f359599c38d35078143935ddd6c119ddfcbddf03
[mesa.git] / src / intel / compiler / brw_eu_validate.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_eu_validate.c
25 *
26 * This file implements a pass that validates shader assembly.
27 */
28
29 #include "brw_eu.h"
30
31 /* We're going to do lots of string concatenation, so this should help. */
32 struct string {
33 char *str;
34 size_t len;
35 };
36
37 static void
38 cat(struct string *dest, const struct string src)
39 {
40 dest->str = realloc(dest->str, dest->len + src.len + 1);
41 memcpy(dest->str + dest->len, src.str, src.len);
42 dest->str[dest->len + src.len] = '\0';
43 dest->len = dest->len + src.len;
44 }
45 #define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)})
46
47 static bool
48 contains(const struct string haystack, const struct string needle)
49 {
50 return haystack.str && memmem(haystack.str, haystack.len,
51 needle.str, needle.len) != NULL;
52 }
53 #define CONTAINS(haystack, needle) \
54 contains(haystack, (struct string){needle, strlen(needle)})
55
56 #define error(str) "\tERROR: " str "\n"
57 #define ERROR_INDENT "\t "
58
59 #define ERROR(msg) ERROR_IF(true, msg)
60 #define ERROR_IF(cond, msg) \
61 do { \
62 if ((cond) && !CONTAINS(error_msg, error(msg))) { \
63 CAT(error_msg, error(msg)); \
64 } \
65 } while(0)
66
67 #define CHECK(func, args...) \
68 do { \
69 struct string __msg = func(devinfo, inst, ##args); \
70 if (__msg.str) { \
71 cat(&error_msg, __msg); \
72 free(__msg.str); \
73 } \
74 } while (0)
75
76 #define STRIDE(stride) (stride != 0 ? 1 << ((stride) - 1) : 0)
77 #define WIDTH(width) (1 << (width))
78
79 static bool
80 inst_is_send(const struct gen_device_info *devinfo, const brw_inst *inst)
81 {
82 switch (brw_inst_opcode(devinfo, inst)) {
83 case BRW_OPCODE_SEND:
84 case BRW_OPCODE_SENDC:
85 case BRW_OPCODE_SENDS:
86 case BRW_OPCODE_SENDSC:
87 return true;
88 default:
89 return false;
90 }
91 }
92
93 static unsigned
94 signed_type(unsigned type)
95 {
96 switch (type) {
97 case BRW_REGISTER_TYPE_UD: return BRW_REGISTER_TYPE_D;
98 case BRW_REGISTER_TYPE_UW: return BRW_REGISTER_TYPE_W;
99 case BRW_REGISTER_TYPE_UB: return BRW_REGISTER_TYPE_B;
100 case BRW_REGISTER_TYPE_UQ: return BRW_REGISTER_TYPE_Q;
101 default: return type;
102 }
103 }
104
105 static bool
106 inst_is_raw_move(const struct gen_device_info *devinfo, const brw_inst *inst)
107 {
108 unsigned dst_type = signed_type(brw_inst_dst_type(devinfo, inst));
109 unsigned src_type = signed_type(brw_inst_src0_type(devinfo, inst));
110
111 if (brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE) {
112 /* FIXME: not strictly true */
113 if (brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_VF ||
114 brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UV ||
115 brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_V) {
116 return false;
117 }
118 } else if (brw_inst_src0_negate(devinfo, inst) ||
119 brw_inst_src0_abs(devinfo, inst)) {
120 return false;
121 }
122
123 return brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MOV &&
124 brw_inst_saturate(devinfo, inst) == 0 &&
125 dst_type == src_type;
126 }
127
128 static bool
129 dst_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
130 {
131 return brw_inst_dst_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
132 brw_inst_dst_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
133 }
134
135 static bool
136 src0_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
137 {
138 return brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
139 brw_inst_src0_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
140 }
141
142 static bool
143 src1_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
144 {
145 return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
146 brw_inst_src1_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
147 }
148
149 static bool
150 src0_is_grf(const struct gen_device_info *devinfo, const brw_inst *inst)
151 {
152 return brw_inst_src0_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE;
153 }
154
155 static bool
156 src0_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
157 {
158 return brw_inst_src0_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
159 brw_inst_src0_width(devinfo, inst) == BRW_WIDTH_1 &&
160 brw_inst_src0_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
161 }
162
163 static bool
164 src1_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
165 {
166 return brw_inst_src1_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
167 brw_inst_src1_width(devinfo, inst) == BRW_WIDTH_1 &&
168 brw_inst_src1_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
169 }
170
171 static unsigned
172 num_sources_from_inst(const struct gen_device_info *devinfo,
173 const brw_inst *inst)
174 {
175 const struct opcode_desc *desc =
176 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
177 unsigned math_function;
178
179 if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
180 math_function = brw_inst_math_function(devinfo, inst);
181 } else if (devinfo->gen < 6 &&
182 brw_inst_opcode(devinfo, inst) == BRW_OPCODE_SEND) {
183 if (brw_inst_sfid(devinfo, inst) == BRW_SFID_MATH) {
184 /* src1 must be a descriptor (including the information to determine
185 * that the SEND is doing an extended math operation), but src0 can
186 * actually be null since it serves as the source of the implicit GRF
187 * to MRF move.
188 *
189 * If we stop using that functionality, we'll have to revisit this.
190 */
191 return 2;
192 } else {
193 /* Send instructions are allowed to have null sources since they use
194 * the base_mrf field to specify which message register source.
195 */
196 return 0;
197 }
198 } else {
199 assert(desc->nsrc < 4);
200 return desc->nsrc;
201 }
202
203 switch (math_function) {
204 case BRW_MATH_FUNCTION_INV:
205 case BRW_MATH_FUNCTION_LOG:
206 case BRW_MATH_FUNCTION_EXP:
207 case BRW_MATH_FUNCTION_SQRT:
208 case BRW_MATH_FUNCTION_RSQ:
209 case BRW_MATH_FUNCTION_SIN:
210 case BRW_MATH_FUNCTION_COS:
211 case BRW_MATH_FUNCTION_SINCOS:
212 case GEN8_MATH_FUNCTION_INVM:
213 case GEN8_MATH_FUNCTION_RSQRTM:
214 return 1;
215 case BRW_MATH_FUNCTION_FDIV:
216 case BRW_MATH_FUNCTION_POW:
217 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
218 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
219 case BRW_MATH_FUNCTION_INT_DIV_REMAINDER:
220 return 2;
221 default:
222 unreachable("not reached");
223 }
224 }
225
226 static struct string
227 sources_not_null(const struct gen_device_info *devinfo,
228 const brw_inst *inst)
229 {
230 unsigned num_sources = num_sources_from_inst(devinfo, inst);
231 struct string error_msg = { .str = NULL, .len = 0 };
232
233 /* Nothing to test. 3-src instructions can only have GRF sources, and
234 * there's no bit to control the file.
235 */
236 if (num_sources == 3)
237 return (struct string){};
238
239 if (num_sources >= 1)
240 ERROR_IF(src0_is_null(devinfo, inst), "src0 is null");
241
242 if (num_sources == 2)
243 ERROR_IF(src1_is_null(devinfo, inst), "src1 is null");
244
245 return error_msg;
246 }
247
248 static struct string
249 send_restrictions(const struct gen_device_info *devinfo,
250 const brw_inst *inst)
251 {
252 struct string error_msg = { .str = NULL, .len = 0 };
253
254 if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_SEND) {
255 ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT,
256 "send must use direct addressing");
257
258 if (devinfo->gen >= 7) {
259 ERROR_IF(!src0_is_grf(devinfo, inst), "send from non-GRF");
260 ERROR_IF(brw_inst_eot(devinfo, inst) &&
261 brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
262 "send with EOT must use g112-g127");
263 }
264 }
265
266 return error_msg;
267 }
268
269 static bool
270 is_unsupported_inst(const struct gen_device_info *devinfo,
271 const brw_inst *inst)
272 {
273 return brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst)) == NULL;
274 }
275
276 static enum brw_reg_type
277 execution_type_for_type(enum brw_reg_type type)
278 {
279 switch (type) {
280 case BRW_REGISTER_TYPE_DF:
281 case BRW_REGISTER_TYPE_F:
282 case BRW_REGISTER_TYPE_HF:
283 return type;
284
285 case BRW_REGISTER_TYPE_VF:
286 return BRW_REGISTER_TYPE_F;
287
288 case BRW_REGISTER_TYPE_Q:
289 case BRW_REGISTER_TYPE_UQ:
290 return BRW_REGISTER_TYPE_Q;
291
292 case BRW_REGISTER_TYPE_D:
293 case BRW_REGISTER_TYPE_UD:
294 return BRW_REGISTER_TYPE_D;
295
296 case BRW_REGISTER_TYPE_W:
297 case BRW_REGISTER_TYPE_UW:
298 case BRW_REGISTER_TYPE_B:
299 case BRW_REGISTER_TYPE_UB:
300 case BRW_REGISTER_TYPE_V:
301 case BRW_REGISTER_TYPE_UV:
302 return BRW_REGISTER_TYPE_W;
303 }
304 unreachable("not reached");
305 }
306
307 /**
308 * Returns the execution type of an instruction \p inst
309 */
310 static enum brw_reg_type
311 execution_type(const struct gen_device_info *devinfo, const brw_inst *inst)
312 {
313 unsigned num_sources = num_sources_from_inst(devinfo, inst);
314 enum brw_reg_type src0_exec_type, src1_exec_type;
315
316 /* Execution data type is independent of destination data type, except in
317 * mixed F/HF instructions on CHV and SKL+.
318 */
319 enum brw_reg_type dst_exec_type = brw_inst_dst_type(devinfo, inst);
320
321 src0_exec_type = execution_type_for_type(brw_inst_src0_type(devinfo, inst));
322 if (num_sources == 1) {
323 if ((devinfo->gen >= 9 || devinfo->is_cherryview) &&
324 src0_exec_type == BRW_REGISTER_TYPE_HF) {
325 return dst_exec_type;
326 }
327 return src0_exec_type;
328 }
329
330 src1_exec_type = execution_type_for_type(brw_inst_src1_type(devinfo, inst));
331 if (src0_exec_type == src1_exec_type)
332 return src0_exec_type;
333
334 /* Mixed operand types where one is float is float on Gen < 6
335 * (and not allowed on later platforms)
336 */
337 if (devinfo->gen < 6 &&
338 (src0_exec_type == BRW_REGISTER_TYPE_F ||
339 src1_exec_type == BRW_REGISTER_TYPE_F))
340 return BRW_REGISTER_TYPE_F;
341
342 if (src0_exec_type == BRW_REGISTER_TYPE_Q ||
343 src1_exec_type == BRW_REGISTER_TYPE_Q)
344 return BRW_REGISTER_TYPE_Q;
345
346 if (src0_exec_type == BRW_REGISTER_TYPE_D ||
347 src1_exec_type == BRW_REGISTER_TYPE_D)
348 return BRW_REGISTER_TYPE_D;
349
350 if (src0_exec_type == BRW_REGISTER_TYPE_W ||
351 src1_exec_type == BRW_REGISTER_TYPE_W)
352 return BRW_REGISTER_TYPE_W;
353
354 if (src0_exec_type == BRW_REGISTER_TYPE_DF ||
355 src1_exec_type == BRW_REGISTER_TYPE_DF)
356 return BRW_REGISTER_TYPE_DF;
357
358 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
359 if (dst_exec_type == BRW_REGISTER_TYPE_F ||
360 src0_exec_type == BRW_REGISTER_TYPE_F ||
361 src1_exec_type == BRW_REGISTER_TYPE_F) {
362 return BRW_REGISTER_TYPE_F;
363 } else {
364 return BRW_REGISTER_TYPE_HF;
365 }
366 }
367
368 assert(src0_exec_type == BRW_REGISTER_TYPE_F);
369 return BRW_REGISTER_TYPE_F;
370 }
371
372 /**
373 * Returns whether a region is packed
374 *
375 * A region is packed if its elements are adjacent in memory, with no
376 * intervening space, no overlap, and no replicated values.
377 */
378 static bool
379 is_packed(unsigned vstride, unsigned width, unsigned hstride)
380 {
381 if (vstride == width) {
382 if (vstride == 1) {
383 return hstride == 0;
384 } else {
385 return hstride == 1;
386 }
387 }
388
389 return false;
390 }
391
392 /**
393 * Checks restrictions listed in "General Restrictions Based on Operand Types"
394 * in the "Register Region Restrictions" section.
395 */
396 static struct string
397 general_restrictions_based_on_operand_types(const struct gen_device_info *devinfo,
398 const brw_inst *inst)
399 {
400 const struct opcode_desc *desc =
401 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
402 unsigned num_sources = num_sources_from_inst(devinfo, inst);
403 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
404 struct string error_msg = { .str = NULL, .len = 0 };
405
406 if (num_sources == 3)
407 return (struct string){};
408
409 if (inst_is_send(devinfo, inst))
410 return (struct string){};
411
412 if (exec_size == 1)
413 return (struct string){};
414
415 if (desc->ndst == 0)
416 return (struct string){};
417
418 /* The PRMs say:
419 *
420 * Where n is the largest element size in bytes for any source or
421 * destination operand type, ExecSize * n must be <= 64.
422 *
423 * But we do not attempt to enforce it, because it is implied by other
424 * rules:
425 *
426 * - that the destination stride must match the execution data type
427 * - sources may not span more than two adjacent GRF registers
428 * - destination may not span more than two adjacent GRF registers
429 *
430 * In fact, checking it would weaken testing of the other rules.
431 */
432
433 unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
434 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
435 bool dst_type_is_byte =
436 brw_inst_dst_type(devinfo, inst) == BRW_REGISTER_TYPE_B ||
437 brw_inst_dst_type(devinfo, inst) == BRW_REGISTER_TYPE_UB;
438
439 if (dst_type_is_byte) {
440 if (is_packed(exec_size * dst_stride, exec_size, dst_stride)) {
441 if (!inst_is_raw_move(devinfo, inst)) {
442 ERROR("Only raw MOV supports a packed-byte destination");
443 return error_msg;
444 } else {
445 return (struct string){};
446 }
447 }
448 }
449
450 unsigned exec_type = execution_type(devinfo, inst);
451 unsigned exec_type_size = brw_reg_type_to_size(exec_type);
452 unsigned dst_type_size = brw_reg_type_to_size(dst_type);
453
454 /* On IVB/BYT, region parameters and execution size for DF are in terms of
455 * 32-bit elements, so they are doubled. For evaluating the validity of an
456 * instruction, we halve them.
457 */
458 if (devinfo->gen == 7 && !devinfo->is_haswell &&
459 exec_type_size == 8 && dst_type_size == 4)
460 dst_type_size = 8;
461
462 if (exec_type_size > dst_type_size) {
463 ERROR_IF(dst_stride * dst_type_size != exec_type_size,
464 "Destination stride must be equal to the ratio of the sizes of "
465 "the execution data type to the destination type");
466
467 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
468
469 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
470 brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT) {
471 /* The i965 PRM says:
472 *
473 * Implementation Restriction: The relaxed alignment rule for byte
474 * destination (#10.5) is not supported.
475 */
476 if ((devinfo->gen > 4 || devinfo->is_g4x) && dst_type_is_byte) {
477 ERROR_IF(subreg % exec_type_size != 0 &&
478 subreg % exec_type_size != 1,
479 "Destination subreg must be aligned to the size of the "
480 "execution data type (or to the next lowest byte for byte "
481 "destinations)");
482 } else {
483 ERROR_IF(subreg % exec_type_size != 0,
484 "Destination subreg must be aligned to the size of the "
485 "execution data type");
486 }
487 }
488 }
489
490 return error_msg;
491 }
492
493 /**
494 * Checks restrictions listed in "General Restrictions on Regioning Parameters"
495 * in the "Register Region Restrictions" section.
496 */
497 static struct string
498 general_restrictions_on_region_parameters(const struct gen_device_info *devinfo,
499 const brw_inst *inst)
500 {
501 const struct opcode_desc *desc =
502 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
503 unsigned num_sources = num_sources_from_inst(devinfo, inst);
504 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
505 struct string error_msg = { .str = NULL, .len = 0 };
506
507 if (num_sources == 3)
508 return (struct string){};
509
510 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16) {
511 if (desc->ndst != 0 && !dst_is_null(devinfo, inst))
512 ERROR_IF(brw_inst_dst_hstride(devinfo, inst) != BRW_HORIZONTAL_STRIDE_1,
513 "Destination Horizontal Stride must be 1");
514
515 if (num_sources >= 1) {
516 if (devinfo->is_haswell || devinfo->gen >= 8) {
517 ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
518 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
519 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
520 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
521 "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
522 } else {
523 ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
524 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
525 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
526 "In Align16 mode, only VertStride of 0 or 4 is allowed");
527 }
528 }
529
530 if (num_sources == 2) {
531 if (devinfo->is_haswell || devinfo->gen >= 8) {
532 ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
533 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
534 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
535 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
536 "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
537 } else {
538 ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
539 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
540 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
541 "In Align16 mode, only VertStride of 0 or 4 is allowed");
542 }
543 }
544
545 return error_msg;
546 }
547
548 for (unsigned i = 0; i < num_sources; i++) {
549 unsigned vstride, width, hstride, element_size, subreg;
550 enum brw_reg_type type;
551
552 #define DO_SRC(n) \
553 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
554 BRW_IMMEDIATE_VALUE) \
555 continue; \
556 \
557 vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
558 width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
559 hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
560 type = brw_inst_src ## n ## _type(devinfo, inst); \
561 element_size = brw_reg_type_to_size(type); \
562 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst)
563
564 if (i == 0) {
565 DO_SRC(0);
566 } else {
567 DO_SRC(1);
568 }
569 #undef DO_SRC
570
571 /* On IVB/BYT, region parameters and execution size for DF are in terms of
572 * 32-bit elements, so they are doubled. For evaluating the validity of an
573 * instruction, we halve them.
574 */
575 if (devinfo->gen == 7 && !devinfo->is_haswell &&
576 element_size == 8)
577 element_size = 4;
578
579 /* ExecSize must be greater than or equal to Width. */
580 ERROR_IF(exec_size < width, "ExecSize must be greater than or equal "
581 "to Width");
582
583 /* If ExecSize = Width and HorzStride ≠ 0,
584 * VertStride must be set to Width * HorzStride.
585 */
586 if (exec_size == width && hstride != 0) {
587 ERROR_IF(vstride != width * hstride,
588 "If ExecSize = Width and HorzStride ≠ 0, "
589 "VertStride must be set to Width * HorzStride");
590 }
591
592 /* If Width = 1, HorzStride must be 0 regardless of the values of
593 * ExecSize and VertStride.
594 */
595 if (width == 1) {
596 ERROR_IF(hstride != 0,
597 "If Width = 1, HorzStride must be 0 regardless "
598 "of the values of ExecSize and VertStride");
599 }
600
601 /* If ExecSize = Width = 1, both VertStride and HorzStride must be 0. */
602 if (exec_size == 1 && width == 1) {
603 ERROR_IF(vstride != 0 || hstride != 0,
604 "If ExecSize = Width = 1, both VertStride "
605 "and HorzStride must be 0");
606 }
607
608 /* If VertStride = HorzStride = 0, Width must be 1 regardless of the
609 * value of ExecSize.
610 */
611 if (vstride == 0 && hstride == 0) {
612 ERROR_IF(width != 1,
613 "If VertStride = HorzStride = 0, Width must be "
614 "1 regardless of the value of ExecSize");
615 }
616
617 /* VertStride must be used to cross GRF register boundaries. This rule
618 * implies that elements within a 'Width' cannot cross GRF boundaries.
619 */
620 const uint64_t mask = (1ULL << element_size) - 1;
621 unsigned rowbase = subreg;
622
623 for (int y = 0; y < exec_size / width; y++) {
624 uint64_t access_mask = 0;
625 unsigned offset = rowbase;
626
627 for (int x = 0; x < width; x++) {
628 access_mask |= mask << offset;
629 offset += hstride * element_size;
630 }
631
632 rowbase += vstride * element_size;
633
634 if ((uint32_t)access_mask != 0 && (access_mask >> 32) != 0) {
635 ERROR("VertStride must be used to cross GRF register boundaries");
636 break;
637 }
638 }
639 }
640
641 /* Dst.HorzStride must not be 0. */
642 if (desc->ndst != 0 && !dst_is_null(devinfo, inst)) {
643 ERROR_IF(brw_inst_dst_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0,
644 "Destination Horizontal Stride must not be 0");
645 }
646
647 return error_msg;
648 }
649
650 /**
651 * Creates an \p access_mask for an \p exec_size, \p element_size, and a region
652 *
653 * An \p access_mask is a 32-element array of uint64_t, where each uint64_t is
654 * a bitmask of bytes accessed by the region.
655 *
656 * For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4
657 * instruction would be
658 *
659 * access_mask[0] = 0x00000000000000F0
660 * access_mask[1] = 0x000000000000F000
661 * access_mask[2] = 0x0000000000F00000
662 * access_mask[3] = 0x00000000F0000000
663 * access_mask[4-31] = 0
664 *
665 * because the first execution channel accesses bytes 7-4 and the second
666 * execution channel accesses bytes 15-12, etc.
667 */
668 static void
669 align1_access_mask(uint64_t access_mask[static 32],
670 unsigned exec_size, unsigned element_size, unsigned subreg,
671 unsigned vstride, unsigned width, unsigned hstride)
672 {
673 const uint64_t mask = (1ULL << element_size) - 1;
674 unsigned rowbase = subreg;
675 unsigned element = 0;
676
677 for (int y = 0; y < exec_size / width; y++) {
678 unsigned offset = rowbase;
679
680 for (int x = 0; x < width; x++) {
681 access_mask[element++] = mask << offset;
682 offset += hstride * element_size;
683 }
684
685 rowbase += vstride * element_size;
686 }
687
688 assert(element == 0 || element == exec_size);
689 }
690
691 /**
692 * Returns the number of registers accessed according to the \p access_mask
693 */
694 static int
695 registers_read(const uint64_t access_mask[static 32])
696 {
697 int regs_read = 0;
698
699 for (unsigned i = 0; i < 32; i++) {
700 if (access_mask[i] > 0xFFFFFFFF) {
701 return 2;
702 } else if (access_mask[i]) {
703 regs_read = 1;
704 }
705 }
706
707 return regs_read;
708 }
709
710 /**
711 * Checks restrictions listed in "Region Alignment Rules" in the "Register
712 * Region Restrictions" section.
713 */
714 static struct string
715 region_alignment_rules(const struct gen_device_info *devinfo,
716 const brw_inst *inst)
717 {
718 const struct opcode_desc *desc =
719 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
720 unsigned num_sources = num_sources_from_inst(devinfo, inst);
721 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
722 uint64_t dst_access_mask[32], src0_access_mask[32], src1_access_mask[32];
723 struct string error_msg = { .str = NULL, .len = 0 };
724
725 if (num_sources == 3)
726 return (struct string){};
727
728 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16)
729 return (struct string){};
730
731 if (inst_is_send(devinfo, inst))
732 return (struct string){};
733
734 memset(dst_access_mask, 0, sizeof(dst_access_mask));
735 memset(src0_access_mask, 0, sizeof(src0_access_mask));
736 memset(src1_access_mask, 0, sizeof(src1_access_mask));
737
738 for (unsigned i = 0; i < num_sources; i++) {
739 unsigned vstride, width, hstride, element_size, subreg;
740 enum brw_reg_type type;
741
742 /* In Direct Addressing mode, a source cannot span more than 2 adjacent
743 * GRF registers.
744 */
745
746 #define DO_SRC(n) \
747 if (brw_inst_src ## n ## _address_mode(devinfo, inst) != \
748 BRW_ADDRESS_DIRECT) \
749 continue; \
750 \
751 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
752 BRW_IMMEDIATE_VALUE) \
753 continue; \
754 \
755 vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
756 width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
757 hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
758 type = brw_inst_src ## n ## _type(devinfo, inst); \
759 element_size = brw_reg_type_to_size(type); \
760 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
761 align1_access_mask(src ## n ## _access_mask, \
762 exec_size, element_size, subreg, \
763 vstride, width, hstride)
764
765 if (i == 0) {
766 DO_SRC(0);
767 } else {
768 DO_SRC(1);
769 }
770 #undef DO_SRC
771
772 unsigned num_vstride = exec_size / width;
773 unsigned num_hstride = width;
774 unsigned vstride_elements = (num_vstride - 1) * vstride;
775 unsigned hstride_elements = (num_hstride - 1) * hstride;
776 unsigned offset = (vstride_elements + hstride_elements) * element_size +
777 subreg;
778 ERROR_IF(offset >= 64,
779 "A source cannot span more than 2 adjacent GRF registers");
780 }
781
782 if (desc->ndst == 0 || dst_is_null(devinfo, inst))
783 return error_msg;
784
785 unsigned stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
786 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
787 unsigned element_size = brw_reg_type_to_size(dst_type);
788 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
789 unsigned offset = ((exec_size - 1) * stride * element_size) + subreg;
790 ERROR_IF(offset >= 64,
791 "A destination cannot span more than 2 adjacent GRF registers");
792
793 if (error_msg.str)
794 return error_msg;
795
796 /* On IVB/BYT, region parameters and execution size for DF are in terms of
797 * 32-bit elements, so they are doubled. For evaluating the validity of an
798 * instruction, we halve them.
799 */
800 if (devinfo->gen == 7 && !devinfo->is_haswell &&
801 element_size == 8)
802 element_size = 4;
803
804 align1_access_mask(dst_access_mask, exec_size, element_size, subreg,
805 exec_size == 1 ? 0 : exec_size * stride,
806 exec_size == 1 ? 1 : exec_size,
807 exec_size == 1 ? 0 : stride);
808
809 unsigned dst_regs = registers_read(dst_access_mask);
810 unsigned src0_regs = registers_read(src0_access_mask);
811 unsigned src1_regs = registers_read(src1_access_mask);
812
813 /* The SNB, IVB, HSW, BDW, and CHV PRMs say:
814 *
815 * When an instruction has a source region spanning two registers and a
816 * destination region contained in one register, the number of elements
817 * must be the same between two sources and one of the following must be
818 * true:
819 *
820 * 1. The destination region is entirely contained in the lower OWord
821 * of a register.
822 * 2. The destination region is entirely contained in the upper OWord
823 * of a register.
824 * 3. The destination elements are evenly split between the two OWords
825 * of a register.
826 */
827 if (devinfo->gen <= 8) {
828 if (dst_regs == 1 && (src0_regs == 2 || src1_regs == 2)) {
829 unsigned upper_oword_writes = 0, lower_oword_writes = 0;
830
831 for (unsigned i = 0; i < exec_size; i++) {
832 if (dst_access_mask[i] > 0x0000FFFF) {
833 upper_oword_writes++;
834 } else {
835 assert(dst_access_mask[i] != 0);
836 lower_oword_writes++;
837 }
838 }
839
840 ERROR_IF(lower_oword_writes != 0 &&
841 upper_oword_writes != 0 &&
842 upper_oword_writes != lower_oword_writes,
843 "Writes must be to only one OWord or "
844 "evenly split between OWords");
845 }
846 }
847
848 /* The IVB and HSW PRMs say:
849 *
850 * When an instruction has a source region that spans two registers and
851 * the destination spans two registers, the destination elements must be
852 * evenly split between the two registers [...]
853 *
854 * The SNB PRM contains similar wording (but written in a much more
855 * confusing manner).
856 *
857 * The BDW PRM says:
858 *
859 * When destination spans two registers, the source may be one or two
860 * registers. The destination elements must be evenly split between the
861 * two registers.
862 *
863 * The SKL PRM says:
864 *
865 * When destination of MATH instruction spans two registers, the
866 * destination elements must be evenly split between the two registers.
867 *
868 * It is not known whether this restriction applies to KBL other Gens after
869 * SKL.
870 */
871 if (devinfo->gen <= 8 ||
872 brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
873
874 /* Nothing explicitly states that on Gen < 8 elements must be evenly
875 * split between two destination registers in the two exceptional
876 * source-region-spans-one-register cases, but since Broadwell requires
877 * evenly split writes regardless of source region, we assume that it was
878 * an oversight and require it.
879 */
880 if (dst_regs == 2) {
881 unsigned upper_reg_writes = 0, lower_reg_writes = 0;
882
883 for (unsigned i = 0; i < exec_size; i++) {
884 if (dst_access_mask[i] > 0xFFFFFFFF) {
885 upper_reg_writes++;
886 } else {
887 assert(dst_access_mask[i] != 0);
888 lower_reg_writes++;
889 }
890 }
891
892 ERROR_IF(upper_reg_writes != lower_reg_writes,
893 "Writes must be evenly split between the two "
894 "destination registers");
895 }
896 }
897
898 /* The IVB and HSW PRMs say:
899 *
900 * When an instruction has a source region that spans two registers and
901 * the destination spans two registers, the destination elements must be
902 * evenly split between the two registers and each destination register
903 * must be entirely derived from one source register.
904 *
905 * Note: In such cases, the regioning parameters must ensure that the
906 * offset from the two source registers is the same.
907 *
908 * The SNB PRM contains similar wording (but written in a much more
909 * confusing manner).
910 *
911 * There are effectively three rules stated here:
912 *
913 * For an instruction with a source and a destination spanning two
914 * registers,
915 *
916 * (1) destination elements must be evenly split between the two
917 * registers
918 * (2) all destination elements in a register must be derived
919 * from one source register
920 * (3) the offset (i.e. the starting location in each of the two
921 * registers spanned by a region) must be the same in the two
922 * registers spanned by a region
923 *
924 * It is impossible to violate rule (1) without violating (2) or (3), so we
925 * do not attempt to validate it.
926 */
927 if (devinfo->gen <= 7 && dst_regs == 2) {
928 for (unsigned i = 0; i < num_sources; i++) {
929 #define DO_SRC(n) \
930 if (src ## n ## _regs <= 1) \
931 continue; \
932 \
933 for (unsigned i = 0; i < exec_size; i++) { \
934 if ((dst_access_mask[i] > 0xFFFFFFFF) != \
935 (src ## n ## _access_mask[i] > 0xFFFFFFFF)) { \
936 ERROR("Each destination register must be entirely derived " \
937 "from one source register"); \
938 break; \
939 } \
940 } \
941 \
942 unsigned offset_0 = \
943 brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
944 unsigned offset_1 = offset_0; \
945 \
946 for (unsigned i = 0; i < exec_size; i++) { \
947 if (src ## n ## _access_mask[i] > 0xFFFFFFFF) { \
948 offset_1 = __builtin_ctzll(src ## n ## _access_mask[i]) - 32; \
949 break; \
950 } \
951 } \
952 \
953 ERROR_IF(num_sources == 2 && offset_0 != offset_1, \
954 "The offset from the two source registers " \
955 "must be the same")
956
957 if (i == 0) {
958 DO_SRC(0);
959 } else {
960 DO_SRC(1);
961 }
962 #undef DO_SRC
963 }
964 }
965
966 /* The IVB and HSW PRMs say:
967 *
968 * When destination spans two registers, the source MUST span two
969 * registers. The exception to the above rule:
970 * 1. When source is scalar, the source registers are not
971 * incremented.
972 * 2. When source is packed integer Word and destination is packed
973 * integer DWord, the source register is not incremented by the
974 * source sub register is incremented.
975 *
976 * The SNB PRM does not contain this rule, but the internal documentation
977 * indicates that it applies to SNB as well. We assume that the rule applies
978 * to Gen <= 5 although their PRMs do not state it.
979 *
980 * While the documentation explicitly says in exception (2) that the
981 * destination must be an integer DWord, the hardware allows at least a
982 * float destination type as well. We emit such instructions from
983 *
984 * fs_visitor::emit_interpolation_setup_gen6
985 * fs_visitor::emit_fragcoord_interpolation
986 *
987 * and have for years with no ill effects.
988 *
989 * Additionally the simulator source code indicates that the real condition
990 * is that the size of the destination type is 4 bytes.
991 */
992 if (devinfo->gen <= 7 && dst_regs == 2) {
993 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
994 bool dst_is_packed_dword =
995 is_packed(exec_size * stride, exec_size, stride) &&
996 brw_reg_type_to_size(dst_type) == 4;
997
998 for (unsigned i = 0; i < num_sources; i++) {
999 #define DO_SRC(n) \
1000 unsigned vstride, width, hstride; \
1001 vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
1002 width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
1003 hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
1004 bool src ## n ## _is_packed_word = \
1005 is_packed(vstride, width, hstride) && \
1006 (brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_W || \
1007 brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_UW); \
1008 \
1009 ERROR_IF(src ## n ## _regs == 1 && \
1010 !src ## n ## _has_scalar_region(devinfo, inst) && \
1011 !(dst_is_packed_dword && src ## n ## _is_packed_word), \
1012 "When the destination spans two registers, the source must " \
1013 "span two registers\n" ERROR_INDENT "(exceptions for scalar " \
1014 "source and packed-word to packed-dword expansion)")
1015
1016 if (i == 0) {
1017 DO_SRC(0);
1018 } else {
1019 DO_SRC(1);
1020 }
1021 #undef DO_SRC
1022 }
1023 }
1024
1025 return error_msg;
1026 }
1027
1028 static struct string
1029 vector_immediate_restrictions(const struct gen_device_info *devinfo,
1030 const brw_inst *inst)
1031 {
1032 unsigned num_sources = num_sources_from_inst(devinfo, inst);
1033 struct string error_msg = { .str = NULL, .len = 0 };
1034
1035 if (num_sources == 3 || num_sources == 0)
1036 return (struct string){};
1037
1038 unsigned file = num_sources == 1 ?
1039 brw_inst_src0_reg_file(devinfo, inst) :
1040 brw_inst_src1_reg_file(devinfo, inst);
1041 if (file != BRW_IMMEDIATE_VALUE)
1042 return (struct string){};
1043
1044 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
1045 unsigned dst_type_size = brw_reg_type_to_size(dst_type);
1046 unsigned dst_subreg = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 ?
1047 brw_inst_dst_da1_subreg_nr(devinfo, inst) : 0;
1048 unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1049 enum brw_reg_type type = num_sources == 1 ?
1050 brw_inst_src0_type(devinfo, inst) :
1051 brw_inst_src1_type(devinfo, inst);
1052
1053 /* The PRMs say:
1054 *
1055 * When an immediate vector is used in an instruction, the destination
1056 * must be 128-bit aligned with destination horizontal stride equivalent
1057 * to a word for an immediate integer vector (v) and equivalent to a
1058 * DWord for an immediate float vector (vf).
1059 *
1060 * The text has not been updated for the addition of the immediate unsigned
1061 * integer vector type (uv) on SNB, but presumably the same restriction
1062 * applies.
1063 */
1064 switch (type) {
1065 case BRW_REGISTER_TYPE_V:
1066 case BRW_REGISTER_TYPE_UV:
1067 case BRW_REGISTER_TYPE_VF:
1068 ERROR_IF(dst_subreg % (128 / 8) != 0,
1069 "Destination must be 128-bit aligned in order to use immediate "
1070 "vector types");
1071
1072 if (type == BRW_REGISTER_TYPE_VF) {
1073 ERROR_IF(dst_type_size * dst_stride != 4,
1074 "Destination must have stride equivalent to dword in order "
1075 "to use the VF type");
1076 } else {
1077 ERROR_IF(dst_type_size * dst_stride != 2,
1078 "Destination must have stride equivalent to word in order "
1079 "to use the V or UV type");
1080 }
1081 break;
1082 default:
1083 break;
1084 }
1085
1086 return error_msg;
1087 }
1088
1089 static struct string
1090 special_requirements_for_handling_double_precision_data_types(
1091 const struct gen_device_info *devinfo,
1092 const brw_inst *inst)
1093 {
1094 unsigned num_sources = num_sources_from_inst(devinfo, inst);
1095 struct string error_msg = { .str = NULL, .len = 0 };
1096
1097 if (num_sources == 3 || num_sources == 0)
1098 return (struct string){};
1099
1100 enum brw_reg_type exec_type = execution_type(devinfo, inst);
1101 unsigned exec_type_size = brw_reg_type_to_size(exec_type);
1102
1103 enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, inst);
1104 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
1105 unsigned dst_type_size = brw_reg_type_to_size(dst_type);
1106 unsigned dst_hstride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1107 unsigned dst_reg = brw_inst_dst_da_reg_nr(devinfo, inst);
1108 unsigned dst_subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
1109 unsigned dst_address_mode = brw_inst_dst_address_mode(devinfo, inst);
1110
1111 bool is_integer_dword_multiply =
1112 devinfo->gen >= 8 &&
1113 brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MUL &&
1114 (brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_D ||
1115 brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UD) &&
1116 (brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_D ||
1117 brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_UD);
1118
1119 if (dst_type_size != 8 && exec_type_size != 8 && !is_integer_dword_multiply)
1120 return (struct string){};
1121
1122 for (unsigned i = 0; i < num_sources; i++) {
1123 unsigned vstride, width, hstride, type_size, reg, subreg, address_mode;
1124 bool is_scalar_region;
1125 enum brw_reg_file file;
1126 enum brw_reg_type type;
1127
1128 #define DO_SRC(n) \
1129 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
1130 BRW_IMMEDIATE_VALUE) \
1131 continue; \
1132 \
1133 is_scalar_region = src ## n ## _has_scalar_region(devinfo, inst); \
1134 vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
1135 width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
1136 hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
1137 file = brw_inst_src ## n ## _reg_file(devinfo, inst); \
1138 type = brw_inst_src ## n ## _type(devinfo, inst); \
1139 type_size = brw_reg_type_to_size(type); \
1140 reg = brw_inst_src ## n ## _da_reg_nr(devinfo, inst); \
1141 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
1142 address_mode = brw_inst_src ## n ## _address_mode(devinfo, inst)
1143
1144 if (i == 0) {
1145 DO_SRC(0);
1146 } else {
1147 DO_SRC(1);
1148 }
1149 #undef DO_SRC
1150
1151 /* The PRMs say that for CHV, BXT:
1152 *
1153 * When source or destination datatype is 64b or operation is integer
1154 * DWord multiply, regioning in Align1 must follow these rules:
1155 *
1156 * 1. Source and Destination horizontal stride must be aligned to the
1157 * same qword.
1158 * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
1159 * 3. Source and Destination offset must be the same, except the case
1160 * of scalar source.
1161 *
1162 * We assume that the restriction applies to GLK as well.
1163 */
1164 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
1165 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
1166 unsigned src_stride = hstride * type_size;
1167 unsigned dst_stride = dst_hstride * dst_type_size;
1168
1169 ERROR_IF(!is_scalar_region &&
1170 (src_stride % 8 != 0 ||
1171 dst_stride % 8 != 0 ||
1172 src_stride != dst_stride),
1173 "Source and destination horizontal stride must equal and a "
1174 "multiple of a qword when the execution type is 64-bit");
1175
1176 ERROR_IF(vstride != width * hstride,
1177 "Vstride must be Width * Hstride when the execution type is "
1178 "64-bit");
1179
1180 ERROR_IF(!is_scalar_region && dst_subreg != subreg,
1181 "Source and destination offset must be the same when the "
1182 "execution type is 64-bit");
1183 }
1184
1185 /* The PRMs say that for CHV, BXT:
1186 *
1187 * When source or destination datatype is 64b or operation is integer
1188 * DWord multiply, indirect addressing must not be used.
1189 *
1190 * We assume that the restriction applies to GLK as well.
1191 */
1192 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1193 ERROR_IF(BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == address_mode ||
1194 BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == dst_address_mode,
1195 "Indirect addressing is not allowed when the execution type "
1196 "is 64-bit");
1197 }
1198
1199 /* The PRMs say that for CHV, BXT:
1200 *
1201 * ARF registers must never be used with 64b datatype or when
1202 * operation is integer DWord multiply.
1203 *
1204 * We assume that the restriction applies to GLK as well.
1205 *
1206 * We assume that the restriction does not apply to the null register.
1207 */
1208 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1209 ERROR_IF(brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MAC ||
1210 brw_inst_acc_wr_control(devinfo, inst) ||
1211 (BRW_ARCHITECTURE_REGISTER_FILE == file &&
1212 reg != BRW_ARF_NULL) ||
1213 (BRW_ARCHITECTURE_REGISTER_FILE == dst_file &&
1214 dst_reg != BRW_ARF_NULL),
1215 "Architecture registers cannot be used when the execution "
1216 "type is 64-bit");
1217 }
1218 }
1219
1220 /* The PRMs say that for BDW, SKL:
1221 *
1222 * If Align16 is required for an operation with QW destination and non-QW
1223 * source datatypes, the execution size cannot exceed 2.
1224 *
1225 * We assume that the restriction applies to all Gen8+ parts.
1226 */
1227 if (devinfo->gen >= 8) {
1228 enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
1229 enum brw_reg_type src1_type =
1230 num_sources > 1 ? brw_inst_src1_type(devinfo, inst) : src0_type;
1231 unsigned src0_type_size = brw_reg_type_to_size(src0_type);
1232 unsigned src1_type_size = brw_reg_type_to_size(src1_type);
1233
1234 ERROR_IF(brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16 &&
1235 dst_type_size == 8 &&
1236 (src0_type_size != 8 || src1_type_size != 8) &&
1237 brw_inst_exec_size(devinfo, inst) > BRW_EXECUTE_2,
1238 "In Align16 exec size cannot exceed 2 with a QWord destination "
1239 "and a non-QWord source");
1240 }
1241
1242 /* The PRMs say that for CHV, BXT:
1243 *
1244 * When source or destination datatype is 64b or operation is integer
1245 * DWord multiply, DepCtrl must not be used.
1246 *
1247 * We assume that the restriction applies to GLK as well.
1248 */
1249 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1250 ERROR_IF(brw_inst_no_dd_check(devinfo, inst) ||
1251 brw_inst_no_dd_clear(devinfo, inst),
1252 "DepCtrl is not allowed when the execution type is 64-bit");
1253 }
1254
1255 return error_msg;
1256 }
1257
1258 bool
1259 brw_validate_instructions(const struct gen_device_info *devinfo,
1260 void *assembly, int start_offset, int end_offset,
1261 struct annotation_info *annotation)
1262 {
1263 bool valid = true;
1264
1265 for (int src_offset = start_offset; src_offset < end_offset;) {
1266 struct string error_msg = { .str = NULL, .len = 0 };
1267 const brw_inst *inst = assembly + src_offset;
1268 bool is_compact = brw_inst_cmpt_control(devinfo, inst);
1269 brw_inst uncompacted;
1270
1271 if (is_compact) {
1272 brw_compact_inst *compacted = (void *)inst;
1273 brw_uncompact_instruction(devinfo, &uncompacted, compacted);
1274 inst = &uncompacted;
1275 }
1276
1277 if (is_unsupported_inst(devinfo, inst)) {
1278 ERROR("Instruction not supported on this Gen");
1279 } else {
1280 CHECK(sources_not_null);
1281 CHECK(send_restrictions);
1282 CHECK(general_restrictions_based_on_operand_types);
1283 CHECK(general_restrictions_on_region_parameters);
1284 CHECK(region_alignment_rules);
1285 CHECK(vector_immediate_restrictions);
1286 CHECK(special_requirements_for_handling_double_precision_data_types);
1287 }
1288
1289 if (error_msg.str && annotation) {
1290 annotation_insert_error(annotation, src_offset, error_msg.str);
1291 }
1292 valid = valid && error_msg.len == 0;
1293 free(error_msg.str);
1294
1295 if (is_compact) {
1296 src_offset += sizeof(brw_compact_inst);
1297 } else {
1298 src_offset += sizeof(brw_inst);
1299 }
1300 }
1301
1302 return valid;
1303 }