp_fast_clear_op resolve_op)
706 {
707 struct blorp_params params;
708 blorp_params_init(&params);
709
710 /* Layered and mipmapped fast clear is only available from Gen8 onwards. */
711 assert(ISL_DEV_GEN(batch->blorp->isl_dev) >= 8 ||
712 (level == 0 && layer == 0));
713
714 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf,
715 level, layer, format, true);
716
717 /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
718 *
719 * A rectangle primitive must be scaled down by the following factors
720 * with respect to render target being resolved.
721 *
722 * The scaledown factors in the table that follows are related to the block
723 * size of the CCS format. For IVB and HSW, we divide by two, for BDW we
724 * multiply by 8 and 16. On Sky Lake, we multiply by 8.
725 */
726 const struct isl_format_layout *aux_fmtl =
727 isl_format_get_layout(params.dst.aux_surf.format);
728 assert(aux_fmtl->txc == ISL_TXC_CCS);
729
730 unsigned x_scaledown, y_scaledown;
731 if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) {
732 x_scaledown = aux_fmtl->bw * 8;
733 y_scaledown = aux_fmtl->bh * 8;
734 } else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
735 x_scaledown = aux_fmtl->bw * 8;
736 y_scaledown = aux_fmtl->bh * 16;
737 } else {
738 x_scaledown = aux_fmtl->bw / 2;
739 y_scaledown = aux_fmtl->bh / 2;
740 }
741 params.x0 = params.y0 = 0;
742 params.x1 = minify(params.dst.aux_surf.logical_level0_px.width, level);
743 params.y1 = minify(params.dst.aux_surf.logical_level0_px.height, level);
744 params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
745 params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
746
747 if (batch->blorp->isl_dev->info->gen >= 9) {
748 assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL ||
749 resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL);
750 } else {
751 /* Broadwell and earlier do not have a partial resolve */
752 assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
753 }
754 params.fast_clear_op = resolve_op;
755
756 /* Note: there is no need to initialize push constants because it doesn't
757 * matter what data gets dispatched to the render target. However, we must
758 * ensure that the fragment shader delivers the data using the "replicated
759 * color" message.
760 */
761
762 if (!blorp_params_get_clear_kernel(batch->blorp, &params, true))
763 return;
764
765 batch->blorp->exec(batch, &params);
766 }