014202d36ca12419254341e58367b4dec475f13b
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "common/gen_device_info.h"
29 #include "main/mtypes.h"
30 #include "main/macros.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98 /**
99 * Apply workarounds for SIN and COS output range problems.
100 * This can negatively impact performance.
101 */
102 bool precise_trig;
103
104 /**
105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106 * Base Address? (If not, it's a normal GPU address.)
107 */
108 bool constant_buffer_0_is_relative;
109
110 /**
111 * Whether or not the driver supports pull constants. If not, the compiler
112 * will attempt to push everything.
113 */
114 bool supports_pull_constants;
115 };
116
117
118 /**
119 * Program key structures.
120 *
121 * When drawing, we look for the currently bound shaders in the program
122 * cache. This is essentially a hash table lookup, and these are the keys.
123 *
124 * Sometimes OpenGL features specified as state need to be simulated via
125 * shader code, due to a mismatch between the API and the hardware. This
126 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
127 * in the program key so it's considered when searching for a program. If
128 * we haven't seen a particular combination before, we have to recompile a
129 * new specialized version.
130 *
131 * Shader compilation should not look up state in gl_context directly, but
132 * instead use the copy in the program key. This guarantees recompiles will
133 * happen correctly.
134 *
135 * @{
136 */
137
138 enum PACKED gen6_gather_sampler_wa {
139 WA_SIGN = 1, /* whether we need to sign extend */
140 WA_8BIT = 2, /* if we have an 8bit format needing wa */
141 WA_16BIT = 4, /* if we have a 16bit format needing wa */
142 };
143
144 /**
145 * Sampler information needed by VS, WM, and GS program cache keys.
146 */
147 struct brw_sampler_prog_key_data {
148 /**
149 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
150 */
151 uint16_t swizzles[MAX_SAMPLERS];
152
153 uint32_t gl_clamp_mask[3];
154
155 /**
156 * For RG32F, gather4's channel select is broken.
157 */
158 uint32_t gather_channel_quirk_mask;
159
160 /**
161 * Whether this sampler uses the compressed multisample surface layout.
162 */
163 uint32_t compressed_multisample_layout_mask;
164
165 /**
166 * Whether this sampler is using 16x multisampling. If so fetching from
167 * this sampler will be handled with a different instruction, ld2dms_w
168 * instead of ld2dms.
169 */
170 uint32_t msaa_16;
171
172 /**
173 * For Sandybridge, which shader w/a we need for gather quirks.
174 */
175 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
176
177 /**
178 * Texture units that have a YUV image bound.
179 */
180 uint32_t y_u_v_image_mask;
181 uint32_t y_uv_image_mask;
182 uint32_t yx_xuxv_image_mask;
183 uint32_t xy_uxvx_image_mask;
184 };
185
186 /**
187 * The VF can't natively handle certain types of attributes, such as GL_FIXED
188 * or most 10_10_10_2 types. These flags enable various VS workarounds to
189 * "fix" attributes at the beginning of shaders.
190 */
191 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
192 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
193 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
194 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
195 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
196
197 /**
198 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
199 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
200 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
201 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
202 */
203 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
204 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
205
206 /** The program key for Vertex Shaders. */
207 struct brw_vs_prog_key {
208 unsigned program_string_id;
209
210 /**
211 * Per-attribute workaround flags
212 *
213 * For each attribute, a combination of BRW_ATTRIB_WA_*.
214 *
215 * For OpenGL, where we expose a maximum of 16 user input atttributes
216 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
217 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
218 * expose up to 28 user input vertex attributes that are mapped to slots
219 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
220 * enough to hold this many slots.
221 */
222 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
223
224 bool copy_edgeflag:1;
225
226 bool clamp_vertex_color:1;
227
228 /**
229 * How many user clipping planes are being uploaded to the vertex shader as
230 * push constants.
231 *
232 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
233 * clip distances.
234 */
235 unsigned nr_userclip_plane_consts:4;
236
237 /**
238 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
239 * are going to be replaced with point coordinates (as a consequence of a
240 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
241 * our SF thread requires exact matching between VS outputs and FS inputs,
242 * these texture coordinates will need to be unconditionally included in
243 * the VUE, even if they aren't written by the vertex shader.
244 */
245 uint8_t point_coord_replace;
246
247 struct brw_sampler_prog_key_data tex;
248 };
249
250 /** The program key for Tessellation Control Shaders. */
251 struct brw_tcs_prog_key
252 {
253 unsigned program_string_id;
254
255 GLenum tes_primitive_mode;
256
257 unsigned input_vertices;
258
259 /** A bitfield of per-patch outputs written. */
260 uint32_t patch_outputs_written;
261
262 /** A bitfield of per-vertex outputs written. */
263 uint64_t outputs_written;
264
265 bool quads_workaround;
266
267 struct brw_sampler_prog_key_data tex;
268 };
269
270 /** The program key for Tessellation Evaluation Shaders. */
271 struct brw_tes_prog_key
272 {
273 unsigned program_string_id;
274
275 /** A bitfield of per-patch inputs read. */
276 uint32_t patch_inputs_read;
277
278 /** A bitfield of per-vertex inputs read. */
279 uint64_t inputs_read;
280
281 struct brw_sampler_prog_key_data tex;
282 };
283
284 /** The program key for Geometry Shaders. */
285 struct brw_gs_prog_key
286 {
287 unsigned program_string_id;
288
289 struct brw_sampler_prog_key_data tex;
290 };
291
292 enum brw_sf_primitive {
293 BRW_SF_PRIM_POINTS = 0,
294 BRW_SF_PRIM_LINES = 1,
295 BRW_SF_PRIM_TRIANGLES = 2,
296 BRW_SF_PRIM_UNFILLED_TRIS = 3,
297 };
298
299 struct brw_sf_prog_key {
300 uint64_t attrs;
301 bool contains_flat_varying;
302 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
303 uint8_t point_sprite_coord_replace;
304 enum brw_sf_primitive primitive:2;
305 bool do_twoside_color:1;
306 bool frontface_ccw:1;
307 bool do_point_sprite:1;
308 bool do_point_coord:1;
309 bool sprite_origin_lower_left:1;
310 bool userclip_active:1;
311 };
312
313 enum brw_clip_mode {
314 BRW_CLIP_MODE_NORMAL = 0,
315 BRW_CLIP_MODE_CLIP_ALL = 1,
316 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
317 BRW_CLIP_MODE_REJECT_ALL = 3,
318 BRW_CLIP_MODE_ACCEPT_ALL = 4,
319 BRW_CLIP_MODE_KERNEL_CLIP = 5,
320 };
321
322 enum brw_clip_fill_mode {
323 BRW_CLIP_FILL_MODE_LINE = 0,
324 BRW_CLIP_FILL_MODE_POINT = 1,
325 BRW_CLIP_FILL_MODE_FILL = 2,
326 BRW_CLIP_FILL_MODE_CULL = 3,
327 };
328
329 /* Note that if unfilled primitives are being emitted, we have to fix
330 * up polygon offset and flatshading at this point:
331 */
332 struct brw_clip_prog_key {
333 uint64_t attrs;
334 bool contains_flat_varying;
335 bool contains_noperspective_varying;
336 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
337 unsigned primitive:4;
338 unsigned nr_userclip:4;
339 bool pv_first:1;
340 bool do_unfilled:1;
341 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
342 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
343 bool offset_cw:1;
344 bool offset_ccw:1;
345 bool copy_bfc_cw:1;
346 bool copy_bfc_ccw:1;
347 enum brw_clip_mode clip_mode:3;
348
349 float offset_factor;
350 float offset_units;
351 float offset_clamp;
352 };
353
354 /* A big lookup table is used to figure out which and how many
355 * additional regs will inserted before the main payload in the WM
356 * program execution. These mainly relate to depth and stencil
357 * processing and the early-depth-test optimization.
358 */
359 enum brw_wm_iz_bits {
360 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
361 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
362 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
363 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
364 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
365 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
366 BRW_WM_IZ_BIT_MAX = 0x40
367 };
368
369 enum brw_wm_aa_enable {
370 BRW_WM_AA_NEVER,
371 BRW_WM_AA_SOMETIMES,
372 BRW_WM_AA_ALWAYS
373 };
374
375 /** The program key for Fragment/Pixel Shaders. */
376 struct brw_wm_prog_key {
377 /* Some collection of BRW_WM_IZ_* */
378 uint8_t iz_lookup;
379 bool stats_wm:1;
380 bool flat_shade:1;
381 unsigned nr_color_regions:5;
382 bool replicate_alpha:1;
383 bool clamp_fragment_color:1;
384 bool persample_interp:1;
385 bool multisample_fbo:1;
386 bool frag_coord_adds_sample_pos:1;
387 enum brw_wm_aa_enable line_aa:2;
388 bool high_quality_derivatives:1;
389 bool force_dual_color_blend:1;
390 bool coherent_fb_fetch:1;
391
392 uint16_t drawable_height;
393 uint64_t input_slots_valid;
394 unsigned program_string_id;
395 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
396 float alpha_test_ref;
397
398 struct brw_sampler_prog_key_data tex;
399 };
400
401 struct brw_cs_prog_key {
402 uint32_t program_string_id;
403 struct brw_sampler_prog_key_data tex;
404 };
405
406 /*
407 * Image metadata structure as laid out in the shader parameter
408 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
409 * able to use them. That's okay because the padding and any unused
410 * entries [most of them except when we're doing untyped surface
411 * access] will be removed by the uniform packing pass.
412 */
413 #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
414 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
415 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8
416 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
417 #define BRW_IMAGE_PARAM_TILING_OFFSET 16
418 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
419 #define BRW_IMAGE_PARAM_SIZE 24
420
421 struct brw_image_param {
422 /** Surface binding table index. */
423 uint32_t surface_idx;
424
425 /** Offset applied to the X and Y surface coordinates. */
426 uint32_t offset[2];
427
428 /** Surface X, Y and Z dimensions. */
429 uint32_t size[3];
430
431 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
432 * pixels, vertical slice stride in pixels.
433 */
434 uint32_t stride[4];
435
436 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
437 uint32_t tiling[3];
438
439 /**
440 * Right shift to apply for bit 6 address swizzling. Two different
441 * swizzles can be specified and will be applied one after the other. The
442 * resulting address will be:
443 *
444 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
445 * (addr >> swizzling[1])))
446 *
447 * Use \c 0xff if any of the swizzles is not required.
448 */
449 uint32_t swizzling[2];
450 };
451
452 /** Max number of render targets in a shader */
453 #define BRW_MAX_DRAW_BUFFERS 8
454
455 /**
456 * Max number of binding table entries used for stream output.
457 *
458 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
459 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
460 *
461 * On Gen6, the size of transform feedback data is limited not by the number
462 * of components but by the number of binding table entries we set aside. We
463 * use one binding table entry for a float, one entry for a vector, and one
464 * entry per matrix column. Since the only way we can communicate our
465 * transform feedback capabilities to the client is via
466 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
467 * worst case, in which all the varyings are floats, so we use up one binding
468 * table entry per component. Therefore we need to set aside at least 64
469 * binding table entries for use by transform feedback.
470 *
471 * Note: since we don't currently pack varyings, it is currently impossible
472 * for the client to actually use up all of these binding table entries--if
473 * all of their varyings were floats, they would run out of varying slots and
474 * fail to link. But that's a bug, so it seems prudent to go ahead and
475 * allocate the number of binding table entries we will need once the bug is
476 * fixed.
477 */
478 #define BRW_MAX_SOL_BINDINGS 64
479
480 /**
481 * Binding table index for the first gen6 SOL binding.
482 */
483 #define BRW_GEN6_SOL_BINDING_START 0
484
485 /**
486 * Stride in bytes between shader_time entries.
487 *
488 * We separate entries by a cacheline to reduce traffic between EUs writing to
489 * different entries.
490 */
491 #define BRW_SHADER_TIME_STRIDE 64
492
493 struct brw_ubo_range
494 {
495 uint16_t block;
496 uint8_t start;
497 uint8_t length;
498 };
499
500 /* We reserve the first 2^16 values for builtins */
501 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
502
503 enum brw_param_builtin {
504 BRW_PARAM_BUILTIN_ZERO,
505
506 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
507 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
508 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
509 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
510 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
511 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
512 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
513 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
514 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
515 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
516 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
517 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
518 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
519 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
520 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
521 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
522 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
523 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
524 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
525 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
526 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
527 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
528 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
529 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
530 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
531 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
538
539 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
540 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
541 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
542 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
543 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
544 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
545
546 BRW_PARAM_BUILTIN_THREAD_LOCAL_ID,
547 };
548
549 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
550 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
551
552 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
553 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
554 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
555
556 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
557 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
558
559 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
560 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
561
562 struct brw_stage_prog_data {
563 struct {
564 /** size of our binding table. */
565 uint32_t size_bytes;
566
567 /** @{
568 * surface indices for the various groups of surfaces
569 */
570 uint32_t pull_constants_start;
571 uint32_t texture_start;
572 uint32_t gather_texture_start;
573 uint32_t ubo_start;
574 uint32_t ssbo_start;
575 uint32_t abo_start;
576 uint32_t image_start;
577 uint32_t shader_time_start;
578 uint32_t plane_start[3];
579 /** @} */
580 } binding_table;
581
582 struct brw_ubo_range ubo_ranges[4];
583
584 GLuint nr_params; /**< number of float params/constants */
585 GLuint nr_pull_params;
586
587 unsigned curb_read_length;
588 unsigned total_scratch;
589 unsigned total_shared;
590
591 /**
592 * Register where the thread expects to find input data from the URB
593 * (typically uniforms, followed by vertex or fragment attributes).
594 */
595 unsigned dispatch_grf_start_reg;
596
597 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
598
599 /* 32-bit identifiers for all push/pull parameters. These can be anything
600 * the driver wishes them to be; the core of the back-end compiler simply
601 * re-arranges them. The one restriction is that the bottom 2^16 values
602 * are reserved for builtins defined in the brw_param_builtin enum defined
603 * above.
604 */
605 uint32_t *param;
606 uint32_t *pull_param;
607 };
608
609 static inline uint32_t *
610 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
611 unsigned nr_new_params)
612 {
613 unsigned old_nr_params = prog_data->nr_params;
614 prog_data->nr_params += nr_new_params;
615 prog_data->param = reralloc(ralloc_parent(prog_data->param),
616 prog_data->param, uint32_t,
617 prog_data->nr_params);
618 return prog_data->param + old_nr_params;
619 }
620
621 static inline void
622 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
623 unsigned surf_index)
624 {
625 /* A binding table index is 8 bits and the top 3 values are reserved for
626 * special things (stateless and SLM).
627 */
628 assert(surf_index <= 252);
629
630 prog_data->binding_table.size_bytes =
631 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
632 }
633
634 enum brw_barycentric_mode {
635 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
636 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
637 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
638 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
639 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
640 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
641 BRW_BARYCENTRIC_MODE_COUNT = 6
642 };
643 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
644 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
645 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
646 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
647
648 enum brw_pixel_shader_computed_depth_mode {
649 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
650 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
651 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
652 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
653 };
654
655 /* Data about a particular attempt to compile a program. Note that
656 * there can be many of these, each in a different GL state
657 * corresponding to a different brw_wm_prog_key struct, with different
658 * compiled programs.
659 */
660 struct brw_wm_prog_data {
661 struct brw_stage_prog_data base;
662
663 GLuint num_varying_inputs;
664
665 uint8_t reg_blocks_0;
666 uint8_t reg_blocks_2;
667
668 uint8_t dispatch_grf_start_reg_2;
669 uint32_t prog_offset_2;
670
671 struct {
672 /** @{
673 * surface indices the WM-specific surfaces
674 */
675 uint32_t render_target_start;
676 uint32_t render_target_read_start;
677 /** @} */
678 } binding_table;
679
680 uint8_t computed_depth_mode;
681 bool computed_stencil;
682
683 bool early_fragment_tests;
684 bool post_depth_coverage;
685 bool inner_coverage;
686 bool dispatch_8;
687 bool dispatch_16;
688 bool dual_src_blend;
689 bool persample_dispatch;
690 bool uses_pos_offset;
691 bool uses_omask;
692 bool uses_kill;
693 bool uses_src_depth;
694 bool uses_src_w;
695 bool uses_sample_mask;
696 bool has_render_target_reads;
697 bool has_side_effects;
698 bool pulls_bary;
699
700 bool contains_flat_varying;
701 bool contains_noperspective_varying;
702
703 /**
704 * Mask of which interpolation modes are required by the fragment shader.
705 * Used in hardware setup on gen6+.
706 */
707 uint32_t barycentric_interp_modes;
708
709 /**
710 * Mask of which FS inputs are marked flat by the shader source. This is
711 * needed for setting up 3DSTATE_SF/SBE.
712 */
713 uint32_t flat_inputs;
714
715 /* Mapping of VUE slots to interpolation modes.
716 * Used by the Gen4-5 clip/sf/wm stages.
717 */
718 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
719
720 /**
721 * Map from gl_varying_slot to the position within the FS setup data
722 * payload where the varying's attribute vertex deltas should be delivered.
723 * For varying slots that are not used by the FS, the value is -1.
724 */
725 int urb_setup[VARYING_SLOT_MAX];
726 };
727
728 struct brw_push_const_block {
729 unsigned dwords; /* Dword count, not reg aligned */
730 unsigned regs;
731 unsigned size; /* Bytes, register aligned */
732 };
733
734 struct brw_cs_prog_data {
735 struct brw_stage_prog_data base;
736
737 GLuint dispatch_grf_start_reg_16;
738 unsigned local_size[3];
739 unsigned simd_size;
740 unsigned threads;
741 bool uses_barrier;
742 bool uses_num_work_groups;
743
744 struct {
745 struct brw_push_const_block cross_thread;
746 struct brw_push_const_block per_thread;
747 struct brw_push_const_block total;
748 } push;
749
750 struct {
751 /** @{
752 * surface indices the CS-specific surfaces
753 */
754 uint32_t work_groups_start;
755 /** @} */
756 } binding_table;
757 };
758
759 /**
760 * Enum representing the i965-specific vertex results that don't correspond
761 * exactly to any element of gl_varying_slot. The values of this enum are
762 * assigned such that they don't conflict with gl_varying_slot.
763 */
764 typedef enum
765 {
766 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
767 BRW_VARYING_SLOT_PAD,
768 /**
769 * Technically this is not a varying but just a placeholder that
770 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
771 * builtin variable to be compiled correctly. see compile_sf_prog() for
772 * more info.
773 */
774 BRW_VARYING_SLOT_PNTC,
775 BRW_VARYING_SLOT_COUNT
776 } brw_varying_slot;
777
778 /**
779 * We always program SF to start reading at an offset of 1 (2 varying slots)
780 * from the start of the vertex URB entry. This causes it to skip:
781 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
782 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
783 */
784 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
785
786 /**
787 * Bitmask indicating which fragment shader inputs represent varyings (and
788 * hence have to be delivered to the fragment shader by the SF/SBE stage).
789 */
790 #define BRW_FS_VARYING_INPUT_MASK \
791 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
792 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
793
794 /**
795 * Data structure recording the relationship between the gl_varying_slot enum
796 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
797 * single octaword within the VUE (128 bits).
798 *
799 * Note that each BRW register contains 256 bits (2 octawords), so when
800 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
801 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
802 * in a vertex shader), each register corresponds to a single VUE slot, since
803 * it contains data for two separate vertices.
804 */
805 struct brw_vue_map {
806 /**
807 * Bitfield representing all varying slots that are (a) stored in this VUE
808 * map, and (b) actually written by the shader. Does not include any of
809 * the additional varying slots defined in brw_varying_slot.
810 */
811 uint64_t slots_valid;
812
813 /**
814 * Is this VUE map for a separate shader pipeline?
815 *
816 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
817 * without the linker having a chance to dead code eliminate unused varyings.
818 *
819 * This means that we have to use a fixed slot layout, based on the output's
820 * location field, rather than assigning slots in a compact contiguous block.
821 */
822 bool separate;
823
824 /**
825 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
826 * not stored in a slot (because they are not written, or because
827 * additional processing is applied before storing them in the VUE), the
828 * value is -1.
829 */
830 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
831
832 /**
833 * Map from VUE slot to gl_varying_slot value. For slots that do not
834 * directly correspond to a gl_varying_slot, the value comes from
835 * brw_varying_slot.
836 *
837 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
838 */
839 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
840
841 /**
842 * Total number of VUE slots in use
843 */
844 int num_slots;
845
846 /**
847 * Number of per-patch VUE slots. Only valid for tessellation control
848 * shader outputs and tessellation evaluation shader inputs.
849 */
850 int num_per_patch_slots;
851
852 /**
853 * Number of per-vertex VUE slots. Only valid for tessellation control
854 * shader outputs and tessellation evaluation shader inputs.
855 */
856 int num_per_vertex_slots;
857 };
858
859 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
860
861 /**
862 * Convert a VUE slot number into a byte offset within the VUE.
863 */
864 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
865 {
866 return 16*slot;
867 }
868
869 /**
870 * Convert a vertex output (brw_varying_slot) into a byte offset within the
871 * VUE.
872 */
873 static inline
874 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
875 {
876 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
877 }
878
879 void brw_compute_vue_map(const struct gen_device_info *devinfo,
880 struct brw_vue_map *vue_map,
881 uint64_t slots_valid,
882 bool separate_shader);
883
884 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
885 uint64_t slots_valid,
886 uint32_t is_patch);
887
888 /* brw_interpolation_map.c */
889 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
890 struct nir_shader *nir,
891 struct brw_wm_prog_data *prog_data,
892 const struct gen_device_info *devinfo);
893
894 enum shader_dispatch_mode {
895 DISPATCH_MODE_4X1_SINGLE = 0,
896 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
897 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
898 DISPATCH_MODE_SIMD8 = 3,
899 };
900
901 /**
902 * @defgroup Tessellator parameter enumerations.
903 *
904 * These correspond to the hardware values in 3DSTATE_TE, and are provided
905 * as part of the tessellation evaluation shader.
906 *
907 * @{
908 */
909 enum brw_tess_partitioning {
910 BRW_TESS_PARTITIONING_INTEGER = 0,
911 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
912 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
913 };
914
915 enum brw_tess_output_topology {
916 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
917 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
918 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
919 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
920 };
921
922 enum brw_tess_domain {
923 BRW_TESS_DOMAIN_QUAD = 0,
924 BRW_TESS_DOMAIN_TRI = 1,
925 BRW_TESS_DOMAIN_ISOLINE = 2,
926 };
927 /** @} */
928
929 struct brw_vue_prog_data {
930 struct brw_stage_prog_data base;
931 struct brw_vue_map vue_map;
932
933 /** Should the hardware deliver input VUE handles for URB pull loads? */
934 bool include_vue_handles;
935
936 GLuint urb_read_length;
937 GLuint total_grf;
938
939 uint32_t clip_distance_mask;
940 uint32_t cull_distance_mask;
941
942 /* Used for calculating urb partitions. In the VS, this is the size of the
943 * URB entry used for both input and output to the thread. In the GS, this
944 * is the size of the URB entry used for output.
945 */
946 GLuint urb_entry_size;
947
948 enum shader_dispatch_mode dispatch_mode;
949 };
950
951 struct brw_vs_prog_data {
952 struct brw_vue_prog_data base;
953
954 GLbitfield64 inputs_read;
955 GLbitfield64 double_inputs_read;
956
957 unsigned nr_attributes;
958 unsigned nr_attribute_slots;
959
960 bool uses_vertexid;
961 bool uses_instanceid;
962 bool uses_basevertex;
963 bool uses_baseinstance;
964 bool uses_drawid;
965 };
966
967 struct brw_tcs_prog_data
968 {
969 struct brw_vue_prog_data base;
970
971 /** Number vertices in output patch */
972 int instances;
973 };
974
975
976 struct brw_tes_prog_data
977 {
978 struct brw_vue_prog_data base;
979
980 enum brw_tess_partitioning partitioning;
981 enum brw_tess_output_topology output_topology;
982 enum brw_tess_domain domain;
983 };
984
985 struct brw_gs_prog_data
986 {
987 struct brw_vue_prog_data base;
988
989 unsigned vertices_in;
990
991 /**
992 * Size of an output vertex, measured in HWORDS (32 bytes).
993 */
994 unsigned output_vertex_size_hwords;
995
996 unsigned output_topology;
997
998 /**
999 * Size of the control data (cut bits or StreamID bits), in hwords (32
1000 * bytes). 0 if there is no control data.
1001 */
1002 unsigned control_data_header_size_hwords;
1003
1004 /**
1005 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1006 * if the control data is StreamID bits, or
1007 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1008 * Ignored if control_data_header_size is 0.
1009 */
1010 unsigned control_data_format;
1011
1012 bool include_primitive_id;
1013
1014 /**
1015 * The number of vertices emitted, if constant - otherwise -1.
1016 */
1017 int static_vertex_count;
1018
1019 int invocations;
1020
1021 /**
1022 * Gen6: Provoking vertex convention for odd-numbered triangles
1023 * in tristrips.
1024 */
1025 GLuint pv_first:1;
1026
1027 /**
1028 * Gen6: Number of varyings that are output to transform feedback.
1029 */
1030 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1031
1032 /**
1033 * Gen6: Map from the index of a transform feedback binding table entry to the
1034 * gl_varying_slot that should be streamed out through that binding table
1035 * entry.
1036 */
1037 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1038
1039 /**
1040 * Gen6: Map from the index of a transform feedback binding table entry to the
1041 * swizzles that should be used when streaming out data through that
1042 * binding table entry.
1043 */
1044 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1045 };
1046
1047 struct brw_sf_prog_data {
1048 uint32_t urb_read_length;
1049 uint32_t total_grf;
1050
1051 /* Each vertex may have upto 12 attributes, 4 components each,
1052 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1053 * rows.
1054 *
1055 * Actually we use 4 for each, so call it 12 rows.
1056 */
1057 unsigned urb_entry_size;
1058 };
1059
1060 struct brw_clip_prog_data {
1061 uint32_t curb_read_length; /* user planes? */
1062 uint32_t clip_mode;
1063 uint32_t urb_read_length;
1064 uint32_t total_grf;
1065 };
1066
1067 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1068 static inline struct brw_##stage##_prog_data * \
1069 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1070 { \
1071 return (struct brw_##stage##_prog_data *) prog_data; \
1072 }
1073 DEFINE_PROG_DATA_DOWNCAST(vue)
1074 DEFINE_PROG_DATA_DOWNCAST(vs)
1075 DEFINE_PROG_DATA_DOWNCAST(tcs)
1076 DEFINE_PROG_DATA_DOWNCAST(tes)
1077 DEFINE_PROG_DATA_DOWNCAST(gs)
1078 DEFINE_PROG_DATA_DOWNCAST(wm)
1079 DEFINE_PROG_DATA_DOWNCAST(cs)
1080 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1081 DEFINE_PROG_DATA_DOWNCAST(clip)
1082 DEFINE_PROG_DATA_DOWNCAST(sf)
1083 #undef DEFINE_PROG_DATA_DOWNCAST
1084
1085 /** @} */
1086
1087 struct brw_compiler *
1088 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1089
1090 /**
1091 * Compile a vertex shader.
1092 *
1093 * Returns the final assembly and the program's size.
1094 */
1095 const unsigned *
1096 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1097 void *mem_ctx,
1098 const struct brw_vs_prog_key *key,
1099 struct brw_vs_prog_data *prog_data,
1100 const struct nir_shader *shader,
1101 bool use_legacy_snorm_formula,
1102 int shader_time_index,
1103 unsigned *final_assembly_size,
1104 char **error_str);
1105
1106 /**
1107 * Compile a tessellation control shader.
1108 *
1109 * Returns the final assembly and the program's size.
1110 */
1111 const unsigned *
1112 brw_compile_tcs(const struct brw_compiler *compiler,
1113 void *log_data,
1114 void *mem_ctx,
1115 const struct brw_tcs_prog_key *key,
1116 struct brw_tcs_prog_data *prog_data,
1117 const struct nir_shader *nir,
1118 int shader_time_index,
1119 unsigned *final_assembly_size,
1120 char **error_str);
1121
1122 /**
1123 * Compile a tessellation evaluation shader.
1124 *
1125 * Returns the final assembly and the program's size.
1126 */
1127 const unsigned *
1128 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1129 void *mem_ctx,
1130 const struct brw_tes_prog_key *key,
1131 const struct brw_vue_map *input_vue_map,
1132 struct brw_tes_prog_data *prog_data,
1133 const struct nir_shader *shader,
1134 struct gl_program *prog,
1135 int shader_time_index,
1136 unsigned *final_assembly_size,
1137 char **error_str);
1138
1139 /**
1140 * Compile a vertex shader.
1141 *
1142 * Returns the final assembly and the program's size.
1143 */
1144 const unsigned *
1145 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1146 void *mem_ctx,
1147 const struct brw_gs_prog_key *key,
1148 struct brw_gs_prog_data *prog_data,
1149 const struct nir_shader *shader,
1150 struct gl_program *prog,
1151 int shader_time_index,
1152 unsigned *final_assembly_size,
1153 char **error_str);
1154
1155 /**
1156 * Compile a strips and fans shader.
1157 *
1158 * This is a fixed-function shader determined entirely by the shader key and
1159 * a VUE map.
1160 *
1161 * Returns the final assembly and the program's size.
1162 */
1163 const unsigned *
1164 brw_compile_sf(const struct brw_compiler *compiler,
1165 void *mem_ctx,
1166 const struct brw_sf_prog_key *key,
1167 struct brw_sf_prog_data *prog_data,
1168 struct brw_vue_map *vue_map,
1169 unsigned *final_assembly_size);
1170
1171 /**
1172 * Compile a clipper shader.
1173 *
1174 * This is a fixed-function shader determined entirely by the shader key and
1175 * a VUE map.
1176 *
1177 * Returns the final assembly and the program's size.
1178 */
1179 const unsigned *
1180 brw_compile_clip(const struct brw_compiler *compiler,
1181 void *mem_ctx,
1182 const struct brw_clip_prog_key *key,
1183 struct brw_clip_prog_data *prog_data,
1184 struct brw_vue_map *vue_map,
1185 unsigned *final_assembly_size);
1186
1187 /**
1188 * Compile a fragment shader.
1189 *
1190 * Returns the final assembly and the program's size.
1191 */
1192 const unsigned *
1193 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1194 void *mem_ctx,
1195 const struct brw_wm_prog_key *key,
1196 struct brw_wm_prog_data *prog_data,
1197 const struct nir_shader *shader,
1198 struct gl_program *prog,
1199 int shader_time_index8,
1200 int shader_time_index16,
1201 bool allow_spilling,
1202 bool use_rep_send, struct brw_vue_map *vue_map,
1203 unsigned *final_assembly_size,
1204 char **error_str);
1205
1206 /**
1207 * Compile a compute shader.
1208 *
1209 * Returns the final assembly and the program's size.
1210 */
1211 const unsigned *
1212 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1213 void *mem_ctx,
1214 const struct brw_cs_prog_key *key,
1215 struct brw_cs_prog_data *prog_data,
1216 const struct nir_shader *shader,
1217 int shader_time_index,
1218 unsigned *final_assembly_size,
1219 char **error_str);
1220
1221 static inline uint32_t
1222 encode_slm_size(unsigned gen, uint32_t bytes)
1223 {
1224 uint32_t slm_size = 0;
1225
1226 /* Shared Local Memory is specified as powers of two, and encoded in
1227 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1228 *
1229 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1230 * -------------------------------------------------------------------
1231 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1232 * -------------------------------------------------------------------
1233 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1234 */
1235 assert(bytes <= 64 * 1024);
1236
1237 if (bytes > 0) {
1238 /* Shared Local Memory Size is specified as powers of two. */
1239 slm_size = util_next_power_of_two(bytes);
1240
1241 if (gen >= 9) {
1242 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1243 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1244 } else {
1245 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1246 slm_size = MAX2(slm_size, 4096) / 4096;
1247 }
1248 }
1249
1250 return slm_size;
1251 }
1252
1253 /**
1254 * Return true if the given shader stage is dispatched contiguously by the
1255 * relevant fixed function starting from channel 0 of the SIMD thread, which
1256 * implies that the dispatch mask of a thread can be assumed to have the form
1257 * '2^n - 1' for some n.
1258 */
1259 static inline bool
1260 brw_stage_has_packed_dispatch(const struct gen_device_info *devinfo,
1261 gl_shader_stage stage,
1262 const struct brw_stage_prog_data *prog_data)
1263 {
1264 /* The code below makes assumptions about the hardware's thread dispatch
1265 * behavior that could be proven wrong in future generations -- Make sure
1266 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1267 * the NIR front-end before changing this assertion.
1268 */
1269 assert(devinfo->gen <= 10);
1270
1271 switch (stage) {
1272 case MESA_SHADER_FRAGMENT: {
1273 /* The PSD discards subspans coming in with no lit samples, which in the
1274 * per-pixel shading case implies that each subspan will either be fully
1275 * lit (due to the VMask being used to allow derivative computations),
1276 * or not dispatched at all. In per-sample dispatch mode individual
1277 * samples from the same subspan have a fixed relative location within
1278 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1279 * general and we should return false.
1280 */
1281 const struct brw_wm_prog_data *wm_prog_data =
1282 (const struct brw_wm_prog_data *)prog_data;
1283 return !wm_prog_data->persample_dispatch;
1284 }
1285 case MESA_SHADER_COMPUTE:
1286 /* Compute shaders will be spawned with either a fully enabled dispatch
1287 * mask or with whatever bottom/right execution mask was given to the
1288 * GPGPU walker command to be used along the workgroup edges -- In both
1289 * cases the dispatch mask is required to be tightly packed for our
1290 * invocation index calculations to work.
1291 */
1292 return true;
1293 default:
1294 /* Most remaining fixed functions are limited to use a packed dispatch
1295 * mask due to the hardware representation of the dispatch mask as a
1296 * single counter representing the number of enabled channels.
1297 */
1298 return true;
1299 }
1300 }
1301
1302 /**
1303 * Computes the first varying slot in the URB produced by the previous stage
1304 * that is used in the next stage. We do this by testing the varying slots in
1305 * the previous stage's vue map against the inputs read in the next stage.
1306 *
1307 * Note that:
1308 *
1309 * - Each URB offset contains two varying slots and we can only skip a
1310 * full offset if both slots are unused, so the value we return here is always
1311 * rounded down to the closest multiple of two.
1312 *
1313 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1314 * part of the vue header, so if these are read we can't skip anything.
1315 */
1316 static inline int
1317 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1318 const struct brw_vue_map *prev_stage_vue_map)
1319 {
1320 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1321 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1322 int varying = prev_stage_vue_map->slot_to_varying[i];
1323 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1324 return ROUND_DOWN_TO(i, 2);
1325 }
1326 }
1327
1328 return 0;
1329 }
1330
1331 #ifdef __cplusplus
1332 } /* extern "C" */
1333 #endif
1334
1335 #endif /* BRW_COMPILER_H */