8b62e67e2d7cfeda4ede4fa9ad73326e6cd71b09
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122 };
123
124 /**
125 * We use a constant subgroup size of 32. It really only needs to be a
126 * maximum and, since we do SIMD32 for compute shaders in some cases, it
127 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
128 * subgroup size of 32 but will act as if 16 or 24 of those channels are
129 * disabled.
130 */
131 #define BRW_SUBGROUP_SIZE 32
132
133 /**
134 * Program key structures.
135 *
136 * When drawing, we look for the currently bound shaders in the program
137 * cache. This is essentially a hash table lookup, and these are the keys.
138 *
139 * Sometimes OpenGL features specified as state need to be simulated via
140 * shader code, due to a mismatch between the API and the hardware. This
141 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
142 * in the program key so it's considered when searching for a program. If
143 * we haven't seen a particular combination before, we have to recompile a
144 * new specialized version.
145 *
146 * Shader compilation should not look up state in gl_context directly, but
147 * instead use the copy in the program key. This guarantees recompiles will
148 * happen correctly.
149 *
150 * @{
151 */
152
153 enum PACKED gen6_gather_sampler_wa {
154 WA_SIGN = 1, /* whether we need to sign extend */
155 WA_8BIT = 2, /* if we have an 8bit format needing wa */
156 WA_16BIT = 4, /* if we have a 16bit format needing wa */
157 };
158
159 /**
160 * Sampler information needed by VS, WM, and GS program cache keys.
161 */
162 struct brw_sampler_prog_key_data {
163 /**
164 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
165 */
166 uint16_t swizzles[MAX_SAMPLERS];
167
168 uint32_t gl_clamp_mask[3];
169
170 /**
171 * For RG32F, gather4's channel select is broken.
172 */
173 uint32_t gather_channel_quirk_mask;
174
175 /**
176 * Whether this sampler uses the compressed multisample surface layout.
177 */
178 uint32_t compressed_multisample_layout_mask;
179
180 /**
181 * Whether this sampler is using 16x multisampling. If so fetching from
182 * this sampler will be handled with a different instruction, ld2dms_w
183 * instead of ld2dms.
184 */
185 uint32_t msaa_16;
186
187 /**
188 * For Sandybridge, which shader w/a we need for gather quirks.
189 */
190 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
191
192 /**
193 * Texture units that have a YUV image bound.
194 */
195 uint32_t y_u_v_image_mask;
196 uint32_t y_uv_image_mask;
197 uint32_t yx_xuxv_image_mask;
198 uint32_t xy_uxvx_image_mask;
199 uint32_t ayuv_image_mask;
200 uint32_t xyuv_image_mask;
201
202 /* Scale factor for each texture. */
203 float scale_factors[32];
204 };
205
206 /** An enum representing what kind of input gl_SubgroupSize is. */
207 enum PACKED brw_subgroup_size_type
208 {
209 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Vulkan behavior */
210 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
211 BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
212 };
213
214 struct brw_base_prog_key {
215 unsigned program_string_id;
216
217 enum brw_subgroup_size_type subgroup_size_type;
218
219 struct brw_sampler_prog_key_data tex;
220 };
221
222 /**
223 * The VF can't natively handle certain types of attributes, such as GL_FIXED
224 * or most 10_10_10_2 types. These flags enable various VS workarounds to
225 * "fix" attributes at the beginning of shaders.
226 */
227 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
228 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
229 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
230 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
231 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
232
233 /**
234 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
235 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
236 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
237 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
238 */
239 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
240 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
241
242 /** The program key for Vertex Shaders. */
243 struct brw_vs_prog_key {
244 struct brw_base_prog_key base;
245
246 /**
247 * Per-attribute workaround flags
248 *
249 * For each attribute, a combination of BRW_ATTRIB_WA_*.
250 *
251 * For OpenGL, where we expose a maximum of 16 user input atttributes
252 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
253 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
254 * expose up to 28 user input vertex attributes that are mapped to slots
255 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
256 * enough to hold this many slots.
257 */
258 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
259
260 bool copy_edgeflag:1;
261
262 bool clamp_vertex_color:1;
263
264 /**
265 * How many user clipping planes are being uploaded to the vertex shader as
266 * push constants.
267 *
268 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
269 * clip distances.
270 */
271 unsigned nr_userclip_plane_consts:4;
272
273 /**
274 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
275 * are going to be replaced with point coordinates (as a consequence of a
276 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
277 * our SF thread requires exact matching between VS outputs and FS inputs,
278 * these texture coordinates will need to be unconditionally included in
279 * the VUE, even if they aren't written by the vertex shader.
280 */
281 uint8_t point_coord_replace;
282 };
283
284 /** The program key for Tessellation Control Shaders. */
285 struct brw_tcs_prog_key
286 {
287 struct brw_base_prog_key base;
288
289 GLenum tes_primitive_mode;
290
291 unsigned input_vertices;
292
293 /** A bitfield of per-patch outputs written. */
294 uint32_t patch_outputs_written;
295
296 /** A bitfield of per-vertex outputs written. */
297 uint64_t outputs_written;
298
299 bool quads_workaround;
300 };
301
302 /** The program key for Tessellation Evaluation Shaders. */
303 struct brw_tes_prog_key
304 {
305 struct brw_base_prog_key base;
306
307 /** A bitfield of per-patch inputs read. */
308 uint32_t patch_inputs_read;
309
310 /** A bitfield of per-vertex inputs read. */
311 uint64_t inputs_read;
312 };
313
314 /** The program key for Geometry Shaders. */
315 struct brw_gs_prog_key
316 {
317 struct brw_base_prog_key base;
318 };
319
320 enum brw_sf_primitive {
321 BRW_SF_PRIM_POINTS = 0,
322 BRW_SF_PRIM_LINES = 1,
323 BRW_SF_PRIM_TRIANGLES = 2,
324 BRW_SF_PRIM_UNFILLED_TRIS = 3,
325 };
326
327 struct brw_sf_prog_key {
328 uint64_t attrs;
329 bool contains_flat_varying;
330 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
331 uint8_t point_sprite_coord_replace;
332 enum brw_sf_primitive primitive:2;
333 bool do_twoside_color:1;
334 bool frontface_ccw:1;
335 bool do_point_sprite:1;
336 bool do_point_coord:1;
337 bool sprite_origin_lower_left:1;
338 bool userclip_active:1;
339 };
340
341 enum brw_clip_mode {
342 BRW_CLIP_MODE_NORMAL = 0,
343 BRW_CLIP_MODE_CLIP_ALL = 1,
344 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
345 BRW_CLIP_MODE_REJECT_ALL = 3,
346 BRW_CLIP_MODE_ACCEPT_ALL = 4,
347 BRW_CLIP_MODE_KERNEL_CLIP = 5,
348 };
349
350 enum brw_clip_fill_mode {
351 BRW_CLIP_FILL_MODE_LINE = 0,
352 BRW_CLIP_FILL_MODE_POINT = 1,
353 BRW_CLIP_FILL_MODE_FILL = 2,
354 BRW_CLIP_FILL_MODE_CULL = 3,
355 };
356
357 /* Note that if unfilled primitives are being emitted, we have to fix
358 * up polygon offset and flatshading at this point:
359 */
360 struct brw_clip_prog_key {
361 uint64_t attrs;
362 bool contains_flat_varying;
363 bool contains_noperspective_varying;
364 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
365 unsigned primitive:4;
366 unsigned nr_userclip:4;
367 bool pv_first:1;
368 bool do_unfilled:1;
369 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
370 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
371 bool offset_cw:1;
372 bool offset_ccw:1;
373 bool copy_bfc_cw:1;
374 bool copy_bfc_ccw:1;
375 enum brw_clip_mode clip_mode:3;
376
377 float offset_factor;
378 float offset_units;
379 float offset_clamp;
380 };
381
382 /* A big lookup table is used to figure out which and how many
383 * additional regs will inserted before the main payload in the WM
384 * program execution. These mainly relate to depth and stencil
385 * processing and the early-depth-test optimization.
386 */
387 enum brw_wm_iz_bits {
388 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
389 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
390 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
391 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
392 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
393 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
394 BRW_WM_IZ_BIT_MAX = 0x40
395 };
396
397 enum brw_wm_aa_enable {
398 BRW_WM_AA_NEVER,
399 BRW_WM_AA_SOMETIMES,
400 BRW_WM_AA_ALWAYS
401 };
402
403 /** The program key for Fragment/Pixel Shaders. */
404 struct brw_wm_prog_key {
405 struct brw_base_prog_key base;
406
407 /* Some collection of BRW_WM_IZ_* */
408 uint8_t iz_lookup;
409 bool stats_wm:1;
410 bool flat_shade:1;
411 unsigned nr_color_regions:5;
412 bool alpha_test_replicate_alpha:1;
413 bool alpha_to_coverage:1;
414 bool clamp_fragment_color:1;
415 bool persample_interp:1;
416 bool multisample_fbo:1;
417 bool frag_coord_adds_sample_pos:1;
418 enum brw_wm_aa_enable line_aa:2;
419 bool high_quality_derivatives:1;
420 bool force_dual_color_blend:1;
421 bool coherent_fb_fetch:1;
422
423 uint8_t color_outputs_valid;
424 uint64_t input_slots_valid;
425 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
426 float alpha_test_ref;
427 };
428
429 struct brw_cs_prog_key {
430 struct brw_base_prog_key base;
431 };
432
433 /* brw_any_prog_key is any of the keys that map to an API stage */
434 union brw_any_prog_key {
435 struct brw_base_prog_key base;
436 struct brw_vs_prog_key vs;
437 struct brw_tcs_prog_key tcs;
438 struct brw_tes_prog_key tes;
439 struct brw_gs_prog_key gs;
440 struct brw_wm_prog_key wm;
441 struct brw_cs_prog_key cs;
442 };
443
444 /*
445 * Image metadata structure as laid out in the shader parameter
446 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
447 * able to use them. That's okay because the padding and any unused
448 * entries [most of them except when we're doing untyped surface
449 * access] will be removed by the uniform packing pass.
450 */
451 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
452 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
453 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
454 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
455 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
456 #define BRW_IMAGE_PARAM_SIZE 20
457
458 struct brw_image_param {
459 /** Offset applied to the X and Y surface coordinates. */
460 uint32_t offset[2];
461
462 /** Surface X, Y and Z dimensions. */
463 uint32_t size[3];
464
465 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
466 * pixels, vertical slice stride in pixels.
467 */
468 uint32_t stride[4];
469
470 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
471 uint32_t tiling[3];
472
473 /**
474 * Right shift to apply for bit 6 address swizzling. Two different
475 * swizzles can be specified and will be applied one after the other. The
476 * resulting address will be:
477 *
478 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
479 * (addr >> swizzling[1])))
480 *
481 * Use \c 0xff if any of the swizzles is not required.
482 */
483 uint32_t swizzling[2];
484 };
485
486 /** Max number of render targets in a shader */
487 #define BRW_MAX_DRAW_BUFFERS 8
488
489 /**
490 * Max number of binding table entries used for stream output.
491 *
492 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
493 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
494 *
495 * On Gen6, the size of transform feedback data is limited not by the number
496 * of components but by the number of binding table entries we set aside. We
497 * use one binding table entry for a float, one entry for a vector, and one
498 * entry per matrix column. Since the only way we can communicate our
499 * transform feedback capabilities to the client is via
500 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
501 * worst case, in which all the varyings are floats, so we use up one binding
502 * table entry per component. Therefore we need to set aside at least 64
503 * binding table entries for use by transform feedback.
504 *
505 * Note: since we don't currently pack varyings, it is currently impossible
506 * for the client to actually use up all of these binding table entries--if
507 * all of their varyings were floats, they would run out of varying slots and
508 * fail to link. But that's a bug, so it seems prudent to go ahead and
509 * allocate the number of binding table entries we will need once the bug is
510 * fixed.
511 */
512 #define BRW_MAX_SOL_BINDINGS 64
513
514 /**
515 * Binding table index for the first gen6 SOL binding.
516 */
517 #define BRW_GEN6_SOL_BINDING_START 0
518
519 /**
520 * Stride in bytes between shader_time entries.
521 *
522 * We separate entries by a cacheline to reduce traffic between EUs writing to
523 * different entries.
524 */
525 #define BRW_SHADER_TIME_STRIDE 64
526
527 struct brw_ubo_range
528 {
529 uint16_t block;
530 uint8_t start;
531 uint8_t length;
532 };
533
534 /* We reserve the first 2^16 values for builtins */
535 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
536
537 enum brw_param_builtin {
538 BRW_PARAM_BUILTIN_ZERO,
539
540 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
547 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
548 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
554 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
555 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
556 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
557 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
558 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
559 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
560 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
561 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
562 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
563 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
564 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
565 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
566 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
567 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
568 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
569 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
570 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
571 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
572
573 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
574 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
575 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
576 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
577 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
578 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
579
580 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
581
582 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
583 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
584 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
585 BRW_PARAM_BUILTIN_SUBGROUP_ID,
586 };
587
588 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
589 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
590
591 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
592 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
593 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
594
595 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
596 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
597
598 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
599 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
600
601 struct brw_stage_prog_data {
602 struct {
603 /** size of our binding table. */
604 uint32_t size_bytes;
605
606 /** @{
607 * surface indices for the various groups of surfaces
608 */
609 uint32_t pull_constants_start;
610 uint32_t texture_start;
611 uint32_t gather_texture_start;
612 uint32_t ubo_start;
613 uint32_t ssbo_start;
614 uint32_t image_start;
615 uint32_t shader_time_start;
616 uint32_t plane_start[3];
617 /** @} */
618 } binding_table;
619
620 struct brw_ubo_range ubo_ranges[4];
621
622 GLuint nr_params; /**< number of float params/constants */
623 GLuint nr_pull_params;
624
625 unsigned curb_read_length;
626 unsigned total_scratch;
627 unsigned total_shared;
628
629 unsigned program_size;
630
631 /**
632 * Register where the thread expects to find input data from the URB
633 * (typically uniforms, followed by vertex or fragment attributes).
634 */
635 unsigned dispatch_grf_start_reg;
636
637 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
638
639 /* 32-bit identifiers for all push/pull parameters. These can be anything
640 * the driver wishes them to be; the core of the back-end compiler simply
641 * re-arranges them. The one restriction is that the bottom 2^16 values
642 * are reserved for builtins defined in the brw_param_builtin enum defined
643 * above.
644 */
645 uint32_t *param;
646 uint32_t *pull_param;
647 };
648
649 static inline uint32_t *
650 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
651 unsigned nr_new_params)
652 {
653 unsigned old_nr_params = prog_data->nr_params;
654 prog_data->nr_params += nr_new_params;
655 prog_data->param = reralloc(ralloc_parent(prog_data->param),
656 prog_data->param, uint32_t,
657 prog_data->nr_params);
658 return prog_data->param + old_nr_params;
659 }
660
661 enum brw_barycentric_mode {
662 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
663 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
664 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
665 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
666 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
667 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
668 BRW_BARYCENTRIC_MODE_COUNT = 6
669 };
670 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
671 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
672 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
673 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
674
675 enum brw_pixel_shader_computed_depth_mode {
676 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
677 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
678 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
679 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
680 };
681
682 /* Data about a particular attempt to compile a program. Note that
683 * there can be many of these, each in a different GL state
684 * corresponding to a different brw_wm_prog_key struct, with different
685 * compiled programs.
686 */
687 struct brw_wm_prog_data {
688 struct brw_stage_prog_data base;
689
690 GLuint num_varying_inputs;
691
692 uint8_t reg_blocks_8;
693 uint8_t reg_blocks_16;
694 uint8_t reg_blocks_32;
695
696 uint8_t dispatch_grf_start_reg_16;
697 uint8_t dispatch_grf_start_reg_32;
698 uint32_t prog_offset_16;
699 uint32_t prog_offset_32;
700
701 struct {
702 /** @{
703 * surface indices the WM-specific surfaces
704 */
705 uint32_t render_target_read_start;
706 /** @} */
707 } binding_table;
708
709 uint8_t computed_depth_mode;
710 bool computed_stencil;
711
712 bool early_fragment_tests;
713 bool post_depth_coverage;
714 bool inner_coverage;
715 bool dispatch_8;
716 bool dispatch_16;
717 bool dispatch_32;
718 bool dual_src_blend;
719 bool replicate_alpha;
720 bool persample_dispatch;
721 bool uses_pos_offset;
722 bool uses_omask;
723 bool uses_kill;
724 bool uses_src_depth;
725 bool uses_src_w;
726 bool uses_sample_mask;
727 bool has_render_target_reads;
728 bool has_side_effects;
729 bool pulls_bary;
730
731 bool contains_flat_varying;
732 bool contains_noperspective_varying;
733
734 /**
735 * Mask of which interpolation modes are required by the fragment shader.
736 * Used in hardware setup on gen6+.
737 */
738 uint32_t barycentric_interp_modes;
739
740 /**
741 * Mask of which FS inputs are marked flat by the shader source. This is
742 * needed for setting up 3DSTATE_SF/SBE.
743 */
744 uint32_t flat_inputs;
745
746 /* Mapping of VUE slots to interpolation modes.
747 * Used by the Gen4-5 clip/sf/wm stages.
748 */
749 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
750
751 /**
752 * Map from gl_varying_slot to the position within the FS setup data
753 * payload where the varying's attribute vertex deltas should be delivered.
754 * For varying slots that are not used by the FS, the value is -1.
755 */
756 int urb_setup[VARYING_SLOT_MAX];
757 };
758
759 /** Returns the SIMD width corresponding to a given KSP index
760 *
761 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
762 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
763 * kernel start pointer (KSP) indices that is based on what dispatch widths
764 * are enabled. This function provides, effectively, the reverse mapping.
765 *
766 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
767 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
768 */
769 static inline unsigned
770 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
771 bool simd16_enabled, bool simd32_enabled)
772 {
773 /* This function strictly ignores contiguous dispatch */
774 switch (ksp_idx) {
775 case 0:
776 return simd8_enabled ? 8 :
777 (simd16_enabled && !simd32_enabled) ? 16 :
778 (simd32_enabled && !simd16_enabled) ? 32 : 0;
779 case 1:
780 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
781 case 2:
782 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
783 default:
784 unreachable("Invalid KSP index");
785 }
786 }
787
788 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
789 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
790 (wm_state)._16PixelDispatchEnable, \
791 (wm_state)._32PixelDispatchEnable)
792
793 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
794 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
795
796 static inline uint32_t
797 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
798 unsigned simd_width)
799 {
800 switch (simd_width) {
801 case 8: return 0;
802 case 16: return prog_data->prog_offset_16;
803 case 32: return prog_data->prog_offset_32;
804 default: return 0;
805 }
806 }
807
808 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
809 _brw_wm_prog_data_prog_offset(prog_data, \
810 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
811
812 static inline uint8_t
813 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
814 unsigned simd_width)
815 {
816 switch (simd_width) {
817 case 8: return prog_data->base.dispatch_grf_start_reg;
818 case 16: return prog_data->dispatch_grf_start_reg_16;
819 case 32: return prog_data->dispatch_grf_start_reg_32;
820 default: return 0;
821 }
822 }
823
824 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
825 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
826 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
827
828 static inline uint8_t
829 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
830 unsigned simd_width)
831 {
832 switch (simd_width) {
833 case 8: return prog_data->reg_blocks_8;
834 case 16: return prog_data->reg_blocks_16;
835 case 32: return prog_data->reg_blocks_32;
836 default: return 0;
837 }
838 }
839
840 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
841 _brw_wm_prog_data_reg_blocks(prog_data, \
842 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
843
844 struct brw_push_const_block {
845 unsigned dwords; /* Dword count, not reg aligned */
846 unsigned regs;
847 unsigned size; /* Bytes, register aligned */
848 };
849
850 struct brw_cs_prog_data {
851 struct brw_stage_prog_data base;
852
853 unsigned local_size[3];
854 unsigned simd_size;
855 unsigned threads;
856 bool uses_barrier;
857 bool uses_num_work_groups;
858
859 struct {
860 struct brw_push_const_block cross_thread;
861 struct brw_push_const_block per_thread;
862 struct brw_push_const_block total;
863 } push;
864
865 struct {
866 /** @{
867 * surface indices the CS-specific surfaces
868 */
869 uint32_t work_groups_start;
870 /** @} */
871 } binding_table;
872 };
873
874 /**
875 * Enum representing the i965-specific vertex results that don't correspond
876 * exactly to any element of gl_varying_slot. The values of this enum are
877 * assigned such that they don't conflict with gl_varying_slot.
878 */
879 typedef enum
880 {
881 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
882 BRW_VARYING_SLOT_PAD,
883 /**
884 * Technically this is not a varying but just a placeholder that
885 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
886 * builtin variable to be compiled correctly. see compile_sf_prog() for
887 * more info.
888 */
889 BRW_VARYING_SLOT_PNTC,
890 BRW_VARYING_SLOT_COUNT
891 } brw_varying_slot;
892
893 /**
894 * We always program SF to start reading at an offset of 1 (2 varying slots)
895 * from the start of the vertex URB entry. This causes it to skip:
896 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
897 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
898 */
899 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
900
901 /**
902 * Bitmask indicating which fragment shader inputs represent varyings (and
903 * hence have to be delivered to the fragment shader by the SF/SBE stage).
904 */
905 #define BRW_FS_VARYING_INPUT_MASK \
906 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
907 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
908
909 /**
910 * Data structure recording the relationship between the gl_varying_slot enum
911 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
912 * single octaword within the VUE (128 bits).
913 *
914 * Note that each BRW register contains 256 bits (2 octawords), so when
915 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
916 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
917 * in a vertex shader), each register corresponds to a single VUE slot, since
918 * it contains data for two separate vertices.
919 */
920 struct brw_vue_map {
921 /**
922 * Bitfield representing all varying slots that are (a) stored in this VUE
923 * map, and (b) actually written by the shader. Does not include any of
924 * the additional varying slots defined in brw_varying_slot.
925 */
926 uint64_t slots_valid;
927
928 /**
929 * Is this VUE map for a separate shader pipeline?
930 *
931 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
932 * without the linker having a chance to dead code eliminate unused varyings.
933 *
934 * This means that we have to use a fixed slot layout, based on the output's
935 * location field, rather than assigning slots in a compact contiguous block.
936 */
937 bool separate;
938
939 /**
940 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
941 * not stored in a slot (because they are not written, or because
942 * additional processing is applied before storing them in the VUE), the
943 * value is -1.
944 */
945 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
946
947 /**
948 * Map from VUE slot to gl_varying_slot value. For slots that do not
949 * directly correspond to a gl_varying_slot, the value comes from
950 * brw_varying_slot.
951 *
952 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
953 */
954 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
955
956 /**
957 * Total number of VUE slots in use
958 */
959 int num_slots;
960
961 /**
962 * Number of per-patch VUE slots. Only valid for tessellation control
963 * shader outputs and tessellation evaluation shader inputs.
964 */
965 int num_per_patch_slots;
966
967 /**
968 * Number of per-vertex VUE slots. Only valid for tessellation control
969 * shader outputs and tessellation evaluation shader inputs.
970 */
971 int num_per_vertex_slots;
972 };
973
974 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
975
976 /**
977 * Convert a VUE slot number into a byte offset within the VUE.
978 */
979 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
980 {
981 return 16*slot;
982 }
983
984 /**
985 * Convert a vertex output (brw_varying_slot) into a byte offset within the
986 * VUE.
987 */
988 static inline
989 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
990 {
991 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
992 }
993
994 void brw_compute_vue_map(const struct gen_device_info *devinfo,
995 struct brw_vue_map *vue_map,
996 uint64_t slots_valid,
997 bool separate_shader);
998
999 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1000 uint64_t slots_valid,
1001 uint32_t is_patch);
1002
1003 /* brw_interpolation_map.c */
1004 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1005 struct nir_shader *nir,
1006 struct brw_wm_prog_data *prog_data);
1007
1008 enum shader_dispatch_mode {
1009 DISPATCH_MODE_4X1_SINGLE = 0,
1010 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1011 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1012 DISPATCH_MODE_SIMD8 = 3,
1013
1014 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1015 DISPATCH_MODE_TCS_8_PATCH = 2,
1016 };
1017
1018 /**
1019 * @defgroup Tessellator parameter enumerations.
1020 *
1021 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1022 * as part of the tessellation evaluation shader.
1023 *
1024 * @{
1025 */
1026 enum brw_tess_partitioning {
1027 BRW_TESS_PARTITIONING_INTEGER = 0,
1028 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1029 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1030 };
1031
1032 enum brw_tess_output_topology {
1033 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1034 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1035 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1036 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1037 };
1038
1039 enum brw_tess_domain {
1040 BRW_TESS_DOMAIN_QUAD = 0,
1041 BRW_TESS_DOMAIN_TRI = 1,
1042 BRW_TESS_DOMAIN_ISOLINE = 2,
1043 };
1044 /** @} */
1045
1046 struct brw_vue_prog_data {
1047 struct brw_stage_prog_data base;
1048 struct brw_vue_map vue_map;
1049
1050 /** Should the hardware deliver input VUE handles for URB pull loads? */
1051 bool include_vue_handles;
1052
1053 GLuint urb_read_length;
1054 GLuint total_grf;
1055
1056 uint32_t clip_distance_mask;
1057 uint32_t cull_distance_mask;
1058
1059 /* Used for calculating urb partitions. In the VS, this is the size of the
1060 * URB entry used for both input and output to the thread. In the GS, this
1061 * is the size of the URB entry used for output.
1062 */
1063 GLuint urb_entry_size;
1064
1065 enum shader_dispatch_mode dispatch_mode;
1066 };
1067
1068 struct brw_vs_prog_data {
1069 struct brw_vue_prog_data base;
1070
1071 GLbitfield64 inputs_read;
1072 GLbitfield64 double_inputs_read;
1073
1074 unsigned nr_attribute_slots;
1075
1076 bool uses_vertexid;
1077 bool uses_instanceid;
1078 bool uses_is_indexed_draw;
1079 bool uses_firstvertex;
1080 bool uses_baseinstance;
1081 bool uses_drawid;
1082 };
1083
1084 struct brw_tcs_prog_data
1085 {
1086 struct brw_vue_prog_data base;
1087
1088 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1089 bool include_primitive_id;
1090
1091 /** Number vertices in output patch */
1092 int instances;
1093 };
1094
1095
1096 struct brw_tes_prog_data
1097 {
1098 struct brw_vue_prog_data base;
1099
1100 enum brw_tess_partitioning partitioning;
1101 enum brw_tess_output_topology output_topology;
1102 enum brw_tess_domain domain;
1103 };
1104
1105 struct brw_gs_prog_data
1106 {
1107 struct brw_vue_prog_data base;
1108
1109 unsigned vertices_in;
1110
1111 /**
1112 * Size of an output vertex, measured in HWORDS (32 bytes).
1113 */
1114 unsigned output_vertex_size_hwords;
1115
1116 unsigned output_topology;
1117
1118 /**
1119 * Size of the control data (cut bits or StreamID bits), in hwords (32
1120 * bytes). 0 if there is no control data.
1121 */
1122 unsigned control_data_header_size_hwords;
1123
1124 /**
1125 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1126 * if the control data is StreamID bits, or
1127 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1128 * Ignored if control_data_header_size is 0.
1129 */
1130 unsigned control_data_format;
1131
1132 bool include_primitive_id;
1133
1134 /**
1135 * The number of vertices emitted, if constant - otherwise -1.
1136 */
1137 int static_vertex_count;
1138
1139 int invocations;
1140
1141 /**
1142 * Gen6: Provoking vertex convention for odd-numbered triangles
1143 * in tristrips.
1144 */
1145 GLuint pv_first:1;
1146
1147 /**
1148 * Gen6: Number of varyings that are output to transform feedback.
1149 */
1150 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1151
1152 /**
1153 * Gen6: Map from the index of a transform feedback binding table entry to the
1154 * gl_varying_slot that should be streamed out through that binding table
1155 * entry.
1156 */
1157 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1158
1159 /**
1160 * Gen6: Map from the index of a transform feedback binding table entry to the
1161 * swizzles that should be used when streaming out data through that
1162 * binding table entry.
1163 */
1164 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1165 };
1166
1167 struct brw_sf_prog_data {
1168 uint32_t urb_read_length;
1169 uint32_t total_grf;
1170
1171 /* Each vertex may have upto 12 attributes, 4 components each,
1172 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1173 * rows.
1174 *
1175 * Actually we use 4 for each, so call it 12 rows.
1176 */
1177 unsigned urb_entry_size;
1178 };
1179
1180 struct brw_clip_prog_data {
1181 uint32_t curb_read_length; /* user planes? */
1182 uint32_t clip_mode;
1183 uint32_t urb_read_length;
1184 uint32_t total_grf;
1185 };
1186
1187 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1188 union brw_any_prog_data {
1189 struct brw_stage_prog_data base;
1190 struct brw_vue_prog_data vue;
1191 struct brw_vs_prog_data vs;
1192 struct brw_tcs_prog_data tcs;
1193 struct brw_tes_prog_data tes;
1194 struct brw_gs_prog_data gs;
1195 struct brw_wm_prog_data wm;
1196 struct brw_cs_prog_data cs;
1197 };
1198
1199 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1200 static inline struct brw_##stage##_prog_data * \
1201 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1202 { \
1203 return (struct brw_##stage##_prog_data *) prog_data; \
1204 }
1205 DEFINE_PROG_DATA_DOWNCAST(vue)
1206 DEFINE_PROG_DATA_DOWNCAST(vs)
1207 DEFINE_PROG_DATA_DOWNCAST(tcs)
1208 DEFINE_PROG_DATA_DOWNCAST(tes)
1209 DEFINE_PROG_DATA_DOWNCAST(gs)
1210 DEFINE_PROG_DATA_DOWNCAST(wm)
1211 DEFINE_PROG_DATA_DOWNCAST(cs)
1212 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1213 DEFINE_PROG_DATA_DOWNCAST(clip)
1214 DEFINE_PROG_DATA_DOWNCAST(sf)
1215 #undef DEFINE_PROG_DATA_DOWNCAST
1216
1217 /** @} */
1218
1219 struct brw_compiler *
1220 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1221
1222 /**
1223 * Returns a compiler configuration for use with disk shader cache
1224 *
1225 * This value only needs to change for settings that can cause different
1226 * program generation between two runs on the same hardware.
1227 *
1228 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1229 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1230 */
1231 uint64_t
1232 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1233
1234 unsigned
1235 brw_prog_data_size(gl_shader_stage stage);
1236
1237 unsigned
1238 brw_prog_key_size(gl_shader_stage stage);
1239
1240 void
1241 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1242
1243 /**
1244 * Compile a vertex shader.
1245 *
1246 * Returns the final assembly and the program's size.
1247 */
1248 const unsigned *
1249 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1250 void *mem_ctx,
1251 const struct brw_vs_prog_key *key,
1252 struct brw_vs_prog_data *prog_data,
1253 struct nir_shader *shader,
1254 int shader_time_index,
1255 char **error_str);
1256
1257 /**
1258 * Compile a tessellation control shader.
1259 *
1260 * Returns the final assembly and the program's size.
1261 */
1262 const unsigned *
1263 brw_compile_tcs(const struct brw_compiler *compiler,
1264 void *log_data,
1265 void *mem_ctx,
1266 const struct brw_tcs_prog_key *key,
1267 struct brw_tcs_prog_data *prog_data,
1268 struct nir_shader *nir,
1269 int shader_time_index,
1270 char **error_str);
1271
1272 /**
1273 * Compile a tessellation evaluation shader.
1274 *
1275 * Returns the final assembly and the program's size.
1276 */
1277 const unsigned *
1278 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1279 void *mem_ctx,
1280 const struct brw_tes_prog_key *key,
1281 const struct brw_vue_map *input_vue_map,
1282 struct brw_tes_prog_data *prog_data,
1283 struct nir_shader *shader,
1284 struct gl_program *prog,
1285 int shader_time_index,
1286 char **error_str);
1287
1288 /**
1289 * Compile a vertex shader.
1290 *
1291 * Returns the final assembly and the program's size.
1292 */
1293 const unsigned *
1294 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1295 void *mem_ctx,
1296 const struct brw_gs_prog_key *key,
1297 struct brw_gs_prog_data *prog_data,
1298 struct nir_shader *shader,
1299 struct gl_program *prog,
1300 int shader_time_index,
1301 char **error_str);
1302
1303 /**
1304 * Compile a strips and fans shader.
1305 *
1306 * This is a fixed-function shader determined entirely by the shader key and
1307 * a VUE map.
1308 *
1309 * Returns the final assembly and the program's size.
1310 */
1311 const unsigned *
1312 brw_compile_sf(const struct brw_compiler *compiler,
1313 void *mem_ctx,
1314 const struct brw_sf_prog_key *key,
1315 struct brw_sf_prog_data *prog_data,
1316 struct brw_vue_map *vue_map,
1317 unsigned *final_assembly_size);
1318
1319 /**
1320 * Compile a clipper shader.
1321 *
1322 * This is a fixed-function shader determined entirely by the shader key and
1323 * a VUE map.
1324 *
1325 * Returns the final assembly and the program's size.
1326 */
1327 const unsigned *
1328 brw_compile_clip(const struct brw_compiler *compiler,
1329 void *mem_ctx,
1330 const struct brw_clip_prog_key *key,
1331 struct brw_clip_prog_data *prog_data,
1332 struct brw_vue_map *vue_map,
1333 unsigned *final_assembly_size);
1334
1335 /**
1336 * Compile a fragment shader.
1337 *
1338 * Returns the final assembly and the program's size.
1339 */
1340 const unsigned *
1341 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1342 void *mem_ctx,
1343 const struct brw_wm_prog_key *key,
1344 struct brw_wm_prog_data *prog_data,
1345 struct nir_shader *shader,
1346 struct gl_program *prog,
1347 int shader_time_index8,
1348 int shader_time_index16,
1349 int shader_time_index32,
1350 bool allow_spilling,
1351 bool use_rep_send, struct brw_vue_map *vue_map,
1352 char **error_str);
1353
1354 /**
1355 * Compile a compute shader.
1356 *
1357 * Returns the final assembly and the program's size.
1358 */
1359 const unsigned *
1360 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1361 void *mem_ctx,
1362 const struct brw_cs_prog_key *key,
1363 struct brw_cs_prog_data *prog_data,
1364 const struct nir_shader *shader,
1365 int shader_time_index,
1366 char **error_str);
1367
1368 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1369 gl_shader_stage stage,
1370 const struct brw_base_prog_key *old_key,
1371 const struct brw_base_prog_key *key);
1372
1373 static inline uint32_t
1374 encode_slm_size(unsigned gen, uint32_t bytes)
1375 {
1376 uint32_t slm_size = 0;
1377
1378 /* Shared Local Memory is specified as powers of two, and encoded in
1379 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1380 *
1381 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1382 * -------------------------------------------------------------------
1383 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1384 * -------------------------------------------------------------------
1385 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1386 */
1387 assert(bytes <= 64 * 1024);
1388
1389 if (bytes > 0) {
1390 /* Shared Local Memory Size is specified as powers of two. */
1391 slm_size = util_next_power_of_two(bytes);
1392
1393 if (gen >= 9) {
1394 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1395 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1396 } else {
1397 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1398 slm_size = MAX2(slm_size, 4096) / 4096;
1399 }
1400 }
1401
1402 return slm_size;
1403 }
1404
1405 /**
1406 * Return true if the given shader stage is dispatched contiguously by the
1407 * relevant fixed function starting from channel 0 of the SIMD thread, which
1408 * implies that the dispatch mask of a thread can be assumed to have the form
1409 * '2^n - 1' for some n.
1410 */
1411 static inline bool
1412 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1413 gl_shader_stage stage,
1414 const struct brw_stage_prog_data *prog_data)
1415 {
1416 /* The code below makes assumptions about the hardware's thread dispatch
1417 * behavior that could be proven wrong in future generations -- Make sure
1418 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1419 * the NIR front-end before changing this assertion.
1420 */
1421 assert(devinfo->gen <= 11);
1422
1423 switch (stage) {
1424 case MESA_SHADER_FRAGMENT: {
1425 /* The PSD discards subspans coming in with no lit samples, which in the
1426 * per-pixel shading case implies that each subspan will either be fully
1427 * lit (due to the VMask being used to allow derivative computations),
1428 * or not dispatched at all. In per-sample dispatch mode individual
1429 * samples from the same subspan have a fixed relative location within
1430 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1431 * general and we should return false.
1432 */
1433 const struct brw_wm_prog_data *wm_prog_data =
1434 (const struct brw_wm_prog_data *)prog_data;
1435 return !wm_prog_data->persample_dispatch;
1436 }
1437 case MESA_SHADER_COMPUTE:
1438 /* Compute shaders will be spawned with either a fully enabled dispatch
1439 * mask or with whatever bottom/right execution mask was given to the
1440 * GPGPU walker command to be used along the workgroup edges -- In both
1441 * cases the dispatch mask is required to be tightly packed for our
1442 * invocation index calculations to work.
1443 */
1444 return true;
1445 default:
1446 /* Most remaining fixed functions are limited to use a packed dispatch
1447 * mask due to the hardware representation of the dispatch mask as a
1448 * single counter representing the number of enabled channels.
1449 */
1450 return true;
1451 }
1452 }
1453
1454 /**
1455 * Computes the first varying slot in the URB produced by the previous stage
1456 * that is used in the next stage. We do this by testing the varying slots in
1457 * the previous stage's vue map against the inputs read in the next stage.
1458 *
1459 * Note that:
1460 *
1461 * - Each URB offset contains two varying slots and we can only skip a
1462 * full offset if both slots are unused, so the value we return here is always
1463 * rounded down to the closest multiple of two.
1464 *
1465 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1466 * part of the vue header, so if these are read we can't skip anything.
1467 */
1468 static inline int
1469 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1470 const struct brw_vue_map *prev_stage_vue_map)
1471 {
1472 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1473 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1474 int varying = prev_stage_vue_map->slot_to_varying[i];
1475 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1476 return ROUND_DOWN_TO(i, 2);
1477 }
1478 }
1479
1480 return 0;
1481 }
1482
1483 #ifdef __cplusplus
1484 } /* extern "C" */
1485 #endif
1486
1487 #endif /* BRW_COMPILER_H */