26e8f464ef6069e3c94b09e0c8959f43db70c709
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "common/gen_device_info.h"
29 #include "main/mtypes.h"
30 #include "main/macros.h"
31
32 #ifdef __cplusplus
33 extern "C" {
34 #endif
35
36 struct ra_regs;
37 struct nir_shader;
38 struct brw_program;
39
40 struct brw_compiler {
41 const struct gen_device_info *devinfo;
42
43 struct {
44 struct ra_regs *regs;
45
46 /**
47 * Array of the ra classes for the unaligned contiguous register
48 * block sizes used.
49 */
50 int *classes;
51
52 /**
53 * Mapping for register-allocated objects in *regs to the first
54 * GRF for that object.
55 */
56 uint8_t *ra_reg_to_grf;
57 } vec4_reg_set;
58
59 struct {
60 struct ra_regs *regs;
61
62 /**
63 * Array of the ra classes for the unaligned contiguous register
64 * block sizes used, indexed by register size.
65 */
66 int classes[16];
67
68 /**
69 * Mapping from classes to ra_reg ranges. Each of the per-size
70 * classes corresponds to a range of ra_reg nodes. This array stores
71 * those ranges in the form of first ra_reg in each class and the
72 * total number of ra_reg elements in the last array element. This
73 * way the range of the i'th class is given by:
74 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
75 */
76 int class_to_ra_reg_range[17];
77
78 /**
79 * Mapping for register-allocated objects in *regs to the first
80 * GRF for that object.
81 */
82 uint8_t *ra_reg_to_grf;
83
84 /**
85 * ra class for the aligned pairs we use for PLN, which doesn't
86 * appear in *classes.
87 */
88 int aligned_pairs_class;
89 } fs_reg_sets[3];
90
91 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
92 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93
94 bool scalar_stage[MESA_SHADER_STAGES];
95 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
96
97 /**
98 * Apply workarounds for SIN and COS output range problems.
99 * This can negatively impact performance.
100 */
101 bool precise_trig;
102
103 /**
104 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
105 * Base Address? (If not, it's a normal GPU address.)
106 */
107 bool constant_buffer_0_is_relative;
108
109 /**
110 * Whether or not the driver supports pull constants. If not, the compiler
111 * will attempt to push everything.
112 */
113 bool supports_pull_constants;
114 };
115
116
117 /**
118 * Program key structures.
119 *
120 * When drawing, we look for the currently bound shaders in the program
121 * cache. This is essentially a hash table lookup, and these are the keys.
122 *
123 * Sometimes OpenGL features specified as state need to be simulated via
124 * shader code, due to a mismatch between the API and the hardware. This
125 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
126 * in the program key so it's considered when searching for a program. If
127 * we haven't seen a particular combination before, we have to recompile a
128 * new specialized version.
129 *
130 * Shader compilation should not look up state in gl_context directly, but
131 * instead use the copy in the program key. This guarantees recompiles will
132 * happen correctly.
133 *
134 * @{
135 */
136
137 enum PACKED gen6_gather_sampler_wa {
138 WA_SIGN = 1, /* whether we need to sign extend */
139 WA_8BIT = 2, /* if we have an 8bit format needing wa */
140 WA_16BIT = 4, /* if we have a 16bit format needing wa */
141 };
142
143 /**
144 * Sampler information needed by VS, WM, and GS program cache keys.
145 */
146 struct brw_sampler_prog_key_data {
147 /**
148 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
149 */
150 uint16_t swizzles[MAX_SAMPLERS];
151
152 uint32_t gl_clamp_mask[3];
153
154 /**
155 * For RG32F, gather4's channel select is broken.
156 */
157 uint32_t gather_channel_quirk_mask;
158
159 /**
160 * Whether this sampler uses the compressed multisample surface layout.
161 */
162 uint32_t compressed_multisample_layout_mask;
163
164 /**
165 * Whether this sampler is using 16x multisampling. If so fetching from
166 * this sampler will be handled with a different instruction, ld2dms_w
167 * instead of ld2dms.
168 */
169 uint32_t msaa_16;
170
171 /**
172 * For Sandybridge, which shader w/a we need for gather quirks.
173 */
174 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
175
176 /**
177 * Texture units that have a YUV image bound.
178 */
179 uint32_t y_u_v_image_mask;
180 uint32_t y_uv_image_mask;
181 uint32_t yx_xuxv_image_mask;
182 uint32_t xy_uxvx_image_mask;
183 };
184
185 /**
186 * The VF can't natively handle certain types of attributes, such as GL_FIXED
187 * or most 10_10_10_2 types. These flags enable various VS workarounds to
188 * "fix" attributes at the beginning of shaders.
189 */
190 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
191 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
192 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
193 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
194 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
195
196 /**
197 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
198 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
199 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
200 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
201 */
202 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
203 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
204
205 /** The program key for Vertex Shaders. */
206 struct brw_vs_prog_key {
207 unsigned program_string_id;
208
209 /**
210 * Per-attribute workaround flags
211 *
212 * For each attribute, a combination of BRW_ATTRIB_WA_*.
213 *
214 * For OpenGL, where we expose a maximum of 16 user input atttributes
215 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
216 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
217 * expose up to 28 user input vertex attributes that are mapped to slots
218 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
219 * enough to hold this many slots.
220 */
221 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
222
223 bool copy_edgeflag:1;
224
225 bool clamp_vertex_color:1;
226
227 /**
228 * How many user clipping planes are being uploaded to the vertex shader as
229 * push constants.
230 *
231 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
232 * clip distances.
233 */
234 unsigned nr_userclip_plane_consts:4;
235
236 /**
237 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
238 * are going to be replaced with point coordinates (as a consequence of a
239 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
240 * our SF thread requires exact matching between VS outputs and FS inputs,
241 * these texture coordinates will need to be unconditionally included in
242 * the VUE, even if they aren't written by the vertex shader.
243 */
244 uint8_t point_coord_replace;
245
246 struct brw_sampler_prog_key_data tex;
247 };
248
249 /** The program key for Tessellation Control Shaders. */
250 struct brw_tcs_prog_key
251 {
252 unsigned program_string_id;
253
254 GLenum tes_primitive_mode;
255
256 unsigned input_vertices;
257
258 /** A bitfield of per-patch outputs written. */
259 uint32_t patch_outputs_written;
260
261 /** A bitfield of per-vertex outputs written. */
262 uint64_t outputs_written;
263
264 bool quads_workaround;
265
266 struct brw_sampler_prog_key_data tex;
267 };
268
269 /** The program key for Tessellation Evaluation Shaders. */
270 struct brw_tes_prog_key
271 {
272 unsigned program_string_id;
273
274 /** A bitfield of per-patch inputs read. */
275 uint32_t patch_inputs_read;
276
277 /** A bitfield of per-vertex inputs read. */
278 uint64_t inputs_read;
279
280 struct brw_sampler_prog_key_data tex;
281 };
282
283 /** The program key for Geometry Shaders. */
284 struct brw_gs_prog_key
285 {
286 unsigned program_string_id;
287
288 struct brw_sampler_prog_key_data tex;
289 };
290
291 enum brw_sf_primitive {
292 BRW_SF_PRIM_POINTS = 0,
293 BRW_SF_PRIM_LINES = 1,
294 BRW_SF_PRIM_TRIANGLES = 2,
295 BRW_SF_PRIM_UNFILLED_TRIS = 3,
296 };
297
298 struct brw_sf_prog_key {
299 uint64_t attrs;
300 bool contains_flat_varying;
301 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
302 uint8_t point_sprite_coord_replace;
303 enum brw_sf_primitive primitive:2;
304 bool do_twoside_color:1;
305 bool frontface_ccw:1;
306 bool do_point_sprite:1;
307 bool do_point_coord:1;
308 bool sprite_origin_lower_left:1;
309 bool userclip_active:1;
310 };
311
312 enum brw_clip_mode {
313 BRW_CLIP_MODE_NORMAL = 0,
314 BRW_CLIP_MODE_CLIP_ALL = 1,
315 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
316 BRW_CLIP_MODE_REJECT_ALL = 3,
317 BRW_CLIP_MODE_ACCEPT_ALL = 4,
318 BRW_CLIP_MODE_KERNEL_CLIP = 5,
319 };
320
321 enum brw_clip_fill_mode {
322 BRW_CLIP_FILL_MODE_LINE = 0,
323 BRW_CLIP_FILL_MODE_POINT = 1,
324 BRW_CLIP_FILL_MODE_FILL = 2,
325 BRW_CLIP_FILL_MODE_CULL = 3,
326 };
327
328 /* Note that if unfilled primitives are being emitted, we have to fix
329 * up polygon offset and flatshading at this point:
330 */
331 struct brw_clip_prog_key {
332 uint64_t attrs;
333 bool contains_flat_varying;
334 bool contains_noperspective_varying;
335 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
336 unsigned primitive:4;
337 unsigned nr_userclip:4;
338 bool pv_first:1;
339 bool do_unfilled:1;
340 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
341 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
342 bool offset_cw:1;
343 bool offset_ccw:1;
344 bool copy_bfc_cw:1;
345 bool copy_bfc_ccw:1;
346 enum brw_clip_mode clip_mode:3;
347
348 float offset_factor;
349 float offset_units;
350 float offset_clamp;
351 };
352
353 /* A big lookup table is used to figure out which and how many
354 * additional regs will inserted before the main payload in the WM
355 * program execution. These mainly relate to depth and stencil
356 * processing and the early-depth-test optimization.
357 */
358 enum brw_wm_iz_bits {
359 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
360 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
361 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
362 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
363 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
364 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
365 BRW_WM_IZ_BIT_MAX = 0x40
366 };
367
368 enum brw_wm_aa_enable {
369 BRW_WM_AA_NEVER,
370 BRW_WM_AA_SOMETIMES,
371 BRW_WM_AA_ALWAYS
372 };
373
374 /** The program key for Fragment/Pixel Shaders. */
375 struct brw_wm_prog_key {
376 /* Some collection of BRW_WM_IZ_* */
377 uint8_t iz_lookup;
378 bool stats_wm:1;
379 bool flat_shade:1;
380 unsigned nr_color_regions:5;
381 bool replicate_alpha:1;
382 bool clamp_fragment_color:1;
383 bool persample_interp:1;
384 bool multisample_fbo:1;
385 bool frag_coord_adds_sample_pos:1;
386 enum brw_wm_aa_enable line_aa:2;
387 bool high_quality_derivatives:1;
388 bool force_dual_color_blend:1;
389 bool coherent_fb_fetch:1;
390
391 uint16_t drawable_height;
392 uint64_t input_slots_valid;
393 unsigned program_string_id;
394 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
395 float alpha_test_ref;
396
397 struct brw_sampler_prog_key_data tex;
398 };
399
400 struct brw_cs_prog_key {
401 uint32_t program_string_id;
402 struct brw_sampler_prog_key_data tex;
403 };
404
405 /*
406 * Image metadata structure as laid out in the shader parameter
407 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
408 * able to use them. That's okay because the padding and any unused
409 * entries [most of them except when we're doing untyped surface
410 * access] will be removed by the uniform packing pass.
411 */
412 #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
413 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
414 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8
415 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
416 #define BRW_IMAGE_PARAM_TILING_OFFSET 16
417 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
418 #define BRW_IMAGE_PARAM_SIZE 24
419
420 struct brw_image_param {
421 /** Surface binding table index. */
422 uint32_t surface_idx;
423
424 /** Offset applied to the X and Y surface coordinates. */
425 uint32_t offset[2];
426
427 /** Surface X, Y and Z dimensions. */
428 uint32_t size[3];
429
430 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
431 * pixels, vertical slice stride in pixels.
432 */
433 uint32_t stride[4];
434
435 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
436 uint32_t tiling[3];
437
438 /**
439 * Right shift to apply for bit 6 address swizzling. Two different
440 * swizzles can be specified and will be applied one after the other. The
441 * resulting address will be:
442 *
443 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
444 * (addr >> swizzling[1])))
445 *
446 * Use \c 0xff if any of the swizzles is not required.
447 */
448 uint32_t swizzling[2];
449 };
450
451 /** Max number of render targets in a shader */
452 #define BRW_MAX_DRAW_BUFFERS 8
453
454 /**
455 * Max number of binding table entries used for stream output.
456 *
457 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
458 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
459 *
460 * On Gen6, the size of transform feedback data is limited not by the number
461 * of components but by the number of binding table entries we set aside. We
462 * use one binding table entry for a float, one entry for a vector, and one
463 * entry per matrix column. Since the only way we can communicate our
464 * transform feedback capabilities to the client is via
465 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
466 * worst case, in which all the varyings are floats, so we use up one binding
467 * table entry per component. Therefore we need to set aside at least 64
468 * binding table entries for use by transform feedback.
469 *
470 * Note: since we don't currently pack varyings, it is currently impossible
471 * for the client to actually use up all of these binding table entries--if
472 * all of their varyings were floats, they would run out of varying slots and
473 * fail to link. But that's a bug, so it seems prudent to go ahead and
474 * allocate the number of binding table entries we will need once the bug is
475 * fixed.
476 */
477 #define BRW_MAX_SOL_BINDINGS 64
478
479 /**
480 * Binding table index for the first gen6 SOL binding.
481 */
482 #define BRW_GEN6_SOL_BINDING_START 0
483
484 /**
485 * Stride in bytes between shader_time entries.
486 *
487 * We separate entries by a cacheline to reduce traffic between EUs writing to
488 * different entries.
489 */
490 #define BRW_SHADER_TIME_STRIDE 64
491
492 struct brw_ubo_range
493 {
494 uint16_t block;
495 uint8_t start;
496 uint8_t length;
497 };
498
499 /* We reserve the first 2^16 values for builtins */
500 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
501
502 enum brw_param_builtin {
503 BRW_PARAM_BUILTIN_ZERO,
504
505 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
506 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
507 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
508 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
509 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
510 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
511 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
512 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
513 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
514 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
515 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
516 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
517 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
518 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
519 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
520 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
521 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
522 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
523 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
524 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
525 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
526 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
527 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
528 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
529 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
530 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
531 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
537
538 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
539 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
540 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
541 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
542 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
543 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
544 };
545
546 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
547 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
548
549 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
550 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
551 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
552
553 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
554 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
555
556 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
557 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
558
559 struct brw_stage_prog_data {
560 struct {
561 /** size of our binding table. */
562 uint32_t size_bytes;
563
564 /** @{
565 * surface indices for the various groups of surfaces
566 */
567 uint32_t pull_constants_start;
568 uint32_t texture_start;
569 uint32_t gather_texture_start;
570 uint32_t ubo_start;
571 uint32_t ssbo_start;
572 uint32_t abo_start;
573 uint32_t image_start;
574 uint32_t shader_time_start;
575 uint32_t plane_start[3];
576 /** @} */
577 } binding_table;
578
579 struct brw_ubo_range ubo_ranges[4];
580
581 GLuint nr_params; /**< number of float params/constants */
582 GLuint nr_pull_params;
583
584 unsigned curb_read_length;
585 unsigned total_scratch;
586 unsigned total_shared;
587
588 /**
589 * Register where the thread expects to find input data from the URB
590 * (typically uniforms, followed by vertex or fragment attributes).
591 */
592 unsigned dispatch_grf_start_reg;
593
594 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
595
596 /* 32-bit identifiers for all push/pull parameters. These can be anything
597 * the driver wishes them to be; the core of the back-end compiler simply
598 * re-arranges them. The one restriction is that the bottom 2^16 values
599 * are reserved for builtins defined in the brw_param_builtin enum defined
600 * above.
601 */
602 uint32_t *param;
603 uint32_t *pull_param;
604 };
605
606 static inline void
607 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
608 unsigned surf_index)
609 {
610 /* A binding table index is 8 bits and the top 3 values are reserved for
611 * special things (stateless and SLM).
612 */
613 assert(surf_index <= 252);
614
615 prog_data->binding_table.size_bytes =
616 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
617 }
618
619 enum brw_barycentric_mode {
620 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
621 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
622 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
623 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
624 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
625 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
626 BRW_BARYCENTRIC_MODE_COUNT = 6
627 };
628 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
629 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
630 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
631 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
632
633 enum brw_pixel_shader_computed_depth_mode {
634 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
635 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
636 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
637 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
638 };
639
640 /* Data about a particular attempt to compile a program. Note that
641 * there can be many of these, each in a different GL state
642 * corresponding to a different brw_wm_prog_key struct, with different
643 * compiled programs.
644 */
645 struct brw_wm_prog_data {
646 struct brw_stage_prog_data base;
647
648 GLuint num_varying_inputs;
649
650 uint8_t reg_blocks_0;
651 uint8_t reg_blocks_2;
652
653 uint8_t dispatch_grf_start_reg_2;
654 uint32_t prog_offset_2;
655
656 struct {
657 /** @{
658 * surface indices the WM-specific surfaces
659 */
660 uint32_t render_target_start;
661 uint32_t render_target_read_start;
662 /** @} */
663 } binding_table;
664
665 uint8_t computed_depth_mode;
666 bool computed_stencil;
667
668 bool early_fragment_tests;
669 bool post_depth_coverage;
670 bool inner_coverage;
671 bool dispatch_8;
672 bool dispatch_16;
673 bool dual_src_blend;
674 bool persample_dispatch;
675 bool uses_pos_offset;
676 bool uses_omask;
677 bool uses_kill;
678 bool uses_src_depth;
679 bool uses_src_w;
680 bool uses_sample_mask;
681 bool has_render_target_reads;
682 bool has_side_effects;
683 bool pulls_bary;
684
685 bool contains_flat_varying;
686 bool contains_noperspective_varying;
687
688 /**
689 * Mask of which interpolation modes are required by the fragment shader.
690 * Used in hardware setup on gen6+.
691 */
692 uint32_t barycentric_interp_modes;
693
694 /**
695 * Mask of which FS inputs are marked flat by the shader source. This is
696 * needed for setting up 3DSTATE_SF/SBE.
697 */
698 uint32_t flat_inputs;
699
700 /* Mapping of VUE slots to interpolation modes.
701 * Used by the Gen4-5 clip/sf/wm stages.
702 */
703 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
704
705 /**
706 * Map from gl_varying_slot to the position within the FS setup data
707 * payload where the varying's attribute vertex deltas should be delivered.
708 * For varying slots that are not used by the FS, the value is -1.
709 */
710 int urb_setup[VARYING_SLOT_MAX];
711 };
712
713 struct brw_push_const_block {
714 unsigned dwords; /* Dword count, not reg aligned */
715 unsigned regs;
716 unsigned size; /* Bytes, register aligned */
717 };
718
719 struct brw_cs_prog_data {
720 struct brw_stage_prog_data base;
721
722 GLuint dispatch_grf_start_reg_16;
723 unsigned local_size[3];
724 unsigned simd_size;
725 unsigned threads;
726 bool uses_barrier;
727 bool uses_num_work_groups;
728 int thread_local_id_index;
729
730 struct {
731 struct brw_push_const_block cross_thread;
732 struct brw_push_const_block per_thread;
733 struct brw_push_const_block total;
734 } push;
735
736 struct {
737 /** @{
738 * surface indices the CS-specific surfaces
739 */
740 uint32_t work_groups_start;
741 /** @} */
742 } binding_table;
743 };
744
745 /**
746 * Enum representing the i965-specific vertex results that don't correspond
747 * exactly to any element of gl_varying_slot. The values of this enum are
748 * assigned such that they don't conflict with gl_varying_slot.
749 */
750 typedef enum
751 {
752 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
753 BRW_VARYING_SLOT_PAD,
754 /**
755 * Technically this is not a varying but just a placeholder that
756 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
757 * builtin variable to be compiled correctly. see compile_sf_prog() for
758 * more info.
759 */
760 BRW_VARYING_SLOT_PNTC,
761 BRW_VARYING_SLOT_COUNT
762 } brw_varying_slot;
763
764 /**
765 * We always program SF to start reading at an offset of 1 (2 varying slots)
766 * from the start of the vertex URB entry. This causes it to skip:
767 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
768 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
769 */
770 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
771
772 /**
773 * Bitmask indicating which fragment shader inputs represent varyings (and
774 * hence have to be delivered to the fragment shader by the SF/SBE stage).
775 */
776 #define BRW_FS_VARYING_INPUT_MASK \
777 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
778 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
779
780 /**
781 * Data structure recording the relationship between the gl_varying_slot enum
782 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
783 * single octaword within the VUE (128 bits).
784 *
785 * Note that each BRW register contains 256 bits (2 octawords), so when
786 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
787 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
788 * in a vertex shader), each register corresponds to a single VUE slot, since
789 * it contains data for two separate vertices.
790 */
791 struct brw_vue_map {
792 /**
793 * Bitfield representing all varying slots that are (a) stored in this VUE
794 * map, and (b) actually written by the shader. Does not include any of
795 * the additional varying slots defined in brw_varying_slot.
796 */
797 uint64_t slots_valid;
798
799 /**
800 * Is this VUE map for a separate shader pipeline?
801 *
802 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
803 * without the linker having a chance to dead code eliminate unused varyings.
804 *
805 * This means that we have to use a fixed slot layout, based on the output's
806 * location field, rather than assigning slots in a compact contiguous block.
807 */
808 bool separate;
809
810 /**
811 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
812 * not stored in a slot (because they are not written, or because
813 * additional processing is applied before storing them in the VUE), the
814 * value is -1.
815 */
816 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
817
818 /**
819 * Map from VUE slot to gl_varying_slot value. For slots that do not
820 * directly correspond to a gl_varying_slot, the value comes from
821 * brw_varying_slot.
822 *
823 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
824 */
825 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
826
827 /**
828 * Total number of VUE slots in use
829 */
830 int num_slots;
831
832 /**
833 * Number of per-patch VUE slots. Only valid for tessellation control
834 * shader outputs and tessellation evaluation shader inputs.
835 */
836 int num_per_patch_slots;
837
838 /**
839 * Number of per-vertex VUE slots. Only valid for tessellation control
840 * shader outputs and tessellation evaluation shader inputs.
841 */
842 int num_per_vertex_slots;
843 };
844
845 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
846
847 /**
848 * Convert a VUE slot number into a byte offset within the VUE.
849 */
850 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
851 {
852 return 16*slot;
853 }
854
855 /**
856 * Convert a vertex output (brw_varying_slot) into a byte offset within the
857 * VUE.
858 */
859 static inline
860 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
861 {
862 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
863 }
864
865 void brw_compute_vue_map(const struct gen_device_info *devinfo,
866 struct brw_vue_map *vue_map,
867 uint64_t slots_valid,
868 bool separate_shader);
869
870 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
871 uint64_t slots_valid,
872 uint32_t is_patch);
873
874 /* brw_interpolation_map.c */
875 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
876 struct nir_shader *nir,
877 struct brw_wm_prog_data *prog_data,
878 const struct gen_device_info *devinfo);
879
880 enum shader_dispatch_mode {
881 DISPATCH_MODE_4X1_SINGLE = 0,
882 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
883 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
884 DISPATCH_MODE_SIMD8 = 3,
885 };
886
887 /**
888 * @defgroup Tessellator parameter enumerations.
889 *
890 * These correspond to the hardware values in 3DSTATE_TE, and are provided
891 * as part of the tessellation evaluation shader.
892 *
893 * @{
894 */
895 enum brw_tess_partitioning {
896 BRW_TESS_PARTITIONING_INTEGER = 0,
897 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
898 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
899 };
900
901 enum brw_tess_output_topology {
902 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
903 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
904 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
905 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
906 };
907
908 enum brw_tess_domain {
909 BRW_TESS_DOMAIN_QUAD = 0,
910 BRW_TESS_DOMAIN_TRI = 1,
911 BRW_TESS_DOMAIN_ISOLINE = 2,
912 };
913 /** @} */
914
915 struct brw_vue_prog_data {
916 struct brw_stage_prog_data base;
917 struct brw_vue_map vue_map;
918
919 /** Should the hardware deliver input VUE handles for URB pull loads? */
920 bool include_vue_handles;
921
922 GLuint urb_read_length;
923 GLuint total_grf;
924
925 uint32_t clip_distance_mask;
926 uint32_t cull_distance_mask;
927
928 /* Used for calculating urb partitions. In the VS, this is the size of the
929 * URB entry used for both input and output to the thread. In the GS, this
930 * is the size of the URB entry used for output.
931 */
932 GLuint urb_entry_size;
933
934 enum shader_dispatch_mode dispatch_mode;
935 };
936
937 struct brw_vs_prog_data {
938 struct brw_vue_prog_data base;
939
940 GLbitfield64 inputs_read;
941 GLbitfield64 double_inputs_read;
942
943 unsigned nr_attributes;
944 unsigned nr_attribute_slots;
945
946 bool uses_vertexid;
947 bool uses_instanceid;
948 bool uses_basevertex;
949 bool uses_baseinstance;
950 bool uses_drawid;
951 };
952
953 struct brw_tcs_prog_data
954 {
955 struct brw_vue_prog_data base;
956
957 /** Number vertices in output patch */
958 int instances;
959 };
960
961
962 struct brw_tes_prog_data
963 {
964 struct brw_vue_prog_data base;
965
966 enum brw_tess_partitioning partitioning;
967 enum brw_tess_output_topology output_topology;
968 enum brw_tess_domain domain;
969 };
970
971 struct brw_gs_prog_data
972 {
973 struct brw_vue_prog_data base;
974
975 unsigned vertices_in;
976
977 /**
978 * Size of an output vertex, measured in HWORDS (32 bytes).
979 */
980 unsigned output_vertex_size_hwords;
981
982 unsigned output_topology;
983
984 /**
985 * Size of the control data (cut bits or StreamID bits), in hwords (32
986 * bytes). 0 if there is no control data.
987 */
988 unsigned control_data_header_size_hwords;
989
990 /**
991 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
992 * if the control data is StreamID bits, or
993 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
994 * Ignored if control_data_header_size is 0.
995 */
996 unsigned control_data_format;
997
998 bool include_primitive_id;
999
1000 /**
1001 * The number of vertices emitted, if constant - otherwise -1.
1002 */
1003 int static_vertex_count;
1004
1005 int invocations;
1006
1007 /**
1008 * Gen6: Provoking vertex convention for odd-numbered triangles
1009 * in tristrips.
1010 */
1011 GLuint pv_first:1;
1012
1013 /**
1014 * Gen6: Number of varyings that are output to transform feedback.
1015 */
1016 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1017
1018 /**
1019 * Gen6: Map from the index of a transform feedback binding table entry to the
1020 * gl_varying_slot that should be streamed out through that binding table
1021 * entry.
1022 */
1023 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1024
1025 /**
1026 * Gen6: Map from the index of a transform feedback binding table entry to the
1027 * swizzles that should be used when streaming out data through that
1028 * binding table entry.
1029 */
1030 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1031 };
1032
1033 struct brw_sf_prog_data {
1034 uint32_t urb_read_length;
1035 uint32_t total_grf;
1036
1037 /* Each vertex may have upto 12 attributes, 4 components each,
1038 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1039 * rows.
1040 *
1041 * Actually we use 4 for each, so call it 12 rows.
1042 */
1043 unsigned urb_entry_size;
1044 };
1045
1046 struct brw_clip_prog_data {
1047 uint32_t curb_read_length; /* user planes? */
1048 uint32_t clip_mode;
1049 uint32_t urb_read_length;
1050 uint32_t total_grf;
1051 };
1052
1053 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1054 static inline struct brw_##stage##_prog_data * \
1055 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1056 { \
1057 return (struct brw_##stage##_prog_data *) prog_data; \
1058 }
1059 DEFINE_PROG_DATA_DOWNCAST(vue)
1060 DEFINE_PROG_DATA_DOWNCAST(vs)
1061 DEFINE_PROG_DATA_DOWNCAST(tcs)
1062 DEFINE_PROG_DATA_DOWNCAST(tes)
1063 DEFINE_PROG_DATA_DOWNCAST(gs)
1064 DEFINE_PROG_DATA_DOWNCAST(wm)
1065 DEFINE_PROG_DATA_DOWNCAST(cs)
1066 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1067 DEFINE_PROG_DATA_DOWNCAST(clip)
1068 DEFINE_PROG_DATA_DOWNCAST(sf)
1069 #undef DEFINE_PROG_DATA_DOWNCAST
1070
1071 /** @} */
1072
1073 struct brw_compiler *
1074 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1075
1076 /**
1077 * Compile a vertex shader.
1078 *
1079 * Returns the final assembly and the program's size.
1080 */
1081 const unsigned *
1082 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1083 void *mem_ctx,
1084 const struct brw_vs_prog_key *key,
1085 struct brw_vs_prog_data *prog_data,
1086 const struct nir_shader *shader,
1087 bool use_legacy_snorm_formula,
1088 int shader_time_index,
1089 unsigned *final_assembly_size,
1090 char **error_str);
1091
1092 /**
1093 * Compile a tessellation control shader.
1094 *
1095 * Returns the final assembly and the program's size.
1096 */
1097 const unsigned *
1098 brw_compile_tcs(const struct brw_compiler *compiler,
1099 void *log_data,
1100 void *mem_ctx,
1101 const struct brw_tcs_prog_key *key,
1102 struct brw_tcs_prog_data *prog_data,
1103 const struct nir_shader *nir,
1104 int shader_time_index,
1105 unsigned *final_assembly_size,
1106 char **error_str);
1107
1108 /**
1109 * Compile a tessellation evaluation shader.
1110 *
1111 * Returns the final assembly and the program's size.
1112 */
1113 const unsigned *
1114 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1115 void *mem_ctx,
1116 const struct brw_tes_prog_key *key,
1117 const struct brw_vue_map *input_vue_map,
1118 struct brw_tes_prog_data *prog_data,
1119 const struct nir_shader *shader,
1120 struct gl_program *prog,
1121 int shader_time_index,
1122 unsigned *final_assembly_size,
1123 char **error_str);
1124
1125 /**
1126 * Compile a vertex shader.
1127 *
1128 * Returns the final assembly and the program's size.
1129 */
1130 const unsigned *
1131 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1132 void *mem_ctx,
1133 const struct brw_gs_prog_key *key,
1134 struct brw_gs_prog_data *prog_data,
1135 const struct nir_shader *shader,
1136 struct gl_program *prog,
1137 int shader_time_index,
1138 unsigned *final_assembly_size,
1139 char **error_str);
1140
1141 /**
1142 * Compile a strips and fans shader.
1143 *
1144 * This is a fixed-function shader determined entirely by the shader key and
1145 * a VUE map.
1146 *
1147 * Returns the final assembly and the program's size.
1148 */
1149 const unsigned *
1150 brw_compile_sf(const struct brw_compiler *compiler,
1151 void *mem_ctx,
1152 const struct brw_sf_prog_key *key,
1153 struct brw_sf_prog_data *prog_data,
1154 struct brw_vue_map *vue_map,
1155 unsigned *final_assembly_size);
1156
1157 /**
1158 * Compile a clipper shader.
1159 *
1160 * This is a fixed-function shader determined entirely by the shader key and
1161 * a VUE map.
1162 *
1163 * Returns the final assembly and the program's size.
1164 */
1165 const unsigned *
1166 brw_compile_clip(const struct brw_compiler *compiler,
1167 void *mem_ctx,
1168 const struct brw_clip_prog_key *key,
1169 struct brw_clip_prog_data *prog_data,
1170 struct brw_vue_map *vue_map,
1171 unsigned *final_assembly_size);
1172
1173 /**
1174 * Compile a fragment shader.
1175 *
1176 * Returns the final assembly and the program's size.
1177 */
1178 const unsigned *
1179 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1180 void *mem_ctx,
1181 const struct brw_wm_prog_key *key,
1182 struct brw_wm_prog_data *prog_data,
1183 const struct nir_shader *shader,
1184 struct gl_program *prog,
1185 int shader_time_index8,
1186 int shader_time_index16,
1187 bool allow_spilling,
1188 bool use_rep_send, struct brw_vue_map *vue_map,
1189 unsigned *final_assembly_size,
1190 char **error_str);
1191
1192 /**
1193 * Compile a compute shader.
1194 *
1195 * Returns the final assembly and the program's size.
1196 */
1197 const unsigned *
1198 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1199 void *mem_ctx,
1200 const struct brw_cs_prog_key *key,
1201 struct brw_cs_prog_data *prog_data,
1202 const struct nir_shader *shader,
1203 int shader_time_index,
1204 unsigned *final_assembly_size,
1205 char **error_str);
1206
1207 static inline uint32_t
1208 encode_slm_size(unsigned gen, uint32_t bytes)
1209 {
1210 uint32_t slm_size = 0;
1211
1212 /* Shared Local Memory is specified as powers of two, and encoded in
1213 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1214 *
1215 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1216 * -------------------------------------------------------------------
1217 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1218 * -------------------------------------------------------------------
1219 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1220 */
1221 assert(bytes <= 64 * 1024);
1222
1223 if (bytes > 0) {
1224 /* Shared Local Memory Size is specified as powers of two. */
1225 slm_size = util_next_power_of_two(bytes);
1226
1227 if (gen >= 9) {
1228 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1229 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1230 } else {
1231 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1232 slm_size = MAX2(slm_size, 4096) / 4096;
1233 }
1234 }
1235
1236 return slm_size;
1237 }
1238
1239 /**
1240 * Return true if the given shader stage is dispatched contiguously by the
1241 * relevant fixed function starting from channel 0 of the SIMD thread, which
1242 * implies that the dispatch mask of a thread can be assumed to have the form
1243 * '2^n - 1' for some n.
1244 */
1245 static inline bool
1246 brw_stage_has_packed_dispatch(const struct gen_device_info *devinfo,
1247 gl_shader_stage stage,
1248 const struct brw_stage_prog_data *prog_data)
1249 {
1250 /* The code below makes assumptions about the hardware's thread dispatch
1251 * behavior that could be proven wrong in future generations -- Make sure
1252 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1253 * the NIR front-end before changing this assertion.
1254 */
1255 assert(devinfo->gen <= 10);
1256
1257 switch (stage) {
1258 case MESA_SHADER_FRAGMENT: {
1259 /* The PSD discards subspans coming in with no lit samples, which in the
1260 * per-pixel shading case implies that each subspan will either be fully
1261 * lit (due to the VMask being used to allow derivative computations),
1262 * or not dispatched at all. In per-sample dispatch mode individual
1263 * samples from the same subspan have a fixed relative location within
1264 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1265 * general and we should return false.
1266 */
1267 const struct brw_wm_prog_data *wm_prog_data =
1268 (const struct brw_wm_prog_data *)prog_data;
1269 return !wm_prog_data->persample_dispatch;
1270 }
1271 case MESA_SHADER_COMPUTE:
1272 /* Compute shaders will be spawned with either a fully enabled dispatch
1273 * mask or with whatever bottom/right execution mask was given to the
1274 * GPGPU walker command to be used along the workgroup edges -- In both
1275 * cases the dispatch mask is required to be tightly packed for our
1276 * invocation index calculations to work.
1277 */
1278 return true;
1279 default:
1280 /* Most remaining fixed functions are limited to use a packed dispatch
1281 * mask due to the hardware representation of the dispatch mask as a
1282 * single counter representing the number of enabled channels.
1283 */
1284 return true;
1285 }
1286 }
1287
1288 /**
1289 * Computes the first varying slot in the URB produced by the previous stage
1290 * that is used in the next stage. We do this by testing the varying slots in
1291 * the previous stage's vue map against the inputs read in the next stage.
1292 *
1293 * Note that:
1294 *
1295 * - Each URB offset contains two varying slots and we can only skip a
1296 * full offset if both slots are unused, so the value we return here is always
1297 * rounded down to the closest multiple of two.
1298 *
1299 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1300 * part of the vue header, so if these are read we can't skip anything.
1301 */
1302 static inline int
1303 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1304 const struct brw_vue_map *prev_stage_vue_map)
1305 {
1306 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1307 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1308 int varying = prev_stage_vue_map->slot_to_varying[i];
1309 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1310 return ROUND_DOWN_TO(i, 2);
1311 }
1312 }
1313
1314 return 0;
1315 }
1316
1317 #ifdef __cplusplus
1318 } /* extern "C" */
1319 #endif
1320
1321 #endif /* BRW_COMPILER_H */