intel/batch-decoder: fix vertex buffer size calculation for gen<8
[mesa.git] / src / intel / common / gen_batch_decoder.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "common/gen_decoder.h"
25 #include "gen_disasm.h"
26 #include "util/macros.h"
27
28 #include <string.h>
29
30 void
31 gen_batch_decode_ctx_init(struct gen_batch_decode_ctx *ctx,
32 const struct gen_device_info *devinfo,
33 FILE *fp, enum gen_batch_decode_flags flags,
34 const char *xml_path,
35 struct gen_batch_decode_bo (*get_bo)(void *,
36 uint64_t),
37 unsigned (*get_state_size)(void *, uint32_t),
38 void *user_data)
39 {
40 memset(ctx, 0, sizeof(*ctx));
41
42 ctx->get_bo = get_bo;
43 ctx->get_state_size = get_state_size;
44 ctx->user_data = user_data;
45 ctx->fp = fp;
46 ctx->flags = flags;
47 ctx->max_vbo_decoded_lines = -1; /* No limit! */
48 ctx->engine = I915_ENGINE_CLASS_RENDER;
49
50 if (xml_path == NULL)
51 ctx->spec = gen_spec_load(devinfo);
52 else
53 ctx->spec = gen_spec_load_from_path(devinfo, xml_path);
54 ctx->disasm = gen_disasm_create(devinfo);
55 }
56
57 void
58 gen_batch_decode_ctx_finish(struct gen_batch_decode_ctx *ctx)
59 {
60 gen_spec_destroy(ctx->spec);
61 gen_disasm_destroy(ctx->disasm);
62 }
63
64 #define CSI "\e["
65 #define RED_COLOR CSI "31m"
66 #define BLUE_HEADER CSI "0;44m"
67 #define GREEN_HEADER CSI "1;42m"
68 #define NORMAL CSI "0m"
69
70 static void
71 ctx_print_group(struct gen_batch_decode_ctx *ctx,
72 struct gen_group *group,
73 uint64_t address, const void *map)
74 {
75 gen_print_group(ctx->fp, group, address, map, 0,
76 (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) != 0);
77 }
78
79 static struct gen_batch_decode_bo
80 ctx_get_bo(struct gen_batch_decode_ctx *ctx, uint64_t addr)
81 {
82 if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0)) {
83 /* On Broadwell and above, we have 48-bit addresses which consume two
84 * dwords. Some packets require that these get stored in a "canonical
85 * form" which means that bit 47 is sign-extended through the upper
86 * bits. In order to correctly handle those aub dumps, we need to mask
87 * off the top 16 bits.
88 */
89 addr &= (~0ull >> 16);
90 }
91
92 struct gen_batch_decode_bo bo = ctx->get_bo(ctx->user_data, addr);
93
94 if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0))
95 bo.addr &= (~0ull >> 16);
96
97 /* We may actually have an offset into the bo */
98 if (bo.map != NULL) {
99 assert(bo.addr <= addr);
100 uint64_t offset = addr - bo.addr;
101 bo.map += offset;
102 bo.addr += offset;
103 bo.size -= offset;
104 }
105
106 return bo;
107 }
108
109 static int
110 update_count(struct gen_batch_decode_ctx *ctx,
111 uint32_t offset_from_dsba,
112 unsigned element_dwords,
113 unsigned guess)
114 {
115 unsigned size = 0;
116
117 if (ctx->get_state_size)
118 size = ctx->get_state_size(ctx->user_data, offset_from_dsba);
119
120 if (size > 0)
121 return size / (sizeof(uint32_t) * element_dwords);
122
123 /* In the absence of any information, just guess arbitrarily. */
124 return guess;
125 }
126
127 static void
128 ctx_disassemble_program(struct gen_batch_decode_ctx *ctx,
129 uint32_t ksp, const char *type)
130 {
131 uint64_t addr = ctx->instruction_base + ksp;
132 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, addr);
133 if (!bo.map)
134 return;
135
136 fprintf(ctx->fp, "\nReferenced %s:\n", type);
137 gen_disasm_disassemble(ctx->disasm, bo.map, 0, ctx->fp);
138 }
139
140 /* Heuristic to determine whether a uint32_t is probably actually a float
141 * (http://stackoverflow.com/a/2953466)
142 */
143
144 static bool
145 probably_float(uint32_t bits)
146 {
147 int exp = ((bits & 0x7f800000U) >> 23) - 127;
148 uint32_t mant = bits & 0x007fffff;
149
150 /* +- 0.0 */
151 if (exp == -127 && mant == 0)
152 return true;
153
154 /* +- 1 billionth to 1 billion */
155 if (-30 <= exp && exp <= 30)
156 return true;
157
158 /* some value with only a few binary digits */
159 if ((mant & 0x0000ffff) == 0)
160 return true;
161
162 return false;
163 }
164
165 static void
166 ctx_print_buffer(struct gen_batch_decode_ctx *ctx,
167 struct gen_batch_decode_bo bo,
168 uint32_t read_length,
169 uint32_t pitch,
170 int max_lines)
171 {
172 const uint32_t *dw_end = bo.map + MIN2(bo.size, read_length);
173
174 int column_count = 0, line_count = -1;
175 for (const uint32_t *dw = bo.map; dw < dw_end; dw++) {
176 if (column_count * 4 == pitch || column_count == 8) {
177 fprintf(ctx->fp, "\n");
178 column_count = 0;
179 line_count++;
180
181 if (max_lines >= 0 && line_count >= max_lines)
182 break;
183 }
184 fprintf(ctx->fp, column_count == 0 ? " " : " ");
185
186 if ((ctx->flags & GEN_BATCH_DECODE_FLOATS) && probably_float(*dw))
187 fprintf(ctx->fp, " %8.2f", *(float *) dw);
188 else
189 fprintf(ctx->fp, " 0x%08x", *dw);
190
191 column_count++;
192 }
193 fprintf(ctx->fp, "\n");
194 }
195
196 static struct gen_group *
197 gen_ctx_find_instruction(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
198 {
199 return gen_spec_find_instruction(ctx->spec, ctx->engine, p);
200 }
201
202 static void
203 handle_state_base_address(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
204 {
205 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
206
207 struct gen_field_iterator iter;
208 gen_field_iterator_init(&iter, inst, p, 0, false);
209
210 uint64_t surface_base = 0, dynamic_base = 0, instruction_base = 0;
211 bool surface_modify = 0, dynamic_modify = 0, instruction_modify = 0;
212
213 while (gen_field_iterator_next(&iter)) {
214 if (strcmp(iter.name, "Surface State Base Address") == 0) {
215 surface_base = iter.raw_value;
216 } else if (strcmp(iter.name, "Dynamic State Base Address") == 0) {
217 dynamic_base = iter.raw_value;
218 } else if (strcmp(iter.name, "Instruction Base Address") == 0) {
219 instruction_base = iter.raw_value;
220 } else if (strcmp(iter.name, "Surface State Base Address Modify Enable") == 0) {
221 surface_modify = iter.raw_value;
222 } else if (strcmp(iter.name, "Dynamic State Base Address Modify Enable") == 0) {
223 dynamic_modify = iter.raw_value;
224 } else if (strcmp(iter.name, "Instruction Base Address Modify Enable") == 0) {
225 instruction_modify = iter.raw_value;
226 }
227 }
228
229 if (dynamic_modify)
230 ctx->dynamic_base = dynamic_base;
231
232 if (surface_modify)
233 ctx->surface_base = surface_base;
234
235 if (instruction_modify)
236 ctx->instruction_base = instruction_base;
237 }
238
239 static void
240 dump_binding_table(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count)
241 {
242 struct gen_group *strct =
243 gen_spec_find_struct(ctx->spec, "RENDER_SURFACE_STATE");
244 if (strct == NULL) {
245 fprintf(ctx->fp, "did not find RENDER_SURFACE_STATE info\n");
246 return;
247 }
248
249 if (count < 0)
250 count = update_count(ctx, offset, 1, 8);
251
252 if (offset % 32 != 0 || offset >= UINT16_MAX) {
253 fprintf(ctx->fp, " invalid binding table pointer\n");
254 return;
255 }
256
257 struct gen_batch_decode_bo bind_bo =
258 ctx_get_bo(ctx, ctx->surface_base + offset);
259
260 if (bind_bo.map == NULL) {
261 fprintf(ctx->fp, " binding table unavailable\n");
262 return;
263 }
264
265 const uint32_t *pointers = bind_bo.map;
266 for (int i = 0; i < count; i++) {
267 if (pointers[i] == 0)
268 continue;
269
270 uint64_t addr = ctx->surface_base + pointers[i];
271 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, addr);
272 uint32_t size = strct->dw_length * 4;
273
274 if (pointers[i] % 32 != 0 ||
275 addr < bo.addr || addr + size >= bo.addr + bo.size) {
276 fprintf(ctx->fp, "pointer %u: 0x%08x <not valid>\n", i, pointers[i]);
277 continue;
278 }
279
280 fprintf(ctx->fp, "pointer %u: 0x%08x\n", i, pointers[i]);
281 ctx_print_group(ctx, strct, addr, bo.map + (addr - bo.addr));
282 }
283 }
284
285 static void
286 dump_samplers(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count)
287 {
288 struct gen_group *strct = gen_spec_find_struct(ctx->spec, "SAMPLER_STATE");
289
290 if (count < 0)
291 count = update_count(ctx, offset, strct->dw_length, 4);
292
293 uint64_t state_addr = ctx->dynamic_base + offset;
294 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, state_addr);
295 const void *state_map = bo.map;
296
297 if (state_map == NULL) {
298 fprintf(ctx->fp, " samplers unavailable\n");
299 return;
300 }
301
302 if (offset % 32 != 0 || state_addr - bo.addr >= bo.size) {
303 fprintf(ctx->fp, " invalid sampler state pointer\n");
304 return;
305 }
306
307 for (int i = 0; i < count; i++) {
308 fprintf(ctx->fp, "sampler state %d\n", i);
309 ctx_print_group(ctx, strct, state_addr, state_map);
310 state_addr += 16;
311 state_map += 16;
312 }
313 }
314
315 static void
316 handle_media_interface_descriptor_load(struct gen_batch_decode_ctx *ctx,
317 const uint32_t *p)
318 {
319 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
320 struct gen_group *desc =
321 gen_spec_find_struct(ctx->spec, "INTERFACE_DESCRIPTOR_DATA");
322
323 struct gen_field_iterator iter;
324 gen_field_iterator_init(&iter, inst, p, 0, false);
325 uint32_t descriptor_offset = 0;
326 int descriptor_count = 0;
327 while (gen_field_iterator_next(&iter)) {
328 if (strcmp(iter.name, "Interface Descriptor Data Start Address") == 0) {
329 descriptor_offset = strtol(iter.value, NULL, 16);
330 } else if (strcmp(iter.name, "Interface Descriptor Total Length") == 0) {
331 descriptor_count =
332 strtol(iter.value, NULL, 16) / (desc->dw_length * 4);
333 }
334 }
335
336 uint64_t desc_addr = ctx->dynamic_base + descriptor_offset;
337 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, desc_addr);
338 const void *desc_map = bo.map;
339
340 if (desc_map == NULL) {
341 fprintf(ctx->fp, " interface descriptors unavailable\n");
342 return;
343 }
344
345 for (int i = 0; i < descriptor_count; i++) {
346 fprintf(ctx->fp, "descriptor %d: %08x\n", i, descriptor_offset);
347
348 ctx_print_group(ctx, desc, desc_addr, desc_map);
349
350 gen_field_iterator_init(&iter, desc, desc_map, 0, false);
351 uint64_t ksp = 0;
352 uint32_t sampler_offset = 0, sampler_count = 0;
353 uint32_t binding_table_offset = 0, binding_entry_count = 0;
354 while (gen_field_iterator_next(&iter)) {
355 if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
356 ksp = strtoll(iter.value, NULL, 16);
357 } else if (strcmp(iter.name, "Sampler State Pointer") == 0) {
358 sampler_offset = strtol(iter.value, NULL, 16);
359 } else if (strcmp(iter.name, "Sampler Count") == 0) {
360 sampler_count = strtol(iter.value, NULL, 10);
361 } else if (strcmp(iter.name, "Binding Table Pointer") == 0) {
362 binding_table_offset = strtol(iter.value, NULL, 16);
363 } else if (strcmp(iter.name, "Binding Table Entry Count") == 0) {
364 binding_entry_count = strtol(iter.value, NULL, 10);
365 }
366 }
367
368 ctx_disassemble_program(ctx, ksp, "compute shader");
369 printf("\n");
370
371 dump_samplers(ctx, sampler_offset, sampler_count);
372 dump_binding_table(ctx, binding_table_offset, binding_entry_count);
373
374 desc_map += desc->dw_length;
375 desc_addr += desc->dw_length * 4;
376 }
377 }
378
379 static void
380 handle_3dstate_vertex_buffers(struct gen_batch_decode_ctx *ctx,
381 const uint32_t *p)
382 {
383 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
384 struct gen_group *vbs = gen_spec_find_struct(ctx->spec, "VERTEX_BUFFER_STATE");
385
386 struct gen_batch_decode_bo vb = {};
387 uint32_t vb_size = 0;
388 int index = -1;
389 int pitch = -1;
390 bool ready = false;
391
392 struct gen_field_iterator iter;
393 gen_field_iterator_init(&iter, inst, p, 0, false);
394 while (gen_field_iterator_next(&iter)) {
395 if (iter.struct_desc != vbs)
396 continue;
397
398 struct gen_field_iterator vbs_iter;
399 gen_field_iterator_init(&vbs_iter, vbs, &iter.p[iter.start_bit / 32], 0, false);
400 while (gen_field_iterator_next(&vbs_iter)) {
401 if (strcmp(vbs_iter.name, "Vertex Buffer Index") == 0) {
402 index = vbs_iter.raw_value;
403 } else if (strcmp(vbs_iter.name, "Buffer Pitch") == 0) {
404 pitch = vbs_iter.raw_value;
405 } else if (strcmp(vbs_iter.name, "Buffer Starting Address") == 0) {
406 vb = ctx_get_bo(ctx, vbs_iter.raw_value);
407 } else if (strcmp(vbs_iter.name, "Buffer Size") == 0) {
408 vb_size = vbs_iter.raw_value;
409 ready = true;
410 } else if (strcmp(vbs_iter.name, "End Address") == 0) {
411 if (vb.map && vbs_iter.raw_value >= vb.addr)
412 vb_size = (vbs_iter.raw_value + 1) - vb.addr;
413 else
414 vb_size = 0;
415 ready = true;
416 }
417
418 if (!ready)
419 continue;
420
421 fprintf(ctx->fp, "vertex buffer %d, size %d\n", index, vb_size);
422
423 if (vb.map == NULL) {
424 fprintf(ctx->fp, " buffer contents unavailable\n");
425 continue;
426 }
427
428 if (vb.map == 0 || vb_size == 0)
429 continue;
430
431 ctx_print_buffer(ctx, vb, vb_size, pitch, ctx->max_vbo_decoded_lines);
432
433 vb.map = NULL;
434 vb_size = 0;
435 index = -1;
436 pitch = -1;
437 ready = false;
438 }
439 }
440 }
441
442 static void
443 handle_3dstate_index_buffer(struct gen_batch_decode_ctx *ctx,
444 const uint32_t *p)
445 {
446 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
447
448 struct gen_batch_decode_bo ib = {};
449 uint32_t ib_size = 0;
450 uint32_t format = 0;
451
452 struct gen_field_iterator iter;
453 gen_field_iterator_init(&iter, inst, p, 0, false);
454 while (gen_field_iterator_next(&iter)) {
455 if (strcmp(iter.name, "Index Format") == 0) {
456 format = iter.raw_value;
457 } else if (strcmp(iter.name, "Buffer Starting Address") == 0) {
458 ib = ctx_get_bo(ctx, iter.raw_value);
459 } else if (strcmp(iter.name, "Buffer Size") == 0) {
460 ib_size = iter.raw_value;
461 }
462 }
463
464 if (ib.map == NULL) {
465 fprintf(ctx->fp, " buffer contents unavailable\n");
466 return;
467 }
468
469 const void *m = ib.map;
470 const void *ib_end = ib.map + MIN2(ib.size, ib_size);
471 for (int i = 0; m < ib_end && i < 10; i++) {
472 switch (format) {
473 case 0:
474 fprintf(ctx->fp, "%3d ", *(uint8_t *)m);
475 m += 1;
476 break;
477 case 1:
478 fprintf(ctx->fp, "%3d ", *(uint16_t *)m);
479 m += 2;
480 break;
481 case 2:
482 fprintf(ctx->fp, "%3d ", *(uint32_t *)m);
483 m += 4;
484 break;
485 }
486 }
487
488 if (m < ib_end)
489 fprintf(ctx->fp, "...");
490 fprintf(ctx->fp, "\n");
491 }
492
493 static void
494 decode_single_ksp(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
495 {
496 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
497
498 uint64_t ksp = 0;
499 bool is_simd8 = false; /* vertex shaders on Gen8+ only */
500 bool is_enabled = true;
501
502 struct gen_field_iterator iter;
503 gen_field_iterator_init(&iter, inst, p, 0, false);
504 while (gen_field_iterator_next(&iter)) {
505 if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
506 ksp = iter.raw_value;
507 } else if (strcmp(iter.name, "SIMD8 Dispatch Enable") == 0) {
508 is_simd8 = iter.raw_value;
509 } else if (strcmp(iter.name, "Dispatch Mode") == 0) {
510 is_simd8 = strcmp(iter.value, "SIMD8") == 0;
511 } else if (strcmp(iter.name, "Dispatch Enable") == 0) {
512 is_simd8 = strcmp(iter.value, "SIMD8") == 0;
513 } else if (strcmp(iter.name, "Enable") == 0) {
514 is_enabled = iter.raw_value;
515 }
516 }
517
518 const char *type =
519 strcmp(inst->name, "VS_STATE") == 0 ? "vertex shader" :
520 strcmp(inst->name, "GS_STATE") == 0 ? "geometry shader" :
521 strcmp(inst->name, "SF_STATE") == 0 ? "strips and fans shader" :
522 strcmp(inst->name, "CLIP_STATE") == 0 ? "clip shader" :
523 strcmp(inst->name, "3DSTATE_DS") == 0 ? "tessellation evaluation shader" :
524 strcmp(inst->name, "3DSTATE_HS") == 0 ? "tessellation control shader" :
525 strcmp(inst->name, "3DSTATE_VS") == 0 ? (is_simd8 ? "SIMD8 vertex shader" : "vec4 vertex shader") :
526 strcmp(inst->name, "3DSTATE_GS") == 0 ? (is_simd8 ? "SIMD8 geometry shader" : "vec4 geometry shader") :
527 NULL;
528
529 if (is_enabled) {
530 ctx_disassemble_program(ctx, ksp, type);
531 printf("\n");
532 }
533 }
534
535 static void
536 decode_ps_kernels(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
537 {
538 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
539
540 uint64_t ksp[3] = {0, 0, 0};
541 bool enabled[3] = {false, false, false};
542
543 struct gen_field_iterator iter;
544 gen_field_iterator_init(&iter, inst, p, 0, false);
545 while (gen_field_iterator_next(&iter)) {
546 if (strncmp(iter.name, "Kernel Start Pointer ",
547 strlen("Kernel Start Pointer ")) == 0) {
548 int idx = iter.name[strlen("Kernel Start Pointer ")] - '0';
549 ksp[idx] = strtol(iter.value, NULL, 16);
550 } else if (strcmp(iter.name, "8 Pixel Dispatch Enable") == 0) {
551 enabled[0] = strcmp(iter.value, "true") == 0;
552 } else if (strcmp(iter.name, "16 Pixel Dispatch Enable") == 0) {
553 enabled[1] = strcmp(iter.value, "true") == 0;
554 } else if (strcmp(iter.name, "32 Pixel Dispatch Enable") == 0) {
555 enabled[2] = strcmp(iter.value, "true") == 0;
556 }
557 }
558
559 /* Reorder KSPs to be [8, 16, 32] instead of the hardware order. */
560 if (enabled[0] + enabled[1] + enabled[2] == 1) {
561 if (enabled[1]) {
562 ksp[1] = ksp[0];
563 ksp[0] = 0;
564 } else if (enabled[2]) {
565 ksp[2] = ksp[0];
566 ksp[0] = 0;
567 }
568 } else {
569 uint64_t tmp = ksp[1];
570 ksp[1] = ksp[2];
571 ksp[2] = tmp;
572 }
573
574 if (enabled[0])
575 ctx_disassemble_program(ctx, ksp[0], "SIMD8 fragment shader");
576 if (enabled[1])
577 ctx_disassemble_program(ctx, ksp[1], "SIMD16 fragment shader");
578 if (enabled[2])
579 ctx_disassemble_program(ctx, ksp[2], "SIMD32 fragment shader");
580 fprintf(ctx->fp, "\n");
581 }
582
583 static void
584 decode_3dstate_constant(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
585 {
586 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
587 struct gen_group *body =
588 gen_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_BODY");
589
590 uint32_t read_length[4] = {0};
591 uint64_t read_addr[4];
592
593 struct gen_field_iterator outer;
594 gen_field_iterator_init(&outer, inst, p, 0, false);
595 while (gen_field_iterator_next(&outer)) {
596 if (outer.struct_desc != body)
597 continue;
598
599 struct gen_field_iterator iter;
600 gen_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32],
601 0, false);
602
603 while (gen_field_iterator_next(&iter)) {
604 int idx;
605 if (sscanf(iter.name, "Read Length[%d]", &idx) == 1) {
606 read_length[idx] = iter.raw_value;
607 } else if (sscanf(iter.name, "Buffer[%d]", &idx) == 1) {
608 read_addr[idx] = iter.raw_value;
609 }
610 }
611
612 for (int i = 0; i < 4; i++) {
613 if (read_length[i] == 0)
614 continue;
615
616 struct gen_batch_decode_bo buffer = ctx_get_bo(ctx, read_addr[i]);
617 if (!buffer.map) {
618 fprintf(ctx->fp, "constant buffer %d unavailable\n", i);
619 continue;
620 }
621
622 unsigned size = read_length[i] * 32;
623 fprintf(ctx->fp, "constant buffer %d, size %u\n", i, size);
624
625 ctx_print_buffer(ctx, buffer, size, 0, -1);
626 }
627 }
628 }
629
630 static void
631 decode_3dstate_binding_table_pointers(struct gen_batch_decode_ctx *ctx,
632 const uint32_t *p)
633 {
634 dump_binding_table(ctx, p[1], -1);
635 }
636
637 static void
638 decode_3dstate_sampler_state_pointers(struct gen_batch_decode_ctx *ctx,
639 const uint32_t *p)
640 {
641 dump_samplers(ctx, p[1], -1);
642 }
643
644 static void
645 decode_3dstate_sampler_state_pointers_gen6(struct gen_batch_decode_ctx *ctx,
646 const uint32_t *p)
647 {
648 dump_samplers(ctx, p[1], -1);
649 dump_samplers(ctx, p[2], -1);
650 dump_samplers(ctx, p[3], -1);
651 }
652
653 static bool
654 str_ends_with(const char *str, const char *end)
655 {
656 int offset = strlen(str) - strlen(end);
657 if (offset < 0)
658 return false;
659
660 return strcmp(str + offset, end) == 0;
661 }
662
663 static void
664 decode_dynamic_state_pointers(struct gen_batch_decode_ctx *ctx,
665 const char *struct_type, const uint32_t *p,
666 int count)
667 {
668 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
669
670 uint32_t state_offset = 0;
671
672 struct gen_field_iterator iter;
673 gen_field_iterator_init(&iter, inst, p, 0, false);
674 while (gen_field_iterator_next(&iter)) {
675 if (str_ends_with(iter.name, "Pointer")) {
676 state_offset = iter.raw_value;
677 break;
678 }
679 }
680
681 uint64_t state_addr = ctx->dynamic_base + state_offset;
682 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, state_addr);
683 const void *state_map = bo.map;
684
685 if (state_map == NULL) {
686 fprintf(ctx->fp, " dynamic %s state unavailable\n", struct_type);
687 return;
688 }
689
690 struct gen_group *state = gen_spec_find_struct(ctx->spec, struct_type);
691 if (strcmp(struct_type, "BLEND_STATE") == 0) {
692 /* Blend states are different from the others because they have a header
693 * struct called BLEND_STATE which is followed by a variable number of
694 * BLEND_STATE_ENTRY structs.
695 */
696 fprintf(ctx->fp, "%s\n", struct_type);
697 ctx_print_group(ctx, state, state_addr, state_map);
698
699 state_addr += state->dw_length * 4;
700 state_map += state->dw_length * 4;
701
702 struct_type = "BLEND_STATE_ENTRY";
703 state = gen_spec_find_struct(ctx->spec, struct_type);
704 }
705
706 for (int i = 0; i < count; i++) {
707 fprintf(ctx->fp, "%s %d\n", struct_type, i);
708 ctx_print_group(ctx, state, state_addr, state_map);
709
710 state_addr += state->dw_length * 4;
711 state_map += state->dw_length * 4;
712 }
713 }
714
715 static void
716 decode_3dstate_viewport_state_pointers_cc(struct gen_batch_decode_ctx *ctx,
717 const uint32_t *p)
718 {
719 decode_dynamic_state_pointers(ctx, "CC_VIEWPORT", p, 4);
720 }
721
722 static void
723 decode_3dstate_viewport_state_pointers_sf_clip(struct gen_batch_decode_ctx *ctx,
724 const uint32_t *p)
725 {
726 decode_dynamic_state_pointers(ctx, "SF_CLIP_VIEWPORT", p, 4);
727 }
728
729 static void
730 decode_3dstate_blend_state_pointers(struct gen_batch_decode_ctx *ctx,
731 const uint32_t *p)
732 {
733 decode_dynamic_state_pointers(ctx, "BLEND_STATE", p, 1);
734 }
735
736 static void
737 decode_3dstate_cc_state_pointers(struct gen_batch_decode_ctx *ctx,
738 const uint32_t *p)
739 {
740 decode_dynamic_state_pointers(ctx, "COLOR_CALC_STATE", p, 1);
741 }
742
743 static void
744 decode_3dstate_scissor_state_pointers(struct gen_batch_decode_ctx *ctx,
745 const uint32_t *p)
746 {
747 decode_dynamic_state_pointers(ctx, "SCISSOR_RECT", p, 1);
748 }
749
750 static void
751 decode_load_register_imm(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
752 {
753 struct gen_group *reg = gen_spec_find_register(ctx->spec, p[1]);
754
755 if (reg != NULL) {
756 fprintf(ctx->fp, "register %s (0x%x): 0x%x\n",
757 reg->name, reg->register_offset, p[2]);
758 ctx_print_group(ctx, reg, reg->register_offset, &p[2]);
759 }
760 }
761
762 struct custom_decoder {
763 const char *cmd_name;
764 void (*decode)(struct gen_batch_decode_ctx *ctx, const uint32_t *p);
765 } custom_decoders[] = {
766 { "STATE_BASE_ADDRESS", handle_state_base_address },
767 { "MEDIA_INTERFACE_DESCRIPTOR_LOAD", handle_media_interface_descriptor_load },
768 { "3DSTATE_VERTEX_BUFFERS", handle_3dstate_vertex_buffers },
769 { "3DSTATE_INDEX_BUFFER", handle_3dstate_index_buffer },
770 { "3DSTATE_VS", decode_single_ksp },
771 { "3DSTATE_GS", decode_single_ksp },
772 { "3DSTATE_DS", decode_single_ksp },
773 { "3DSTATE_HS", decode_single_ksp },
774 { "3DSTATE_PS", decode_ps_kernels },
775 { "3DSTATE_CONSTANT_VS", decode_3dstate_constant },
776 { "3DSTATE_CONSTANT_GS", decode_3dstate_constant },
777 { "3DSTATE_CONSTANT_PS", decode_3dstate_constant },
778 { "3DSTATE_CONSTANT_HS", decode_3dstate_constant },
779 { "3DSTATE_CONSTANT_DS", decode_3dstate_constant },
780
781 { "3DSTATE_BINDING_TABLE_POINTERS_VS", decode_3dstate_binding_table_pointers },
782 { "3DSTATE_BINDING_TABLE_POINTERS_HS", decode_3dstate_binding_table_pointers },
783 { "3DSTATE_BINDING_TABLE_POINTERS_DS", decode_3dstate_binding_table_pointers },
784 { "3DSTATE_BINDING_TABLE_POINTERS_GS", decode_3dstate_binding_table_pointers },
785 { "3DSTATE_BINDING_TABLE_POINTERS_PS", decode_3dstate_binding_table_pointers },
786
787 { "3DSTATE_SAMPLER_STATE_POINTERS_VS", decode_3dstate_sampler_state_pointers },
788 { "3DSTATE_SAMPLER_STATE_POINTERS_HS", decode_3dstate_sampler_state_pointers },
789 { "3DSTATE_SAMPLER_STATE_POINTERS_DS", decode_3dstate_sampler_state_pointers },
790 { "3DSTATE_SAMPLER_STATE_POINTERS_GS", decode_3dstate_sampler_state_pointers },
791 { "3DSTATE_SAMPLER_STATE_POINTERS_PS", decode_3dstate_sampler_state_pointers },
792 { "3DSTATE_SAMPLER_STATE_POINTERS", decode_3dstate_sampler_state_pointers_gen6 },
793
794 { "3DSTATE_VIEWPORT_STATE_POINTERS_CC", decode_3dstate_viewport_state_pointers_cc },
795 { "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", decode_3dstate_viewport_state_pointers_sf_clip },
796 { "3DSTATE_BLEND_STATE_POINTERS", decode_3dstate_blend_state_pointers },
797 { "3DSTATE_CC_STATE_POINTERS", decode_3dstate_cc_state_pointers },
798 { "3DSTATE_SCISSOR_STATE_POINTERS", decode_3dstate_scissor_state_pointers },
799 { "MI_LOAD_REGISTER_IMM", decode_load_register_imm }
800 };
801
802 void
803 gen_print_batch(struct gen_batch_decode_ctx *ctx,
804 const uint32_t *batch, uint32_t batch_size,
805 uint64_t batch_addr)
806 {
807 const uint32_t *p, *end = batch + batch_size / sizeof(uint32_t);
808 int length;
809 struct gen_group *inst;
810
811 for (p = batch; p < end; p += length) {
812 inst = gen_ctx_find_instruction(ctx, p);
813 length = gen_group_get_length(inst, p);
814 assert(inst == NULL || length > 0);
815 length = MAX2(1, length);
816
817 const char *reset_color = ctx->flags & GEN_BATCH_DECODE_IN_COLOR ? NORMAL : "";
818
819 uint64_t offset;
820 if (ctx->flags & GEN_BATCH_DECODE_OFFSETS)
821 offset = batch_addr + ((char *)p - (char *)batch);
822 else
823 offset = 0;
824
825 if (inst == NULL) {
826 fprintf(ctx->fp, "%s0x%08"PRIx64": unknown instruction %08x%s\n",
827 (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) ? RED_COLOR : "",
828 offset, p[0], reset_color);
829 continue;
830 }
831
832 const char *color;
833 const char *inst_name = gen_group_get_name(inst);
834 if (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) {
835 reset_color = NORMAL;
836 if (ctx->flags & GEN_BATCH_DECODE_FULL) {
837 if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0 ||
838 strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0)
839 color = GREEN_HEADER;
840 else
841 color = BLUE_HEADER;
842 } else {
843 color = NORMAL;
844 }
845 } else {
846 color = "";
847 reset_color = "";
848 }
849
850 fprintf(ctx->fp, "%s0x%08"PRIx64": 0x%08x: %-80s%s\n",
851 color, offset, p[0], inst_name, reset_color);
852
853 if (ctx->flags & GEN_BATCH_DECODE_FULL) {
854 ctx_print_group(ctx, inst, offset, p);
855
856 for (int i = 0; i < ARRAY_SIZE(custom_decoders); i++) {
857 if (strcmp(inst_name, custom_decoders[i].cmd_name) == 0) {
858 custom_decoders[i].decode(ctx, p);
859 break;
860 }
861 }
862 }
863
864 if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0) {
865 struct gen_batch_decode_bo next_batch = {};
866 bool second_level;
867 struct gen_field_iterator iter;
868 gen_field_iterator_init(&iter, inst, p, 0, false);
869 while (gen_field_iterator_next(&iter)) {
870 if (strcmp(iter.name, "Batch Buffer Start Address") == 0) {
871 next_batch = ctx_get_bo(ctx, iter.raw_value);
872 } else if (strcmp(iter.name, "Second Level Batch Buffer") == 0) {
873 second_level = iter.raw_value;
874 }
875 }
876
877 if (next_batch.map == NULL) {
878 fprintf(ctx->fp, "Secondary batch at 0x%08"PRIx64" unavailable\n",
879 next_batch.addr);
880 } else {
881 gen_print_batch(ctx, next_batch.map, next_batch.size,
882 next_batch.addr);
883 }
884 if (second_level) {
885 /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" set acts
886 * like a subroutine call. Commands that come afterwards get
887 * processed once the 2nd level batch buffer returns with
888 * MI_BATCH_BUFFER_END.
889 */
890 continue;
891 } else {
892 /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" unset acts
893 * like a goto. Nothing after it will ever get processed. In
894 * order to prevent the recursion from growing, we just reset the
895 * loop and continue;
896 */
897 break;
898 }
899 } else if (strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) {
900 break;
901 }
902 }
903 }