51dce9efbddc4eab0a763d0fd3c495cfd1fded80
[mesa.git] / src / intel / compiler / brw_eu_compact.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_eu_compact.c
25 *
26 * Instruction compaction is a feature of G45 and newer hardware that allows
27 * for a smaller instruction encoding.
28 *
29 * The instruction cache is on the order of 32KB, and many programs generate
30 * far more instructions than that. The instruction cache is built to barely
31 * keep up with instruction dispatch ability in cache hit cases -- L1
32 * instruction cache misses that still hit in the next level could limit
33 * throughput by around 50%.
34 *
35 * The idea of instruction compaction is that most instructions use a tiny
36 * subset of the GPU functionality, so we can encode what would be a 16 byte
37 * instruction in 8 bytes using some lookup tables for various fields.
38 *
39 *
40 * Instruction compaction capabilities vary subtly by generation.
41 *
42 * G45's support for instruction compaction is very limited. Jump counts on
43 * this generation are in units of 16-byte uncompacted instructions. As such,
44 * all jump targets must be 16-byte aligned. Also, all instructions must be
45 * naturally aligned, i.e. uncompacted instructions must be 16-byte aligned.
46 * A G45-only instruction, NENOP, must be used to provide padding to align
47 * uncompacted instructions.
48 *
49 * Gen5 removes these restrictions and changes jump counts to be in units of
50 * 8-byte compacted instructions, allowing jump targets to be only 8-byte
51 * aligned. Uncompacted instructions can also be placed on 8-byte boundaries.
52 *
53 * Gen6 adds the ability to compact instructions with a limited range of
54 * immediate values. Compactable immediates have 12 unrestricted bits, and a
55 * 13th bit that's replicated through the high 20 bits, to create the 32-bit
56 * value of DW3 in the uncompacted instruction word.
57 *
58 * On Gen7 we can compact some control flow instructions with a small positive
59 * immediate in the low bits of DW3, like ENDIF with the JIP field. Other
60 * control flow instructions with UIP cannot be compacted, because of the
61 * replicated 13th bit. No control flow instructions can be compacted on Gen6
62 * since the jump count field is not in DW3.
63 *
64 * break JIP/UIP
65 * cont JIP/UIP
66 * halt JIP/UIP
67 * if JIP/UIP
68 * else JIP (plus UIP on BDW+)
69 * endif JIP
70 * while JIP (must be negative)
71 *
72 * Gen 8 adds support for compacting 3-src instructions.
73 */
74
75 #include "brw_eu.h"
76 #include "brw_shader.h"
77 #include "brw_disasm_info.h"
78 #include "dev/gen_debug.h"
79
80 static const uint32_t g45_control_index_table[32] = {
81 0b00000000000000000,
82 0b01000000000000000,
83 0b00110000000000000,
84 0b00000000000000010,
85 0b00100000000000000,
86 0b00010000000000000,
87 0b01000000000100000,
88 0b01000000100000000,
89 0b01010000000100000,
90 0b00000000100000010,
91 0b11000000000000000,
92 0b00001000100000010,
93 0b01001000100000000,
94 0b00000000100000000,
95 0b11000000000100000,
96 0b00001000100000000,
97 0b10110000000000000,
98 0b11010000000100000,
99 0b00110000100000000,
100 0b00100000100000000,
101 0b01000000000001000,
102 0b01000000000000100,
103 0b00111100000000000,
104 0b00101011000000000,
105 0b00110000000010000,
106 0b00010000100000000,
107 0b01000000000100100,
108 0b01000000000101000,
109 0b00110000000000110,
110 0b00000000000001010,
111 0b01010000000101000,
112 0b01010000000100100,
113 };
114
115 static const uint32_t g45_datatype_table[32] = {
116 0b001000000000100001,
117 0b001011010110101101,
118 0b001000001000110001,
119 0b001111011110111101,
120 0b001011010110101100,
121 0b001000000110101101,
122 0b001000000000100000,
123 0b010100010110110001,
124 0b001100011000101101,
125 0b001000000000100010,
126 0b001000001000110110,
127 0b010000001000110001,
128 0b001000001000110010,
129 0b011000001000110010,
130 0b001111011110111100,
131 0b001000000100101000,
132 0b010100011000110001,
133 0b001010010100101001,
134 0b001000001000101001,
135 0b010000001000110110,
136 0b101000001000110001,
137 0b001011011000101101,
138 0b001000000100001001,
139 0b001011011000101100,
140 0b110100011000110001,
141 0b001000001110111101,
142 0b110000001000110001,
143 0b011000000100101010,
144 0b101000001000101001,
145 0b001011010110001100,
146 0b001000000110100001,
147 0b001010010100001000,
148 };
149
150 static const uint16_t g45_subreg_table[32] = {
151 0b000000000000000,
152 0b000000010000000,
153 0b000001000000000,
154 0b000100000000000,
155 0b000000000100000,
156 0b100000000000000,
157 0b000000000010000,
158 0b001100000000000,
159 0b001010000000000,
160 0b000000100000000,
161 0b001000000000000,
162 0b000000000001000,
163 0b000000001000000,
164 0b000000000000001,
165 0b000010000000000,
166 0b000000010100000,
167 0b000000000000111,
168 0b000001000100000,
169 0b011000000000000,
170 0b000000110000000,
171 0b000000000000010,
172 0b000000000000100,
173 0b000000001100000,
174 0b000100000000010,
175 0b001110011000110,
176 0b001110100001000,
177 0b000110011000110,
178 0b000001000011000,
179 0b000110010000100,
180 0b001100000000110,
181 0b000000010000110,
182 0b000001000110000,
183 };
184
185 static const uint16_t g45_src_index_table[32] = {
186 0b000000000000,
187 0b010001101000,
188 0b010110001000,
189 0b011010010000,
190 0b001101001000,
191 0b010110001010,
192 0b010101110000,
193 0b011001111000,
194 0b001000101000,
195 0b000000101000,
196 0b010001010000,
197 0b111101101100,
198 0b010110001100,
199 0b010001101100,
200 0b011010010100,
201 0b010001001100,
202 0b001100101000,
203 0b000000000010,
204 0b111101001100,
205 0b011001101000,
206 0b010101001000,
207 0b000000000100,
208 0b000000101100,
209 0b010001101010,
210 0b000000111000,
211 0b010101011000,
212 0b000100100000,
213 0b010110000000,
214 0b010000000100,
215 0b010000111000,
216 0b000101100000,
217 0b111101110100,
218 };
219
220 static const uint32_t gen6_control_index_table[32] = {
221 0b00000000000000000,
222 0b01000000000000000,
223 0b00110000000000000,
224 0b00000000100000000,
225 0b00010000000000000,
226 0b00001000100000000,
227 0b00000000100000010,
228 0b00000000000000010,
229 0b01000000100000000,
230 0b01010000000000000,
231 0b10110000000000000,
232 0b00100000000000000,
233 0b11010000000000000,
234 0b11000000000000000,
235 0b01001000100000000,
236 0b01000000000001000,
237 0b01000000000000100,
238 0b00000000000001000,
239 0b00000000000000100,
240 0b00111000100000000,
241 0b00001000100000010,
242 0b00110000100000000,
243 0b00110000000000001,
244 0b00100000000000001,
245 0b00110000000000010,
246 0b00110000000000101,
247 0b00110000000001001,
248 0b00110000000010000,
249 0b00110000000000011,
250 0b00110000000000100,
251 0b00110000100001000,
252 0b00100000000001001,
253 };
254
255 static const uint32_t gen6_datatype_table[32] = {
256 0b001001110000000000,
257 0b001000110000100000,
258 0b001001110000000001,
259 0b001000000001100000,
260 0b001010110100101001,
261 0b001000000110101101,
262 0b001100011000101100,
263 0b001011110110101101,
264 0b001000000111101100,
265 0b001000000001100001,
266 0b001000110010100101,
267 0b001000000001000001,
268 0b001000001000110001,
269 0b001000001000101001,
270 0b001000000000100000,
271 0b001000001000110010,
272 0b001010010100101001,
273 0b001011010010100101,
274 0b001000000110100101,
275 0b001100011000101001,
276 0b001011011000101100,
277 0b001011010110100101,
278 0b001011110110100101,
279 0b001111011110111101,
280 0b001111011110111100,
281 0b001111011110111101,
282 0b001111011110011101,
283 0b001111011110111110,
284 0b001000000000100001,
285 0b001000000000100010,
286 0b001001111111011101,
287 0b001000001110111110,
288 };
289
290 static const uint16_t gen6_subreg_table[32] = {
291 0b000000000000000,
292 0b000000000000100,
293 0b000000110000000,
294 0b111000000000000,
295 0b011110000001000,
296 0b000010000000000,
297 0b000000000010000,
298 0b000110000001100,
299 0b001000000000000,
300 0b000001000000000,
301 0b000001010010100,
302 0b000000001010110,
303 0b010000000000000,
304 0b110000000000000,
305 0b000100000000000,
306 0b000000010000000,
307 0b000000000001000,
308 0b100000000000000,
309 0b000001010000000,
310 0b001010000000000,
311 0b001100000000000,
312 0b000000001010100,
313 0b101101010010100,
314 0b010100000000000,
315 0b000000010001111,
316 0b011000000000000,
317 0b111110000000000,
318 0b101000000000000,
319 0b000000000001111,
320 0b000100010001111,
321 0b001000010001111,
322 0b000110000000000,
323 };
324
325 static const uint16_t gen6_src_index_table[32] = {
326 0b000000000000,
327 0b010110001000,
328 0b010001101000,
329 0b001000101000,
330 0b011010010000,
331 0b000100100000,
332 0b010001101100,
333 0b010101110000,
334 0b011001111000,
335 0b001100101000,
336 0b010110001100,
337 0b001000100000,
338 0b010110001010,
339 0b000000000010,
340 0b010101010000,
341 0b010101101000,
342 0b111101001100,
343 0b111100101100,
344 0b011001110000,
345 0b010110001001,
346 0b010101011000,
347 0b001101001000,
348 0b010000101100,
349 0b010000000000,
350 0b001101110000,
351 0b001100010000,
352 0b001100000000,
353 0b010001101010,
354 0b001101111000,
355 0b000001110000,
356 0b001100100000,
357 0b001101010000,
358 };
359
360 static const uint32_t gen7_control_index_table[32] = {
361 0b0000000000000000010,
362 0b0000100000000000000,
363 0b0000100000000000001,
364 0b0000100000000000010,
365 0b0000100000000000011,
366 0b0000100000000000100,
367 0b0000100000000000101,
368 0b0000100000000000111,
369 0b0000100000000001000,
370 0b0000100000000001001,
371 0b0000100000000001101,
372 0b0000110000000000000,
373 0b0000110000000000001,
374 0b0000110000000000010,
375 0b0000110000000000011,
376 0b0000110000000000100,
377 0b0000110000000000101,
378 0b0000110000000000111,
379 0b0000110000000001001,
380 0b0000110000000001101,
381 0b0000110000000010000,
382 0b0000110000100000000,
383 0b0001000000000000000,
384 0b0001000000000000010,
385 0b0001000000000000100,
386 0b0001000000100000000,
387 0b0010110000000000000,
388 0b0010110000000010000,
389 0b0011000000000000000,
390 0b0011000000100000000,
391 0b0101000000000000000,
392 0b0101000000100000000,
393 };
394
395 static const uint32_t gen7_datatype_table[32] = {
396 0b001000000000000001,
397 0b001000000000100000,
398 0b001000000000100001,
399 0b001000000001100001,
400 0b001000000010111101,
401 0b001000001011111101,
402 0b001000001110100001,
403 0b001000001110100101,
404 0b001000001110111101,
405 0b001000010000100001,
406 0b001000110000100000,
407 0b001000110000100001,
408 0b001001010010100101,
409 0b001001110010100100,
410 0b001001110010100101,
411 0b001111001110111101,
412 0b001111011110011101,
413 0b001111011110111100,
414 0b001111011110111101,
415 0b001111111110111100,
416 0b000000001000001100,
417 0b001000000000111101,
418 0b001000000010100101,
419 0b001000010000100000,
420 0b001001010010100100,
421 0b001001110010000100,
422 0b001010010100001001,
423 0b001101111110111101,
424 0b001111111110111101,
425 0b001011110110101100,
426 0b001010010100101000,
427 0b001010110100101000,
428 };
429
430 static const uint16_t gen7_subreg_table[32] = {
431 0b000000000000000,
432 0b000000000000001,
433 0b000000000001000,
434 0b000000000001111,
435 0b000000000010000,
436 0b000000010000000,
437 0b000000100000000,
438 0b000000110000000,
439 0b000001000000000,
440 0b000001000010000,
441 0b000010100000000,
442 0b001000000000000,
443 0b001000000000001,
444 0b001000010000001,
445 0b001000010000010,
446 0b001000010000011,
447 0b001000010000100,
448 0b001000010000111,
449 0b001000010001000,
450 0b001000010001110,
451 0b001000010001111,
452 0b001000110000000,
453 0b001000111101000,
454 0b010000000000000,
455 0b010000110000000,
456 0b011000000000000,
457 0b011110010000111,
458 0b100000000000000,
459 0b101000000000000,
460 0b110000000000000,
461 0b111000000000000,
462 0b111000000011100,
463 };
464
465 static const uint16_t gen7_src_index_table[32] = {
466 0b000000000000,
467 0b000000000010,
468 0b000000010000,
469 0b000000010010,
470 0b000000011000,
471 0b000000100000,
472 0b000000101000,
473 0b000001001000,
474 0b000001010000,
475 0b000001110000,
476 0b000001111000,
477 0b001100000000,
478 0b001100000010,
479 0b001100001000,
480 0b001100010000,
481 0b001100010010,
482 0b001100100000,
483 0b001100101000,
484 0b001100111000,
485 0b001101000000,
486 0b001101000010,
487 0b001101001000,
488 0b001101010000,
489 0b001101100000,
490 0b001101101000,
491 0b001101110000,
492 0b001101110001,
493 0b001101111000,
494 0b010001101000,
495 0b010001101001,
496 0b010001101010,
497 0b010110001000,
498 };
499
500 static const uint32_t gen8_control_index_table[32] = {
501 0b0000000000000000010,
502 0b0000100000000000000,
503 0b0000100000000000001,
504 0b0000100000000000010,
505 0b0000100000000000011,
506 0b0000100000000000100,
507 0b0000100000000000101,
508 0b0000100000000000111,
509 0b0000100000000001000,
510 0b0000100000000001001,
511 0b0000100000000001101,
512 0b0000110000000000000,
513 0b0000110000000000001,
514 0b0000110000000000010,
515 0b0000110000000000011,
516 0b0000110000000000100,
517 0b0000110000000000101,
518 0b0000110000000000111,
519 0b0000110000000001001,
520 0b0000110000000001101,
521 0b0000110000000010000,
522 0b0000110000100000000,
523 0b0001000000000000000,
524 0b0001000000000000010,
525 0b0001000000000000100,
526 0b0001000000100000000,
527 0b0010110000000000000,
528 0b0010110000000010000,
529 0b0011000000000000000,
530 0b0011000000100000000,
531 0b0101000000000000000,
532 0b0101000000100000000,
533 };
534
535 static const uint32_t gen8_datatype_table[32] = {
536 0b001000000000000000001,
537 0b001000000000001000000,
538 0b001000000000001000001,
539 0b001000000000011000001,
540 0b001000000000101011101,
541 0b001000000010111011101,
542 0b001000000011101000001,
543 0b001000000011101000101,
544 0b001000000011101011101,
545 0b001000001000001000001,
546 0b001000011000001000000,
547 0b001000011000001000001,
548 0b001000101000101000101,
549 0b001000111000101000100,
550 0b001000111000101000101,
551 0b001011100011101011101,
552 0b001011101011100011101,
553 0b001011101011101011100,
554 0b001011101011101011101,
555 0b001011111011101011100,
556 0b000000000010000001100,
557 0b001000000000001011101,
558 0b001000000000101000101,
559 0b001000001000001000000,
560 0b001000101000101000100,
561 0b001000111000100000100,
562 0b001001001001000001001,
563 0b001010111011101011101,
564 0b001011111011101011101,
565 0b001001111001101001100,
566 0b001001001001001001000,
567 0b001001011001001001000,
568 };
569
570 static const uint16_t gen8_subreg_table[32] = {
571 0b000000000000000,
572 0b000000000000001,
573 0b000000000001000,
574 0b000000000001111,
575 0b000000000010000,
576 0b000000010000000,
577 0b000000100000000,
578 0b000000110000000,
579 0b000001000000000,
580 0b000001000010000,
581 0b000001010000000,
582 0b001000000000000,
583 0b001000000000001,
584 0b001000010000001,
585 0b001000010000010,
586 0b001000010000011,
587 0b001000010000100,
588 0b001000010000111,
589 0b001000010001000,
590 0b001000010001110,
591 0b001000010001111,
592 0b001000110000000,
593 0b001000111101000,
594 0b010000000000000,
595 0b010000110000000,
596 0b011000000000000,
597 0b011110010000111,
598 0b100000000000000,
599 0b101000000000000,
600 0b110000000000000,
601 0b111000000000000,
602 0b111000000011100,
603 };
604
605 static const uint16_t gen8_src_index_table[32] = {
606 0b000000000000,
607 0b000000000010,
608 0b000000010000,
609 0b000000010010,
610 0b000000011000,
611 0b000000100000,
612 0b000000101000,
613 0b000001001000,
614 0b000001010000,
615 0b000001110000,
616 0b000001111000,
617 0b001100000000,
618 0b001100000010,
619 0b001100001000,
620 0b001100010000,
621 0b001100010010,
622 0b001100100000,
623 0b001100101000,
624 0b001100111000,
625 0b001101000000,
626 0b001101000010,
627 0b001101001000,
628 0b001101010000,
629 0b001101100000,
630 0b001101101000,
631 0b001101110000,
632 0b001101110001,
633 0b001101111000,
634 0b010001101000,
635 0b010001101001,
636 0b010001101010,
637 0b010110001000,
638 };
639
640 static const uint32_t gen11_datatype_table[32] = {
641 0b001000000000000000001,
642 0b001000000000001000000,
643 0b001000000000001000001,
644 0b001000000000011000001,
645 0b001000000000101100101,
646 0b001000000101111100101,
647 0b001000000100101000001,
648 0b001000000100101000101,
649 0b001000000100101100101,
650 0b001000001000001000001,
651 0b001000011000001000000,
652 0b001000011000001000001,
653 0b001000101000101000101,
654 0b001000111000101000100,
655 0b001000111000101000101,
656 0b001100100100101100101,
657 0b001100101100100100101,
658 0b001100101100101100100,
659 0b001100101100101100101,
660 0b001100111100101100100,
661 0b000000000010000001100,
662 0b001000000000001100101,
663 0b001000000000101000101,
664 0b001000001000001000000,
665 0b001000101000101000100,
666 0b001000111000100000100,
667 0b001001001001000001001,
668 0b001101111100101100101,
669 0b001100111100101100101,
670 0b001001111001101001100,
671 0b001001001001001001000,
672 0b001001011001001001000,
673 };
674
675 /* This is actually the control index table for Cherryview (26 bits), but the
676 * only difference from Broadwell (24 bits) is that it has two extra 0-bits at
677 * the start.
678 *
679 * The low 24 bits have the same mappings on both hardware.
680 */
681 static const uint32_t gen8_3src_control_index_table[4] = {
682 0b00100000000110000000000001,
683 0b00000000000110000000000001,
684 0b00000000001000000000000001,
685 0b00000000001000000000100001,
686 };
687
688 /* This is actually the control index table for Cherryview (49 bits), but the
689 * only difference from Broadwell (46 bits) is that it has three extra 0-bits
690 * at the start.
691 *
692 * The low 44 bits have the same mappings on both hardware, and since the high
693 * three bits on Broadwell are zero, we can reuse Cherryview's table.
694 */
695 static const uint64_t gen8_3src_source_index_table[4] = {
696 0b0000001110010011100100111001000001111000000000000,
697 0b0000001110010011100100111001000001111000000000010,
698 0b0000001110010011100100111001000001111000000001000,
699 0b0000001110010011100100111001000001111000000100000,
700 };
701
702 static const uint32_t *control_index_table;
703 static const uint32_t *datatype_table;
704 static const uint16_t *subreg_table;
705 static const uint16_t *src_index_table;
706
707 static bool
708 set_control_index(const struct gen_device_info *devinfo,
709 brw_compact_inst *dst, const brw_inst *src)
710 {
711 uint32_t uncompacted = devinfo->gen >= 8 /* 17b/G45; 19b/IVB+ */
712 ? (brw_inst_bits(src, 33, 31) << 16) | /* 3b */
713 (brw_inst_bits(src, 23, 12) << 4) | /* 12b */
714 (brw_inst_bits(src, 10, 9) << 2) | /* 2b */
715 (brw_inst_bits(src, 34, 34) << 1) | /* 1b */
716 (brw_inst_bits(src, 8, 8)) /* 1b */
717 : (brw_inst_bits(src, 31, 31) << 16) | /* 1b */
718 (brw_inst_bits(src, 23, 8)); /* 16b */
719
720 /* On gen7, the flag register and subregister numbers are integrated into
721 * the control index.
722 */
723 if (devinfo->gen == 7)
724 uncompacted |= brw_inst_bits(src, 90, 89) << 17; /* 2b */
725
726 for (int i = 0; i < 32; i++) {
727 if (control_index_table[i] == uncompacted) {
728 brw_compact_inst_set_control_index(devinfo, dst, i);
729 return true;
730 }
731 }
732
733 return false;
734 }
735
736 static bool
737 set_datatype_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
738 const brw_inst *src)
739 {
740 uint32_t uncompacted = devinfo->gen >= 8 /* 18b/G45+; 21b/BDW+ */
741 ? (brw_inst_bits(src, 63, 61) << 18) | /* 3b */
742 (brw_inst_bits(src, 94, 89) << 12) | /* 6b */
743 (brw_inst_bits(src, 46, 35)) /* 12b */
744 : (brw_inst_bits(src, 63, 61) << 15) | /* 3b */
745 (brw_inst_bits(src, 46, 32)); /* 15b */
746
747 for (int i = 0; i < 32; i++) {
748 if (datatype_table[i] == uncompacted) {
749 brw_compact_inst_set_datatype_index(devinfo, dst, i);
750 return true;
751 }
752 }
753
754 return false;
755 }
756
757 static bool
758 set_subreg_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
759 const brw_inst *src, bool is_immediate)
760 {
761 uint16_t uncompacted = /* 15b */
762 (brw_inst_bits(src, 52, 48) << 0) | /* 5b */
763 (brw_inst_bits(src, 68, 64) << 5); /* 5b */
764
765 if (!is_immediate)
766 uncompacted |= brw_inst_bits(src, 100, 96) << 10; /* 5b */
767
768 for (int i = 0; i < 32; i++) {
769 if (subreg_table[i] == uncompacted) {
770 brw_compact_inst_set_subreg_index(devinfo, dst, i);
771 return true;
772 }
773 }
774
775 return false;
776 }
777
778 static bool
779 get_src_index(uint16_t uncompacted,
780 uint16_t *compacted)
781 {
782 for (int i = 0; i < 32; i++) {
783 if (src_index_table[i] == uncompacted) {
784 *compacted = i;
785 return true;
786 }
787 }
788
789 return false;
790 }
791
792 static bool
793 set_src0_index(const struct gen_device_info *devinfo,
794 brw_compact_inst *dst, const brw_inst *src)
795 {
796 uint16_t compacted;
797 uint16_t uncompacted = brw_inst_bits(src, 88, 77); /* 12b */
798
799 if (!get_src_index(uncompacted, &compacted))
800 return false;
801
802 brw_compact_inst_set_src0_index(devinfo, dst, compacted);
803
804 return true;
805 }
806
807 static bool
808 set_src1_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
809 const brw_inst *src, bool is_immediate)
810 {
811 uint16_t compacted;
812
813 if (is_immediate) {
814 compacted = (brw_inst_imm_ud(devinfo, src) >> 8) & 0x1f;
815 } else {
816 uint16_t uncompacted = brw_inst_bits(src, 120, 109); /* 12b */
817
818 if (!get_src_index(uncompacted, &compacted))
819 return false;
820 }
821
822 brw_compact_inst_set_src1_index(devinfo, dst, compacted);
823
824 return true;
825 }
826
827 static bool
828 set_3src_control_index(const struct gen_device_info *devinfo,
829 brw_compact_inst *dst, const brw_inst *src)
830 {
831 assert(devinfo->gen >= 8);
832
833 uint32_t uncompacted = /* 24b/BDW; 26b/CHV */
834 (brw_inst_bits(src, 34, 32) << 21) | /* 3b */
835 (brw_inst_bits(src, 28, 8)); /* 21b */
836
837 if (devinfo->gen >= 9 || devinfo->is_cherryview)
838 uncompacted |= brw_inst_bits(src, 36, 35) << 24; /* 2b */
839
840 for (unsigned i = 0; i < ARRAY_SIZE(gen8_3src_control_index_table); i++) {
841 if (gen8_3src_control_index_table[i] == uncompacted) {
842 brw_compact_inst_set_3src_control_index(devinfo, dst, i);
843 return true;
844 }
845 }
846
847 return false;
848 }
849
850 static bool
851 set_3src_source_index(const struct gen_device_info *devinfo,
852 brw_compact_inst *dst, const brw_inst *src)
853 {
854 assert(devinfo->gen >= 8);
855
856 uint64_t uncompacted = /* 46b/BDW; 49b/CHV */
857 (brw_inst_bits(src, 83, 83) << 43) | /* 1b */
858 (brw_inst_bits(src, 114, 107) << 35) | /* 8b */
859 (brw_inst_bits(src, 93, 86) << 27) | /* 8b */
860 (brw_inst_bits(src, 72, 65) << 19) | /* 8b */
861 (brw_inst_bits(src, 55, 37)); /* 19b */
862
863 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
864 uncompacted |=
865 (brw_inst_bits(src, 126, 125) << 47) | /* 2b */
866 (brw_inst_bits(src, 105, 104) << 45) | /* 2b */
867 (brw_inst_bits(src, 84, 84) << 44); /* 1b */
868 } else {
869 uncompacted |=
870 (brw_inst_bits(src, 125, 125) << 45) | /* 1b */
871 (brw_inst_bits(src, 104, 104) << 44); /* 1b */
872 }
873
874 for (unsigned i = 0; i < ARRAY_SIZE(gen8_3src_source_index_table); i++) {
875 if (gen8_3src_source_index_table[i] == uncompacted) {
876 brw_compact_inst_set_3src_source_index(devinfo, dst, i);
877 return true;
878 }
879 }
880
881 return false;
882 }
883
884 static bool
885 has_unmapped_bits(const struct gen_device_info *devinfo, const brw_inst *src)
886 {
887 /* EOT can only be mapped on a send if the src1 is an immediate */
888 if ((brw_inst_opcode(devinfo, src) == BRW_OPCODE_SENDC ||
889 brw_inst_opcode(devinfo, src) == BRW_OPCODE_SEND) &&
890 brw_inst_eot(devinfo, src))
891 return true;
892
893 /* Check for instruction bits that don't map to any of the fields of the
894 * compacted instruction. The instruction cannot be compacted if any of
895 * them are set. They overlap with:
896 * - NibCtrl (bit 47 on Gen7, bit 11 on Gen8)
897 * - Dst.AddrImm[9] (bit 47 on Gen8)
898 * - Src0.AddrImm[9] (bit 95 on Gen8)
899 * - Imm64[27:31] (bits 91-95 on Gen7, bit 95 on Gen8)
900 * - UIP[31] (bit 95 on Gen8)
901 */
902 if (devinfo->gen >= 8) {
903 assert(!brw_inst_bits(src, 7, 7));
904 return brw_inst_bits(src, 95, 95) ||
905 brw_inst_bits(src, 47, 47) ||
906 brw_inst_bits(src, 11, 11);
907 } else {
908 assert(!brw_inst_bits(src, 7, 7) &&
909 !(devinfo->gen < 7 && brw_inst_bits(src, 90, 90)));
910 return brw_inst_bits(src, 95, 91) ||
911 brw_inst_bits(src, 47, 47);
912 }
913 }
914
915 static bool
916 has_3src_unmapped_bits(const struct gen_device_info *devinfo,
917 const brw_inst *src)
918 {
919 /* Check for three-source instruction bits that don't map to any of the
920 * fields of the compacted instruction. All of them seem to be reserved
921 * bits currently.
922 */
923 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
924 assert(!brw_inst_bits(src, 127, 127) &&
925 !brw_inst_bits(src, 7, 7));
926 } else {
927 assert(devinfo->gen >= 8);
928 assert(!brw_inst_bits(src, 127, 126) &&
929 !brw_inst_bits(src, 105, 105) &&
930 !brw_inst_bits(src, 84, 84) &&
931 !brw_inst_bits(src, 36, 35) &&
932 !brw_inst_bits(src, 7, 7));
933 }
934
935 return false;
936 }
937
938 static bool
939 brw_try_compact_3src_instruction(const struct gen_device_info *devinfo,
940 brw_compact_inst *dst, const brw_inst *src)
941 {
942 assert(devinfo->gen >= 8);
943
944 if (has_3src_unmapped_bits(devinfo, src))
945 return false;
946
947 #define compact(field) \
948 brw_compact_inst_set_3src_##field(devinfo, dst, brw_inst_3src_##field(devinfo, src))
949 #define compact_a16(field) \
950 brw_compact_inst_set_3src_##field(devinfo, dst, brw_inst_3src_a16_##field(devinfo, src))
951
952 compact(opcode);
953
954 if (!set_3src_control_index(devinfo, dst, src))
955 return false;
956
957 if (!set_3src_source_index(devinfo, dst, src))
958 return false;
959
960 compact(dst_reg_nr);
961 compact_a16(src0_rep_ctrl);
962 brw_compact_inst_set_3src_cmpt_control(devinfo, dst, true);
963 compact(debug_control);
964 compact(saturate);
965 compact_a16(src1_rep_ctrl);
966 compact_a16(src2_rep_ctrl);
967 compact(src0_reg_nr);
968 compact(src1_reg_nr);
969 compact(src2_reg_nr);
970 compact_a16(src0_subreg_nr);
971 compact_a16(src1_subreg_nr);
972 compact_a16(src2_subreg_nr);
973
974 #undef compact
975 #undef compact_a16
976
977 return true;
978 }
979
980 /* Compacted instructions have 12-bits for immediate sources, and a 13th bit
981 * that's replicated through the high 20 bits.
982 *
983 * Effectively this means we get 12-bit integers, 0.0f, and some limited uses
984 * of packed vectors as compactable immediates.
985 */
986 static bool
987 is_compactable_immediate(unsigned imm)
988 {
989 /* We get the low 12 bits as-is. */
990 imm &= ~0xfff;
991
992 /* We get one bit replicated through the top 20 bits. */
993 return imm == 0 || imm == 0xfffff000;
994 }
995
996 /**
997 * Applies some small changes to instruction types to increase chances of
998 * compaction.
999 */
1000 static brw_inst
1001 precompact(const struct gen_device_info *devinfo, brw_inst inst)
1002 {
1003 if (brw_inst_src0_reg_file(devinfo, &inst) != BRW_IMMEDIATE_VALUE)
1004 return inst;
1005
1006 /* The Bspec's section titled "Non-present Operands" claims that if src0
1007 * is an immediate that src1's type must be the same as that of src0.
1008 *
1009 * The SNB+ DataTypeIndex instruction compaction tables contain mappings
1010 * that do not follow this rule. E.g., from the IVB/HSW table:
1011 *
1012 * DataTypeIndex 18-Bit Mapping Mapped Meaning
1013 * 3 001000001011111101 r:f | i:vf | a:ud | <1> | dir |
1014 *
1015 * And from the SNB table:
1016 *
1017 * DataTypeIndex 18-Bit Mapping Mapped Meaning
1018 * 8 001000000111101100 a:w | i:w | a:ud | <1> | dir |
1019 *
1020 * Neither of these cause warnings from the simulator when used,
1021 * compacted or otherwise. In fact, all compaction mappings that have an
1022 * immediate in src0 use a:ud for src1.
1023 *
1024 * The GM45 instruction compaction tables do not contain mapped meanings
1025 * so it's not clear whether it has the restriction. We'll assume it was
1026 * lifted on SNB. (FINISHME: decode the GM45 tables and check.)
1027 *
1028 * Don't do any of this for 64-bit immediates, since the src1 fields
1029 * overlap with the immediate and setting them would overwrite the
1030 * immediate we set.
1031 */
1032 if (devinfo->gen >= 6 &&
1033 !(devinfo->is_haswell &&
1034 brw_inst_opcode(devinfo, &inst) == BRW_OPCODE_DIM) &&
1035 !(devinfo->gen >= 8 &&
1036 (brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_DF ||
1037 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_UQ ||
1038 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_Q))) {
1039 enum brw_reg_file file = brw_inst_src1_reg_file(devinfo, &inst);
1040 brw_inst_set_src1_file_type(devinfo, &inst, file, BRW_REGISTER_TYPE_UD);
1041 }
1042
1043 /* Compacted instructions only have 12-bits (plus 1 for the other 20)
1044 * for immediate values. Presumably the hardware engineers realized
1045 * that the only useful floating-point value that could be represented
1046 * in this format is 0.0, which can also be represented as a VF-typed
1047 * immediate, so they gave us the previously mentioned mapping on IVB+.
1048 *
1049 * Strangely, we do have a mapping for imm:f in src1, so we don't need
1050 * to do this there.
1051 *
1052 * If we see a 0.0:F, change the type to VF so that it can be compacted.
1053 */
1054 if (brw_inst_imm_ud(devinfo, &inst) == 0x0 &&
1055 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_F &&
1056 brw_inst_dst_type(devinfo, &inst) == BRW_REGISTER_TYPE_F &&
1057 brw_inst_dst_hstride(devinfo, &inst) == BRW_HORIZONTAL_STRIDE_1) {
1058 enum brw_reg_file file = brw_inst_src0_reg_file(devinfo, &inst);
1059 brw_inst_set_src0_file_type(devinfo, &inst, file, BRW_REGISTER_TYPE_VF);
1060 }
1061
1062 /* There are no mappings for dst:d | i:d, so if the immediate is suitable
1063 * set the types to :UD so the instruction can be compacted.
1064 */
1065 if (is_compactable_immediate(brw_inst_imm_ud(devinfo, &inst)) &&
1066 brw_inst_cond_modifier(devinfo, &inst) == BRW_CONDITIONAL_NONE &&
1067 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_D &&
1068 brw_inst_dst_type(devinfo, &inst) == BRW_REGISTER_TYPE_D) {
1069 enum brw_reg_file src_file = brw_inst_src0_reg_file(devinfo, &inst);
1070 enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, &inst);
1071
1072 brw_inst_set_src0_file_type(devinfo, &inst, src_file, BRW_REGISTER_TYPE_UD);
1073 brw_inst_set_dst_file_type(devinfo, &inst, dst_file, BRW_REGISTER_TYPE_UD);
1074 }
1075
1076 return inst;
1077 }
1078
1079 /**
1080 * Tries to compact instruction src into dst.
1081 *
1082 * It doesn't modify dst unless src is compactable, which is relied on by
1083 * brw_compact_instructions().
1084 */
1085 bool
1086 brw_try_compact_instruction(const struct gen_device_info *devinfo,
1087 brw_compact_inst *dst, const brw_inst *src)
1088 {
1089 brw_compact_inst temp;
1090
1091 assert(brw_inst_cmpt_control(devinfo, src) == 0);
1092
1093 if (is_3src(devinfo, brw_inst_opcode(devinfo, src))) {
1094 if (devinfo->gen >= 8) {
1095 memset(&temp, 0, sizeof(temp));
1096 if (brw_try_compact_3src_instruction(devinfo, &temp, src)) {
1097 *dst = temp;
1098 return true;
1099 } else {
1100 return false;
1101 }
1102 } else {
1103 return false;
1104 }
1105 }
1106
1107 bool is_immediate =
1108 brw_inst_src0_reg_file(devinfo, src) == BRW_IMMEDIATE_VALUE ||
1109 brw_inst_src1_reg_file(devinfo, src) == BRW_IMMEDIATE_VALUE;
1110 if (is_immediate &&
1111 (devinfo->gen < 6 ||
1112 !is_compactable_immediate(brw_inst_imm_ud(devinfo, src)))) {
1113 return false;
1114 }
1115
1116 if (has_unmapped_bits(devinfo, src))
1117 return false;
1118
1119 memset(&temp, 0, sizeof(temp));
1120
1121 #define compact(field) \
1122 brw_compact_inst_set_##field(devinfo, &temp, brw_inst_##field(devinfo, src))
1123
1124 compact(opcode);
1125 compact(debug_control);
1126
1127 if (!set_control_index(devinfo, &temp, src))
1128 return false;
1129 if (!set_datatype_index(devinfo, &temp, src))
1130 return false;
1131 if (!set_subreg_index(devinfo, &temp, src, is_immediate))
1132 return false;
1133
1134 if (devinfo->gen >= 6) {
1135 compact(acc_wr_control);
1136 } else {
1137 compact(mask_control_ex);
1138 }
1139
1140 compact(cond_modifier);
1141
1142 if (devinfo->gen <= 6)
1143 compact(flag_subreg_nr);
1144
1145 brw_compact_inst_set_cmpt_control(devinfo, &temp, true);
1146
1147 if (!set_src0_index(devinfo, &temp, src))
1148 return false;
1149 if (!set_src1_index(devinfo, &temp, src, is_immediate))
1150 return false;
1151
1152 brw_compact_inst_set_dst_reg_nr(devinfo, &temp,
1153 brw_inst_dst_da_reg_nr(devinfo, src));
1154 brw_compact_inst_set_src0_reg_nr(devinfo, &temp,
1155 brw_inst_src0_da_reg_nr(devinfo, src));
1156
1157 if (is_immediate) {
1158 brw_compact_inst_set_src1_reg_nr(devinfo, &temp,
1159 brw_inst_imm_ud(devinfo, src) & 0xff);
1160 } else {
1161 brw_compact_inst_set_src1_reg_nr(devinfo, &temp,
1162 brw_inst_src1_da_reg_nr(devinfo, src));
1163 }
1164
1165 #undef compact
1166
1167 *dst = temp;
1168
1169 return true;
1170 }
1171
1172 static void
1173 set_uncompacted_control(const struct gen_device_info *devinfo, brw_inst *dst,
1174 brw_compact_inst *src)
1175 {
1176 uint32_t uncompacted =
1177 control_index_table[brw_compact_inst_control_index(devinfo, src)];
1178
1179 if (devinfo->gen >= 8) {
1180 brw_inst_set_bits(dst, 33, 31, (uncompacted >> 16));
1181 brw_inst_set_bits(dst, 23, 12, (uncompacted >> 4) & 0xfff);
1182 brw_inst_set_bits(dst, 10, 9, (uncompacted >> 2) & 0x3);
1183 brw_inst_set_bits(dst, 34, 34, (uncompacted >> 1) & 0x1);
1184 brw_inst_set_bits(dst, 8, 8, (uncompacted >> 0) & 0x1);
1185 } else {
1186 brw_inst_set_bits(dst, 31, 31, (uncompacted >> 16) & 0x1);
1187 brw_inst_set_bits(dst, 23, 8, (uncompacted & 0xffff));
1188
1189 if (devinfo->gen == 7)
1190 brw_inst_set_bits(dst, 90, 89, uncompacted >> 17);
1191 }
1192 }
1193
1194 static void
1195 set_uncompacted_datatype(const struct gen_device_info *devinfo, brw_inst *dst,
1196 brw_compact_inst *src)
1197 {
1198 uint32_t uncompacted =
1199 datatype_table[brw_compact_inst_datatype_index(devinfo, src)];
1200
1201 if (devinfo->gen >= 8) {
1202 brw_inst_set_bits(dst, 63, 61, (uncompacted >> 18));
1203 brw_inst_set_bits(dst, 94, 89, (uncompacted >> 12) & 0x3f);
1204 brw_inst_set_bits(dst, 46, 35, (uncompacted >> 0) & 0xfff);
1205 } else {
1206 brw_inst_set_bits(dst, 63, 61, (uncompacted >> 15));
1207 brw_inst_set_bits(dst, 46, 32, (uncompacted & 0x7fff));
1208 }
1209 }
1210
1211 static void
1212 set_uncompacted_subreg(const struct gen_device_info *devinfo, brw_inst *dst,
1213 brw_compact_inst *src)
1214 {
1215 uint16_t uncompacted =
1216 subreg_table[brw_compact_inst_subreg_index(devinfo, src)];
1217
1218 brw_inst_set_bits(dst, 100, 96, (uncompacted >> 10));
1219 brw_inst_set_bits(dst, 68, 64, (uncompacted >> 5) & 0x1f);
1220 brw_inst_set_bits(dst, 52, 48, (uncompacted >> 0) & 0x1f);
1221 }
1222
1223 static void
1224 set_uncompacted_src0(const struct gen_device_info *devinfo, brw_inst *dst,
1225 brw_compact_inst *src)
1226 {
1227 uint32_t compacted = brw_compact_inst_src0_index(devinfo, src);
1228 uint16_t uncompacted = src_index_table[compacted];
1229
1230 brw_inst_set_bits(dst, 88, 77, uncompacted);
1231 }
1232
1233 static void
1234 set_uncompacted_src1(const struct gen_device_info *devinfo, brw_inst *dst,
1235 brw_compact_inst *src, bool is_immediate)
1236 {
1237 if (is_immediate) {
1238 signed high5 = brw_compact_inst_src1_index(devinfo, src);
1239 /* Replicate top bit of src1_index into high 20 bits of the immediate. */
1240 brw_inst_set_imm_ud(devinfo, dst, (high5 << 27) >> 19);
1241 } else {
1242 uint16_t uncompacted =
1243 src_index_table[brw_compact_inst_src1_index(devinfo, src)];
1244
1245 brw_inst_set_bits(dst, 120, 109, uncompacted);
1246 }
1247 }
1248
1249 static void
1250 set_uncompacted_3src_control_index(const struct gen_device_info *devinfo,
1251 brw_inst *dst, brw_compact_inst *src)
1252 {
1253 assert(devinfo->gen >= 8);
1254
1255 uint32_t compacted = brw_compact_inst_3src_control_index(devinfo, src);
1256 uint32_t uncompacted = gen8_3src_control_index_table[compacted];
1257
1258 brw_inst_set_bits(dst, 34, 32, (uncompacted >> 21) & 0x7);
1259 brw_inst_set_bits(dst, 28, 8, (uncompacted >> 0) & 0x1fffff);
1260
1261 if (devinfo->gen >= 9 || devinfo->is_cherryview)
1262 brw_inst_set_bits(dst, 36, 35, (uncompacted >> 24) & 0x3);
1263 }
1264
1265 static void
1266 set_uncompacted_3src_source_index(const struct gen_device_info *devinfo,
1267 brw_inst *dst, brw_compact_inst *src)
1268 {
1269 assert(devinfo->gen >= 8);
1270
1271 uint32_t compacted = brw_compact_inst_3src_source_index(devinfo, src);
1272 uint64_t uncompacted = gen8_3src_source_index_table[compacted];
1273
1274 brw_inst_set_bits(dst, 83, 83, (uncompacted >> 43) & 0x1);
1275 brw_inst_set_bits(dst, 114, 107, (uncompacted >> 35) & 0xff);
1276 brw_inst_set_bits(dst, 93, 86, (uncompacted >> 27) & 0xff);
1277 brw_inst_set_bits(dst, 72, 65, (uncompacted >> 19) & 0xff);
1278 brw_inst_set_bits(dst, 55, 37, (uncompacted >> 0) & 0x7ffff);
1279
1280 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
1281 brw_inst_set_bits(dst, 126, 125, (uncompacted >> 47) & 0x3);
1282 brw_inst_set_bits(dst, 105, 104, (uncompacted >> 45) & 0x3);
1283 brw_inst_set_bits(dst, 84, 84, (uncompacted >> 44) & 0x1);
1284 } else {
1285 brw_inst_set_bits(dst, 125, 125, (uncompacted >> 45) & 0x1);
1286 brw_inst_set_bits(dst, 104, 104, (uncompacted >> 44) & 0x1);
1287 }
1288 }
1289
1290 static void
1291 brw_uncompact_3src_instruction(const struct gen_device_info *devinfo,
1292 brw_inst *dst, brw_compact_inst *src)
1293 {
1294 assert(devinfo->gen >= 8);
1295
1296 #define uncompact(field) \
1297 brw_inst_set_3src_##field(devinfo, dst, brw_compact_inst_3src_##field(devinfo, src))
1298 #define uncompact_a16(field) \
1299 brw_inst_set_3src_a16_##field(devinfo, dst, brw_compact_inst_3src_##field(devinfo, src))
1300
1301 uncompact(opcode);
1302
1303 set_uncompacted_3src_control_index(devinfo, dst, src);
1304 set_uncompacted_3src_source_index(devinfo, dst, src);
1305
1306 uncompact(dst_reg_nr);
1307 uncompact_a16(src0_rep_ctrl);
1308 brw_inst_set_3src_cmpt_control(devinfo, dst, false);
1309 uncompact(debug_control);
1310 uncompact(saturate);
1311 uncompact_a16(src1_rep_ctrl);
1312 uncompact_a16(src2_rep_ctrl);
1313 uncompact(src0_reg_nr);
1314 uncompact(src1_reg_nr);
1315 uncompact(src2_reg_nr);
1316 uncompact_a16(src0_subreg_nr);
1317 uncompact_a16(src1_subreg_nr);
1318 uncompact_a16(src2_subreg_nr);
1319
1320 #undef uncompact
1321 #undef uncompact_a16
1322 }
1323
1324 void
1325 brw_uncompact_instruction(const struct gen_device_info *devinfo, brw_inst *dst,
1326 brw_compact_inst *src)
1327 {
1328 memset(dst, 0, sizeof(*dst));
1329
1330 if (devinfo->gen >= 8 &&
1331 is_3src(devinfo, brw_compact_inst_3src_opcode(devinfo, src))) {
1332 brw_uncompact_3src_instruction(devinfo, dst, src);
1333 return;
1334 }
1335
1336 #define uncompact(field) \
1337 brw_inst_set_##field(devinfo, dst, brw_compact_inst_##field(devinfo, src))
1338
1339 uncompact(opcode);
1340 uncompact(debug_control);
1341
1342 set_uncompacted_control(devinfo, dst, src);
1343 set_uncompacted_datatype(devinfo, dst, src);
1344
1345 /* src0/1 register file fields are in the datatype table. */
1346 bool is_immediate = brw_inst_src0_reg_file(devinfo, dst) == BRW_IMMEDIATE_VALUE ||
1347 brw_inst_src1_reg_file(devinfo, dst) == BRW_IMMEDIATE_VALUE;
1348
1349 set_uncompacted_subreg(devinfo, dst, src);
1350
1351 if (devinfo->gen >= 6) {
1352 uncompact(acc_wr_control);
1353 } else {
1354 uncompact(mask_control_ex);
1355 }
1356
1357 uncompact(cond_modifier);
1358
1359 if (devinfo->gen <= 6)
1360 uncompact(flag_subreg_nr);
1361
1362 set_uncompacted_src0(devinfo, dst, src);
1363 set_uncompacted_src1(devinfo, dst, src, is_immediate);
1364
1365 brw_inst_set_dst_da_reg_nr(devinfo, dst,
1366 brw_compact_inst_dst_reg_nr(devinfo, src));
1367 brw_inst_set_src0_da_reg_nr(devinfo, dst,
1368 brw_compact_inst_src0_reg_nr(devinfo, src));
1369
1370 if (is_immediate) {
1371 brw_inst_set_imm_ud(devinfo, dst,
1372 brw_inst_imm_ud(devinfo, dst) |
1373 brw_compact_inst_src1_reg_nr(devinfo, src));
1374 } else {
1375 brw_inst_set_src1_da_reg_nr(devinfo, dst,
1376 brw_compact_inst_src1_reg_nr(devinfo, src));
1377 }
1378
1379 #undef uncompact
1380 }
1381
1382 void brw_debug_compact_uncompact(const struct gen_device_info *devinfo,
1383 brw_inst *orig,
1384 brw_inst *uncompacted)
1385 {
1386 fprintf(stderr, "Instruction compact/uncompact changed (gen%d):\n",
1387 devinfo->gen);
1388
1389 fprintf(stderr, " before: ");
1390 brw_disassemble_inst(stderr, devinfo, orig, true);
1391
1392 fprintf(stderr, " after: ");
1393 brw_disassemble_inst(stderr, devinfo, uncompacted, false);
1394
1395 uint32_t *before_bits = (uint32_t *)orig;
1396 uint32_t *after_bits = (uint32_t *)uncompacted;
1397 fprintf(stderr, " changed bits:\n");
1398 for (int i = 0; i < 128; i++) {
1399 uint32_t before = before_bits[i / 32] & (1 << (i & 31));
1400 uint32_t after = after_bits[i / 32] & (1 << (i & 31));
1401
1402 if (before != after) {
1403 fprintf(stderr, " bit %d, %s to %s\n", i,
1404 before ? "set" : "unset",
1405 after ? "set" : "unset");
1406 }
1407 }
1408 }
1409
1410 static int
1411 compacted_between(int old_ip, int old_target_ip, int *compacted_counts)
1412 {
1413 int this_compacted_count = compacted_counts[old_ip];
1414 int target_compacted_count = compacted_counts[old_target_ip];
1415 return target_compacted_count - this_compacted_count;
1416 }
1417
1418 static void
1419 update_uip_jip(const struct gen_device_info *devinfo, brw_inst *insn,
1420 int this_old_ip, int *compacted_counts)
1421 {
1422 /* JIP and UIP are in units of:
1423 * - bytes on Gen8+; and
1424 * - compacted instructions on Gen6+.
1425 */
1426 int shift = devinfo->gen >= 8 ? 3 : 0;
1427
1428 int32_t jip_compacted = brw_inst_jip(devinfo, insn) >> shift;
1429 jip_compacted -= compacted_between(this_old_ip,
1430 this_old_ip + (jip_compacted / 2),
1431 compacted_counts);
1432 brw_inst_set_jip(devinfo, insn, jip_compacted << shift);
1433
1434 if (brw_inst_opcode(devinfo, insn) == BRW_OPCODE_ENDIF ||
1435 brw_inst_opcode(devinfo, insn) == BRW_OPCODE_WHILE ||
1436 (brw_inst_opcode(devinfo, insn) == BRW_OPCODE_ELSE && devinfo->gen <= 7))
1437 return;
1438
1439 int32_t uip_compacted = brw_inst_uip(devinfo, insn) >> shift;
1440 uip_compacted -= compacted_between(this_old_ip,
1441 this_old_ip + (uip_compacted / 2),
1442 compacted_counts);
1443 brw_inst_set_uip(devinfo, insn, uip_compacted << shift);
1444 }
1445
1446 static void
1447 update_gen4_jump_count(const struct gen_device_info *devinfo, brw_inst *insn,
1448 int this_old_ip, int *compacted_counts)
1449 {
1450 assert(devinfo->gen == 5 || devinfo->is_g4x);
1451
1452 /* Jump Count is in units of:
1453 * - uncompacted instructions on G45; and
1454 * - compacted instructions on Gen5.
1455 */
1456 int shift = devinfo->is_g4x ? 1 : 0;
1457
1458 int jump_count_compacted = brw_inst_gen4_jump_count(devinfo, insn) << shift;
1459
1460 int target_old_ip = this_old_ip + (jump_count_compacted / 2);
1461
1462 int this_compacted_count = compacted_counts[this_old_ip];
1463 int target_compacted_count = compacted_counts[target_old_ip];
1464
1465 jump_count_compacted -= (target_compacted_count - this_compacted_count);
1466 brw_inst_set_gen4_jump_count(devinfo, insn, jump_count_compacted >> shift);
1467 }
1468
1469 void
1470 brw_init_compaction_tables(const struct gen_device_info *devinfo)
1471 {
1472 assert(g45_control_index_table[ARRAY_SIZE(g45_control_index_table) - 1] != 0);
1473 assert(g45_datatype_table[ARRAY_SIZE(g45_datatype_table) - 1] != 0);
1474 assert(g45_subreg_table[ARRAY_SIZE(g45_subreg_table) - 1] != 0);
1475 assert(g45_src_index_table[ARRAY_SIZE(g45_src_index_table) - 1] != 0);
1476 assert(gen6_control_index_table[ARRAY_SIZE(gen6_control_index_table) - 1] != 0);
1477 assert(gen6_datatype_table[ARRAY_SIZE(gen6_datatype_table) - 1] != 0);
1478 assert(gen6_subreg_table[ARRAY_SIZE(gen6_subreg_table) - 1] != 0);
1479 assert(gen6_src_index_table[ARRAY_SIZE(gen6_src_index_table) - 1] != 0);
1480 assert(gen7_control_index_table[ARRAY_SIZE(gen7_control_index_table) - 1] != 0);
1481 assert(gen7_datatype_table[ARRAY_SIZE(gen7_datatype_table) - 1] != 0);
1482 assert(gen7_subreg_table[ARRAY_SIZE(gen7_subreg_table) - 1] != 0);
1483 assert(gen7_src_index_table[ARRAY_SIZE(gen7_src_index_table) - 1] != 0);
1484 assert(gen8_control_index_table[ARRAY_SIZE(gen8_control_index_table) - 1] != 0);
1485 assert(gen8_datatype_table[ARRAY_SIZE(gen8_datatype_table) - 1] != 0);
1486 assert(gen8_subreg_table[ARRAY_SIZE(gen8_subreg_table) - 1] != 0);
1487 assert(gen8_src_index_table[ARRAY_SIZE(gen8_src_index_table) - 1] != 0);
1488 assert(gen11_datatype_table[ARRAY_SIZE(gen11_datatype_table) - 1] != 0);
1489
1490 switch (devinfo->gen) {
1491 case 11:
1492 control_index_table = gen8_control_index_table;
1493 datatype_table = gen11_datatype_table;
1494 subreg_table = gen8_subreg_table;
1495 src_index_table = gen8_src_index_table;
1496 break;
1497 case 10:
1498 case 9:
1499 case 8:
1500 control_index_table = gen8_control_index_table;
1501 datatype_table = gen8_datatype_table;
1502 subreg_table = gen8_subreg_table;
1503 src_index_table = gen8_src_index_table;
1504 break;
1505 case 7:
1506 control_index_table = gen7_control_index_table;
1507 datatype_table = gen7_datatype_table;
1508 subreg_table = gen7_subreg_table;
1509 src_index_table = gen7_src_index_table;
1510 break;
1511 case 6:
1512 control_index_table = gen6_control_index_table;
1513 datatype_table = gen6_datatype_table;
1514 subreg_table = gen6_subreg_table;
1515 src_index_table = gen6_src_index_table;
1516 break;
1517 case 5:
1518 case 4:
1519 control_index_table = g45_control_index_table;
1520 datatype_table = g45_datatype_table;
1521 subreg_table = g45_subreg_table;
1522 src_index_table = g45_src_index_table;
1523 break;
1524 default:
1525 unreachable("unknown generation");
1526 }
1527 }
1528
1529 void
1530 brw_compact_instructions(struct brw_codegen *p, int start_offset,
1531 struct disasm_info *disasm)
1532 {
1533 if (unlikely(INTEL_DEBUG & DEBUG_NO_COMPACTION))
1534 return;
1535
1536 const struct gen_device_info *devinfo = p->devinfo;
1537 void *store = p->store + start_offset / 16;
1538 /* For an instruction at byte offset 16*i before compaction, this is the
1539 * number of compacted instructions minus the number of padding NOP/NENOPs
1540 * that preceded it.
1541 */
1542 int compacted_counts[(p->next_insn_offset - start_offset) / sizeof(brw_inst)];
1543 /* For an instruction at byte offset 8*i after compaction, this was its IP
1544 * (in 16-byte units) before compaction.
1545 */
1546 int old_ip[(p->next_insn_offset - start_offset) / sizeof(brw_compact_inst) + 1];
1547
1548 if (devinfo->gen == 4 && !devinfo->is_g4x)
1549 return;
1550
1551 int offset = 0;
1552 int compacted_count = 0;
1553 for (int src_offset = 0; src_offset < p->next_insn_offset - start_offset;
1554 src_offset += sizeof(brw_inst)) {
1555 brw_inst *src = store + src_offset;
1556 void *dst = store + offset;
1557
1558 old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst);
1559 compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count;
1560
1561 brw_inst inst = precompact(devinfo, *src);
1562 brw_inst saved = inst;
1563
1564 if (brw_try_compact_instruction(devinfo, dst, &inst)) {
1565 compacted_count++;
1566
1567 if (INTEL_DEBUG) {
1568 brw_inst uncompacted;
1569 brw_uncompact_instruction(devinfo, &uncompacted, dst);
1570 if (memcmp(&saved, &uncompacted, sizeof(uncompacted))) {
1571 brw_debug_compact_uncompact(devinfo, &saved, &uncompacted);
1572 }
1573 }
1574
1575 offset += sizeof(brw_compact_inst);
1576 } else {
1577 /* All uncompacted instructions need to be aligned on G45. */
1578 if ((offset & sizeof(brw_compact_inst)) != 0 && devinfo->is_g4x){
1579 brw_compact_inst *align = store + offset;
1580 memset(align, 0, sizeof(*align));
1581 brw_compact_inst_set_opcode(devinfo, align, BRW_OPCODE_NENOP);
1582 brw_compact_inst_set_cmpt_control(devinfo, align, true);
1583 offset += sizeof(brw_compact_inst);
1584 compacted_count--;
1585 compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count;
1586 old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst);
1587
1588 dst = store + offset;
1589 }
1590
1591 /* If we didn't compact this intruction, we need to move it down into
1592 * place.
1593 */
1594 if (offset != src_offset) {
1595 memmove(dst, src, sizeof(brw_inst));
1596 }
1597 offset += sizeof(brw_inst);
1598 }
1599 }
1600
1601 /* Add an entry for the ending offset of the program. This greatly
1602 * simplifies the linked list walk at the end of the function.
1603 */
1604 old_ip[offset / sizeof(brw_compact_inst)] =
1605 (p->next_insn_offset - start_offset) / sizeof(brw_inst);
1606
1607 /* Fix up control flow offsets. */
1608 p->next_insn_offset = start_offset + offset;
1609 for (offset = 0; offset < p->next_insn_offset - start_offset;
1610 offset = next_offset(devinfo, store, offset)) {
1611 brw_inst *insn = store + offset;
1612 int this_old_ip = old_ip[offset / sizeof(brw_compact_inst)];
1613 int this_compacted_count = compacted_counts[this_old_ip];
1614
1615 switch (brw_inst_opcode(devinfo, insn)) {
1616 case BRW_OPCODE_BREAK:
1617 case BRW_OPCODE_CONTINUE:
1618 case BRW_OPCODE_HALT:
1619 if (devinfo->gen >= 6) {
1620 update_uip_jip(devinfo, insn, this_old_ip, compacted_counts);
1621 } else {
1622 update_gen4_jump_count(devinfo, insn, this_old_ip,
1623 compacted_counts);
1624 }
1625 break;
1626
1627 case BRW_OPCODE_IF:
1628 case BRW_OPCODE_IFF:
1629 case BRW_OPCODE_ELSE:
1630 case BRW_OPCODE_ENDIF:
1631 case BRW_OPCODE_WHILE:
1632 if (devinfo->gen >= 7) {
1633 if (brw_inst_cmpt_control(devinfo, insn)) {
1634 brw_inst uncompacted;
1635 brw_uncompact_instruction(devinfo, &uncompacted,
1636 (brw_compact_inst *)insn);
1637
1638 update_uip_jip(devinfo, &uncompacted, this_old_ip,
1639 compacted_counts);
1640
1641 bool ret = brw_try_compact_instruction(devinfo,
1642 (brw_compact_inst *)insn,
1643 &uncompacted);
1644 assert(ret); (void)ret;
1645 } else {
1646 update_uip_jip(devinfo, insn, this_old_ip, compacted_counts);
1647 }
1648 } else if (devinfo->gen == 6) {
1649 assert(!brw_inst_cmpt_control(devinfo, insn));
1650
1651 /* Jump Count is in units of compacted instructions on Gen6. */
1652 int jump_count_compacted = brw_inst_gen6_jump_count(devinfo, insn);
1653
1654 int target_old_ip = this_old_ip + (jump_count_compacted / 2);
1655 int target_compacted_count = compacted_counts[target_old_ip];
1656 jump_count_compacted -= (target_compacted_count - this_compacted_count);
1657 brw_inst_set_gen6_jump_count(devinfo, insn, jump_count_compacted);
1658 } else {
1659 update_gen4_jump_count(devinfo, insn, this_old_ip,
1660 compacted_counts);
1661 }
1662 break;
1663
1664 case BRW_OPCODE_ADD:
1665 /* Add instructions modifying the IP register use an immediate src1,
1666 * and Gens that use this cannot compact instructions with immediate
1667 * operands.
1668 */
1669 if (brw_inst_cmpt_control(devinfo, insn))
1670 break;
1671
1672 if (brw_inst_dst_reg_file(devinfo, insn) == BRW_ARCHITECTURE_REGISTER_FILE &&
1673 brw_inst_dst_da_reg_nr(devinfo, insn) == BRW_ARF_IP) {
1674 assert(brw_inst_src1_reg_file(devinfo, insn) == BRW_IMMEDIATE_VALUE);
1675
1676 int shift = 3;
1677 int jump_compacted = brw_inst_imm_d(devinfo, insn) >> shift;
1678
1679 int target_old_ip = this_old_ip + (jump_compacted / 2);
1680 int target_compacted_count = compacted_counts[target_old_ip];
1681 jump_compacted -= (target_compacted_count - this_compacted_count);
1682 brw_inst_set_imm_ud(devinfo, insn, jump_compacted << shift);
1683 }
1684 break;
1685 }
1686 }
1687
1688 /* p->nr_insn is counting the number of uncompacted instructions still, so
1689 * divide. We do want to be sure there's a valid instruction in any
1690 * alignment padding, so that the next compression pass (for the FS 8/16
1691 * compile passes) parses correctly.
1692 */
1693 if (p->next_insn_offset & sizeof(brw_compact_inst)) {
1694 brw_compact_inst *align = store + offset;
1695 memset(align, 0, sizeof(*align));
1696 brw_compact_inst_set_opcode(devinfo, align, BRW_OPCODE_NOP);
1697 brw_compact_inst_set_cmpt_control(devinfo, align, true);
1698 p->next_insn_offset += sizeof(brw_compact_inst);
1699 }
1700 p->nr_insn = p->next_insn_offset / sizeof(brw_inst);
1701
1702 /* Update the instruction offsets for each group. */
1703 if (disasm) {
1704 int offset = 0;
1705
1706 foreach_list_typed(struct inst_group, group, link, &disasm->group_list) {
1707 while (start_offset + old_ip[offset / sizeof(brw_compact_inst)] *
1708 sizeof(brw_inst) != group->offset) {
1709 assert(start_offset + old_ip[offset / sizeof(brw_compact_inst)] *
1710 sizeof(brw_inst) < group->offset);
1711 offset = next_offset(devinfo, store, offset);
1712 }
1713
1714 group->offset = start_offset + offset;
1715
1716 offset = next_offset(devinfo, store, offset);
1717 }
1718 }
1719 }