intel/blorp: Use surf instead of aux_surf for image dimensions
[mesa.git] / src / intel / blorp / blorp_clear.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/ralloc.h"
25
26 #include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
27 #include "util/format_rgb9e5.h"
28 #include "util/format_srgb.h"
29
30 #include "blorp_priv.h"
31 #include "compiler/brw_eu_defines.h"
32
33 #include "blorp_nir_builder.h"
34
35 #define FILE_DEBUG_FLAG DEBUG_BLORP
36
37 struct brw_blorp_const_color_prog_key
38 {
39 enum blorp_shader_type shader_type; /* Must be BLORP_SHADER_TYPE_CLEAR */
40 bool use_simd16_replicated_data;
41 bool clear_rgb_as_red;
42 bool pad[3];
43 };
44
45 static bool
46 blorp_params_get_clear_kernel(struct blorp_batch *batch,
47 struct blorp_params *params,
48 bool use_replicated_data,
49 bool clear_rgb_as_red)
50 {
51 struct blorp_context *blorp = batch->blorp;
52
53 const struct brw_blorp_const_color_prog_key blorp_key = {
54 .shader_type = BLORP_SHADER_TYPE_CLEAR,
55 .use_simd16_replicated_data = use_replicated_data,
56 .clear_rgb_as_red = clear_rgb_as_red,
57 };
58
59 if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
60 &params->wm_prog_kernel, &params->wm_prog_data))
61 return true;
62
63 void *mem_ctx = ralloc_context(NULL);
64
65 nir_builder b;
66 blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, "BLORP-clear");
67
68 nir_variable *v_color =
69 BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
70 nir_ssa_def *color = nir_load_var(&b, v_color);
71
72 if (clear_rgb_as_red) {
73 nir_ssa_def *pos = nir_f2i32(&b, nir_load_frag_coord(&b));
74 nir_ssa_def *comp = nir_umod(&b, nir_channel(&b, pos, 0),
75 nir_imm_int(&b, 3));
76 nir_ssa_def *color_component =
77 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
78 nir_channel(&b, color, 0),
79 nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
80 nir_channel(&b, color, 1),
81 nir_channel(&b, color, 2)));
82
83 nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
84 color = nir_vec4(&b, color_component, u, u, u);
85 }
86
87 nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
88 glsl_vec4_type(),
89 "gl_FragColor");
90 frag_color->data.location = FRAG_RESULT_COLOR;
91 nir_store_var(&b, frag_color, color, 0xf);
92
93 struct brw_wm_prog_key wm_key;
94 brw_blorp_init_wm_prog_key(&wm_key);
95
96 struct brw_wm_prog_data prog_data;
97 const unsigned *program =
98 blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
99 &prog_data);
100
101 bool result =
102 blorp->upload_shader(batch, &blorp_key, sizeof(blorp_key),
103 program, prog_data.base.program_size,
104 &prog_data.base, sizeof(prog_data),
105 &params->wm_prog_kernel, &params->wm_prog_data);
106
107 ralloc_free(mem_ctx);
108 return result;
109 }
110
111 struct layer_offset_vs_key {
112 enum blorp_shader_type shader_type;
113 unsigned num_inputs;
114 };
115
116 /* In the case of doing attachment clears, we are using a surface state that
117 * is handed to us so we can't set (and don't even know) the base array layer.
118 * In order to do a layered clear in this scenario, we need some way of adding
119 * the base array layer to the instance id. Unfortunately, our hardware has
120 * no real concept of "base instance", so we have to do it manually in a
121 * vertex shader.
122 */
123 static bool
124 blorp_params_get_layer_offset_vs(struct blorp_batch *batch,
125 struct blorp_params *params)
126 {
127 struct blorp_context *blorp = batch->blorp;
128 struct layer_offset_vs_key blorp_key = {
129 .shader_type = BLORP_SHADER_TYPE_LAYER_OFFSET_VS,
130 };
131
132 if (params->wm_prog_data)
133 blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
134
135 if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
136 &params->vs_prog_kernel, &params->vs_prog_data))
137 return true;
138
139 void *mem_ctx = ralloc_context(NULL);
140
141 nir_builder b;
142 blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_VERTEX, "BLORP-layer-offset-vs");
143
144 const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
145
146 /* First we deal with the header which has instance and base instance */
147 nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
148 uvec4_type, "header");
149 a_header->data.location = VERT_ATTRIB_GENERIC0;
150
151 nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
152 glsl_int_type(), "layer_id");
153 v_layer->data.location = VARYING_SLOT_LAYER;
154
155 /* Compute the layer id */
156 nir_ssa_def *header = nir_load_var(&b, a_header);
157 nir_ssa_def *base_layer = nir_channel(&b, header, 0);
158 nir_ssa_def *instance = nir_channel(&b, header, 1);
159 nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
160
161 /* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
162 nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
163 glsl_vec4_type(), "a_vertex");
164 a_vertex->data.location = VERT_ATTRIB_GENERIC1;
165
166 nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
167 glsl_vec4_type(), "v_pos");
168 v_pos->data.location = VARYING_SLOT_POS;
169
170 nir_copy_var(&b, v_pos, a_vertex);
171
172 /* Then we copy everything else */
173 for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
174 nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
175 uvec4_type, "input");
176 a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
177
178 nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
179 uvec4_type, "output");
180 v_out->data.location = VARYING_SLOT_VAR0 + i;
181
182 nir_copy_var(&b, v_out, a_in);
183 }
184
185 struct brw_vs_prog_data vs_prog_data;
186 memset(&vs_prog_data, 0, sizeof(vs_prog_data));
187
188 const unsigned *program =
189 blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data);
190
191 bool result =
192 blorp->upload_shader(batch, &blorp_key, sizeof(blorp_key),
193 program, vs_prog_data.base.base.program_size,
194 &vs_prog_data.base.base, sizeof(vs_prog_data),
195 &params->vs_prog_kernel, &params->vs_prog_data);
196
197 ralloc_free(mem_ctx);
198 return result;
199 }
200
201 /* The x0, y0, x1, and y1 parameters must already be populated with the render
202 * area of the framebuffer to be cleared.
203 */
204 static void
205 get_fast_clear_rect(const struct isl_device *dev,
206 const struct isl_surf *aux_surf,
207 unsigned *x0, unsigned *y0,
208 unsigned *x1, unsigned *y1)
209 {
210 unsigned int x_align, y_align;
211 unsigned int x_scaledown, y_scaledown;
212
213 /* Only single sampled surfaces need to (and actually can) be resolved. */
214 if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
215 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
216 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
217 *
218 * Clear pass must have a clear rectangle that must follow
219 * alignment rules in terms of pixels and lines as shown in the
220 * table below. Further, the clear-rectangle height and width
221 * must be multiple of the following dimensions. If the height
222 * and width of the render target being cleared do not meet these
223 * requirements, an MCS buffer can be created such that it
224 * follows the requirement and covers the RT.
225 *
226 * The alignment size in the table that follows is related to the
227 * alignment size that is baked into the CCS surface format but with X
228 * alignment multiplied by 16 and Y alignment multiplied by 32.
229 */
230 x_align = isl_format_get_layout(aux_surf->format)->bw;
231 y_align = isl_format_get_layout(aux_surf->format)->bh;
232
233 x_align *= 16;
234
235 /* The line alignment requirement for Y-tiled is halved at SKL and again
236 * at TGL.
237 */
238 if (dev->info->gen >= 12)
239 y_align *= 8;
240 else if (dev->info->gen >= 9)
241 y_align *= 16;
242 else
243 y_align *= 32;
244
245 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
246 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
247 *
248 * In order to optimize the performance MCS buffer (when bound to
249 * 1X RT) clear similarly to MCS buffer clear for MSRT case,
250 * clear rect is required to be scaled by the following factors
251 * in the horizontal and vertical directions:
252 *
253 * The X and Y scale down factors in the table that follows are each
254 * equal to half the alignment value computed above.
255 */
256 x_scaledown = x_align / 2;
257 y_scaledown = y_align / 2;
258
259 if (ISL_DEV_IS_HASWELL(dev)) {
260 /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
261 * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
262 * Clear of Non-MultiSampled Render Target Restrictions":
263 *
264 * Clear rectangle must be aligned to two times the number of
265 * pixels in the table shown below due to 16x16 hashing across the
266 * slice.
267 *
268 * This restriction is only documented to exist on HSW GT3 but
269 * empirical evidence suggests that it's also needed GT2.
270 */
271 x_align *= 2;
272 y_align *= 2;
273 }
274 } else {
275 assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
276
277 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
278 * Target(s)", beneath the "MSAA Compression" bullet (p326):
279 *
280 * Clear pass for this case requires that scaled down primitive
281 * is sent down with upper left co-ordinate to coincide with
282 * actual rectangle being cleared. For MSAA, clear rectangle’s
283 * height and width need to as show in the following table in
284 * terms of (width,height) of the RT.
285 *
286 * MSAA Width of Clear Rect Height of Clear Rect
287 * 2X Ceil(1/8*width) Ceil(1/2*height)
288 * 4X Ceil(1/8*width) Ceil(1/2*height)
289 * 8X Ceil(1/2*width) Ceil(1/2*height)
290 * 16X width Ceil(1/2*height)
291 *
292 * The text "with upper left co-ordinate to coincide with actual
293 * rectangle being cleared" is a little confusing--it seems to imply
294 * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
295 * feed the pipeline using the rectangle (x,y) to
296 * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
297 * the number of samples. Experiments indicate that this is not
298 * quite correct; actually, what the hardware appears to do is to
299 * align whatever rectangle is sent down the pipeline to the nearest
300 * multiple of 2x2 blocks, and then scale it up by a factor of N
301 * horizontally and 2 vertically. So the resulting alignment is 4
302 * vertically and either 4 or 16 horizontally, and the scaledown
303 * factor is 2 vertically and either 2 or 8 horizontally.
304 */
305 switch (aux_surf->format) {
306 case ISL_FORMAT_MCS_2X:
307 case ISL_FORMAT_MCS_4X:
308 x_scaledown = 8;
309 break;
310 case ISL_FORMAT_MCS_8X:
311 x_scaledown = 2;
312 break;
313 case ISL_FORMAT_MCS_16X:
314 x_scaledown = 1;
315 break;
316 default:
317 unreachable("Unexpected MCS format for fast clear");
318 }
319 y_scaledown = 2;
320 x_align = x_scaledown * 2;
321 y_align = y_scaledown * 2;
322 }
323
324 *x0 = ROUND_DOWN_TO(*x0, x_align) / x_scaledown;
325 *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
326 *x1 = ALIGN(*x1, x_align) / x_scaledown;
327 *y1 = ALIGN(*y1, y_align) / y_scaledown;
328 }
329
330 void
331 blorp_fast_clear(struct blorp_batch *batch,
332 const struct blorp_surf *surf, enum isl_format format,
333 uint32_t level, uint32_t start_layer, uint32_t num_layers,
334 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
335 {
336 /* Ensure that all layers undergoing the clear have an auxiliary buffer. */
337 assert(start_layer + num_layers <=
338 MAX2(surf->aux_surf->logical_level0_px.depth >> level,
339 surf->aux_surf->logical_level0_px.array_len));
340
341 struct blorp_params params;
342 blorp_params_init(&params);
343 params.num_layers = num_layers;
344
345 params.x0 = x0;
346 params.y0 = y0;
347 params.x1 = x1;
348 params.y1 = y1;
349
350 memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
351 params.fast_clear_op = ISL_AUX_OP_FAST_CLEAR;
352
353 get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
354 &params.x0, &params.y0, &params.x1, &params.y1);
355
356 if (!blorp_params_get_clear_kernel(batch, &params, true, false))
357 return;
358
359 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
360 start_layer, format, true);
361 params.num_samples = params.dst.surf.samples;
362
363 batch->blorp->exec(batch, &params);
364 }
365
366 union isl_color_value
367 swizzle_color_value(union isl_color_value src, struct isl_swizzle swizzle)
368 {
369 union isl_color_value dst = { .u32 = { 0, } };
370
371 /* We assign colors in ABGR order so that the first one will be taken in
372 * RGBA precedence order. According to the PRM docs for shader channel
373 * select, this matches Haswell hardware behavior.
374 */
375 if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
376 dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3];
377 if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
378 dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2];
379 if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
380 dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1];
381 if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
382 dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0];
383
384 return dst;
385 }
386
387 void
388 blorp_clear(struct blorp_batch *batch,
389 const struct blorp_surf *surf,
390 enum isl_format format, struct isl_swizzle swizzle,
391 uint32_t level, uint32_t start_layer, uint32_t num_layers,
392 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
393 union isl_color_value clear_color,
394 const bool color_write_disable[4])
395 {
396 struct blorp_params params;
397 blorp_params_init(&params);
398
399 /* Manually apply the clear destination swizzle. This way swizzled clears
400 * will work for swizzles which we can't normally use for rendering and it
401 * also ensures that they work on pre-Haswell hardware which can't swizlle
402 * at all.
403 */
404 clear_color = swizzle_color_value(clear_color, swizzle);
405 swizzle = ISL_SWIZZLE_IDENTITY;
406
407 bool clear_rgb_as_red = false;
408 if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
409 clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
410 format = ISL_FORMAT_R32_UINT;
411 } else if (format == ISL_FORMAT_L8_UNORM_SRGB) {
412 clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
413 format = ISL_FORMAT_R8_UNORM;
414 } else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
415 /* Broadwell and earlier cannot render to this format so we need to work
416 * around it by swapping the colors around and using B4G4R4A4 instead.
417 */
418 const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
419 clear_color = swizzle_color_value(clear_color, ARGB);
420 format = ISL_FORMAT_B4G4R4A4_UNORM;
421 } else if (isl_format_get_layout(format)->bpb % 3 == 0) {
422 clear_rgb_as_red = true;
423 if (format == ISL_FORMAT_R8G8B8_UNORM_SRGB) {
424 clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
425 clear_color.f32[1] = util_format_linear_to_srgb_float(clear_color.f32[1]);
426 clear_color.f32[2] = util_format_linear_to_srgb_float(clear_color.f32[2]);
427 }
428 }
429
430 memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
431
432 bool use_simd16_replicated_data = true;
433
434 /* From the SNB PRM (Vol4_Part1):
435 *
436 * "Replicated data (Message Type = 111) is only supported when
437 * accessing tiled memory. Using this Message Type to access linear
438 * (untiled) memory is UNDEFINED."
439 */
440 if (surf->surf->tiling == ISL_TILING_LINEAR)
441 use_simd16_replicated_data = false;
442
443 /* Replicated clears don't work yet before gen6 */
444 if (batch->blorp->isl_dev->info->gen < 6)
445 use_simd16_replicated_data = false;
446
447 /* Constant color writes ignore everyting in blend and color calculator
448 * state. This is not documented.
449 */
450 if (color_write_disable) {
451 for (unsigned i = 0; i < 4; i++) {
452 params.color_write_disable[i] = color_write_disable[i];
453 if (color_write_disable[i])
454 use_simd16_replicated_data = false;
455 }
456 }
457
458 if (!blorp_params_get_clear_kernel(batch, &params,
459 use_simd16_replicated_data,
460 clear_rgb_as_red))
461 return;
462
463 if (!blorp_ensure_sf_program(batch, &params))
464 return;
465
466 while (num_layers > 0) {
467 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
468 start_layer, format, true);
469 params.dst.view.swizzle = swizzle;
470
471 params.x0 = x0;
472 params.y0 = y0;
473 params.x1 = x1;
474 params.y1 = y1;
475
476 if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
477 assert(params.dst.surf.samples == 1);
478 assert(num_layers == 1);
479 params.x0 += params.dst.tile_x_sa;
480 params.y0 += params.dst.tile_y_sa;
481 params.x1 += params.dst.tile_x_sa;
482 params.y1 += params.dst.tile_y_sa;
483 }
484
485 /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
486 * Convert them to a single slice on gen4.
487 */
488 if (batch->blorp->isl_dev->info->gen == 4 &&
489 (params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) {
490 blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params.dst);
491 }
492
493 if (clear_rgb_as_red) {
494 surf_fake_rgb_with_red(batch->blorp->isl_dev, &params.dst);
495 params.x0 *= 3;
496 params.x1 *= 3;
497 }
498
499 if (isl_format_is_compressed(params.dst.surf.format)) {
500 blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
501 NULL, NULL, NULL, NULL);
502 //&dst_x, &dst_y, &dst_w, &dst_h);
503 }
504
505 if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
506 /* Either we're on gen4 where there is no multisampling or the
507 * surface is compressed which also implies no multisampling.
508 * Therefore, sa == px and we don't need to do a conversion.
509 */
510 assert(params.dst.surf.samples == 1);
511 params.x0 += params.dst.tile_x_sa;
512 params.y0 += params.dst.tile_y_sa;
513 params.x1 += params.dst.tile_x_sa;
514 params.y1 += params.dst.tile_y_sa;
515 }
516
517 params.num_samples = params.dst.surf.samples;
518
519 /* We may be restricted on the number of layers we can bind at any one
520 * time. In particular, Sandy Bridge has a maximum number of layers of
521 * 512 but a maximum 3D texture size is much larger.
522 */
523 params.num_layers = MIN2(params.dst.view.array_len, num_layers);
524
525 const unsigned max_image_width = 16 * 1024;
526 if (params.dst.surf.logical_level0_px.width > max_image_width) {
527 /* Clearing an RGB image as red multiplies the surface width by 3
528 * so it may now be too wide for the hardware surface limits. We
529 * have to break the clear up into pieces in order to clear wide
530 * images.
531 */
532 assert(clear_rgb_as_red);
533 assert(params.dst.surf.dim == ISL_SURF_DIM_2D);
534 assert(params.dst.surf.tiling == ISL_TILING_LINEAR);
535 assert(params.dst.surf.logical_level0_px.depth == 1);
536 assert(params.dst.surf.logical_level0_px.array_len == 1);
537 assert(params.dst.surf.levels == 1);
538 assert(params.dst.surf.samples == 1);
539 assert(params.dst.tile_x_sa == 0 || params.dst.tile_y_sa == 0);
540 assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE);
541
542 /* max_image_width rounded down to a multiple of 3 */
543 const unsigned max_fake_rgb_width = (max_image_width / 3) * 3;
544 const unsigned cpp =
545 isl_format_get_layout(params.dst.surf.format)->bpb / 8;
546
547 params.dst.surf.logical_level0_px.width = max_fake_rgb_width;
548 params.dst.surf.phys_level0_sa.width = max_fake_rgb_width;
549
550 uint32_t orig_x0 = params.x0, orig_x1 = params.x1;
551 uint64_t orig_offset = params.dst.addr.offset;
552 for (uint32_t x = orig_x0; x < orig_x1; x += max_fake_rgb_width) {
553 /* Offset to the surface. It's easy because we're linear */
554 params.dst.addr.offset = orig_offset + x * cpp;
555
556 params.x0 = 0;
557 params.x1 = MIN2(orig_x1 - x, max_image_width);
558
559 batch->blorp->exec(batch, &params);
560 }
561 } else {
562 batch->blorp->exec(batch, &params);
563 }
564
565 start_layer += params.num_layers;
566 num_layers -= params.num_layers;
567 }
568 }
569
570 static bool
571 blorp_clear_stencil_as_rgba(struct blorp_batch *batch,
572 const struct blorp_surf *surf,
573 uint32_t level, uint32_t start_layer,
574 uint32_t num_layers,
575 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
576 uint8_t stencil_mask, uint8_t stencil_value)
577 {
578 /* We only support separate W-tiled stencil for now */
579 if (surf->surf->format != ISL_FORMAT_R8_UINT ||
580 surf->surf->tiling != ISL_TILING_W)
581 return false;
582
583 /* Stencil mask support would require piles of shader magic */
584 if (stencil_mask != 0xff)
585 return false;
586
587 if (surf->surf->samples > 1) {
588 /* Adjust x0, y0, x1, and y1 to be in units of samples */
589 assert(surf->surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
590 struct isl_extent2d msaa_px_size_sa =
591 isl_get_interleaved_msaa_px_size_sa(surf->surf->samples);
592
593 x0 *= msaa_px_size_sa.w;
594 y0 *= msaa_px_size_sa.h;
595 x1 *= msaa_px_size_sa.w;
596 y1 *= msaa_px_size_sa.h;
597 }
598
599 /* W-tiles and Y-tiles have the same layout as far as cache lines are
600 * concerned: both are 8x8 cache lines laid out Y-major. The difference is
601 * entirely in how the data is arranged withing the cache line. W-tiling
602 * is 8x8 pixels in a swizzled pattern while Y-tiling is 16B by 4 rows
603 * regardless of image format size. As long as everything is aligned to 8,
604 * we can just treat the W-tiled image as Y-tiled, ignore the layout
605 * difference within a cache line, and blast out data.
606 */
607 if (x0 % 8 != 0 || y0 % 8 != 0 || x1 % 8 != 0 || y1 % 8 != 0)
608 return false;
609
610 struct blorp_params params;
611 blorp_params_init(&params);
612
613 if (!blorp_params_get_clear_kernel(batch, &params, true, false))
614 return false;
615
616 memset(&params.wm_inputs.clear_color, stencil_value,
617 sizeof(params.wm_inputs.clear_color));
618
619 /* The Sandy Bridge PRM Vol. 4 Pt. 2, section 2.11.2.1.1 has the
620 * following footnote to the format table:
621 *
622 * 128 BPE Formats cannot be Tiled Y when used as render targets
623 *
624 * We have to use RGBA16_UINT on SNB.
625 */
626 enum isl_format wide_format;
627 if (ISL_DEV_GEN(batch->blorp->isl_dev) <= 6) {
628 wide_format = ISL_FORMAT_R16G16B16A16_UINT;
629
630 /* For RGBA16_UINT, we need to mask the stencil value otherwise, we risk
631 * clamping giving us the wrong values
632 */
633 for (unsigned i = 0; i < 4; i++)
634 params.wm_inputs.clear_color[i] &= 0xffff;
635 } else {
636 wide_format = ISL_FORMAT_R32G32B32A32_UINT;
637 }
638
639 for (uint32_t a = 0; a < num_layers; a++) {
640 uint32_t layer = start_layer + a;
641
642 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
643 layer, ISL_FORMAT_UNSUPPORTED, true);
644
645 if (surf->surf->samples > 1)
646 blorp_surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params.dst);
647
648 /* Make it Y-tiled */
649 blorp_surf_retile_w_to_y(batch->blorp->isl_dev, &params.dst);
650
651 unsigned wide_Bpp =
652 isl_format_get_layout(wide_format)->bpb / 8;
653
654 params.dst.view.format = params.dst.surf.format = wide_format;
655 assert(params.dst.surf.logical_level0_px.width % wide_Bpp == 0);
656 params.dst.surf.logical_level0_px.width /= wide_Bpp;
657 assert(params.dst.tile_x_sa % wide_Bpp == 0);
658 params.dst.tile_x_sa /= wide_Bpp;
659
660 params.x0 = params.dst.tile_x_sa + x0 / (wide_Bpp / 2);
661 params.y0 = params.dst.tile_y_sa + y0 / 2;
662 params.x1 = params.dst.tile_x_sa + x1 / (wide_Bpp / 2);
663 params.y1 = params.dst.tile_y_sa + y1 / 2;
664
665 batch->blorp->exec(batch, &params);
666 }
667
668 return true;
669 }
670
671 void
672 blorp_clear_depth_stencil(struct blorp_batch *batch,
673 const struct blorp_surf *depth,
674 const struct blorp_surf *stencil,
675 uint32_t level, uint32_t start_layer,
676 uint32_t num_layers,
677 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
678 bool clear_depth, float depth_value,
679 uint8_t stencil_mask, uint8_t stencil_value)
680 {
681 if (!clear_depth && blorp_clear_stencil_as_rgba(batch, stencil, level,
682 start_layer, num_layers,
683 x0, y0, x1, y1,
684 stencil_mask,
685 stencil_value))
686 return;
687
688 struct blorp_params params;
689 blorp_params_init(&params);
690
691 params.x0 = x0;
692 params.y0 = y0;
693 params.x1 = x1;
694 params.y1 = y1;
695
696 if (ISL_DEV_GEN(batch->blorp->isl_dev) == 6) {
697 /* For some reason, Sandy Bridge gets occlusion queries wrong if we
698 * don't have a shader. In particular, it records samples even though
699 * we disable statistics in 3DSTATE_WM. Give it the usual clear shader
700 * to work around the issue.
701 */
702 if (!blorp_params_get_clear_kernel(batch, &params, false, false))
703 return;
704 }
705
706 while (num_layers > 0) {
707 params.num_layers = num_layers;
708
709 if (stencil_mask) {
710 brw_blorp_surface_info_init(batch->blorp, &params.stencil, stencil,
711 level, start_layer,
712 ISL_FORMAT_UNSUPPORTED, true);
713 params.stencil_mask = stencil_mask;
714 params.stencil_ref = stencil_value;
715
716 params.dst.surf.samples = params.stencil.surf.samples;
717 params.dst.surf.logical_level0_px =
718 params.stencil.surf.logical_level0_px;
719 params.dst.view = params.depth.view;
720
721 params.num_samples = params.stencil.surf.samples;
722
723 /* We may be restricted on the number of layers we can bind at any
724 * one time. In particular, Sandy Bridge has a maximum number of
725 * layers of 512 but a maximum 3D texture size is much larger.
726 */
727 if (params.stencil.view.array_len < params.num_layers)
728 params.num_layers = params.stencil.view.array_len;
729 }
730
731 if (clear_depth) {
732 brw_blorp_surface_info_init(batch->blorp, &params.depth, depth,
733 level, start_layer,
734 ISL_FORMAT_UNSUPPORTED, true);
735 params.z = depth_value;
736 params.depth_format =
737 isl_format_get_depth_format(depth->surf->format, false);
738
739 params.dst.surf.samples = params.depth.surf.samples;
740 params.dst.surf.logical_level0_px =
741 params.depth.surf.logical_level0_px;
742 params.dst.view = params.depth.view;
743
744 params.num_samples = params.depth.surf.samples;
745
746 /* We may be restricted on the number of layers we can bind at any
747 * one time. In particular, Sandy Bridge has a maximum number of
748 * layers of 512 but a maximum 3D texture size is much larger.
749 */
750 if (params.depth.view.array_len < params.num_layers)
751 params.num_layers = params.depth.view.array_len;
752 }
753
754 batch->blorp->exec(batch, &params);
755
756 start_layer += params.num_layers;
757 num_layers -= params.num_layers;
758 }
759 }
760
761 bool
762 blorp_can_hiz_clear_depth(uint8_t gen, enum isl_format format,
763 uint32_t num_samples,
764 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
765 {
766 /* This function currently doesn't support any gen prior to gen8 */
767 assert(gen >= 8);
768
769 if (gen == 8 && format == ISL_FORMAT_R16_UNORM) {
770 /* Apply the D16 alignment restrictions. On BDW, HiZ has an 8x4 sample
771 * block with the following property: as the number of samples increases,
772 * the number of pixels representable by this block decreases by a factor
773 * of the sample dimensions. Sample dimensions scale following the MSAA
774 * interleaved pattern.
775 *
776 * Sample|Sample|Pixel
777 * Count |Dim |Dim
778 * ===================
779 * 1 | 1x1 | 8x4
780 * 2 | 2x1 | 4x4
781 * 4 | 2x2 | 4x2
782 * 8 | 4x2 | 2x2
783 * 16 | 4x4 | 2x1
784 *
785 * Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
786 */
787 const struct isl_extent2d sa_block_dim =
788 isl_get_interleaved_msaa_px_size_sa(num_samples);
789 const uint8_t align_px_w = 8 / sa_block_dim.w;
790 const uint8_t align_px_h = 4 / sa_block_dim.h;
791
792 /* Fast depth clears clear an entire sample block at a time. As a result,
793 * the rectangle must be aligned to the dimensions of the encompassing
794 * pixel block for a successful operation.
795 *
796 * Fast clears can still work if the upper-left corner is aligned and the
797 * bottom-rigtht corner touches the edge of a depth buffer whose extent
798 * is unaligned. This is because each miplevel in the depth buffer is
799 * padded by the Pixel Dim (similar to a standard compressed texture).
800 * In this case, the clear rectangle could be padded by to match the full
801 * depth buffer extent but to support multiple clearing techniques, we
802 * chose to be unaware of the depth buffer's extent and thus don't handle
803 * this case.
804 */
805 if (x0 % align_px_w || y0 % align_px_h ||
806 x1 % align_px_w || y1 % align_px_h)
807 return false;
808 }
809 return true;
810 }
811
812 void
813 blorp_hiz_clear_depth_stencil(struct blorp_batch *batch,
814 const struct blorp_surf *depth,
815 const struct blorp_surf *stencil,
816 uint32_t level,
817 uint32_t start_layer, uint32_t num_layers,
818 uint32_t x0, uint32_t y0,
819 uint32_t x1, uint32_t y1,
820 bool clear_depth, float depth_value,
821 bool clear_stencil, uint8_t stencil_value)
822 {
823 struct blorp_params params;
824 blorp_params_init(&params);
825
826 /* This requires WM_HZ_OP which only exists on gen8+ */
827 assert(ISL_DEV_GEN(batch->blorp->isl_dev) >= 8);
828
829 params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
830 params.num_layers = 1;
831
832 params.x0 = x0;
833 params.y0 = y0;
834 params.x1 = x1;
835 params.y1 = y1;
836
837 for (uint32_t l = 0; l < num_layers; l++) {
838 const uint32_t layer = start_layer + l;
839 if (clear_stencil) {
840 brw_blorp_surface_info_init(batch->blorp, &params.stencil, stencil,
841 level, layer,
842 ISL_FORMAT_UNSUPPORTED, true);
843 params.stencil_mask = 0xff;
844 params.stencil_ref = stencil_value;
845 params.num_samples = params.stencil.surf.samples;
846 }
847
848 if (clear_depth) {
849 /* If we're clearing depth, we must have HiZ */
850 assert(depth && depth->aux_usage == ISL_AUX_USAGE_HIZ);
851
852 brw_blorp_surface_info_init(batch->blorp, &params.depth, depth,
853 level, layer,
854 ISL_FORMAT_UNSUPPORTED, true);
855 params.depth.clear_color.f32[0] = depth_value;
856 params.depth_format =
857 isl_format_get_depth_format(depth->surf->format, false);
858 params.num_samples = params.depth.surf.samples;
859 }
860
861 batch->blorp->exec(batch, &params);
862 }
863 }
864
865 /* Given a depth stencil attachment, this function performs a fast depth clear
866 * on a depth portion and a regular clear on the stencil portion. When
867 * performing a fast depth clear on the depth portion, the HiZ buffer is simply
868 * tagged as cleared so the depth clear value is not actually needed.
869 */
870 void
871 blorp_gen8_hiz_clear_attachments(struct blorp_batch *batch,
872 uint32_t num_samples,
873 uint32_t x0, uint32_t y0,
874 uint32_t x1, uint32_t y1,
875 bool clear_depth, bool clear_stencil,
876 uint8_t stencil_value)
877 {
878 assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
879
880 struct blorp_params params;
881 blorp_params_init(&params);
882 params.num_layers = 1;
883 params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
884 params.x0 = x0;
885 params.y0 = y0;
886 params.x1 = x1;
887 params.y1 = y1;
888 params.num_samples = num_samples;
889 params.depth.enabled = clear_depth;
890 params.stencil.enabled = clear_stencil;
891 params.stencil_ref = stencil_value;
892 batch->blorp->exec(batch, &params);
893 }
894
895 /** Clear active color/depth/stencili attachments
896 *
897 * This function performs a clear operation on the currently bound
898 * color/depth/stencil attachments. It is assumed that any information passed
899 * in here is valid, consistent, and in-bounds relative to the currently
900 * attached depth/stencil. The binding_table_offset parameter is the 32-bit
901 * offset relative to surface state base address where pre-baked binding table
902 * that we are to use lives. If clear_color is false, binding_table_offset
903 * must point to a binding table with one entry which is a valid null surface
904 * that matches the currently bound depth and stencil.
905 */
906 void
907 blorp_clear_attachments(struct blorp_batch *batch,
908 uint32_t binding_table_offset,
909 enum isl_format depth_format,
910 uint32_t num_samples,
911 uint32_t start_layer, uint32_t num_layers,
912 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
913 bool clear_color, union isl_color_value color_value,
914 bool clear_depth, float depth_value,
915 uint8_t stencil_mask, uint8_t stencil_value)
916 {
917 struct blorp_params params;
918 blorp_params_init(&params);
919
920 assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
921
922 params.x0 = x0;
923 params.y0 = y0;
924 params.x1 = x1;
925 params.y1 = y1;
926
927 params.use_pre_baked_binding_table = true;
928 params.pre_baked_binding_table_offset = binding_table_offset;
929
930 params.num_layers = num_layers;
931 params.num_samples = num_samples;
932
933 if (clear_color) {
934 params.dst.enabled = true;
935
936 memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
937
938 /* Unfortunately, without knowing whether or not our destination surface
939 * is tiled or not, we have to assume it may be linear. This means no
940 * SIMD16_REPDATA for us. :-(
941 */
942 if (!blorp_params_get_clear_kernel(batch, &params, false, false))
943 return;
944 }
945
946 if (clear_depth) {
947 params.depth.enabled = true;
948
949 params.z = depth_value;
950 params.depth_format = isl_format_get_depth_format(depth_format, false);
951 }
952
953 if (stencil_mask) {
954 params.stencil.enabled = true;
955
956 params.stencil_mask = stencil_mask;
957 params.stencil_ref = stencil_value;
958 }
959
960 if (!blorp_params_get_layer_offset_vs(batch, &params))
961 return;
962
963 params.vs_inputs.base_layer = start_layer;
964
965 batch->blorp->exec(batch, &params);
966 }
967
968 void
969 blorp_ccs_resolve(struct blorp_batch *batch,
970 struct blorp_surf *surf, uint32_t level,
971 uint32_t start_layer, uint32_t num_layers,
972 enum isl_format format,
973 enum isl_aux_op resolve_op)
974 {
975 struct blorp_params params;
976
977 blorp_params_init(&params);
978 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf,
979 level, start_layer, format, true);
980
981 /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
982 *
983 * A rectangle primitive must be scaled down by the following factors
984 * with respect to render target being resolved.
985 *
986 * The scaledown factors in the table that follows are related to the block
987 * size of the CCS format. For IVB and HSW, we divide by two, for BDW we
988 * multiply by 8 and 16. On Sky Lake, we multiply by 8.
989 */
990 const struct isl_format_layout *aux_fmtl =
991 isl_format_get_layout(params.dst.aux_surf.format);
992 assert(aux_fmtl->txc == ISL_TXC_CCS);
993
994 unsigned x_scaledown, y_scaledown;
995 if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 12) {
996 x_scaledown = aux_fmtl->bw * 8;
997 y_scaledown = aux_fmtl->bh * 4;
998 } else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) {
999 x_scaledown = aux_fmtl->bw * 8;
1000 y_scaledown = aux_fmtl->bh * 8;
1001 } else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
1002 x_scaledown = aux_fmtl->bw * 8;
1003 y_scaledown = aux_fmtl->bh * 16;
1004 } else {
1005 x_scaledown = aux_fmtl->bw / 2;
1006 y_scaledown = aux_fmtl->bh / 2;
1007 }
1008 params.x0 = params.y0 = 0;
1009 params.x1 = minify(params.dst.surf.logical_level0_px.width, level);
1010 params.y1 = minify(params.dst.surf.logical_level0_px.height, level);
1011 params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
1012 params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
1013
1014 if (batch->blorp->isl_dev->info->gen >= 10) {
1015 assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
1016 resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE ||
1017 resolve_op == ISL_AUX_OP_AMBIGUATE);
1018 } else if (batch->blorp->isl_dev->info->gen >= 9) {
1019 assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
1020 resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
1021 } else {
1022 /* Broadwell and earlier do not have a partial resolve */
1023 assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE);
1024 }
1025 params.fast_clear_op = resolve_op;
1026 params.num_layers = num_layers;
1027
1028 /* Note: there is no need to initialize push constants because it doesn't
1029 * matter what data gets dispatched to the render target. However, we must
1030 * ensure that the fragment shader delivers the data using the "replicated
1031 * color" message.
1032 */
1033
1034 if (!blorp_params_get_clear_kernel(batch, &params, true, false))
1035 return;
1036
1037 batch->blorp->exec(batch, &params);
1038 }
1039
1040 static nir_ssa_def *
1041 blorp_nir_bit(nir_builder *b, nir_ssa_def *src, unsigned bit)
1042 {
1043 return nir_iand(b, nir_ushr(b, src, nir_imm_int(b, bit)),
1044 nir_imm_int(b, 1));
1045 }
1046
1047 struct blorp_mcs_partial_resolve_key
1048 {
1049 enum blorp_shader_type shader_type;
1050 bool indirect_clear_color;
1051 bool int_format;
1052 uint32_t num_samples;
1053 };
1054
1055 static bool
1056 blorp_params_get_mcs_partial_resolve_kernel(struct blorp_batch *batch,
1057 struct blorp_params *params)
1058 {
1059 struct blorp_context *blorp = batch->blorp;
1060 const struct blorp_mcs_partial_resolve_key blorp_key = {
1061 .shader_type = BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE,
1062 .indirect_clear_color = params->dst.clear_color_addr.buffer != NULL,
1063 .int_format = isl_format_has_int_channel(params->dst.view.format),
1064 .num_samples = params->num_samples,
1065 };
1066
1067 if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
1068 &params->wm_prog_kernel, &params->wm_prog_data))
1069 return true;
1070
1071 void *mem_ctx = ralloc_context(NULL);
1072
1073 nir_builder b;
1074 blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT,
1075 "BLORP-mcs-partial-resolve");
1076
1077 nir_variable *v_color =
1078 BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
1079
1080 nir_variable *frag_color =
1081 nir_variable_create(b.shader, nir_var_shader_out,
1082 glsl_vec4_type(), "gl_FragColor");
1083 frag_color->data.location = FRAG_RESULT_COLOR;
1084
1085 /* Do an MCS fetch and check if it is equal to the magic clear value */
1086 nir_ssa_def *mcs =
1087 blorp_nir_txf_ms_mcs(&b, nir_f2i32(&b, nir_load_frag_coord(&b)),
1088 nir_load_layer_id(&b));
1089 nir_ssa_def *is_clear =
1090 blorp_nir_mcs_is_clear_color(&b, mcs, blorp_key.num_samples);
1091
1092 /* If we aren't the clear value, discard. */
1093 nir_intrinsic_instr *discard =
1094 nir_intrinsic_instr_create(b.shader, nir_intrinsic_discard_if);
1095 discard->src[0] = nir_src_for_ssa(nir_inot(&b, is_clear));
1096 nir_builder_instr_insert(&b, &discard->instr);
1097
1098 nir_ssa_def *clear_color = nir_load_var(&b, v_color);
1099 if (blorp_key.indirect_clear_color && blorp->isl_dev->info->gen <= 8) {
1100 /* Gen7-8 clear colors are stored as single 0/1 bits */
1101 clear_color = nir_vec4(&b, blorp_nir_bit(&b, clear_color, 31),
1102 blorp_nir_bit(&b, clear_color, 30),
1103 blorp_nir_bit(&b, clear_color, 29),
1104 blorp_nir_bit(&b, clear_color, 28));
1105
1106 if (!blorp_key.int_format)
1107 clear_color = nir_i2f32(&b, clear_color);
1108 }
1109 nir_store_var(&b, frag_color, clear_color, 0xf);
1110
1111 struct brw_wm_prog_key wm_key;
1112 brw_blorp_init_wm_prog_key(&wm_key);
1113 wm_key.base.tex.compressed_multisample_layout_mask = 1;
1114 wm_key.base.tex.msaa_16 = blorp_key.num_samples == 16;
1115 wm_key.multisample_fbo = true;
1116
1117 struct brw_wm_prog_data prog_data;
1118 const unsigned *program =
1119 blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, false,
1120 &prog_data);
1121
1122 bool result =
1123 blorp->upload_shader(batch, &blorp_key, sizeof(blorp_key),
1124 program, prog_data.base.program_size,
1125 &prog_data.base, sizeof(prog_data),
1126 &params->wm_prog_kernel, &params->wm_prog_data);
1127
1128 ralloc_free(mem_ctx);
1129 return result;
1130 }
1131
1132 void
1133 blorp_mcs_partial_resolve(struct blorp_batch *batch,
1134 struct blorp_surf *surf,
1135 enum isl_format format,
1136 uint32_t start_layer, uint32_t num_layers)
1137 {
1138 struct blorp_params params;
1139 blorp_params_init(&params);
1140
1141 assert(batch->blorp->isl_dev->info->gen >= 7);
1142
1143 params.x0 = 0;
1144 params.y0 = 0;
1145 params.x1 = surf->surf->logical_level0_px.width;
1146 params.y1 = surf->surf->logical_level0_px.height;
1147
1148 brw_blorp_surface_info_init(batch->blorp, &params.src, surf, 0,
1149 start_layer, format, false);
1150 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, 0,
1151 start_layer, format, true);
1152
1153 params.num_samples = params.dst.surf.samples;
1154 params.num_layers = num_layers;
1155 params.dst_clear_color_as_input = surf->clear_color_addr.buffer != NULL;
1156
1157 memcpy(&params.wm_inputs.clear_color,
1158 surf->clear_color.f32, sizeof(float) * 4);
1159
1160 if (!blorp_params_get_mcs_partial_resolve_kernel(batch, &params))
1161 return;
1162
1163 batch->blorp->exec(batch, &params);
1164 }
1165
1166 /** Clear a CCS to the "uncompressed" state
1167 *
1168 * This pass is the CCS equivalent of a "HiZ resolve". It sets the CCS values
1169 * for a given layer/level of a surface to 0x0 which is the "uncompressed"
1170 * state which tells the sampler to go look at the main surface.
1171 */
1172 void
1173 blorp_ccs_ambiguate(struct blorp_batch *batch,
1174 struct blorp_surf *surf,
1175 uint32_t level, uint32_t layer)
1176 {
1177 if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 10) {
1178 /* On gen10 and above, we have a hardware resolve op for this */
1179 return blorp_ccs_resolve(batch, surf, level, layer, 1,
1180 surf->surf->format, ISL_AUX_OP_AMBIGUATE);
1181 }
1182
1183 struct blorp_params params;
1184 blorp_params_init(&params);
1185
1186 assert(ISL_DEV_GEN(batch->blorp->isl_dev) >= 7);
1187
1188 const struct isl_format_layout *aux_fmtl =
1189 isl_format_get_layout(surf->aux_surf->format);
1190 assert(aux_fmtl->txc == ISL_TXC_CCS);
1191
1192 params.dst = (struct brw_blorp_surface_info) {
1193 .enabled = true,
1194 .addr = surf->aux_addr,
1195 .view = {
1196 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
1197 .format = ISL_FORMAT_R32G32B32A32_UINT,
1198 .base_level = 0,
1199 .base_array_layer = 0,
1200 .levels = 1,
1201 .array_len = 1,
1202 .swizzle = ISL_SWIZZLE_IDENTITY,
1203 },
1204 };
1205
1206 uint32_t z = 0;
1207 if (surf->surf->dim == ISL_SURF_DIM_3D) {
1208 z = layer;
1209 layer = 0;
1210 }
1211
1212 uint32_t offset_B, x_offset_el, y_offset_el;
1213 isl_surf_get_image_offset_el(surf->aux_surf, level, layer, z,
1214 &x_offset_el, &y_offset_el);
1215 isl_tiling_get_intratile_offset_el(surf->aux_surf->tiling, aux_fmtl->bpb,
1216 surf->aux_surf->row_pitch_B,
1217 x_offset_el, y_offset_el,
1218 &offset_B, &x_offset_el, &y_offset_el);
1219 params.dst.addr.offset += offset_B;
1220
1221 const uint32_t width_px =
1222 minify(surf->aux_surf->logical_level0_px.width, level);
1223 const uint32_t height_px =
1224 minify(surf->aux_surf->logical_level0_px.height, level);
1225 const uint32_t width_el = DIV_ROUND_UP(width_px, aux_fmtl->bw);
1226 const uint32_t height_el = DIV_ROUND_UP(height_px, aux_fmtl->bh);
1227
1228 struct isl_tile_info ccs_tile_info;
1229 isl_surf_get_tile_info(surf->aux_surf, &ccs_tile_info);
1230
1231 /* We're going to map it as a regular RGBA32_UINT surface. We need to
1232 * downscale a good deal. We start by computing the area on the CCS to
1233 * clear in units of Y-tiled cache lines.
1234 */
1235 uint32_t x_offset_cl, y_offset_cl, width_cl, height_cl;
1236 if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
1237 /* From the Sky Lake PRM Vol. 12 in the section on planes:
1238 *
1239 * "The Color Control Surface (CCS) contains the compression status
1240 * of the cache-line pairs. The compression state of the cache-line
1241 * pair is specified by 2 bits in the CCS. Each CCS cache-line
1242 * represents an area on the main surface of 16x16 sets of 128 byte
1243 * Y-tiled cache-line-pairs. CCS is always Y tiled."
1244 *
1245 * Each 2-bit surface element in the CCS corresponds to a single
1246 * cache-line pair in the main surface. This means that 16x16 el block
1247 * in the CCS maps to a Y-tiled cache line. Fortunately, CCS layouts
1248 * are calculated with a very large alignment so we can round up to a
1249 * whole cache line without worrying about overdraw.
1250 */
1251
1252 /* On Broadwell and above, a CCS tile is the same as a Y tile when
1253 * viewed at the cache-line granularity. Fortunately, the horizontal
1254 * and vertical alignment requirements of the CCS are such that we can
1255 * align to an entire cache line without worrying about crossing over
1256 * from one LOD to another.
1257 */
1258 const uint32_t x_el_per_cl = ccs_tile_info.logical_extent_el.w / 8;
1259 const uint32_t y_el_per_cl = ccs_tile_info.logical_extent_el.h / 8;
1260 assert(surf->aux_surf->image_alignment_el.w % x_el_per_cl == 0);
1261 assert(surf->aux_surf->image_alignment_el.h % y_el_per_cl == 0);
1262
1263 assert(x_offset_el % x_el_per_cl == 0);
1264 assert(y_offset_el % y_el_per_cl == 0);
1265 x_offset_cl = x_offset_el / x_el_per_cl;
1266 y_offset_cl = y_offset_el / y_el_per_cl;
1267 width_cl = DIV_ROUND_UP(width_el, x_el_per_cl);
1268 height_cl = DIV_ROUND_UP(height_el, y_el_per_cl);
1269 } else {
1270 /* On gen7, the CCS tiling is not so nice. However, there we are
1271 * guaranteed that we only have a single level and slice so we don't
1272 * have to worry about it and can just align to a whole tile.
1273 */
1274 assert(surf->aux_surf->logical_level0_px.depth == 1);
1275 assert(surf->aux_surf->logical_level0_px.array_len == 1);
1276 assert(x_offset_el == 0 && y_offset_el == 0);
1277 const uint32_t width_tl =
1278 DIV_ROUND_UP(width_el, ccs_tile_info.logical_extent_el.w);
1279 const uint32_t height_tl =
1280 DIV_ROUND_UP(height_el, ccs_tile_info.logical_extent_el.h);
1281 x_offset_cl = 0;
1282 y_offset_cl = 0;
1283 width_cl = width_tl * 8;
1284 height_cl = height_tl * 8;
1285 }
1286
1287 /* We're going to use a RGBA32 format so as to write data as quickly as
1288 * possible. A y-tiled cache line will then be 1x4 px.
1289 */
1290 const uint32_t x_offset_rgba_px = x_offset_cl;
1291 const uint32_t y_offset_rgba_px = y_offset_cl * 4;
1292 const uint32_t width_rgba_px = width_cl;
1293 const uint32_t height_rgba_px = height_cl * 4;
1294
1295 ASSERTED bool ok =
1296 isl_surf_init(batch->blorp->isl_dev, &params.dst.surf,
1297 .dim = ISL_SURF_DIM_2D,
1298 .format = ISL_FORMAT_R32G32B32A32_UINT,
1299 .width = width_rgba_px + x_offset_rgba_px,
1300 .height = height_rgba_px + y_offset_rgba_px,
1301 .depth = 1,
1302 .levels = 1,
1303 .array_len = 1,
1304 .samples = 1,
1305 .row_pitch_B = surf->aux_surf->row_pitch_B,
1306 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
1307 .tiling_flags = ISL_TILING_Y0_BIT);
1308 assert(ok);
1309
1310 params.x0 = x_offset_rgba_px;
1311 params.y0 = y_offset_rgba_px;
1312 params.x1 = x_offset_rgba_px + width_rgba_px;
1313 params.y1 = y_offset_rgba_px + height_rgba_px;
1314
1315 /* A CCS value of 0 means "uncompressed." */
1316 memset(&params.wm_inputs.clear_color, 0,
1317 sizeof(params.wm_inputs.clear_color));
1318
1319 if (!blorp_params_get_clear_kernel(batch, &params, true, false))
1320 return;
1321
1322 batch->blorp->exec(batch, &params);
1323 }