2e34b16dd44e2e2ad12facce2ddabb176c89bc9b
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned barycentrics we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_bary_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122
123 /**
124 * Whether or not the driver wants uniform params to be compacted by the
125 * back-end compiler.
126 */
127 bool compact_params;
128 };
129
130 /**
131 * We use a constant subgroup size of 32. It really only needs to be a
132 * maximum and, since we do SIMD32 for compute shaders in some cases, it
133 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
134 * subgroup size of 32 but will act as if 16 or 24 of those channels are
135 * disabled.
136 */
137 #define BRW_SUBGROUP_SIZE 32
138
139 /**
140 * Program key structures.
141 *
142 * When drawing, we look for the currently bound shaders in the program
143 * cache. This is essentially a hash table lookup, and these are the keys.
144 *
145 * Sometimes OpenGL features specified as state need to be simulated via
146 * shader code, due to a mismatch between the API and the hardware. This
147 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
148 * in the program key so it's considered when searching for a program. If
149 * we haven't seen a particular combination before, we have to recompile a
150 * new specialized version.
151 *
152 * Shader compilation should not look up state in gl_context directly, but
153 * instead use the copy in the program key. This guarantees recompiles will
154 * happen correctly.
155 *
156 * @{
157 */
158
159 enum PACKED gen6_gather_sampler_wa {
160 WA_SIGN = 1, /* whether we need to sign extend */
161 WA_8BIT = 2, /* if we have an 8bit format needing wa */
162 WA_16BIT = 4, /* if we have a 16bit format needing wa */
163 };
164
165 /**
166 * Sampler information needed by VS, WM, and GS program cache keys.
167 */
168 struct brw_sampler_prog_key_data {
169 /**
170 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
171 */
172 uint16_t swizzles[MAX_SAMPLERS];
173
174 uint32_t gl_clamp_mask[3];
175
176 /**
177 * For RG32F, gather4's channel select is broken.
178 */
179 uint32_t gather_channel_quirk_mask;
180
181 /**
182 * Whether this sampler uses the compressed multisample surface layout.
183 */
184 uint32_t compressed_multisample_layout_mask;
185
186 /**
187 * Whether this sampler is using 16x multisampling. If so fetching from
188 * this sampler will be handled with a different instruction, ld2dms_w
189 * instead of ld2dms.
190 */
191 uint32_t msaa_16;
192
193 /**
194 * For Sandybridge, which shader w/a we need for gather quirks.
195 */
196 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
197
198 /**
199 * Texture units that have a YUV image bound.
200 */
201 uint32_t y_u_v_image_mask;
202 uint32_t y_uv_image_mask;
203 uint32_t yx_xuxv_image_mask;
204 uint32_t xy_uxvx_image_mask;
205 uint32_t ayuv_image_mask;
206 uint32_t xyuv_image_mask;
207
208 /* Scale factor for each texture. */
209 float scale_factors[32];
210 };
211
212 /** An enum representing what kind of input gl_SubgroupSize is. */
213 enum PACKED brw_subgroup_size_type
214 {
215 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Default Vulkan behavior */
216 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
217 BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
218
219 /* These enums are specifically chosen so that the value of the enum is
220 * also the subgroup size. If any new values are added, they must respect
221 * this invariant.
222 */
223 BRW_SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
224 BRW_SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
225 BRW_SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
226 };
227
228 struct brw_base_prog_key {
229 unsigned program_string_id;
230
231 enum brw_subgroup_size_type subgroup_size_type;
232
233 struct brw_sampler_prog_key_data tex;
234 };
235
236 /**
237 * The VF can't natively handle certain types of attributes, such as GL_FIXED
238 * or most 10_10_10_2 types. These flags enable various VS workarounds to
239 * "fix" attributes at the beginning of shaders.
240 */
241 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
242 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
243 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
244 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
245 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
246
247 /**
248 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
249 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
250 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
251 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
252 */
253 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
254 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
255
256 /** The program key for Vertex Shaders. */
257 struct brw_vs_prog_key {
258 struct brw_base_prog_key base;
259
260 /**
261 * Per-attribute workaround flags
262 *
263 * For each attribute, a combination of BRW_ATTRIB_WA_*.
264 *
265 * For OpenGL, where we expose a maximum of 16 user input atttributes
266 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
267 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
268 * expose up to 28 user input vertex attributes that are mapped to slots
269 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
270 * enough to hold this many slots.
271 */
272 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
273
274 bool copy_edgeflag:1;
275
276 bool clamp_vertex_color:1;
277
278 /**
279 * How many user clipping planes are being uploaded to the vertex shader as
280 * push constants.
281 *
282 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
283 * clip distances.
284 */
285 unsigned nr_userclip_plane_consts:4;
286
287 /**
288 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
289 * are going to be replaced with point coordinates (as a consequence of a
290 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
291 * our SF thread requires exact matching between VS outputs and FS inputs,
292 * these texture coordinates will need to be unconditionally included in
293 * the VUE, even if they aren't written by the vertex shader.
294 */
295 uint8_t point_coord_replace;
296 };
297
298 /** The program key for Tessellation Control Shaders. */
299 struct brw_tcs_prog_key
300 {
301 struct brw_base_prog_key base;
302
303 GLenum tes_primitive_mode;
304
305 unsigned input_vertices;
306
307 /** A bitfield of per-patch outputs written. */
308 uint32_t patch_outputs_written;
309
310 /** A bitfield of per-vertex outputs written. */
311 uint64_t outputs_written;
312
313 bool quads_workaround;
314 };
315
316 /** The program key for Tessellation Evaluation Shaders. */
317 struct brw_tes_prog_key
318 {
319 struct brw_base_prog_key base;
320
321 /** A bitfield of per-patch inputs read. */
322 uint32_t patch_inputs_read;
323
324 /** A bitfield of per-vertex inputs read. */
325 uint64_t inputs_read;
326
327 /**
328 * How many user clipping planes are being uploaded to the tessellation
329 * evaluation shader as push constants.
330 *
331 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
332 * clip distances.
333 */
334 unsigned nr_userclip_plane_consts:4;
335 };
336
337 /** The program key for Geometry Shaders. */
338 struct brw_gs_prog_key
339 {
340 struct brw_base_prog_key base;
341
342 /**
343 * How many user clipping planes are being uploaded to the geometry shader
344 * as push constants.
345 *
346 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
347 * clip distances.
348 */
349 unsigned nr_userclip_plane_consts:4;
350 };
351
352 enum brw_sf_primitive {
353 BRW_SF_PRIM_POINTS = 0,
354 BRW_SF_PRIM_LINES = 1,
355 BRW_SF_PRIM_TRIANGLES = 2,
356 BRW_SF_PRIM_UNFILLED_TRIS = 3,
357 };
358
359 struct brw_sf_prog_key {
360 uint64_t attrs;
361 bool contains_flat_varying;
362 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
363 uint8_t point_sprite_coord_replace;
364 enum brw_sf_primitive primitive:2;
365 bool do_twoside_color:1;
366 bool frontface_ccw:1;
367 bool do_point_sprite:1;
368 bool do_point_coord:1;
369 bool sprite_origin_lower_left:1;
370 bool userclip_active:1;
371 };
372
373 enum brw_clip_mode {
374 BRW_CLIP_MODE_NORMAL = 0,
375 BRW_CLIP_MODE_CLIP_ALL = 1,
376 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
377 BRW_CLIP_MODE_REJECT_ALL = 3,
378 BRW_CLIP_MODE_ACCEPT_ALL = 4,
379 BRW_CLIP_MODE_KERNEL_CLIP = 5,
380 };
381
382 enum brw_clip_fill_mode {
383 BRW_CLIP_FILL_MODE_LINE = 0,
384 BRW_CLIP_FILL_MODE_POINT = 1,
385 BRW_CLIP_FILL_MODE_FILL = 2,
386 BRW_CLIP_FILL_MODE_CULL = 3,
387 };
388
389 /* Note that if unfilled primitives are being emitted, we have to fix
390 * up polygon offset and flatshading at this point:
391 */
392 struct brw_clip_prog_key {
393 uint64_t attrs;
394 bool contains_flat_varying;
395 bool contains_noperspective_varying;
396 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
397 unsigned primitive:4;
398 unsigned nr_userclip:4;
399 bool pv_first:1;
400 bool do_unfilled:1;
401 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
402 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
403 bool offset_cw:1;
404 bool offset_ccw:1;
405 bool copy_bfc_cw:1;
406 bool copy_bfc_ccw:1;
407 enum brw_clip_mode clip_mode:3;
408
409 float offset_factor;
410 float offset_units;
411 float offset_clamp;
412 };
413
414 /* A big lookup table is used to figure out which and how many
415 * additional regs will inserted before the main payload in the WM
416 * program execution. These mainly relate to depth and stencil
417 * processing and the early-depth-test optimization.
418 */
419 enum brw_wm_iz_bits {
420 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
421 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
422 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
423 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
424 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
425 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
426 BRW_WM_IZ_BIT_MAX = 0x40
427 };
428
429 enum brw_wm_aa_enable {
430 BRW_WM_AA_NEVER,
431 BRW_WM_AA_SOMETIMES,
432 BRW_WM_AA_ALWAYS
433 };
434
435 /** The program key for Fragment/Pixel Shaders. */
436 struct brw_wm_prog_key {
437 struct brw_base_prog_key base;
438
439 /* Some collection of BRW_WM_IZ_* */
440 uint8_t iz_lookup;
441 bool stats_wm:1;
442 bool flat_shade:1;
443 unsigned nr_color_regions:5;
444 bool alpha_test_replicate_alpha:1;
445 bool alpha_to_coverage:1;
446 bool clamp_fragment_color:1;
447 bool persample_interp:1;
448 bool multisample_fbo:1;
449 bool frag_coord_adds_sample_pos:1;
450 enum brw_wm_aa_enable line_aa:2;
451 bool high_quality_derivatives:1;
452 bool force_dual_color_blend:1;
453 bool coherent_fb_fetch:1;
454
455 uint8_t color_outputs_valid;
456 uint64_t input_slots_valid;
457 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
458 float alpha_test_ref;
459 };
460
461 struct brw_cs_prog_key {
462 struct brw_base_prog_key base;
463 };
464
465 /* brw_any_prog_key is any of the keys that map to an API stage */
466 union brw_any_prog_key {
467 struct brw_base_prog_key base;
468 struct brw_vs_prog_key vs;
469 struct brw_tcs_prog_key tcs;
470 struct brw_tes_prog_key tes;
471 struct brw_gs_prog_key gs;
472 struct brw_wm_prog_key wm;
473 struct brw_cs_prog_key cs;
474 };
475
476 /*
477 * Image metadata structure as laid out in the shader parameter
478 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
479 * able to use them. That's okay because the padding and any unused
480 * entries [most of them except when we're doing untyped surface
481 * access] will be removed by the uniform packing pass.
482 */
483 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
484 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
485 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
486 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
487 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
488 #define BRW_IMAGE_PARAM_SIZE 20
489
490 struct brw_image_param {
491 /** Offset applied to the X and Y surface coordinates. */
492 uint32_t offset[2];
493
494 /** Surface X, Y and Z dimensions. */
495 uint32_t size[3];
496
497 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
498 * pixels, vertical slice stride in pixels.
499 */
500 uint32_t stride[4];
501
502 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
503 uint32_t tiling[3];
504
505 /**
506 * Right shift to apply for bit 6 address swizzling. Two different
507 * swizzles can be specified and will be applied one after the other. The
508 * resulting address will be:
509 *
510 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
511 * (addr >> swizzling[1])))
512 *
513 * Use \c 0xff if any of the swizzles is not required.
514 */
515 uint32_t swizzling[2];
516 };
517
518 /** Max number of render targets in a shader */
519 #define BRW_MAX_DRAW_BUFFERS 8
520
521 /**
522 * Max number of binding table entries used for stream output.
523 *
524 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
525 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
526 *
527 * On Gen6, the size of transform feedback data is limited not by the number
528 * of components but by the number of binding table entries we set aside. We
529 * use one binding table entry for a float, one entry for a vector, and one
530 * entry per matrix column. Since the only way we can communicate our
531 * transform feedback capabilities to the client is via
532 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
533 * worst case, in which all the varyings are floats, so we use up one binding
534 * table entry per component. Therefore we need to set aside at least 64
535 * binding table entries for use by transform feedback.
536 *
537 * Note: since we don't currently pack varyings, it is currently impossible
538 * for the client to actually use up all of these binding table entries--if
539 * all of their varyings were floats, they would run out of varying slots and
540 * fail to link. But that's a bug, so it seems prudent to go ahead and
541 * allocate the number of binding table entries we will need once the bug is
542 * fixed.
543 */
544 #define BRW_MAX_SOL_BINDINGS 64
545
546 /**
547 * Binding table index for the first gen6 SOL binding.
548 */
549 #define BRW_GEN6_SOL_BINDING_START 0
550
551 /**
552 * Stride in bytes between shader_time entries.
553 *
554 * We separate entries by a cacheline to reduce traffic between EUs writing to
555 * different entries.
556 */
557 #define BRW_SHADER_TIME_STRIDE 64
558
559 struct brw_ubo_range
560 {
561 uint16_t block;
562 uint8_t start;
563 uint8_t length;
564 };
565
566 /* We reserve the first 2^16 values for builtins */
567 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
568
569 enum brw_param_builtin {
570 BRW_PARAM_BUILTIN_ZERO,
571
572 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
573 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
574 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
575 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
576 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
577 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
578 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
579 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
580 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
581 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
582 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
583 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
584 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
585 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
586 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
587 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
588 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
589 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
590 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
591 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
592 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
593 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
594 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
595 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
596 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
597 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
598 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
599 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
600 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
601 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
602 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
603 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
604
605 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
606 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
607 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
608 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
609 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
610 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
611
612 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
613
614 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
615 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
616 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
617 BRW_PARAM_BUILTIN_SUBGROUP_ID,
618 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
619 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
620 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
621 };
622
623 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
624 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
625
626 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
627 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
628 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
629
630 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
631 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
632
633 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
634 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
635
636 struct brw_stage_prog_data {
637 struct {
638 /** size of our binding table. */
639 uint32_t size_bytes;
640
641 /** @{
642 * surface indices for the various groups of surfaces
643 */
644 uint32_t pull_constants_start;
645 uint32_t texture_start;
646 uint32_t gather_texture_start;
647 uint32_t ubo_start;
648 uint32_t ssbo_start;
649 uint32_t image_start;
650 uint32_t shader_time_start;
651 uint32_t plane_start[3];
652 /** @} */
653 } binding_table;
654
655 struct brw_ubo_range ubo_ranges[4];
656
657 GLuint nr_params; /**< number of float params/constants */
658 GLuint nr_pull_params;
659
660 unsigned curb_read_length;
661 unsigned total_scratch;
662 unsigned total_shared;
663
664 unsigned program_size;
665
666 /** Does this program pull from any UBO or other constant buffers? */
667 bool has_ubo_pull;
668
669 /**
670 * Register where the thread expects to find input data from the URB
671 * (typically uniforms, followed by vertex or fragment attributes).
672 */
673 unsigned dispatch_grf_start_reg;
674
675 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
676
677 /* 32-bit identifiers for all push/pull parameters. These can be anything
678 * the driver wishes them to be; the core of the back-end compiler simply
679 * re-arranges them. The one restriction is that the bottom 2^16 values
680 * are reserved for builtins defined in the brw_param_builtin enum defined
681 * above.
682 */
683 uint32_t *param;
684 uint32_t *pull_param;
685
686 /* Whether shader uses atomic operations. */
687 bool uses_atomic_load_store;
688 };
689
690 static inline uint32_t *
691 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
692 unsigned nr_new_params)
693 {
694 unsigned old_nr_params = prog_data->nr_params;
695 prog_data->nr_params += nr_new_params;
696 prog_data->param = reralloc(ralloc_parent(prog_data->param),
697 prog_data->param, uint32_t,
698 prog_data->nr_params);
699 return prog_data->param + old_nr_params;
700 }
701
702 enum brw_barycentric_mode {
703 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
704 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
705 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
706 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
707 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
708 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
709 BRW_BARYCENTRIC_MODE_COUNT = 6
710 };
711 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
712 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
713 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
714 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
715
716 enum brw_pixel_shader_computed_depth_mode {
717 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
718 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
719 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
720 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
721 };
722
723 /* Data about a particular attempt to compile a program. Note that
724 * there can be many of these, each in a different GL state
725 * corresponding to a different brw_wm_prog_key struct, with different
726 * compiled programs.
727 */
728 struct brw_wm_prog_data {
729 struct brw_stage_prog_data base;
730
731 GLuint num_varying_inputs;
732
733 uint8_t reg_blocks_8;
734 uint8_t reg_blocks_16;
735 uint8_t reg_blocks_32;
736
737 uint8_t dispatch_grf_start_reg_16;
738 uint8_t dispatch_grf_start_reg_32;
739 uint32_t prog_offset_16;
740 uint32_t prog_offset_32;
741
742 struct {
743 /** @{
744 * surface indices the WM-specific surfaces
745 */
746 uint32_t render_target_read_start;
747 /** @} */
748 } binding_table;
749
750 uint8_t computed_depth_mode;
751 bool computed_stencil;
752
753 bool early_fragment_tests;
754 bool post_depth_coverage;
755 bool inner_coverage;
756 bool dispatch_8;
757 bool dispatch_16;
758 bool dispatch_32;
759 bool dual_src_blend;
760 bool persample_dispatch;
761 bool uses_pos_offset;
762 bool uses_omask;
763 bool uses_kill;
764 bool uses_src_depth;
765 bool uses_src_w;
766 bool uses_sample_mask;
767 bool has_render_target_reads;
768 bool has_side_effects;
769 bool pulls_bary;
770
771 bool contains_flat_varying;
772 bool contains_noperspective_varying;
773
774 /**
775 * Mask of which interpolation modes are required by the fragment shader.
776 * Used in hardware setup on gen6+.
777 */
778 uint32_t barycentric_interp_modes;
779
780 /**
781 * Mask of which FS inputs are marked flat by the shader source. This is
782 * needed for setting up 3DSTATE_SF/SBE.
783 */
784 uint32_t flat_inputs;
785
786 /**
787 * The FS inputs
788 */
789 uint64_t inputs;
790
791 /* Mapping of VUE slots to interpolation modes.
792 * Used by the Gen4-5 clip/sf/wm stages.
793 */
794 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
795
796 /**
797 * Map from gl_varying_slot to the position within the FS setup data
798 * payload where the varying's attribute vertex deltas should be delivered.
799 * For varying slots that are not used by the FS, the value is -1.
800 */
801 int urb_setup[VARYING_SLOT_MAX];
802
803 /**
804 * Cache structure into the urb_setup array above that contains the
805 * attribute numbers of active varyings out of urb_setup.
806 * The actual count is stored in urb_setup_attribs_count.
807 */
808 uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
809 uint8_t urb_setup_attribs_count;
810 };
811
812 /** Returns the SIMD width corresponding to a given KSP index
813 *
814 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
815 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
816 * kernel start pointer (KSP) indices that is based on what dispatch widths
817 * are enabled. This function provides, effectively, the reverse mapping.
818 *
819 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
820 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
821 */
822 static inline unsigned
823 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
824 bool simd16_enabled, bool simd32_enabled)
825 {
826 /* This function strictly ignores contiguous dispatch */
827 switch (ksp_idx) {
828 case 0:
829 return simd8_enabled ? 8 :
830 (simd16_enabled && !simd32_enabled) ? 16 :
831 (simd32_enabled && !simd16_enabled) ? 32 : 0;
832 case 1:
833 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
834 case 2:
835 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
836 default:
837 unreachable("Invalid KSP index");
838 }
839 }
840
841 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
842 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
843 (wm_state)._16PixelDispatchEnable, \
844 (wm_state)._32PixelDispatchEnable)
845
846 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
847 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
848
849 static inline uint32_t
850 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
851 unsigned simd_width)
852 {
853 switch (simd_width) {
854 case 8: return 0;
855 case 16: return prog_data->prog_offset_16;
856 case 32: return prog_data->prog_offset_32;
857 default: return 0;
858 }
859 }
860
861 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
862 _brw_wm_prog_data_prog_offset(prog_data, \
863 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
864
865 static inline uint8_t
866 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
867 unsigned simd_width)
868 {
869 switch (simd_width) {
870 case 8: return prog_data->base.dispatch_grf_start_reg;
871 case 16: return prog_data->dispatch_grf_start_reg_16;
872 case 32: return prog_data->dispatch_grf_start_reg_32;
873 default: return 0;
874 }
875 }
876
877 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
878 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
879 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
880
881 static inline uint8_t
882 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
883 unsigned simd_width)
884 {
885 switch (simd_width) {
886 case 8: return prog_data->reg_blocks_8;
887 case 16: return prog_data->reg_blocks_16;
888 case 32: return prog_data->reg_blocks_32;
889 default: return 0;
890 }
891 }
892
893 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
894 _brw_wm_prog_data_reg_blocks(prog_data, \
895 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
896
897 struct brw_push_const_block {
898 unsigned dwords; /* Dword count, not reg aligned */
899 unsigned regs;
900 unsigned size; /* Bytes, register aligned */
901 };
902
903 struct brw_cs_prog_data {
904 struct brw_stage_prog_data base;
905
906 unsigned local_size[3];
907 unsigned max_variable_local_size;
908 unsigned simd_size;
909 unsigned threads;
910 unsigned slm_size;
911 bool uses_barrier;
912 bool uses_num_work_groups;
913 bool uses_variable_group_size;
914
915 struct {
916 struct brw_push_const_block cross_thread;
917 struct brw_push_const_block per_thread;
918 } push;
919
920 struct {
921 /** @{
922 * surface indices the CS-specific surfaces
923 */
924 uint32_t work_groups_start;
925 /** @} */
926 } binding_table;
927 };
928
929 /**
930 * Enum representing the i965-specific vertex results that don't correspond
931 * exactly to any element of gl_varying_slot. The values of this enum are
932 * assigned such that they don't conflict with gl_varying_slot.
933 */
934 typedef enum
935 {
936 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
937 BRW_VARYING_SLOT_PAD,
938 /**
939 * Technically this is not a varying but just a placeholder that
940 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
941 * builtin variable to be compiled correctly. see compile_sf_prog() for
942 * more info.
943 */
944 BRW_VARYING_SLOT_PNTC,
945 BRW_VARYING_SLOT_COUNT
946 } brw_varying_slot;
947
948 /**
949 * We always program SF to start reading at an offset of 1 (2 varying slots)
950 * from the start of the vertex URB entry. This causes it to skip:
951 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
952 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
953 */
954 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
955
956 /**
957 * Bitmask indicating which fragment shader inputs represent varyings (and
958 * hence have to be delivered to the fragment shader by the SF/SBE stage).
959 */
960 #define BRW_FS_VARYING_INPUT_MASK \
961 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
962 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
963
964 /**
965 * Data structure recording the relationship between the gl_varying_slot enum
966 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
967 * single octaword within the VUE (128 bits).
968 *
969 * Note that each BRW register contains 256 bits (2 octawords), so when
970 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
971 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
972 * in a vertex shader), each register corresponds to a single VUE slot, since
973 * it contains data for two separate vertices.
974 */
975 struct brw_vue_map {
976 /**
977 * Bitfield representing all varying slots that are (a) stored in this VUE
978 * map, and (b) actually written by the shader. Does not include any of
979 * the additional varying slots defined in brw_varying_slot.
980 */
981 uint64_t slots_valid;
982
983 /**
984 * Is this VUE map for a separate shader pipeline?
985 *
986 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
987 * without the linker having a chance to dead code eliminate unused varyings.
988 *
989 * This means that we have to use a fixed slot layout, based on the output's
990 * location field, rather than assigning slots in a compact contiguous block.
991 */
992 bool separate;
993
994 /**
995 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
996 * not stored in a slot (because they are not written, or because
997 * additional processing is applied before storing them in the VUE), the
998 * value is -1.
999 */
1000 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
1001
1002 /**
1003 * Map from VUE slot to gl_varying_slot value. For slots that do not
1004 * directly correspond to a gl_varying_slot, the value comes from
1005 * brw_varying_slot.
1006 *
1007 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
1008 */
1009 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
1010
1011 /**
1012 * Total number of VUE slots in use
1013 */
1014 int num_slots;
1015
1016 /**
1017 * Number of per-patch VUE slots. Only valid for tessellation control
1018 * shader outputs and tessellation evaluation shader inputs.
1019 */
1020 int num_per_patch_slots;
1021
1022 /**
1023 * Number of per-vertex VUE slots. Only valid for tessellation control
1024 * shader outputs and tessellation evaluation shader inputs.
1025 */
1026 int num_per_vertex_slots;
1027 };
1028
1029 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
1030
1031 /**
1032 * Convert a VUE slot number into a byte offset within the VUE.
1033 */
1034 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
1035 {
1036 return 16*slot;
1037 }
1038
1039 /**
1040 * Convert a vertex output (brw_varying_slot) into a byte offset within the
1041 * VUE.
1042 */
1043 static inline
1044 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
1045 {
1046 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1047 }
1048
1049 void brw_compute_vue_map(const struct gen_device_info *devinfo,
1050 struct brw_vue_map *vue_map,
1051 uint64_t slots_valid,
1052 bool separate_shader,
1053 uint32_t pos_slots);
1054
1055 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1056 uint64_t slots_valid,
1057 uint32_t is_patch);
1058
1059 /* brw_interpolation_map.c */
1060 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1061 struct nir_shader *nir,
1062 struct brw_wm_prog_data *prog_data);
1063
1064 enum shader_dispatch_mode {
1065 DISPATCH_MODE_4X1_SINGLE = 0,
1066 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1067 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1068 DISPATCH_MODE_SIMD8 = 3,
1069
1070 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1071 DISPATCH_MODE_TCS_8_PATCH = 2,
1072 };
1073
1074 /**
1075 * @defgroup Tessellator parameter enumerations.
1076 *
1077 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1078 * as part of the tessellation evaluation shader.
1079 *
1080 * @{
1081 */
1082 enum brw_tess_partitioning {
1083 BRW_TESS_PARTITIONING_INTEGER = 0,
1084 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1085 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1086 };
1087
1088 enum brw_tess_output_topology {
1089 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1090 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1091 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1092 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1093 };
1094
1095 enum brw_tess_domain {
1096 BRW_TESS_DOMAIN_QUAD = 0,
1097 BRW_TESS_DOMAIN_TRI = 1,
1098 BRW_TESS_DOMAIN_ISOLINE = 2,
1099 };
1100 /** @} */
1101
1102 struct brw_vue_prog_data {
1103 struct brw_stage_prog_data base;
1104 struct brw_vue_map vue_map;
1105
1106 /** Should the hardware deliver input VUE handles for URB pull loads? */
1107 bool include_vue_handles;
1108
1109 GLuint urb_read_length;
1110 GLuint total_grf;
1111
1112 uint32_t clip_distance_mask;
1113 uint32_t cull_distance_mask;
1114
1115 /* Used for calculating urb partitions. In the VS, this is the size of the
1116 * URB entry used for both input and output to the thread. In the GS, this
1117 * is the size of the URB entry used for output.
1118 */
1119 GLuint urb_entry_size;
1120
1121 enum shader_dispatch_mode dispatch_mode;
1122 };
1123
1124 struct brw_vs_prog_data {
1125 struct brw_vue_prog_data base;
1126
1127 GLbitfield64 inputs_read;
1128 GLbitfield64 double_inputs_read;
1129
1130 unsigned nr_attribute_slots;
1131
1132 bool uses_vertexid;
1133 bool uses_instanceid;
1134 bool uses_is_indexed_draw;
1135 bool uses_firstvertex;
1136 bool uses_baseinstance;
1137 bool uses_drawid;
1138 };
1139
1140 struct brw_tcs_prog_data
1141 {
1142 struct brw_vue_prog_data base;
1143
1144 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1145 bool include_primitive_id;
1146
1147 /** Number vertices in output patch */
1148 int instances;
1149
1150 /** Track patch count threshold */
1151 int patch_count_threshold;
1152 };
1153
1154
1155 struct brw_tes_prog_data
1156 {
1157 struct brw_vue_prog_data base;
1158
1159 enum brw_tess_partitioning partitioning;
1160 enum brw_tess_output_topology output_topology;
1161 enum brw_tess_domain domain;
1162 };
1163
1164 struct brw_gs_prog_data
1165 {
1166 struct brw_vue_prog_data base;
1167
1168 unsigned vertices_in;
1169
1170 /**
1171 * Size of an output vertex, measured in HWORDS (32 bytes).
1172 */
1173 unsigned output_vertex_size_hwords;
1174
1175 unsigned output_topology;
1176
1177 /**
1178 * Size of the control data (cut bits or StreamID bits), in hwords (32
1179 * bytes). 0 if there is no control data.
1180 */
1181 unsigned control_data_header_size_hwords;
1182
1183 /**
1184 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1185 * if the control data is StreamID bits, or
1186 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1187 * Ignored if control_data_header_size is 0.
1188 */
1189 unsigned control_data_format;
1190
1191 bool include_primitive_id;
1192
1193 /**
1194 * The number of vertices emitted, if constant - otherwise -1.
1195 */
1196 int static_vertex_count;
1197
1198 int invocations;
1199
1200 /**
1201 * Gen6: Provoking vertex convention for odd-numbered triangles
1202 * in tristrips.
1203 */
1204 GLuint pv_first:1;
1205
1206 /**
1207 * Gen6: Number of varyings that are output to transform feedback.
1208 */
1209 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1210
1211 /**
1212 * Gen6: Map from the index of a transform feedback binding table entry to the
1213 * gl_varying_slot that should be streamed out through that binding table
1214 * entry.
1215 */
1216 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1217
1218 /**
1219 * Gen6: Map from the index of a transform feedback binding table entry to the
1220 * swizzles that should be used when streaming out data through that
1221 * binding table entry.
1222 */
1223 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1224 };
1225
1226 struct brw_sf_prog_data {
1227 uint32_t urb_read_length;
1228 uint32_t total_grf;
1229
1230 /* Each vertex may have upto 12 attributes, 4 components each,
1231 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1232 * rows.
1233 *
1234 * Actually we use 4 for each, so call it 12 rows.
1235 */
1236 unsigned urb_entry_size;
1237 };
1238
1239 struct brw_clip_prog_data {
1240 uint32_t curb_read_length; /* user planes? */
1241 uint32_t clip_mode;
1242 uint32_t urb_read_length;
1243 uint32_t total_grf;
1244 };
1245
1246 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1247 union brw_any_prog_data {
1248 struct brw_stage_prog_data base;
1249 struct brw_vue_prog_data vue;
1250 struct brw_vs_prog_data vs;
1251 struct brw_tcs_prog_data tcs;
1252 struct brw_tes_prog_data tes;
1253 struct brw_gs_prog_data gs;
1254 struct brw_wm_prog_data wm;
1255 struct brw_cs_prog_data cs;
1256 };
1257
1258 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1259 static inline struct brw_##stage##_prog_data * \
1260 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1261 { \
1262 return (struct brw_##stage##_prog_data *) prog_data; \
1263 }
1264 DEFINE_PROG_DATA_DOWNCAST(vue)
1265 DEFINE_PROG_DATA_DOWNCAST(vs)
1266 DEFINE_PROG_DATA_DOWNCAST(tcs)
1267 DEFINE_PROG_DATA_DOWNCAST(tes)
1268 DEFINE_PROG_DATA_DOWNCAST(gs)
1269 DEFINE_PROG_DATA_DOWNCAST(wm)
1270 DEFINE_PROG_DATA_DOWNCAST(cs)
1271 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1272 DEFINE_PROG_DATA_DOWNCAST(clip)
1273 DEFINE_PROG_DATA_DOWNCAST(sf)
1274 #undef DEFINE_PROG_DATA_DOWNCAST
1275
1276 struct brw_compile_stats {
1277 uint32_t dispatch_width; /**< 0 for vec4 */
1278 uint32_t instructions;
1279 uint32_t loops;
1280 uint32_t cycles;
1281 uint32_t spills;
1282 uint32_t fills;
1283 };
1284
1285 /** @} */
1286
1287 struct brw_compiler *
1288 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1289
1290 /**
1291 * Returns a compiler configuration for use with disk shader cache
1292 *
1293 * This value only needs to change for settings that can cause different
1294 * program generation between two runs on the same hardware.
1295 *
1296 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1297 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1298 */
1299 uint64_t
1300 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1301
1302 unsigned
1303 brw_prog_data_size(gl_shader_stage stage);
1304
1305 unsigned
1306 brw_prog_key_size(gl_shader_stage stage);
1307
1308 void
1309 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1310
1311 /**
1312 * Compile a vertex shader.
1313 *
1314 * Returns the final assembly and the program's size.
1315 */
1316 const unsigned *
1317 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1318 void *mem_ctx,
1319 const struct brw_vs_prog_key *key,
1320 struct brw_vs_prog_data *prog_data,
1321 struct nir_shader *shader,
1322 int shader_time_index,
1323 struct brw_compile_stats *stats,
1324 char **error_str);
1325
1326 /**
1327 * Compile a tessellation control shader.
1328 *
1329 * Returns the final assembly and the program's size.
1330 */
1331 const unsigned *
1332 brw_compile_tcs(const struct brw_compiler *compiler,
1333 void *log_data,
1334 void *mem_ctx,
1335 const struct brw_tcs_prog_key *key,
1336 struct brw_tcs_prog_data *prog_data,
1337 struct nir_shader *nir,
1338 int shader_time_index,
1339 struct brw_compile_stats *stats,
1340 char **error_str);
1341
1342 /**
1343 * Compile a tessellation evaluation shader.
1344 *
1345 * Returns the final assembly and the program's size.
1346 */
1347 const unsigned *
1348 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1349 void *mem_ctx,
1350 const struct brw_tes_prog_key *key,
1351 const struct brw_vue_map *input_vue_map,
1352 struct brw_tes_prog_data *prog_data,
1353 struct nir_shader *shader,
1354 int shader_time_index,
1355 struct brw_compile_stats *stats,
1356 char **error_str);
1357
1358 /**
1359 * Compile a vertex shader.
1360 *
1361 * Returns the final assembly and the program's size.
1362 */
1363 const unsigned *
1364 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1365 void *mem_ctx,
1366 const struct brw_gs_prog_key *key,
1367 struct brw_gs_prog_data *prog_data,
1368 struct nir_shader *shader,
1369 struct gl_program *prog,
1370 int shader_time_index,
1371 struct brw_compile_stats *stats,
1372 char **error_str);
1373
1374 /**
1375 * Compile a strips and fans shader.
1376 *
1377 * This is a fixed-function shader determined entirely by the shader key and
1378 * a VUE map.
1379 *
1380 * Returns the final assembly and the program's size.
1381 */
1382 const unsigned *
1383 brw_compile_sf(const struct brw_compiler *compiler,
1384 void *mem_ctx,
1385 const struct brw_sf_prog_key *key,
1386 struct brw_sf_prog_data *prog_data,
1387 struct brw_vue_map *vue_map,
1388 unsigned *final_assembly_size);
1389
1390 /**
1391 * Compile a clipper shader.
1392 *
1393 * This is a fixed-function shader determined entirely by the shader key and
1394 * a VUE map.
1395 *
1396 * Returns the final assembly and the program's size.
1397 */
1398 const unsigned *
1399 brw_compile_clip(const struct brw_compiler *compiler,
1400 void *mem_ctx,
1401 const struct brw_clip_prog_key *key,
1402 struct brw_clip_prog_data *prog_data,
1403 struct brw_vue_map *vue_map,
1404 unsigned *final_assembly_size);
1405
1406 /**
1407 * Compile a fragment shader.
1408 *
1409 * Returns the final assembly and the program's size.
1410 */
1411 const unsigned *
1412 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1413 void *mem_ctx,
1414 const struct brw_wm_prog_key *key,
1415 struct brw_wm_prog_data *prog_data,
1416 struct nir_shader *shader,
1417 int shader_time_index8,
1418 int shader_time_index16,
1419 int shader_time_index32,
1420 bool allow_spilling,
1421 bool use_rep_send, struct brw_vue_map *vue_map,
1422 struct brw_compile_stats *stats, /**< Array of three stats */
1423 char **error_str);
1424
1425 /**
1426 * Compile a compute shader.
1427 *
1428 * Returns the final assembly and the program's size.
1429 */
1430 const unsigned *
1431 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1432 void *mem_ctx,
1433 const struct brw_cs_prog_key *key,
1434 struct brw_cs_prog_data *prog_data,
1435 const struct nir_shader *shader,
1436 int shader_time_index,
1437 struct brw_compile_stats *stats,
1438 char **error_str);
1439
1440 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1441 gl_shader_stage stage,
1442 const struct brw_base_prog_key *old_key,
1443 const struct brw_base_prog_key *key);
1444
1445 static inline uint32_t
1446 encode_slm_size(unsigned gen, uint32_t bytes)
1447 {
1448 uint32_t slm_size = 0;
1449
1450 /* Shared Local Memory is specified as powers of two, and encoded in
1451 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1452 *
1453 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1454 * -------------------------------------------------------------------
1455 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1456 * -------------------------------------------------------------------
1457 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1458 */
1459 assert(bytes <= 64 * 1024);
1460
1461 if (bytes > 0) {
1462 /* Shared Local Memory Size is specified as powers of two. */
1463 slm_size = util_next_power_of_two(bytes);
1464
1465 if (gen >= 9) {
1466 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1467 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1468 } else {
1469 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1470 slm_size = MAX2(slm_size, 4096) / 4096;
1471 }
1472 }
1473
1474 return slm_size;
1475 }
1476
1477 unsigned
1478 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
1479 unsigned threads);
1480
1481 /**
1482 * Return true if the given shader stage is dispatched contiguously by the
1483 * relevant fixed function starting from channel 0 of the SIMD thread, which
1484 * implies that the dispatch mask of a thread can be assumed to have the form
1485 * '2^n - 1' for some n.
1486 */
1487 static inline bool
1488 brw_stage_has_packed_dispatch(ASSERTED const struct gen_device_info *devinfo,
1489 gl_shader_stage stage,
1490 const struct brw_stage_prog_data *prog_data)
1491 {
1492 /* The code below makes assumptions about the hardware's thread dispatch
1493 * behavior that could be proven wrong in future generations -- Make sure
1494 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1495 * the NIR front-end before changing this assertion.
1496 */
1497 assert(devinfo->gen <= 12);
1498
1499 switch (stage) {
1500 case MESA_SHADER_FRAGMENT: {
1501 /* The PSD discards subspans coming in with no lit samples, which in the
1502 * per-pixel shading case implies that each subspan will either be fully
1503 * lit (due to the VMask being used to allow derivative computations),
1504 * or not dispatched at all. In per-sample dispatch mode individual
1505 * samples from the same subspan have a fixed relative location within
1506 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1507 * general and we should return false.
1508 */
1509 const struct brw_wm_prog_data *wm_prog_data =
1510 (const struct brw_wm_prog_data *)prog_data;
1511 return !wm_prog_data->persample_dispatch;
1512 }
1513 case MESA_SHADER_COMPUTE:
1514 /* Compute shaders will be spawned with either a fully enabled dispatch
1515 * mask or with whatever bottom/right execution mask was given to the
1516 * GPGPU walker command to be used along the workgroup edges -- In both
1517 * cases the dispatch mask is required to be tightly packed for our
1518 * invocation index calculations to work.
1519 */
1520 return true;
1521 default:
1522 /* Most remaining fixed functions are limited to use a packed dispatch
1523 * mask due to the hardware representation of the dispatch mask as a
1524 * single counter representing the number of enabled channels.
1525 */
1526 return true;
1527 }
1528 }
1529
1530 /**
1531 * Computes the first varying slot in the URB produced by the previous stage
1532 * that is used in the next stage. We do this by testing the varying slots in
1533 * the previous stage's vue map against the inputs read in the next stage.
1534 *
1535 * Note that:
1536 *
1537 * - Each URB offset contains two varying slots and we can only skip a
1538 * full offset if both slots are unused, so the value we return here is always
1539 * rounded down to the closest multiple of two.
1540 *
1541 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1542 * part of the vue header, so if these are read we can't skip anything.
1543 */
1544 static inline int
1545 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1546 const struct brw_vue_map *prev_stage_vue_map)
1547 {
1548 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1549 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1550 int varying = prev_stage_vue_map->slot_to_varying[i];
1551 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1552 return ROUND_DOWN_TO(i, 2);
1553 }
1554 }
1555
1556 return 0;
1557 }
1558
1559 #ifdef __cplusplus
1560 } /* extern "C" */
1561 #endif
1562
1563 #endif /* BRW_COMPILER_H */