intel/batch-decoder: remove never-used function
[mesa.git] / src / intel / common / gen_batch_decoder.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "common/gen_decoder.h"
25 #include "gen_disasm.h"
26 #include "util/macros.h"
27
28 #include <string.h>
29
30 void
31 gen_batch_decode_ctx_init(struct gen_batch_decode_ctx *ctx,
32 const struct gen_device_info *devinfo,
33 FILE *fp, enum gen_batch_decode_flags flags,
34 const char *xml_path,
35 struct gen_batch_decode_bo (*get_bo)(void *,
36 uint64_t),
37 unsigned (*get_state_size)(void *, uint32_t),
38 void *user_data)
39 {
40 memset(ctx, 0, sizeof(*ctx));
41
42 ctx->get_bo = get_bo;
43 ctx->get_state_size = get_state_size;
44 ctx->user_data = user_data;
45 ctx->fp = fp;
46 ctx->flags = flags;
47 ctx->max_vbo_decoded_lines = -1; /* No limit! */
48
49 if (xml_path == NULL)
50 ctx->spec = gen_spec_load(devinfo);
51 else
52 ctx->spec = gen_spec_load_from_path(devinfo, xml_path);
53 ctx->disasm = gen_disasm_create(devinfo);
54 }
55
56 void
57 gen_batch_decode_ctx_finish(struct gen_batch_decode_ctx *ctx)
58 {
59 gen_spec_destroy(ctx->spec);
60 gen_disasm_destroy(ctx->disasm);
61 }
62
63 #define CSI "\e["
64 #define RED_COLOR CSI "31m"
65 #define BLUE_HEADER CSI "0;44m"
66 #define GREEN_HEADER CSI "1;42m"
67 #define NORMAL CSI "0m"
68
69 static void
70 ctx_print_group(struct gen_batch_decode_ctx *ctx,
71 struct gen_group *group,
72 uint64_t address, const void *map)
73 {
74 gen_print_group(ctx->fp, group, address, map, 0,
75 (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) != 0);
76 }
77
78 static struct gen_batch_decode_bo
79 ctx_get_bo(struct gen_batch_decode_ctx *ctx, uint64_t addr)
80 {
81 if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0)) {
82 /* On Broadwell and above, we have 48-bit addresses which consume two
83 * dwords. Some packets require that these get stored in a "canonical
84 * form" which means that bit 47 is sign-extended through the upper
85 * bits. In order to correctly handle those aub dumps, we need to mask
86 * off the top 16 bits.
87 */
88 addr &= (~0ull >> 16);
89 }
90
91 struct gen_batch_decode_bo bo = ctx->get_bo(ctx->user_data, addr);
92
93 if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0))
94 bo.addr &= (~0ull >> 16);
95
96 /* We may actually have an offset into the bo */
97 if (bo.map != NULL) {
98 assert(bo.addr <= addr);
99 uint64_t offset = addr - bo.addr;
100 bo.map += offset;
101 bo.addr += offset;
102 bo.size -= offset;
103 }
104
105 return bo;
106 }
107
108 static int
109 update_count(struct gen_batch_decode_ctx *ctx,
110 uint32_t offset_from_dsba,
111 unsigned element_dwords,
112 unsigned guess)
113 {
114 unsigned size = 0;
115
116 if (ctx->get_state_size)
117 size = ctx->get_state_size(ctx->user_data, offset_from_dsba);
118
119 if (size > 0)
120 return size / (sizeof(uint32_t) * element_dwords);
121
122 /* In the absence of any information, just guess arbitrarily. */
123 return guess;
124 }
125
126 static void
127 ctx_disassemble_program(struct gen_batch_decode_ctx *ctx,
128 uint32_t ksp, const char *type)
129 {
130 uint64_t addr = ctx->instruction_base + ksp;
131 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, addr);
132 if (!bo.map)
133 return;
134
135 fprintf(ctx->fp, "\nReferenced %s:\n", type);
136 gen_disasm_disassemble(ctx->disasm, bo.map, 0, ctx->fp);
137 }
138
139 /* Heuristic to determine whether a uint32_t is probably actually a float
140 * (http://stackoverflow.com/a/2953466)
141 */
142
143 static bool
144 probably_float(uint32_t bits)
145 {
146 int exp = ((bits & 0x7f800000U) >> 23) - 127;
147 uint32_t mant = bits & 0x007fffff;
148
149 /* +- 0.0 */
150 if (exp == -127 && mant == 0)
151 return true;
152
153 /* +- 1 billionth to 1 billion */
154 if (-30 <= exp && exp <= 30)
155 return true;
156
157 /* some value with only a few binary digits */
158 if ((mant & 0x0000ffff) == 0)
159 return true;
160
161 return false;
162 }
163
164 static void
165 ctx_print_buffer(struct gen_batch_decode_ctx *ctx,
166 struct gen_batch_decode_bo bo,
167 uint32_t read_length,
168 uint32_t pitch,
169 int max_lines)
170 {
171 const uint32_t *dw_end = bo.map + MIN2(bo.size, read_length);
172
173 int column_count = 0, line_count = -1;
174 for (const uint32_t *dw = bo.map; dw < dw_end; dw++) {
175 if (column_count * 4 == pitch || column_count == 8) {
176 fprintf(ctx->fp, "\n");
177 column_count = 0;
178 line_count++;
179
180 if (max_lines >= 0 && line_count >= max_lines)
181 break;
182 }
183 fprintf(ctx->fp, column_count == 0 ? " " : " ");
184
185 if ((ctx->flags & GEN_BATCH_DECODE_FLOATS) && probably_float(*dw))
186 fprintf(ctx->fp, " %8.2f", *(float *) dw);
187 else
188 fprintf(ctx->fp, " 0x%08x", *dw);
189
190 column_count++;
191 }
192 fprintf(ctx->fp, "\n");
193 }
194
195 static void
196 handle_state_base_address(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
197 {
198 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
199
200 struct gen_field_iterator iter;
201 gen_field_iterator_init(&iter, inst, p, 0, false);
202
203 uint64_t surface_base = 0, dynamic_base = 0, instruction_base = 0;
204 bool surface_modify = 0, dynamic_modify = 0, instruction_modify = 0;
205
206 while (gen_field_iterator_next(&iter)) {
207 if (strcmp(iter.name, "Surface State Base Address") == 0) {
208 surface_base = iter.raw_value;
209 } else if (strcmp(iter.name, "Dynamic State Base Address") == 0) {
210 dynamic_base = iter.raw_value;
211 } else if (strcmp(iter.name, "Instruction Base Address") == 0) {
212 instruction_base = iter.raw_value;
213 } else if (strcmp(iter.name, "Surface State Base Address Modify Enable") == 0) {
214 surface_modify = iter.raw_value;
215 } else if (strcmp(iter.name, "Dynamic State Base Address Modify Enable") == 0) {
216 dynamic_modify = iter.raw_value;
217 } else if (strcmp(iter.name, "Insntruction Base Address Modify Enable") == 0) {
218 instruction_modify = iter.raw_value;
219 }
220 }
221
222 if (dynamic_modify)
223 ctx->dynamic_base = dynamic_base;
224
225 if (surface_modify)
226 ctx->surface_base = surface_base;
227
228 if (instruction_modify)
229 ctx->instruction_base = instruction_base;
230 }
231
232 static void
233 dump_binding_table(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count)
234 {
235 struct gen_group *strct =
236 gen_spec_find_struct(ctx->spec, "RENDER_SURFACE_STATE");
237 if (strct == NULL) {
238 fprintf(ctx->fp, "did not find RENDER_SURFACE_STATE info\n");
239 return;
240 }
241
242 if (count < 0)
243 count = update_count(ctx, offset, 1, 8);
244
245 if (offset % 32 != 0 || offset >= UINT16_MAX) {
246 fprintf(ctx->fp, " invalid binding table pointer\n");
247 return;
248 }
249
250 struct gen_batch_decode_bo bind_bo =
251 ctx_get_bo(ctx, ctx->surface_base + offset);
252
253 if (bind_bo.map == NULL) {
254 fprintf(ctx->fp, " binding table unavailable\n");
255 return;
256 }
257
258 const uint32_t *pointers = bind_bo.map;
259 for (int i = 0; i < count; i++) {
260 if (pointers[i] == 0)
261 continue;
262
263 uint64_t addr = ctx->surface_base + pointers[i];
264 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, addr);
265 uint32_t size = strct->dw_length * 4;
266
267 if (pointers[i] % 32 != 0 ||
268 addr < bo.addr || addr + size >= bo.addr + bo.size) {
269 fprintf(ctx->fp, "pointer %u: 0x%08x <not valid>\n", i, pointers[i]);
270 continue;
271 }
272
273 fprintf(ctx->fp, "pointer %u: 0x%08x\n", i, pointers[i]);
274 ctx_print_group(ctx, strct, addr, bo.map + (addr - bo.addr));
275 }
276 }
277
278 static void
279 dump_samplers(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count)
280 {
281 struct gen_group *strct = gen_spec_find_struct(ctx->spec, "SAMPLER_STATE");
282
283 if (count < 0)
284 count = update_count(ctx, offset, strct->dw_length, 4);
285
286 uint64_t state_addr = ctx->dynamic_base + offset;
287 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, state_addr);
288 const void *state_map = bo.map;
289
290 if (state_map == NULL) {
291 fprintf(ctx->fp, " samplers unavailable\n");
292 return;
293 }
294
295 if (offset % 32 != 0 || state_addr - bo.addr >= bo.size) {
296 fprintf(ctx->fp, " invalid sampler state pointer\n");
297 return;
298 }
299
300 for (int i = 0; i < count; i++) {
301 fprintf(ctx->fp, "sampler state %d\n", i);
302 ctx_print_group(ctx, strct, state_addr, state_map);
303 state_addr += 16;
304 state_map += 16;
305 }
306 }
307
308 static void
309 handle_media_interface_descriptor_load(struct gen_batch_decode_ctx *ctx,
310 const uint32_t *p)
311 {
312 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
313 struct gen_group *desc =
314 gen_spec_find_struct(ctx->spec, "INTERFACE_DESCRIPTOR_DATA");
315
316 struct gen_field_iterator iter;
317 gen_field_iterator_init(&iter, inst, p, 0, false);
318 uint32_t descriptor_offset = 0;
319 int descriptor_count = 0;
320 while (gen_field_iterator_next(&iter)) {
321 if (strcmp(iter.name, "Interface Descriptor Data Start Address") == 0) {
322 descriptor_offset = strtol(iter.value, NULL, 16);
323 } else if (strcmp(iter.name, "Interface Descriptor Total Length") == 0) {
324 descriptor_count =
325 strtol(iter.value, NULL, 16) / (desc->dw_length * 4);
326 }
327 }
328
329 uint64_t desc_addr = ctx->dynamic_base + descriptor_offset;
330 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, desc_addr);
331 const void *desc_map = bo.map;
332
333 if (desc_map == NULL) {
334 fprintf(ctx->fp, " interface descriptors unavailable\n");
335 return;
336 }
337
338 for (int i = 0; i < descriptor_count; i++) {
339 fprintf(ctx->fp, "descriptor %d: %08x\n", i, descriptor_offset);
340
341 ctx_print_group(ctx, desc, desc_addr, desc_map);
342
343 gen_field_iterator_init(&iter, desc, desc_map, 0, false);
344 uint64_t ksp = 0;
345 uint32_t sampler_offset = 0, sampler_count = 0;
346 uint32_t binding_table_offset = 0, binding_entry_count = 0;
347 while (gen_field_iterator_next(&iter)) {
348 if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
349 ksp = strtoll(iter.value, NULL, 16);
350 } else if (strcmp(iter.name, "Sampler State Pointer") == 0) {
351 sampler_offset = strtol(iter.value, NULL, 16);
352 } else if (strcmp(iter.name, "Sampler Count") == 0) {
353 sampler_count = strtol(iter.value, NULL, 10);
354 } else if (strcmp(iter.name, "Binding Table Pointer") == 0) {
355 binding_table_offset = strtol(iter.value, NULL, 16);
356 } else if (strcmp(iter.name, "Binding Table Entry Count") == 0) {
357 binding_entry_count = strtol(iter.value, NULL, 10);
358 }
359 }
360
361 ctx_disassemble_program(ctx, ksp, "compute shader");
362 printf("\n");
363
364 dump_samplers(ctx, sampler_offset, sampler_count);
365 dump_binding_table(ctx, binding_table_offset, binding_entry_count);
366
367 desc_map += desc->dw_length;
368 desc_addr += desc->dw_length * 4;
369 }
370 }
371
372 static void
373 handle_3dstate_vertex_buffers(struct gen_batch_decode_ctx *ctx,
374 const uint32_t *p)
375 {
376 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
377 struct gen_group *vbs = gen_spec_find_struct(ctx->spec, "VERTEX_BUFFER_STATE");
378
379 struct gen_batch_decode_bo vb = {};
380 uint32_t vb_size = 0;
381 int index = -1;
382 int pitch = -1;
383 bool ready = false;
384
385 struct gen_field_iterator iter;
386 gen_field_iterator_init(&iter, inst, p, 0, false);
387 while (gen_field_iterator_next(&iter)) {
388 if (iter.struct_desc != vbs)
389 continue;
390
391 struct gen_field_iterator vbs_iter;
392 gen_field_iterator_init(&vbs_iter, vbs, &iter.p[iter.start_bit / 32], 0, false);
393 while (gen_field_iterator_next(&vbs_iter)) {
394 if (strcmp(vbs_iter.name, "Vertex Buffer Index") == 0) {
395 index = vbs_iter.raw_value;
396 } else if (strcmp(vbs_iter.name, "Buffer Pitch") == 0) {
397 pitch = vbs_iter.raw_value;
398 } else if (strcmp(vbs_iter.name, "Buffer Starting Address") == 0) {
399 vb = ctx_get_bo(ctx, vbs_iter.raw_value);
400 } else if (strcmp(vbs_iter.name, "Buffer Size") == 0) {
401 vb_size = vbs_iter.raw_value;
402 ready = true;
403 } else if (strcmp(vbs_iter.name, "End Address") == 0) {
404 if (vb.map && vbs_iter.raw_value >= vb.addr)
405 vb_size = vbs_iter.raw_value - vb.addr;
406 else
407 vb_size = 0;
408 ready = true;
409 }
410
411 if (!ready)
412 continue;
413
414 fprintf(ctx->fp, "vertex buffer %d, size %d\n", index, vb_size);
415
416 if (vb.map == NULL) {
417 fprintf(ctx->fp, " buffer contents unavailable\n");
418 continue;
419 }
420
421 if (vb.map == 0 || vb_size == 0)
422 continue;
423
424 ctx_print_buffer(ctx, vb, vb_size, pitch, ctx->max_vbo_decoded_lines);
425
426 vb.map = NULL;
427 vb_size = 0;
428 index = -1;
429 pitch = -1;
430 ready = false;
431 }
432 }
433 }
434
435 static void
436 handle_3dstate_index_buffer(struct gen_batch_decode_ctx *ctx,
437 const uint32_t *p)
438 {
439 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
440
441 struct gen_batch_decode_bo ib = {};
442 uint32_t ib_size = 0;
443 uint32_t format = 0;
444
445 struct gen_field_iterator iter;
446 gen_field_iterator_init(&iter, inst, p, 0, false);
447 while (gen_field_iterator_next(&iter)) {
448 if (strcmp(iter.name, "Index Format") == 0) {
449 format = iter.raw_value;
450 } else if (strcmp(iter.name, "Buffer Starting Address") == 0) {
451 ib = ctx_get_bo(ctx, iter.raw_value);
452 } else if (strcmp(iter.name, "Buffer Size") == 0) {
453 ib_size = iter.raw_value;
454 }
455 }
456
457 if (ib.map == NULL) {
458 fprintf(ctx->fp, " buffer contents unavailable\n");
459 return;
460 }
461
462 const void *m = ib.map;
463 const void *ib_end = ib.map + MIN2(ib.size, ib_size);
464 for (int i = 0; m < ib_end && i < 10; i++) {
465 switch (format) {
466 case 0:
467 fprintf(ctx->fp, "%3d ", *(uint8_t *)m);
468 m += 1;
469 break;
470 case 1:
471 fprintf(ctx->fp, "%3d ", *(uint16_t *)m);
472 m += 2;
473 break;
474 case 2:
475 fprintf(ctx->fp, "%3d ", *(uint32_t *)m);
476 m += 4;
477 break;
478 }
479 }
480
481 if (m < ib_end)
482 fprintf(ctx->fp, "...");
483 fprintf(ctx->fp, "\n");
484 }
485
486 static void
487 decode_single_ksp(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
488 {
489 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
490
491 uint64_t ksp = 0;
492 bool is_simd8 = false; /* vertex shaders on Gen8+ only */
493 bool is_enabled = true;
494
495 struct gen_field_iterator iter;
496 gen_field_iterator_init(&iter, inst, p, 0, false);
497 while (gen_field_iterator_next(&iter)) {
498 if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
499 ksp = iter.raw_value;
500 } else if (strcmp(iter.name, "SIMD8 Dispatch Enable") == 0) {
501 is_simd8 = iter.raw_value;
502 } else if (strcmp(iter.name, "Dispatch Mode") == 0) {
503 is_simd8 = strcmp(iter.value, "SIMD8") == 0;
504 } else if (strcmp(iter.name, "Dispatch Enable") == 0) {
505 is_simd8 = strcmp(iter.value, "SIMD8") == 0;
506 } else if (strcmp(iter.name, "Enable") == 0) {
507 is_enabled = iter.raw_value;
508 }
509 }
510
511 const char *type =
512 strcmp(inst->name, "VS_STATE") == 0 ? "vertex shader" :
513 strcmp(inst->name, "GS_STATE") == 0 ? "geometry shader" :
514 strcmp(inst->name, "SF_STATE") == 0 ? "strips and fans shader" :
515 strcmp(inst->name, "CLIP_STATE") == 0 ? "clip shader" :
516 strcmp(inst->name, "3DSTATE_DS") == 0 ? "tessellation evaluation shader" :
517 strcmp(inst->name, "3DSTATE_HS") == 0 ? "tessellation control shader" :
518 strcmp(inst->name, "3DSTATE_VS") == 0 ? (is_simd8 ? "SIMD8 vertex shader" : "vec4 vertex shader") :
519 strcmp(inst->name, "3DSTATE_GS") == 0 ? (is_simd8 ? "SIMD8 geometry shader" : "vec4 geometry shader") :
520 NULL;
521
522 if (is_enabled) {
523 ctx_disassemble_program(ctx, ksp, type);
524 printf("\n");
525 }
526 }
527
528 static void
529 decode_ps_kernels(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
530 {
531 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
532
533 uint64_t ksp[3] = {0, 0, 0};
534 bool enabled[3] = {false, false, false};
535
536 struct gen_field_iterator iter;
537 gen_field_iterator_init(&iter, inst, p, 0, false);
538 while (gen_field_iterator_next(&iter)) {
539 if (strncmp(iter.name, "Kernel Start Pointer ",
540 strlen("Kernel Start Pointer ")) == 0) {
541 int idx = iter.name[strlen("Kernel Start Pointer ")] - '0';
542 ksp[idx] = strtol(iter.value, NULL, 16);
543 } else if (strcmp(iter.name, "8 Pixel Dispatch Enable") == 0) {
544 enabled[0] = strcmp(iter.value, "true") == 0;
545 } else if (strcmp(iter.name, "16 Pixel Dispatch Enable") == 0) {
546 enabled[1] = strcmp(iter.value, "true") == 0;
547 } else if (strcmp(iter.name, "32 Pixel Dispatch Enable") == 0) {
548 enabled[2] = strcmp(iter.value, "true") == 0;
549 }
550 }
551
552 /* Reorder KSPs to be [8, 16, 32] instead of the hardware order. */
553 if (enabled[0] + enabled[1] + enabled[2] == 1) {
554 if (enabled[1]) {
555 ksp[1] = ksp[0];
556 ksp[0] = 0;
557 } else if (enabled[2]) {
558 ksp[2] = ksp[0];
559 ksp[0] = 0;
560 }
561 } else {
562 uint64_t tmp = ksp[1];
563 ksp[1] = ksp[2];
564 ksp[2] = tmp;
565 }
566
567 if (enabled[0])
568 ctx_disassemble_program(ctx, ksp[0], "SIMD8 fragment shader");
569 if (enabled[1])
570 ctx_disassemble_program(ctx, ksp[1], "SIMD16 fragment shader");
571 if (enabled[2])
572 ctx_disassemble_program(ctx, ksp[2], "SIMD32 fragment shader");
573 fprintf(ctx->fp, "\n");
574 }
575
576 static void
577 decode_3dstate_constant(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
578 {
579 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
580 struct gen_group *body =
581 gen_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_BODY");
582
583 uint32_t read_length[4] = {0};
584 uint64_t read_addr[4];
585
586 struct gen_field_iterator outer;
587 gen_field_iterator_init(&outer, inst, p, 0, false);
588 while (gen_field_iterator_next(&outer)) {
589 if (outer.struct_desc != body)
590 continue;
591
592 struct gen_field_iterator iter;
593 gen_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32],
594 0, false);
595
596 while (gen_field_iterator_next(&iter)) {
597 int idx;
598 if (sscanf(iter.name, "Read Length[%d]", &idx) == 1) {
599 read_length[idx] = iter.raw_value;
600 } else if (sscanf(iter.name, "Buffer[%d]", &idx) == 1) {
601 read_addr[idx] = iter.raw_value;
602 }
603 }
604
605 for (int i = 0; i < 4; i++) {
606 if (read_length[i] == 0)
607 continue;
608
609 struct gen_batch_decode_bo buffer = ctx_get_bo(ctx, read_addr[i]);
610 if (!buffer.map) {
611 fprintf(ctx->fp, "constant buffer %d unavailable\n", i);
612 continue;
613 }
614
615 unsigned size = read_length[i] * 32;
616 fprintf(ctx->fp, "constant buffer %d, size %u\n", i, size);
617
618 ctx_print_buffer(ctx, buffer, size, 0, -1);
619 }
620 }
621 }
622
623 static void
624 decode_3dstate_binding_table_pointers(struct gen_batch_decode_ctx *ctx,
625 const uint32_t *p)
626 {
627 dump_binding_table(ctx, p[1], -1);
628 }
629
630 static void
631 decode_3dstate_sampler_state_pointers(struct gen_batch_decode_ctx *ctx,
632 const uint32_t *p)
633 {
634 dump_samplers(ctx, p[1], -1);
635 }
636
637 static void
638 decode_3dstate_sampler_state_pointers_gen6(struct gen_batch_decode_ctx *ctx,
639 const uint32_t *p)
640 {
641 dump_samplers(ctx, p[1], -1);
642 dump_samplers(ctx, p[2], -1);
643 dump_samplers(ctx, p[3], -1);
644 }
645
646 static bool
647 str_ends_with(const char *str, const char *end)
648 {
649 int offset = strlen(str) - strlen(end);
650 if (offset < 0)
651 return false;
652
653 return strcmp(str + offset, end) == 0;
654 }
655
656 static void
657 decode_dynamic_state_pointers(struct gen_batch_decode_ctx *ctx,
658 const char *struct_type, const uint32_t *p,
659 int count)
660 {
661 struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
662
663 uint32_t state_offset = 0;
664
665 struct gen_field_iterator iter;
666 gen_field_iterator_init(&iter, inst, p, 0, false);
667 while (gen_field_iterator_next(&iter)) {
668 if (str_ends_with(iter.name, "Pointer")) {
669 state_offset = iter.raw_value;
670 break;
671 }
672 }
673
674 uint64_t state_addr = ctx->dynamic_base + state_offset;
675 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, state_addr);
676 const void *state_map = bo.map;
677
678 if (state_map == NULL) {
679 fprintf(ctx->fp, " dynamic %s state unavailable\n", struct_type);
680 return;
681 }
682
683 struct gen_group *state = gen_spec_find_struct(ctx->spec, struct_type);
684 if (strcmp(struct_type, "BLEND_STATE") == 0) {
685 /* Blend states are different from the others because they have a header
686 * struct called BLEND_STATE which is followed by a variable number of
687 * BLEND_STATE_ENTRY structs.
688 */
689 fprintf(ctx->fp, "%s\n", struct_type);
690 ctx_print_group(ctx, state, state_addr, state_map);
691
692 state_addr += state->dw_length * 4;
693 state_map += state->dw_length * 4;
694
695 struct_type = "BLEND_STATE_ENTRY";
696 state = gen_spec_find_struct(ctx->spec, struct_type);
697 }
698
699 for (int i = 0; i < count; i++) {
700 fprintf(ctx->fp, "%s %d\n", struct_type, i);
701 ctx_print_group(ctx, state, state_addr, state_map);
702
703 state_addr += state->dw_length * 4;
704 state_map += state->dw_length * 4;
705 }
706 }
707
708 static void
709 decode_3dstate_viewport_state_pointers_cc(struct gen_batch_decode_ctx *ctx,
710 const uint32_t *p)
711 {
712 decode_dynamic_state_pointers(ctx, "CC_VIEWPORT", p, 4);
713 }
714
715 static void
716 decode_3dstate_viewport_state_pointers_sf_clip(struct gen_batch_decode_ctx *ctx,
717 const uint32_t *p)
718 {
719 decode_dynamic_state_pointers(ctx, "SF_CLIP_VIEWPORT", p, 4);
720 }
721
722 static void
723 decode_3dstate_blend_state_pointers(struct gen_batch_decode_ctx *ctx,
724 const uint32_t *p)
725 {
726 decode_dynamic_state_pointers(ctx, "BLEND_STATE", p, 1);
727 }
728
729 static void
730 decode_3dstate_cc_state_pointers(struct gen_batch_decode_ctx *ctx,
731 const uint32_t *p)
732 {
733 decode_dynamic_state_pointers(ctx, "COLOR_CALC_STATE", p, 1);
734 }
735
736 static void
737 decode_3dstate_scissor_state_pointers(struct gen_batch_decode_ctx *ctx,
738 const uint32_t *p)
739 {
740 decode_dynamic_state_pointers(ctx, "SCISSOR_RECT", p, 1);
741 }
742
743 static void
744 decode_load_register_imm(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
745 {
746 struct gen_group *reg = gen_spec_find_register(ctx->spec, p[1]);
747
748 if (reg != NULL) {
749 fprintf(ctx->fp, "register %s (0x%x): 0x%x\n",
750 reg->name, reg->register_offset, p[2]);
751 ctx_print_group(ctx, reg, reg->register_offset, &p[2]);
752 }
753 }
754
755 struct custom_decoder {
756 const char *cmd_name;
757 void (*decode)(struct gen_batch_decode_ctx *ctx, const uint32_t *p);
758 } custom_decoders[] = {
759 { "STATE_BASE_ADDRESS", handle_state_base_address },
760 { "MEDIA_INTERFACE_DESCRIPTOR_LOAD", handle_media_interface_descriptor_load },
761 { "3DSTATE_VERTEX_BUFFERS", handle_3dstate_vertex_buffers },
762 { "3DSTATE_INDEX_BUFFER", handle_3dstate_index_buffer },
763 { "3DSTATE_VS", decode_single_ksp },
764 { "3DSTATE_GS", decode_single_ksp },
765 { "3DSTATE_DS", decode_single_ksp },
766 { "3DSTATE_HS", decode_single_ksp },
767 { "3DSTATE_PS", decode_ps_kernels },
768 { "3DSTATE_CONSTANT_VS", decode_3dstate_constant },
769 { "3DSTATE_CONSTANT_GS", decode_3dstate_constant },
770 { "3DSTATE_CONSTANT_PS", decode_3dstate_constant },
771 { "3DSTATE_CONSTANT_HS", decode_3dstate_constant },
772 { "3DSTATE_CONSTANT_DS", decode_3dstate_constant },
773
774 { "3DSTATE_BINDING_TABLE_POINTERS_VS", decode_3dstate_binding_table_pointers },
775 { "3DSTATE_BINDING_TABLE_POINTERS_HS", decode_3dstate_binding_table_pointers },
776 { "3DSTATE_BINDING_TABLE_POINTERS_DS", decode_3dstate_binding_table_pointers },
777 { "3DSTATE_BINDING_TABLE_POINTERS_GS", decode_3dstate_binding_table_pointers },
778 { "3DSTATE_BINDING_TABLE_POINTERS_PS", decode_3dstate_binding_table_pointers },
779
780 { "3DSTATE_SAMPLER_STATE_POINTERS_VS", decode_3dstate_sampler_state_pointers },
781 { "3DSTATE_SAMPLER_STATE_POINTERS_HS", decode_3dstate_sampler_state_pointers },
782 { "3DSTATE_SAMPLER_STATE_POINTERS_DS", decode_3dstate_sampler_state_pointers },
783 { "3DSTATE_SAMPLER_STATE_POINTERS_GS", decode_3dstate_sampler_state_pointers },
784 { "3DSTATE_SAMPLER_STATE_POINTERS_PS", decode_3dstate_sampler_state_pointers },
785 { "3DSTATE_SAMPLER_STATE_POINTERS", decode_3dstate_sampler_state_pointers_gen6 },
786
787 { "3DSTATE_VIEWPORT_STATE_POINTERS_CC", decode_3dstate_viewport_state_pointers_cc },
788 { "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", decode_3dstate_viewport_state_pointers_sf_clip },
789 { "3DSTATE_BLEND_STATE_POINTERS", decode_3dstate_blend_state_pointers },
790 { "3DSTATE_CC_STATE_POINTERS", decode_3dstate_cc_state_pointers },
791 { "3DSTATE_SCISSOR_STATE_POINTERS", decode_3dstate_scissor_state_pointers },
792 { "MI_LOAD_REGISTER_IMM", decode_load_register_imm }
793 };
794
795 void
796 gen_print_batch(struct gen_batch_decode_ctx *ctx,
797 const uint32_t *batch, uint32_t batch_size,
798 uint64_t batch_addr)
799 {
800 const uint32_t *p, *end = batch + batch_size / sizeof(uint32_t);
801 int length;
802 struct gen_group *inst;
803
804 for (p = batch; p < end; p += length) {
805 inst = gen_spec_find_instruction(ctx->spec, p);
806 length = gen_group_get_length(inst, p);
807 assert(inst == NULL || length > 0);
808 length = MAX2(1, length);
809
810 const char *reset_color = ctx->flags & GEN_BATCH_DECODE_IN_COLOR ? NORMAL : "";
811
812 uint64_t offset;
813 if (ctx->flags & GEN_BATCH_DECODE_OFFSETS)
814 offset = batch_addr + ((char *)p - (char *)batch);
815 else
816 offset = 0;
817
818 if (inst == NULL) {
819 fprintf(ctx->fp, "%s0x%08"PRIx64": unknown instruction %08x%s\n",
820 (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) ? RED_COLOR : "",
821 offset, p[0], reset_color);
822 continue;
823 }
824
825 const char *color;
826 const char *inst_name = gen_group_get_name(inst);
827 if (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) {
828 reset_color = NORMAL;
829 if (ctx->flags & GEN_BATCH_DECODE_FULL) {
830 if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0 ||
831 strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0)
832 color = GREEN_HEADER;
833 else
834 color = BLUE_HEADER;
835 } else {
836 color = NORMAL;
837 }
838 } else {
839 color = "";
840 reset_color = "";
841 }
842
843 fprintf(ctx->fp, "%s0x%08"PRIx64": 0x%08x: %-80s%s\n",
844 color, offset, p[0], inst_name, reset_color);
845
846 if (ctx->flags & GEN_BATCH_DECODE_FULL) {
847 ctx_print_group(ctx, inst, offset, p);
848
849 for (int i = 0; i < ARRAY_SIZE(custom_decoders); i++) {
850 if (strcmp(inst_name, custom_decoders[i].cmd_name) == 0) {
851 custom_decoders[i].decode(ctx, p);
852 break;
853 }
854 }
855 }
856
857 if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0) {
858 struct gen_batch_decode_bo next_batch = {};
859 bool second_level;
860 struct gen_field_iterator iter;
861 gen_field_iterator_init(&iter, inst, p, 0, false);
862 while (gen_field_iterator_next(&iter)) {
863 if (strcmp(iter.name, "Batch Buffer Start Address") == 0) {
864 next_batch = ctx_get_bo(ctx, iter.raw_value);
865 } else if (strcmp(iter.name, "Second Level Batch Buffer") == 0) {
866 second_level = iter.raw_value;
867 }
868 }
869
870 if (next_batch.map == NULL) {
871 fprintf(ctx->fp, "Secondary batch at 0x%08"PRIx64" unavailable\n",
872 next_batch.addr);
873 } else {
874 gen_print_batch(ctx, next_batch.map, next_batch.size,
875 next_batch.addr);
876 }
877 if (second_level) {
878 /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" set acts
879 * like a subroutine call. Commands that come afterwards get
880 * processed once the 2nd level batch buffer returns with
881 * MI_BATCH_BUFFER_END.
882 */
883 continue;
884 } else {
885 /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" unset acts
886 * like a goto. Nothing after it will ever get processed. In
887 * order to prevent the recursion from growing, we just reset the
888 * loop and continue;
889 */
890 break;
891 }
892 } else if (strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) {
893 break;
894 }
895 }
896 }