332789d7809bf5ace7fcda575f67cf1833cd1b2a
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98 /**
99 * Apply workarounds for SIN and COS output range problems.
100 * This can negatively impact performance.
101 */
102 bool precise_trig;
103
104 /**
105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106 * Base Address? (If not, it's a normal GPU address.)
107 */
108 bool constant_buffer_0_is_relative;
109
110 /**
111 * Whether or not the driver supports pull constants. If not, the compiler
112 * will attempt to push everything.
113 */
114 bool supports_pull_constants;
115
116 /**
117 * Whether or not the driver supports NIR shader constants. This controls
118 * whether nir_opt_large_constants will be run.
119 */
120 bool supports_shader_constants;
121 };
122
123 /**
124 * We use a constant subgroup size of 32. It really only needs to be a
125 * maximum and, since we do SIMD32 for compute shaders in some cases, it
126 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
127 * subgroup size of 32 but will act as if 16 or 24 of those channels are
128 * disabled.
129 */
130 #define BRW_SUBGROUP_SIZE 32
131
132 /**
133 * Program key structures.
134 *
135 * When drawing, we look for the currently bound shaders in the program
136 * cache. This is essentially a hash table lookup, and these are the keys.
137 *
138 * Sometimes OpenGL features specified as state need to be simulated via
139 * shader code, due to a mismatch between the API and the hardware. This
140 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
141 * in the program key so it's considered when searching for a program. If
142 * we haven't seen a particular combination before, we have to recompile a
143 * new specialized version.
144 *
145 * Shader compilation should not look up state in gl_context directly, but
146 * instead use the copy in the program key. This guarantees recompiles will
147 * happen correctly.
148 *
149 * @{
150 */
151
152 enum PACKED gen6_gather_sampler_wa {
153 WA_SIGN = 1, /* whether we need to sign extend */
154 WA_8BIT = 2, /* if we have an 8bit format needing wa */
155 WA_16BIT = 4, /* if we have a 16bit format needing wa */
156 };
157
158 /**
159 * Sampler information needed by VS, WM, and GS program cache keys.
160 */
161 struct brw_sampler_prog_key_data {
162 /**
163 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
164 */
165 uint16_t swizzles[MAX_SAMPLERS];
166
167 uint32_t gl_clamp_mask[3];
168
169 /**
170 * For RG32F, gather4's channel select is broken.
171 */
172 uint32_t gather_channel_quirk_mask;
173
174 /**
175 * Whether this sampler uses the compressed multisample surface layout.
176 */
177 uint32_t compressed_multisample_layout_mask;
178
179 /**
180 * Whether this sampler is using 16x multisampling. If so fetching from
181 * this sampler will be handled with a different instruction, ld2dms_w
182 * instead of ld2dms.
183 */
184 uint32_t msaa_16;
185
186 /**
187 * For Sandybridge, which shader w/a we need for gather quirks.
188 */
189 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
190
191 /**
192 * Texture units that have a YUV image bound.
193 */
194 uint32_t y_u_v_image_mask;
195 uint32_t y_uv_image_mask;
196 uint32_t yx_xuxv_image_mask;
197 uint32_t xy_uxvx_image_mask;
198 uint32_t ayuv_image_mask;
199 uint32_t xyuv_image_mask;
200
201 /* Scale factor for each texture. */
202 float scale_factors[32];
203 };
204
205 /**
206 * The VF can't natively handle certain types of attributes, such as GL_FIXED
207 * or most 10_10_10_2 types. These flags enable various VS workarounds to
208 * "fix" attributes at the beginning of shaders.
209 */
210 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
211 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
212 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
213 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
214 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
215
216 /**
217 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
218 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
219 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
220 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
221 */
222 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
223 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
224
225 /** The program key for Vertex Shaders. */
226 struct brw_vs_prog_key {
227 unsigned program_string_id;
228
229 /**
230 * Per-attribute workaround flags
231 *
232 * For each attribute, a combination of BRW_ATTRIB_WA_*.
233 *
234 * For OpenGL, where we expose a maximum of 16 user input atttributes
235 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
236 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
237 * expose up to 28 user input vertex attributes that are mapped to slots
238 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
239 * enough to hold this many slots.
240 */
241 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
242
243 bool copy_edgeflag:1;
244
245 bool clamp_vertex_color:1;
246
247 /**
248 * How many user clipping planes are being uploaded to the vertex shader as
249 * push constants.
250 *
251 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
252 * clip distances.
253 */
254 unsigned nr_userclip_plane_consts:4;
255
256 /**
257 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
258 * are going to be replaced with point coordinates (as a consequence of a
259 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
260 * our SF thread requires exact matching between VS outputs and FS inputs,
261 * these texture coordinates will need to be unconditionally included in
262 * the VUE, even if they aren't written by the vertex shader.
263 */
264 uint8_t point_coord_replace;
265
266 struct brw_sampler_prog_key_data tex;
267 };
268
269 /** The program key for Tessellation Control Shaders. */
270 struct brw_tcs_prog_key
271 {
272 unsigned program_string_id;
273
274 GLenum tes_primitive_mode;
275
276 unsigned input_vertices;
277
278 /** A bitfield of per-patch outputs written. */
279 uint32_t patch_outputs_written;
280
281 /** A bitfield of per-vertex outputs written. */
282 uint64_t outputs_written;
283
284 bool quads_workaround;
285
286 struct brw_sampler_prog_key_data tex;
287 };
288
289 /** The program key for Tessellation Evaluation Shaders. */
290 struct brw_tes_prog_key
291 {
292 unsigned program_string_id;
293
294 /** A bitfield of per-patch inputs read. */
295 uint32_t patch_inputs_read;
296
297 /** A bitfield of per-vertex inputs read. */
298 uint64_t inputs_read;
299
300 struct brw_sampler_prog_key_data tex;
301 };
302
303 /** The program key for Geometry Shaders. */
304 struct brw_gs_prog_key
305 {
306 unsigned program_string_id;
307
308 struct brw_sampler_prog_key_data tex;
309 };
310
311 enum brw_sf_primitive {
312 BRW_SF_PRIM_POINTS = 0,
313 BRW_SF_PRIM_LINES = 1,
314 BRW_SF_PRIM_TRIANGLES = 2,
315 BRW_SF_PRIM_UNFILLED_TRIS = 3,
316 };
317
318 struct brw_sf_prog_key {
319 uint64_t attrs;
320 bool contains_flat_varying;
321 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
322 uint8_t point_sprite_coord_replace;
323 enum brw_sf_primitive primitive:2;
324 bool do_twoside_color:1;
325 bool frontface_ccw:1;
326 bool do_point_sprite:1;
327 bool do_point_coord:1;
328 bool sprite_origin_lower_left:1;
329 bool userclip_active:1;
330 };
331
332 enum brw_clip_mode {
333 BRW_CLIP_MODE_NORMAL = 0,
334 BRW_CLIP_MODE_CLIP_ALL = 1,
335 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
336 BRW_CLIP_MODE_REJECT_ALL = 3,
337 BRW_CLIP_MODE_ACCEPT_ALL = 4,
338 BRW_CLIP_MODE_KERNEL_CLIP = 5,
339 };
340
341 enum brw_clip_fill_mode {
342 BRW_CLIP_FILL_MODE_LINE = 0,
343 BRW_CLIP_FILL_MODE_POINT = 1,
344 BRW_CLIP_FILL_MODE_FILL = 2,
345 BRW_CLIP_FILL_MODE_CULL = 3,
346 };
347
348 /* Note that if unfilled primitives are being emitted, we have to fix
349 * up polygon offset and flatshading at this point:
350 */
351 struct brw_clip_prog_key {
352 uint64_t attrs;
353 bool contains_flat_varying;
354 bool contains_noperspective_varying;
355 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
356 unsigned primitive:4;
357 unsigned nr_userclip:4;
358 bool pv_first:1;
359 bool do_unfilled:1;
360 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
361 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
362 bool offset_cw:1;
363 bool offset_ccw:1;
364 bool copy_bfc_cw:1;
365 bool copy_bfc_ccw:1;
366 enum brw_clip_mode clip_mode:3;
367
368 float offset_factor;
369 float offset_units;
370 float offset_clamp;
371 };
372
373 /* A big lookup table is used to figure out which and how many
374 * additional regs will inserted before the main payload in the WM
375 * program execution. These mainly relate to depth and stencil
376 * processing and the early-depth-test optimization.
377 */
378 enum brw_wm_iz_bits {
379 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
380 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
381 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
382 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
383 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
384 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
385 BRW_WM_IZ_BIT_MAX = 0x40
386 };
387
388 enum brw_wm_aa_enable {
389 BRW_WM_AA_NEVER,
390 BRW_WM_AA_SOMETIMES,
391 BRW_WM_AA_ALWAYS
392 };
393
394 /** The program key for Fragment/Pixel Shaders. */
395 struct brw_wm_prog_key {
396 /* Some collection of BRW_WM_IZ_* */
397 uint8_t iz_lookup;
398 bool stats_wm:1;
399 bool flat_shade:1;
400 unsigned nr_color_regions:5;
401 bool alpha_test_replicate_alpha:1;
402 bool alpha_to_coverage:1;
403 bool clamp_fragment_color:1;
404 bool persample_interp:1;
405 bool multisample_fbo:1;
406 bool frag_coord_adds_sample_pos:1;
407 enum brw_wm_aa_enable line_aa:2;
408 bool high_quality_derivatives:1;
409 bool force_dual_color_blend:1;
410 bool coherent_fb_fetch:1;
411
412 uint8_t color_outputs_valid;
413 uint64_t input_slots_valid;
414 unsigned program_string_id;
415 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
416 float alpha_test_ref;
417
418 struct brw_sampler_prog_key_data tex;
419 };
420
421 struct brw_cs_prog_key {
422 uint32_t program_string_id;
423 struct brw_sampler_prog_key_data tex;
424 };
425
426 /* brw_any_prog_key is any of the keys that map to an API stage */
427 union brw_any_prog_key {
428 struct brw_vs_prog_key vs;
429 struct brw_tcs_prog_key tcs;
430 struct brw_tes_prog_key tes;
431 struct brw_gs_prog_key gs;
432 struct brw_wm_prog_key wm;
433 struct brw_cs_prog_key cs;
434 };
435
436 /*
437 * Image metadata structure as laid out in the shader parameter
438 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
439 * able to use them. That's okay because the padding and any unused
440 * entries [most of them except when we're doing untyped surface
441 * access] will be removed by the uniform packing pass.
442 */
443 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
444 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
445 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
446 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
447 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
448 #define BRW_IMAGE_PARAM_SIZE 20
449
450 struct brw_image_param {
451 /** Offset applied to the X and Y surface coordinates. */
452 uint32_t offset[2];
453
454 /** Surface X, Y and Z dimensions. */
455 uint32_t size[3];
456
457 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
458 * pixels, vertical slice stride in pixels.
459 */
460 uint32_t stride[4];
461
462 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
463 uint32_t tiling[3];
464
465 /**
466 * Right shift to apply for bit 6 address swizzling. Two different
467 * swizzles can be specified and will be applied one after the other. The
468 * resulting address will be:
469 *
470 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
471 * (addr >> swizzling[1])))
472 *
473 * Use \c 0xff if any of the swizzles is not required.
474 */
475 uint32_t swizzling[2];
476 };
477
478 /** Max number of render targets in a shader */
479 #define BRW_MAX_DRAW_BUFFERS 8
480
481 /**
482 * Max number of binding table entries used for stream output.
483 *
484 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
485 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
486 *
487 * On Gen6, the size of transform feedback data is limited not by the number
488 * of components but by the number of binding table entries we set aside. We
489 * use one binding table entry for a float, one entry for a vector, and one
490 * entry per matrix column. Since the only way we can communicate our
491 * transform feedback capabilities to the client is via
492 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
493 * worst case, in which all the varyings are floats, so we use up one binding
494 * table entry per component. Therefore we need to set aside at least 64
495 * binding table entries for use by transform feedback.
496 *
497 * Note: since we don't currently pack varyings, it is currently impossible
498 * for the client to actually use up all of these binding table entries--if
499 * all of their varyings were floats, they would run out of varying slots and
500 * fail to link. But that's a bug, so it seems prudent to go ahead and
501 * allocate the number of binding table entries we will need once the bug is
502 * fixed.
503 */
504 #define BRW_MAX_SOL_BINDINGS 64
505
506 /**
507 * Binding table index for the first gen6 SOL binding.
508 */
509 #define BRW_GEN6_SOL_BINDING_START 0
510
511 /**
512 * Stride in bytes between shader_time entries.
513 *
514 * We separate entries by a cacheline to reduce traffic between EUs writing to
515 * different entries.
516 */
517 #define BRW_SHADER_TIME_STRIDE 64
518
519 struct brw_ubo_range
520 {
521 uint16_t block;
522 uint8_t start;
523 uint8_t length;
524 };
525
526 /* We reserve the first 2^16 values for builtins */
527 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
528
529 enum brw_param_builtin {
530 BRW_PARAM_BUILTIN_ZERO,
531
532 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
538 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
539 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
540 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
547 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
548 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
554 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
555 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
556 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
557 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
558 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
559 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
560 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
561 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
562 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
563 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
564
565 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
566 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
567 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
568 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
569 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
570 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
571
572 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
573
574 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
575 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
576 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
577 BRW_PARAM_BUILTIN_SUBGROUP_ID,
578 };
579
580 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
581 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
582
583 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
584 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
585 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
586
587 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
588 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
589
590 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
591 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
592
593 struct brw_stage_prog_data {
594 struct {
595 /** size of our binding table. */
596 uint32_t size_bytes;
597
598 /** @{
599 * surface indices for the various groups of surfaces
600 */
601 uint32_t pull_constants_start;
602 uint32_t texture_start;
603 uint32_t gather_texture_start;
604 uint32_t ubo_start;
605 uint32_t ssbo_start;
606 uint32_t image_start;
607 uint32_t shader_time_start;
608 uint32_t plane_start[3];
609 /** @} */
610 } binding_table;
611
612 struct brw_ubo_range ubo_ranges[4];
613
614 GLuint nr_params; /**< number of float params/constants */
615 GLuint nr_pull_params;
616
617 unsigned curb_read_length;
618 unsigned total_scratch;
619 unsigned total_shared;
620
621 unsigned program_size;
622
623 /**
624 * Register where the thread expects to find input data from the URB
625 * (typically uniforms, followed by vertex or fragment attributes).
626 */
627 unsigned dispatch_grf_start_reg;
628
629 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
630
631 /* 32-bit identifiers for all push/pull parameters. These can be anything
632 * the driver wishes them to be; the core of the back-end compiler simply
633 * re-arranges them. The one restriction is that the bottom 2^16 values
634 * are reserved for builtins defined in the brw_param_builtin enum defined
635 * above.
636 */
637 uint32_t *param;
638 uint32_t *pull_param;
639 };
640
641 static inline uint32_t *
642 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
643 unsigned nr_new_params)
644 {
645 unsigned old_nr_params = prog_data->nr_params;
646 prog_data->nr_params += nr_new_params;
647 prog_data->param = reralloc(ralloc_parent(prog_data->param),
648 prog_data->param, uint32_t,
649 prog_data->nr_params);
650 return prog_data->param + old_nr_params;
651 }
652
653 enum brw_barycentric_mode {
654 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
655 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
656 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
657 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
658 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
659 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
660 BRW_BARYCENTRIC_MODE_COUNT = 6
661 };
662 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
663 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
664 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
665 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
666
667 enum brw_pixel_shader_computed_depth_mode {
668 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
669 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
670 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
671 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
672 };
673
674 /* Data about a particular attempt to compile a program. Note that
675 * there can be many of these, each in a different GL state
676 * corresponding to a different brw_wm_prog_key struct, with different
677 * compiled programs.
678 */
679 struct brw_wm_prog_data {
680 struct brw_stage_prog_data base;
681
682 GLuint num_varying_inputs;
683
684 uint8_t reg_blocks_8;
685 uint8_t reg_blocks_16;
686 uint8_t reg_blocks_32;
687
688 uint8_t dispatch_grf_start_reg_16;
689 uint8_t dispatch_grf_start_reg_32;
690 uint32_t prog_offset_16;
691 uint32_t prog_offset_32;
692
693 struct {
694 /** @{
695 * surface indices the WM-specific surfaces
696 */
697 uint32_t render_target_read_start;
698 /** @} */
699 } binding_table;
700
701 uint8_t computed_depth_mode;
702 bool computed_stencil;
703
704 bool early_fragment_tests;
705 bool post_depth_coverage;
706 bool inner_coverage;
707 bool dispatch_8;
708 bool dispatch_16;
709 bool dispatch_32;
710 bool dual_src_blend;
711 bool replicate_alpha;
712 bool persample_dispatch;
713 bool uses_pos_offset;
714 bool uses_omask;
715 bool uses_kill;
716 bool uses_src_depth;
717 bool uses_src_w;
718 bool uses_sample_mask;
719 bool has_render_target_reads;
720 bool has_side_effects;
721 bool pulls_bary;
722
723 bool contains_flat_varying;
724 bool contains_noperspective_varying;
725
726 /**
727 * Mask of which interpolation modes are required by the fragment shader.
728 * Used in hardware setup on gen6+.
729 */
730 uint32_t barycentric_interp_modes;
731
732 /**
733 * Mask of which FS inputs are marked flat by the shader source. This is
734 * needed for setting up 3DSTATE_SF/SBE.
735 */
736 uint32_t flat_inputs;
737
738 /* Mapping of VUE slots to interpolation modes.
739 * Used by the Gen4-5 clip/sf/wm stages.
740 */
741 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
742
743 /**
744 * Map from gl_varying_slot to the position within the FS setup data
745 * payload where the varying's attribute vertex deltas should be delivered.
746 * For varying slots that are not used by the FS, the value is -1.
747 */
748 int urb_setup[VARYING_SLOT_MAX];
749 };
750
751 /** Returns the SIMD width corresponding to a given KSP index
752 *
753 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
754 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
755 * kernel start pointer (KSP) indices that is based on what dispatch widths
756 * are enabled. This function provides, effectively, the reverse mapping.
757 *
758 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
759 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
760 */
761 static inline unsigned
762 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
763 bool simd16_enabled, bool simd32_enabled)
764 {
765 /* This function strictly ignores contiguous dispatch */
766 switch (ksp_idx) {
767 case 0:
768 return simd8_enabled ? 8 :
769 (simd16_enabled && !simd32_enabled) ? 16 :
770 (simd32_enabled && !simd16_enabled) ? 32 : 0;
771 case 1:
772 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
773 case 2:
774 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
775 default:
776 unreachable("Invalid KSP index");
777 }
778 }
779
780 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
781 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
782 (wm_state)._16PixelDispatchEnable, \
783 (wm_state)._32PixelDispatchEnable)
784
785 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
786 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
787
788 static inline uint32_t
789 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
790 unsigned simd_width)
791 {
792 switch (simd_width) {
793 case 8: return 0;
794 case 16: return prog_data->prog_offset_16;
795 case 32: return prog_data->prog_offset_32;
796 default: return 0;
797 }
798 }
799
800 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
801 _brw_wm_prog_data_prog_offset(prog_data, \
802 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
803
804 static inline uint8_t
805 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
806 unsigned simd_width)
807 {
808 switch (simd_width) {
809 case 8: return prog_data->base.dispatch_grf_start_reg;
810 case 16: return prog_data->dispatch_grf_start_reg_16;
811 case 32: return prog_data->dispatch_grf_start_reg_32;
812 default: return 0;
813 }
814 }
815
816 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
817 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
818 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
819
820 static inline uint8_t
821 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
822 unsigned simd_width)
823 {
824 switch (simd_width) {
825 case 8: return prog_data->reg_blocks_8;
826 case 16: return prog_data->reg_blocks_16;
827 case 32: return prog_data->reg_blocks_32;
828 default: return 0;
829 }
830 }
831
832 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
833 _brw_wm_prog_data_reg_blocks(prog_data, \
834 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
835
836 struct brw_push_const_block {
837 unsigned dwords; /* Dword count, not reg aligned */
838 unsigned regs;
839 unsigned size; /* Bytes, register aligned */
840 };
841
842 struct brw_cs_prog_data {
843 struct brw_stage_prog_data base;
844
845 unsigned local_size[3];
846 unsigned simd_size;
847 unsigned threads;
848 bool uses_barrier;
849 bool uses_num_work_groups;
850
851 struct {
852 struct brw_push_const_block cross_thread;
853 struct brw_push_const_block per_thread;
854 struct brw_push_const_block total;
855 } push;
856
857 struct {
858 /** @{
859 * surface indices the CS-specific surfaces
860 */
861 uint32_t work_groups_start;
862 /** @} */
863 } binding_table;
864 };
865
866 /**
867 * Enum representing the i965-specific vertex results that don't correspond
868 * exactly to any element of gl_varying_slot. The values of this enum are
869 * assigned such that they don't conflict with gl_varying_slot.
870 */
871 typedef enum
872 {
873 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
874 BRW_VARYING_SLOT_PAD,
875 /**
876 * Technically this is not a varying but just a placeholder that
877 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
878 * builtin variable to be compiled correctly. see compile_sf_prog() for
879 * more info.
880 */
881 BRW_VARYING_SLOT_PNTC,
882 BRW_VARYING_SLOT_COUNT
883 } brw_varying_slot;
884
885 /**
886 * We always program SF to start reading at an offset of 1 (2 varying slots)
887 * from the start of the vertex URB entry. This causes it to skip:
888 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
889 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
890 */
891 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
892
893 /**
894 * Bitmask indicating which fragment shader inputs represent varyings (and
895 * hence have to be delivered to the fragment shader by the SF/SBE stage).
896 */
897 #define BRW_FS_VARYING_INPUT_MASK \
898 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
899 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
900
901 /**
902 * Data structure recording the relationship between the gl_varying_slot enum
903 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
904 * single octaword within the VUE (128 bits).
905 *
906 * Note that each BRW register contains 256 bits (2 octawords), so when
907 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
908 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
909 * in a vertex shader), each register corresponds to a single VUE slot, since
910 * it contains data for two separate vertices.
911 */
912 struct brw_vue_map {
913 /**
914 * Bitfield representing all varying slots that are (a) stored in this VUE
915 * map, and (b) actually written by the shader. Does not include any of
916 * the additional varying slots defined in brw_varying_slot.
917 */
918 uint64_t slots_valid;
919
920 /**
921 * Is this VUE map for a separate shader pipeline?
922 *
923 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
924 * without the linker having a chance to dead code eliminate unused varyings.
925 *
926 * This means that we have to use a fixed slot layout, based on the output's
927 * location field, rather than assigning slots in a compact contiguous block.
928 */
929 bool separate;
930
931 /**
932 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
933 * not stored in a slot (because they are not written, or because
934 * additional processing is applied before storing them in the VUE), the
935 * value is -1.
936 */
937 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
938
939 /**
940 * Map from VUE slot to gl_varying_slot value. For slots that do not
941 * directly correspond to a gl_varying_slot, the value comes from
942 * brw_varying_slot.
943 *
944 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
945 */
946 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
947
948 /**
949 * Total number of VUE slots in use
950 */
951 int num_slots;
952
953 /**
954 * Number of per-patch VUE slots. Only valid for tessellation control
955 * shader outputs and tessellation evaluation shader inputs.
956 */
957 int num_per_patch_slots;
958
959 /**
960 * Number of per-vertex VUE slots. Only valid for tessellation control
961 * shader outputs and tessellation evaluation shader inputs.
962 */
963 int num_per_vertex_slots;
964 };
965
966 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
967
968 /**
969 * Convert a VUE slot number into a byte offset within the VUE.
970 */
971 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
972 {
973 return 16*slot;
974 }
975
976 /**
977 * Convert a vertex output (brw_varying_slot) into a byte offset within the
978 * VUE.
979 */
980 static inline
981 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
982 {
983 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
984 }
985
986 void brw_compute_vue_map(const struct gen_device_info *devinfo,
987 struct brw_vue_map *vue_map,
988 uint64_t slots_valid,
989 bool separate_shader);
990
991 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
992 uint64_t slots_valid,
993 uint32_t is_patch);
994
995 /* brw_interpolation_map.c */
996 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
997 struct nir_shader *nir,
998 struct brw_wm_prog_data *prog_data);
999
1000 enum shader_dispatch_mode {
1001 DISPATCH_MODE_4X1_SINGLE = 0,
1002 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1003 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1004 DISPATCH_MODE_SIMD8 = 3,
1005 };
1006
1007 /**
1008 * @defgroup Tessellator parameter enumerations.
1009 *
1010 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1011 * as part of the tessellation evaluation shader.
1012 *
1013 * @{
1014 */
1015 enum brw_tess_partitioning {
1016 BRW_TESS_PARTITIONING_INTEGER = 0,
1017 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1018 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1019 };
1020
1021 enum brw_tess_output_topology {
1022 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1023 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1024 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1025 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1026 };
1027
1028 enum brw_tess_domain {
1029 BRW_TESS_DOMAIN_QUAD = 0,
1030 BRW_TESS_DOMAIN_TRI = 1,
1031 BRW_TESS_DOMAIN_ISOLINE = 2,
1032 };
1033 /** @} */
1034
1035 struct brw_vue_prog_data {
1036 struct brw_stage_prog_data base;
1037 struct brw_vue_map vue_map;
1038
1039 /** Should the hardware deliver input VUE handles for URB pull loads? */
1040 bool include_vue_handles;
1041
1042 GLuint urb_read_length;
1043 GLuint total_grf;
1044
1045 uint32_t clip_distance_mask;
1046 uint32_t cull_distance_mask;
1047
1048 /* Used for calculating urb partitions. In the VS, this is the size of the
1049 * URB entry used for both input and output to the thread. In the GS, this
1050 * is the size of the URB entry used for output.
1051 */
1052 GLuint urb_entry_size;
1053
1054 enum shader_dispatch_mode dispatch_mode;
1055 };
1056
1057 struct brw_vs_prog_data {
1058 struct brw_vue_prog_data base;
1059
1060 GLbitfield64 inputs_read;
1061 GLbitfield64 double_inputs_read;
1062
1063 unsigned nr_attribute_slots;
1064
1065 bool uses_vertexid;
1066 bool uses_instanceid;
1067 bool uses_is_indexed_draw;
1068 bool uses_firstvertex;
1069 bool uses_baseinstance;
1070 bool uses_drawid;
1071 };
1072
1073 struct brw_tcs_prog_data
1074 {
1075 struct brw_vue_prog_data base;
1076
1077 /** Number vertices in output patch */
1078 int instances;
1079 };
1080
1081
1082 struct brw_tes_prog_data
1083 {
1084 struct brw_vue_prog_data base;
1085
1086 enum brw_tess_partitioning partitioning;
1087 enum brw_tess_output_topology output_topology;
1088 enum brw_tess_domain domain;
1089 };
1090
1091 struct brw_gs_prog_data
1092 {
1093 struct brw_vue_prog_data base;
1094
1095 unsigned vertices_in;
1096
1097 /**
1098 * Size of an output vertex, measured in HWORDS (32 bytes).
1099 */
1100 unsigned output_vertex_size_hwords;
1101
1102 unsigned output_topology;
1103
1104 /**
1105 * Size of the control data (cut bits or StreamID bits), in hwords (32
1106 * bytes). 0 if there is no control data.
1107 */
1108 unsigned control_data_header_size_hwords;
1109
1110 /**
1111 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1112 * if the control data is StreamID bits, or
1113 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1114 * Ignored if control_data_header_size is 0.
1115 */
1116 unsigned control_data_format;
1117
1118 bool include_primitive_id;
1119
1120 /**
1121 * The number of vertices emitted, if constant - otherwise -1.
1122 */
1123 int static_vertex_count;
1124
1125 int invocations;
1126
1127 /**
1128 * Gen6: Provoking vertex convention for odd-numbered triangles
1129 * in tristrips.
1130 */
1131 GLuint pv_first:1;
1132
1133 /**
1134 * Gen6: Number of varyings that are output to transform feedback.
1135 */
1136 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1137
1138 /**
1139 * Gen6: Map from the index of a transform feedback binding table entry to the
1140 * gl_varying_slot that should be streamed out through that binding table
1141 * entry.
1142 */
1143 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1144
1145 /**
1146 * Gen6: Map from the index of a transform feedback binding table entry to the
1147 * swizzles that should be used when streaming out data through that
1148 * binding table entry.
1149 */
1150 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1151 };
1152
1153 struct brw_sf_prog_data {
1154 uint32_t urb_read_length;
1155 uint32_t total_grf;
1156
1157 /* Each vertex may have upto 12 attributes, 4 components each,
1158 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1159 * rows.
1160 *
1161 * Actually we use 4 for each, so call it 12 rows.
1162 */
1163 unsigned urb_entry_size;
1164 };
1165
1166 struct brw_clip_prog_data {
1167 uint32_t curb_read_length; /* user planes? */
1168 uint32_t clip_mode;
1169 uint32_t urb_read_length;
1170 uint32_t total_grf;
1171 };
1172
1173 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1174 union brw_any_prog_data {
1175 struct brw_stage_prog_data base;
1176 struct brw_vue_prog_data vue;
1177 struct brw_vs_prog_data vs;
1178 struct brw_tcs_prog_data tcs;
1179 struct brw_tes_prog_data tes;
1180 struct brw_gs_prog_data gs;
1181 struct brw_wm_prog_data wm;
1182 struct brw_cs_prog_data cs;
1183 };
1184
1185 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1186 static inline struct brw_##stage##_prog_data * \
1187 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1188 { \
1189 return (struct brw_##stage##_prog_data *) prog_data; \
1190 }
1191 DEFINE_PROG_DATA_DOWNCAST(vue)
1192 DEFINE_PROG_DATA_DOWNCAST(vs)
1193 DEFINE_PROG_DATA_DOWNCAST(tcs)
1194 DEFINE_PROG_DATA_DOWNCAST(tes)
1195 DEFINE_PROG_DATA_DOWNCAST(gs)
1196 DEFINE_PROG_DATA_DOWNCAST(wm)
1197 DEFINE_PROG_DATA_DOWNCAST(cs)
1198 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1199 DEFINE_PROG_DATA_DOWNCAST(clip)
1200 DEFINE_PROG_DATA_DOWNCAST(sf)
1201 #undef DEFINE_PROG_DATA_DOWNCAST
1202
1203 /** @} */
1204
1205 struct brw_compiler *
1206 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1207
1208 /**
1209 * Returns a compiler configuration for use with disk shader cache
1210 *
1211 * This value only needs to change for settings that can cause different
1212 * program generation between two runs on the same hardware.
1213 *
1214 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1215 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1216 */
1217 uint64_t
1218 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1219
1220 unsigned
1221 brw_prog_data_size(gl_shader_stage stage);
1222
1223 unsigned
1224 brw_prog_key_size(gl_shader_stage stage);
1225
1226 /**
1227 * Compile a vertex shader.
1228 *
1229 * Returns the final assembly and the program's size.
1230 */
1231 const unsigned *
1232 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1233 void *mem_ctx,
1234 const struct brw_vs_prog_key *key,
1235 struct brw_vs_prog_data *prog_data,
1236 struct nir_shader *shader,
1237 int shader_time_index,
1238 char **error_str);
1239
1240 /**
1241 * Compile a tessellation control shader.
1242 *
1243 * Returns the final assembly and the program's size.
1244 */
1245 const unsigned *
1246 brw_compile_tcs(const struct brw_compiler *compiler,
1247 void *log_data,
1248 void *mem_ctx,
1249 const struct brw_tcs_prog_key *key,
1250 struct brw_tcs_prog_data *prog_data,
1251 struct nir_shader *nir,
1252 int shader_time_index,
1253 char **error_str);
1254
1255 /**
1256 * Compile a tessellation evaluation shader.
1257 *
1258 * Returns the final assembly and the program's size.
1259 */
1260 const unsigned *
1261 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1262 void *mem_ctx,
1263 const struct brw_tes_prog_key *key,
1264 const struct brw_vue_map *input_vue_map,
1265 struct brw_tes_prog_data *prog_data,
1266 struct nir_shader *shader,
1267 struct gl_program *prog,
1268 int shader_time_index,
1269 char **error_str);
1270
1271 /**
1272 * Compile a vertex shader.
1273 *
1274 * Returns the final assembly and the program's size.
1275 */
1276 const unsigned *
1277 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1278 void *mem_ctx,
1279 const struct brw_gs_prog_key *key,
1280 struct brw_gs_prog_data *prog_data,
1281 struct nir_shader *shader,
1282 struct gl_program *prog,
1283 int shader_time_index,
1284 char **error_str);
1285
1286 /**
1287 * Compile a strips and fans shader.
1288 *
1289 * This is a fixed-function shader determined entirely by the shader key and
1290 * a VUE map.
1291 *
1292 * Returns the final assembly and the program's size.
1293 */
1294 const unsigned *
1295 brw_compile_sf(const struct brw_compiler *compiler,
1296 void *mem_ctx,
1297 const struct brw_sf_prog_key *key,
1298 struct brw_sf_prog_data *prog_data,
1299 struct brw_vue_map *vue_map,
1300 unsigned *final_assembly_size);
1301
1302 /**
1303 * Compile a clipper shader.
1304 *
1305 * This is a fixed-function shader determined entirely by the shader key and
1306 * a VUE map.
1307 *
1308 * Returns the final assembly and the program's size.
1309 */
1310 const unsigned *
1311 brw_compile_clip(const struct brw_compiler *compiler,
1312 void *mem_ctx,
1313 const struct brw_clip_prog_key *key,
1314 struct brw_clip_prog_data *prog_data,
1315 struct brw_vue_map *vue_map,
1316 unsigned *final_assembly_size);
1317
1318 /**
1319 * Compile a fragment shader.
1320 *
1321 * Returns the final assembly and the program's size.
1322 */
1323 const unsigned *
1324 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1325 void *mem_ctx,
1326 const struct brw_wm_prog_key *key,
1327 struct brw_wm_prog_data *prog_data,
1328 struct nir_shader *shader,
1329 struct gl_program *prog,
1330 int shader_time_index8,
1331 int shader_time_index16,
1332 int shader_time_index32,
1333 bool allow_spilling,
1334 bool use_rep_send, struct brw_vue_map *vue_map,
1335 char **error_str);
1336
1337 /**
1338 * Compile a compute shader.
1339 *
1340 * Returns the final assembly and the program's size.
1341 */
1342 const unsigned *
1343 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1344 void *mem_ctx,
1345 const struct brw_cs_prog_key *key,
1346 struct brw_cs_prog_data *prog_data,
1347 const struct nir_shader *shader,
1348 int shader_time_index,
1349 char **error_str);
1350
1351 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1352 gl_shader_stage stage,
1353 const void *old_key, const void *key);
1354
1355 static inline uint32_t
1356 encode_slm_size(unsigned gen, uint32_t bytes)
1357 {
1358 uint32_t slm_size = 0;
1359
1360 /* Shared Local Memory is specified as powers of two, and encoded in
1361 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1362 *
1363 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1364 * -------------------------------------------------------------------
1365 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1366 * -------------------------------------------------------------------
1367 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1368 */
1369 assert(bytes <= 64 * 1024);
1370
1371 if (bytes > 0) {
1372 /* Shared Local Memory Size is specified as powers of two. */
1373 slm_size = util_next_power_of_two(bytes);
1374
1375 if (gen >= 9) {
1376 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1377 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1378 } else {
1379 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1380 slm_size = MAX2(slm_size, 4096) / 4096;
1381 }
1382 }
1383
1384 return slm_size;
1385 }
1386
1387 /**
1388 * Return true if the given shader stage is dispatched contiguously by the
1389 * relevant fixed function starting from channel 0 of the SIMD thread, which
1390 * implies that the dispatch mask of a thread can be assumed to have the form
1391 * '2^n - 1' for some n.
1392 */
1393 static inline bool
1394 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1395 gl_shader_stage stage,
1396 const struct brw_stage_prog_data *prog_data)
1397 {
1398 /* The code below makes assumptions about the hardware's thread dispatch
1399 * behavior that could be proven wrong in future generations -- Make sure
1400 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1401 * the NIR front-end before changing this assertion.
1402 */
1403 assert(devinfo->gen <= 11);
1404
1405 switch (stage) {
1406 case MESA_SHADER_FRAGMENT: {
1407 /* The PSD discards subspans coming in with no lit samples, which in the
1408 * per-pixel shading case implies that each subspan will either be fully
1409 * lit (due to the VMask being used to allow derivative computations),
1410 * or not dispatched at all. In per-sample dispatch mode individual
1411 * samples from the same subspan have a fixed relative location within
1412 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1413 * general and we should return false.
1414 */
1415 const struct brw_wm_prog_data *wm_prog_data =
1416 (const struct brw_wm_prog_data *)prog_data;
1417 return !wm_prog_data->persample_dispatch;
1418 }
1419 case MESA_SHADER_COMPUTE:
1420 /* Compute shaders will be spawned with either a fully enabled dispatch
1421 * mask or with whatever bottom/right execution mask was given to the
1422 * GPGPU walker command to be used along the workgroup edges -- In both
1423 * cases the dispatch mask is required to be tightly packed for our
1424 * invocation index calculations to work.
1425 */
1426 return true;
1427 default:
1428 /* Most remaining fixed functions are limited to use a packed dispatch
1429 * mask due to the hardware representation of the dispatch mask as a
1430 * single counter representing the number of enabled channels.
1431 */
1432 return true;
1433 }
1434 }
1435
1436 /**
1437 * Computes the first varying slot in the URB produced by the previous stage
1438 * that is used in the next stage. We do this by testing the varying slots in
1439 * the previous stage's vue map against the inputs read in the next stage.
1440 *
1441 * Note that:
1442 *
1443 * - Each URB offset contains two varying slots and we can only skip a
1444 * full offset if both slots are unused, so the value we return here is always
1445 * rounded down to the closest multiple of two.
1446 *
1447 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1448 * part of the vue header, so if these are read we can't skip anything.
1449 */
1450 static inline int
1451 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1452 const struct brw_vue_map *prev_stage_vue_map)
1453 {
1454 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1455 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1456 int varying = prev_stage_vue_map->slot_to_varying[i];
1457 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1458 return ROUND_DOWN_TO(i, 2);
1459 }
1460 }
1461
1462 return 0;
1463 }
1464
1465 #ifdef __cplusplus
1466 } /* extern "C" */
1467 #endif
1468
1469 #endif /* BRW_COMPILER_H */