intel/compiler: Add Gen11+ native float type
[mesa.git] / src / intel / compiler / brw_eu_validate.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_eu_validate.c
25 *
26 * This file implements a pass that validates shader assembly.
27 */
28
29 #include "brw_eu.h"
30
31 /* We're going to do lots of string concatenation, so this should help. */
32 struct string {
33 char *str;
34 size_t len;
35 };
36
37 static void
38 cat(struct string *dest, const struct string src)
39 {
40 dest->str = realloc(dest->str, dest->len + src.len + 1);
41 memcpy(dest->str + dest->len, src.str, src.len);
42 dest->str[dest->len + src.len] = '\0';
43 dest->len = dest->len + src.len;
44 }
45 #define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)})
46
47 static bool
48 contains(const struct string haystack, const struct string needle)
49 {
50 return haystack.str && memmem(haystack.str, haystack.len,
51 needle.str, needle.len) != NULL;
52 }
53 #define CONTAINS(haystack, needle) \
54 contains(haystack, (struct string){needle, strlen(needle)})
55
56 #define error(str) "\tERROR: " str "\n"
57 #define ERROR_INDENT "\t "
58
59 #define ERROR(msg) ERROR_IF(true, msg)
60 #define ERROR_IF(cond, msg) \
61 do { \
62 if ((cond) && !CONTAINS(error_msg, error(msg))) { \
63 CAT(error_msg, error(msg)); \
64 } \
65 } while(0)
66
67 #define CHECK(func, args...) \
68 do { \
69 struct string __msg = func(devinfo, inst, ##args); \
70 if (__msg.str) { \
71 cat(&error_msg, __msg); \
72 free(__msg.str); \
73 } \
74 } while (0)
75
76 #define STRIDE(stride) (stride != 0 ? 1 << ((stride) - 1) : 0)
77 #define WIDTH(width) (1 << (width))
78
79 static bool
80 inst_is_send(const struct gen_device_info *devinfo, const brw_inst *inst)
81 {
82 switch (brw_inst_opcode(devinfo, inst)) {
83 case BRW_OPCODE_SEND:
84 case BRW_OPCODE_SENDC:
85 case BRW_OPCODE_SENDS:
86 case BRW_OPCODE_SENDSC:
87 return true;
88 default:
89 return false;
90 }
91 }
92
93 static unsigned
94 signed_type(unsigned type)
95 {
96 switch (type) {
97 case BRW_REGISTER_TYPE_UD: return BRW_REGISTER_TYPE_D;
98 case BRW_REGISTER_TYPE_UW: return BRW_REGISTER_TYPE_W;
99 case BRW_REGISTER_TYPE_UB: return BRW_REGISTER_TYPE_B;
100 case BRW_REGISTER_TYPE_UQ: return BRW_REGISTER_TYPE_Q;
101 default: return type;
102 }
103 }
104
105 static bool
106 inst_is_raw_move(const struct gen_device_info *devinfo, const brw_inst *inst)
107 {
108 unsigned dst_type = signed_type(brw_inst_dst_type(devinfo, inst));
109 unsigned src_type = signed_type(brw_inst_src0_type(devinfo, inst));
110
111 if (brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE) {
112 /* FIXME: not strictly true */
113 if (brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_VF ||
114 brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UV ||
115 brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_V) {
116 return false;
117 }
118 } else if (brw_inst_src0_negate(devinfo, inst) ||
119 brw_inst_src0_abs(devinfo, inst)) {
120 return false;
121 }
122
123 return brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MOV &&
124 brw_inst_saturate(devinfo, inst) == 0 &&
125 dst_type == src_type;
126 }
127
128 static bool
129 dst_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
130 {
131 return brw_inst_dst_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
132 brw_inst_dst_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
133 }
134
135 static bool
136 src0_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
137 {
138 return brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
139 brw_inst_src0_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
140 }
141
142 static bool
143 src1_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
144 {
145 return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
146 brw_inst_src1_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
147 }
148
149 static bool
150 src0_is_grf(const struct gen_device_info *devinfo, const brw_inst *inst)
151 {
152 return brw_inst_src0_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE;
153 }
154
155 static bool
156 src0_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
157 {
158 return brw_inst_src0_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
159 brw_inst_src0_width(devinfo, inst) == BRW_WIDTH_1 &&
160 brw_inst_src0_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
161 }
162
163 static bool
164 src1_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
165 {
166 return brw_inst_src1_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
167 brw_inst_src1_width(devinfo, inst) == BRW_WIDTH_1 &&
168 brw_inst_src1_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
169 }
170
171 static unsigned
172 num_sources_from_inst(const struct gen_device_info *devinfo,
173 const brw_inst *inst)
174 {
175 const struct opcode_desc *desc =
176 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
177 unsigned math_function;
178
179 if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
180 math_function = brw_inst_math_function(devinfo, inst);
181 } else if (devinfo->gen < 6 &&
182 brw_inst_opcode(devinfo, inst) == BRW_OPCODE_SEND) {
183 if (brw_inst_sfid(devinfo, inst) == BRW_SFID_MATH) {
184 /* src1 must be a descriptor (including the information to determine
185 * that the SEND is doing an extended math operation), but src0 can
186 * actually be null since it serves as the source of the implicit GRF
187 * to MRF move.
188 *
189 * If we stop using that functionality, we'll have to revisit this.
190 */
191 return 2;
192 } else {
193 /* Send instructions are allowed to have null sources since they use
194 * the base_mrf field to specify which message register source.
195 */
196 return 0;
197 }
198 } else {
199 assert(desc->nsrc < 4);
200 return desc->nsrc;
201 }
202
203 switch (math_function) {
204 case BRW_MATH_FUNCTION_INV:
205 case BRW_MATH_FUNCTION_LOG:
206 case BRW_MATH_FUNCTION_EXP:
207 case BRW_MATH_FUNCTION_SQRT:
208 case BRW_MATH_FUNCTION_RSQ:
209 case BRW_MATH_FUNCTION_SIN:
210 case BRW_MATH_FUNCTION_COS:
211 case BRW_MATH_FUNCTION_SINCOS:
212 case GEN8_MATH_FUNCTION_INVM:
213 case GEN8_MATH_FUNCTION_RSQRTM:
214 return 1;
215 case BRW_MATH_FUNCTION_FDIV:
216 case BRW_MATH_FUNCTION_POW:
217 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
218 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
219 case BRW_MATH_FUNCTION_INT_DIV_REMAINDER:
220 return 2;
221 default:
222 unreachable("not reached");
223 }
224 }
225
226 static struct string
227 sources_not_null(const struct gen_device_info *devinfo,
228 const brw_inst *inst)
229 {
230 unsigned num_sources = num_sources_from_inst(devinfo, inst);
231 struct string error_msg = { .str = NULL, .len = 0 };
232
233 /* Nothing to test. 3-src instructions can only have GRF sources, and
234 * there's no bit to control the file.
235 */
236 if (num_sources == 3)
237 return (struct string){};
238
239 if (num_sources >= 1)
240 ERROR_IF(src0_is_null(devinfo, inst), "src0 is null");
241
242 if (num_sources == 2)
243 ERROR_IF(src1_is_null(devinfo, inst), "src1 is null");
244
245 return error_msg;
246 }
247
248 static struct string
249 send_restrictions(const struct gen_device_info *devinfo,
250 const brw_inst *inst)
251 {
252 struct string error_msg = { .str = NULL, .len = 0 };
253
254 if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_SEND) {
255 ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT,
256 "send must use direct addressing");
257
258 if (devinfo->gen >= 7) {
259 ERROR_IF(!src0_is_grf(devinfo, inst), "send from non-GRF");
260 ERROR_IF(brw_inst_eot(devinfo, inst) &&
261 brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
262 "send with EOT must use g112-g127");
263 }
264 }
265
266 return error_msg;
267 }
268
269 static bool
270 is_unsupported_inst(const struct gen_device_info *devinfo,
271 const brw_inst *inst)
272 {
273 return brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst)) == NULL;
274 }
275
276 static enum brw_reg_type
277 execution_type_for_type(enum brw_reg_type type)
278 {
279 switch (type) {
280 case BRW_REGISTER_TYPE_NF:
281 case BRW_REGISTER_TYPE_DF:
282 case BRW_REGISTER_TYPE_F:
283 case BRW_REGISTER_TYPE_HF:
284 return type;
285
286 case BRW_REGISTER_TYPE_VF:
287 return BRW_REGISTER_TYPE_F;
288
289 case BRW_REGISTER_TYPE_Q:
290 case BRW_REGISTER_TYPE_UQ:
291 return BRW_REGISTER_TYPE_Q;
292
293 case BRW_REGISTER_TYPE_D:
294 case BRW_REGISTER_TYPE_UD:
295 return BRW_REGISTER_TYPE_D;
296
297 case BRW_REGISTER_TYPE_W:
298 case BRW_REGISTER_TYPE_UW:
299 case BRW_REGISTER_TYPE_B:
300 case BRW_REGISTER_TYPE_UB:
301 case BRW_REGISTER_TYPE_V:
302 case BRW_REGISTER_TYPE_UV:
303 return BRW_REGISTER_TYPE_W;
304 }
305 unreachable("not reached");
306 }
307
308 /**
309 * Returns the execution type of an instruction \p inst
310 */
311 static enum brw_reg_type
312 execution_type(const struct gen_device_info *devinfo, const brw_inst *inst)
313 {
314 unsigned num_sources = num_sources_from_inst(devinfo, inst);
315 enum brw_reg_type src0_exec_type, src1_exec_type;
316
317 /* Execution data type is independent of destination data type, except in
318 * mixed F/HF instructions on CHV and SKL+.
319 */
320 enum brw_reg_type dst_exec_type = brw_inst_dst_type(devinfo, inst);
321
322 src0_exec_type = execution_type_for_type(brw_inst_src0_type(devinfo, inst));
323 if (num_sources == 1) {
324 if ((devinfo->gen >= 9 || devinfo->is_cherryview) &&
325 src0_exec_type == BRW_REGISTER_TYPE_HF) {
326 return dst_exec_type;
327 }
328 return src0_exec_type;
329 }
330
331 src1_exec_type = execution_type_for_type(brw_inst_src1_type(devinfo, inst));
332 if (src0_exec_type == src1_exec_type)
333 return src0_exec_type;
334
335 /* Mixed operand types where one is float is float on Gen < 6
336 * (and not allowed on later platforms)
337 */
338 if (devinfo->gen < 6 &&
339 (src0_exec_type == BRW_REGISTER_TYPE_F ||
340 src1_exec_type == BRW_REGISTER_TYPE_F))
341 return BRW_REGISTER_TYPE_F;
342
343 if (src0_exec_type == BRW_REGISTER_TYPE_Q ||
344 src1_exec_type == BRW_REGISTER_TYPE_Q)
345 return BRW_REGISTER_TYPE_Q;
346
347 if (src0_exec_type == BRW_REGISTER_TYPE_D ||
348 src1_exec_type == BRW_REGISTER_TYPE_D)
349 return BRW_REGISTER_TYPE_D;
350
351 if (src0_exec_type == BRW_REGISTER_TYPE_W ||
352 src1_exec_type == BRW_REGISTER_TYPE_W)
353 return BRW_REGISTER_TYPE_W;
354
355 if (src0_exec_type == BRW_REGISTER_TYPE_DF ||
356 src1_exec_type == BRW_REGISTER_TYPE_DF)
357 return BRW_REGISTER_TYPE_DF;
358
359 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
360 if (dst_exec_type == BRW_REGISTER_TYPE_F ||
361 src0_exec_type == BRW_REGISTER_TYPE_F ||
362 src1_exec_type == BRW_REGISTER_TYPE_F) {
363 return BRW_REGISTER_TYPE_F;
364 } else {
365 return BRW_REGISTER_TYPE_HF;
366 }
367 }
368
369 assert(src0_exec_type == BRW_REGISTER_TYPE_F);
370 return BRW_REGISTER_TYPE_F;
371 }
372
373 /**
374 * Returns whether a region is packed
375 *
376 * A region is packed if its elements are adjacent in memory, with no
377 * intervening space, no overlap, and no replicated values.
378 */
379 static bool
380 is_packed(unsigned vstride, unsigned width, unsigned hstride)
381 {
382 if (vstride == width) {
383 if (vstride == 1) {
384 return hstride == 0;
385 } else {
386 return hstride == 1;
387 }
388 }
389
390 return false;
391 }
392
393 /**
394 * Checks restrictions listed in "General Restrictions Based on Operand Types"
395 * in the "Register Region Restrictions" section.
396 */
397 static struct string
398 general_restrictions_based_on_operand_types(const struct gen_device_info *devinfo,
399 const brw_inst *inst)
400 {
401 const struct opcode_desc *desc =
402 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
403 unsigned num_sources = num_sources_from_inst(devinfo, inst);
404 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
405 struct string error_msg = { .str = NULL, .len = 0 };
406
407 if (num_sources == 3)
408 return (struct string){};
409
410 if (inst_is_send(devinfo, inst))
411 return (struct string){};
412
413 if (exec_size == 1)
414 return (struct string){};
415
416 if (desc->ndst == 0)
417 return (struct string){};
418
419 /* The PRMs say:
420 *
421 * Where n is the largest element size in bytes for any source or
422 * destination operand type, ExecSize * n must be <= 64.
423 *
424 * But we do not attempt to enforce it, because it is implied by other
425 * rules:
426 *
427 * - that the destination stride must match the execution data type
428 * - sources may not span more than two adjacent GRF registers
429 * - destination may not span more than two adjacent GRF registers
430 *
431 * In fact, checking it would weaken testing of the other rules.
432 */
433
434 unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
435 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
436 bool dst_type_is_byte =
437 brw_inst_dst_type(devinfo, inst) == BRW_REGISTER_TYPE_B ||
438 brw_inst_dst_type(devinfo, inst) == BRW_REGISTER_TYPE_UB;
439
440 if (dst_type_is_byte) {
441 if (is_packed(exec_size * dst_stride, exec_size, dst_stride)) {
442 if (!inst_is_raw_move(devinfo, inst)) {
443 ERROR("Only raw MOV supports a packed-byte destination");
444 return error_msg;
445 } else {
446 return (struct string){};
447 }
448 }
449 }
450
451 unsigned exec_type = execution_type(devinfo, inst);
452 unsigned exec_type_size = brw_reg_type_to_size(exec_type);
453 unsigned dst_type_size = brw_reg_type_to_size(dst_type);
454
455 /* On IVB/BYT, region parameters and execution size for DF are in terms of
456 * 32-bit elements, so they are doubled. For evaluating the validity of an
457 * instruction, we halve them.
458 */
459 if (devinfo->gen == 7 && !devinfo->is_haswell &&
460 exec_type_size == 8 && dst_type_size == 4)
461 dst_type_size = 8;
462
463 if (exec_type_size > dst_type_size) {
464 ERROR_IF(dst_stride * dst_type_size != exec_type_size,
465 "Destination stride must be equal to the ratio of the sizes of "
466 "the execution data type to the destination type");
467
468 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
469
470 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
471 brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT) {
472 /* The i965 PRM says:
473 *
474 * Implementation Restriction: The relaxed alignment rule for byte
475 * destination (#10.5) is not supported.
476 */
477 if ((devinfo->gen > 4 || devinfo->is_g4x) && dst_type_is_byte) {
478 ERROR_IF(subreg % exec_type_size != 0 &&
479 subreg % exec_type_size != 1,
480 "Destination subreg must be aligned to the size of the "
481 "execution data type (or to the next lowest byte for byte "
482 "destinations)");
483 } else {
484 ERROR_IF(subreg % exec_type_size != 0,
485 "Destination subreg must be aligned to the size of the "
486 "execution data type");
487 }
488 }
489 }
490
491 return error_msg;
492 }
493
494 /**
495 * Checks restrictions listed in "General Restrictions on Regioning Parameters"
496 * in the "Register Region Restrictions" section.
497 */
498 static struct string
499 general_restrictions_on_region_parameters(const struct gen_device_info *devinfo,
500 const brw_inst *inst)
501 {
502 const struct opcode_desc *desc =
503 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
504 unsigned num_sources = num_sources_from_inst(devinfo, inst);
505 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
506 struct string error_msg = { .str = NULL, .len = 0 };
507
508 if (num_sources == 3)
509 return (struct string){};
510
511 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16) {
512 if (desc->ndst != 0 && !dst_is_null(devinfo, inst))
513 ERROR_IF(brw_inst_dst_hstride(devinfo, inst) != BRW_HORIZONTAL_STRIDE_1,
514 "Destination Horizontal Stride must be 1");
515
516 if (num_sources >= 1) {
517 if (devinfo->is_haswell || devinfo->gen >= 8) {
518 ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
519 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
520 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
521 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
522 "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
523 } else {
524 ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
525 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
526 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
527 "In Align16 mode, only VertStride of 0 or 4 is allowed");
528 }
529 }
530
531 if (num_sources == 2) {
532 if (devinfo->is_haswell || devinfo->gen >= 8) {
533 ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
534 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
535 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
536 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
537 "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
538 } else {
539 ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
540 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
541 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
542 "In Align16 mode, only VertStride of 0 or 4 is allowed");
543 }
544 }
545
546 return error_msg;
547 }
548
549 for (unsigned i = 0; i < num_sources; i++) {
550 unsigned vstride, width, hstride, element_size, subreg;
551 enum brw_reg_type type;
552
553 #define DO_SRC(n) \
554 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
555 BRW_IMMEDIATE_VALUE) \
556 continue; \
557 \
558 vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
559 width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
560 hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
561 type = brw_inst_src ## n ## _type(devinfo, inst); \
562 element_size = brw_reg_type_to_size(type); \
563 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst)
564
565 if (i == 0) {
566 DO_SRC(0);
567 } else {
568 DO_SRC(1);
569 }
570 #undef DO_SRC
571
572 /* On IVB/BYT, region parameters and execution size for DF are in terms of
573 * 32-bit elements, so they are doubled. For evaluating the validity of an
574 * instruction, we halve them.
575 */
576 if (devinfo->gen == 7 && !devinfo->is_haswell &&
577 element_size == 8)
578 element_size = 4;
579
580 /* ExecSize must be greater than or equal to Width. */
581 ERROR_IF(exec_size < width, "ExecSize must be greater than or equal "
582 "to Width");
583
584 /* If ExecSize = Width and HorzStride ≠ 0,
585 * VertStride must be set to Width * HorzStride.
586 */
587 if (exec_size == width && hstride != 0) {
588 ERROR_IF(vstride != width * hstride,
589 "If ExecSize = Width and HorzStride ≠ 0, "
590 "VertStride must be set to Width * HorzStride");
591 }
592
593 /* If Width = 1, HorzStride must be 0 regardless of the values of
594 * ExecSize and VertStride.
595 */
596 if (width == 1) {
597 ERROR_IF(hstride != 0,
598 "If Width = 1, HorzStride must be 0 regardless "
599 "of the values of ExecSize and VertStride");
600 }
601
602 /* If ExecSize = Width = 1, both VertStride and HorzStride must be 0. */
603 if (exec_size == 1 && width == 1) {
604 ERROR_IF(vstride != 0 || hstride != 0,
605 "If ExecSize = Width = 1, both VertStride "
606 "and HorzStride must be 0");
607 }
608
609 /* If VertStride = HorzStride = 0, Width must be 1 regardless of the
610 * value of ExecSize.
611 */
612 if (vstride == 0 && hstride == 0) {
613 ERROR_IF(width != 1,
614 "If VertStride = HorzStride = 0, Width must be "
615 "1 regardless of the value of ExecSize");
616 }
617
618 /* VertStride must be used to cross GRF register boundaries. This rule
619 * implies that elements within a 'Width' cannot cross GRF boundaries.
620 */
621 const uint64_t mask = (1ULL << element_size) - 1;
622 unsigned rowbase = subreg;
623
624 for (int y = 0; y < exec_size / width; y++) {
625 uint64_t access_mask = 0;
626 unsigned offset = rowbase;
627
628 for (int x = 0; x < width; x++) {
629 access_mask |= mask << offset;
630 offset += hstride * element_size;
631 }
632
633 rowbase += vstride * element_size;
634
635 if ((uint32_t)access_mask != 0 && (access_mask >> 32) != 0) {
636 ERROR("VertStride must be used to cross GRF register boundaries");
637 break;
638 }
639 }
640 }
641
642 /* Dst.HorzStride must not be 0. */
643 if (desc->ndst != 0 && !dst_is_null(devinfo, inst)) {
644 ERROR_IF(brw_inst_dst_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0,
645 "Destination Horizontal Stride must not be 0");
646 }
647
648 return error_msg;
649 }
650
651 /**
652 * Creates an \p access_mask for an \p exec_size, \p element_size, and a region
653 *
654 * An \p access_mask is a 32-element array of uint64_t, where each uint64_t is
655 * a bitmask of bytes accessed by the region.
656 *
657 * For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4
658 * instruction would be
659 *
660 * access_mask[0] = 0x00000000000000F0
661 * access_mask[1] = 0x000000000000F000
662 * access_mask[2] = 0x0000000000F00000
663 * access_mask[3] = 0x00000000F0000000
664 * access_mask[4-31] = 0
665 *
666 * because the first execution channel accesses bytes 7-4 and the second
667 * execution channel accesses bytes 15-12, etc.
668 */
669 static void
670 align1_access_mask(uint64_t access_mask[static 32],
671 unsigned exec_size, unsigned element_size, unsigned subreg,
672 unsigned vstride, unsigned width, unsigned hstride)
673 {
674 const uint64_t mask = (1ULL << element_size) - 1;
675 unsigned rowbase = subreg;
676 unsigned element = 0;
677
678 for (int y = 0; y < exec_size / width; y++) {
679 unsigned offset = rowbase;
680
681 for (int x = 0; x < width; x++) {
682 access_mask[element++] = mask << offset;
683 offset += hstride * element_size;
684 }
685
686 rowbase += vstride * element_size;
687 }
688
689 assert(element == 0 || element == exec_size);
690 }
691
692 /**
693 * Returns the number of registers accessed according to the \p access_mask
694 */
695 static int
696 registers_read(const uint64_t access_mask[static 32])
697 {
698 int regs_read = 0;
699
700 for (unsigned i = 0; i < 32; i++) {
701 if (access_mask[i] > 0xFFFFFFFF) {
702 return 2;
703 } else if (access_mask[i]) {
704 regs_read = 1;
705 }
706 }
707
708 return regs_read;
709 }
710
711 /**
712 * Checks restrictions listed in "Region Alignment Rules" in the "Register
713 * Region Restrictions" section.
714 */
715 static struct string
716 region_alignment_rules(const struct gen_device_info *devinfo,
717 const brw_inst *inst)
718 {
719 const struct opcode_desc *desc =
720 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
721 unsigned num_sources = num_sources_from_inst(devinfo, inst);
722 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
723 uint64_t dst_access_mask[32], src0_access_mask[32], src1_access_mask[32];
724 struct string error_msg = { .str = NULL, .len = 0 };
725
726 if (num_sources == 3)
727 return (struct string){};
728
729 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16)
730 return (struct string){};
731
732 if (inst_is_send(devinfo, inst))
733 return (struct string){};
734
735 memset(dst_access_mask, 0, sizeof(dst_access_mask));
736 memset(src0_access_mask, 0, sizeof(src0_access_mask));
737 memset(src1_access_mask, 0, sizeof(src1_access_mask));
738
739 for (unsigned i = 0; i < num_sources; i++) {
740 unsigned vstride, width, hstride, element_size, subreg;
741 enum brw_reg_type type;
742
743 /* In Direct Addressing mode, a source cannot span more than 2 adjacent
744 * GRF registers.
745 */
746
747 #define DO_SRC(n) \
748 if (brw_inst_src ## n ## _address_mode(devinfo, inst) != \
749 BRW_ADDRESS_DIRECT) \
750 continue; \
751 \
752 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
753 BRW_IMMEDIATE_VALUE) \
754 continue; \
755 \
756 vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
757 width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
758 hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
759 type = brw_inst_src ## n ## _type(devinfo, inst); \
760 element_size = brw_reg_type_to_size(type); \
761 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
762 align1_access_mask(src ## n ## _access_mask, \
763 exec_size, element_size, subreg, \
764 vstride, width, hstride)
765
766 if (i == 0) {
767 DO_SRC(0);
768 } else {
769 DO_SRC(1);
770 }
771 #undef DO_SRC
772
773 unsigned num_vstride = exec_size / width;
774 unsigned num_hstride = width;
775 unsigned vstride_elements = (num_vstride - 1) * vstride;
776 unsigned hstride_elements = (num_hstride - 1) * hstride;
777 unsigned offset = (vstride_elements + hstride_elements) * element_size +
778 subreg;
779 ERROR_IF(offset >= 64,
780 "A source cannot span more than 2 adjacent GRF registers");
781 }
782
783 if (desc->ndst == 0 || dst_is_null(devinfo, inst))
784 return error_msg;
785
786 unsigned stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
787 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
788 unsigned element_size = brw_reg_type_to_size(dst_type);
789 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
790 unsigned offset = ((exec_size - 1) * stride * element_size) + subreg;
791 ERROR_IF(offset >= 64,
792 "A destination cannot span more than 2 adjacent GRF registers");
793
794 if (error_msg.str)
795 return error_msg;
796
797 /* On IVB/BYT, region parameters and execution size for DF are in terms of
798 * 32-bit elements, so they are doubled. For evaluating the validity of an
799 * instruction, we halve them.
800 */
801 if (devinfo->gen == 7 && !devinfo->is_haswell &&
802 element_size == 8)
803 element_size = 4;
804
805 align1_access_mask(dst_access_mask, exec_size, element_size, subreg,
806 exec_size == 1 ? 0 : exec_size * stride,
807 exec_size == 1 ? 1 : exec_size,
808 exec_size == 1 ? 0 : stride);
809
810 unsigned dst_regs = registers_read(dst_access_mask);
811 unsigned src0_regs = registers_read(src0_access_mask);
812 unsigned src1_regs = registers_read(src1_access_mask);
813
814 /* The SNB, IVB, HSW, BDW, and CHV PRMs say:
815 *
816 * When an instruction has a source region spanning two registers and a
817 * destination region contained in one register, the number of elements
818 * must be the same between two sources and one of the following must be
819 * true:
820 *
821 * 1. The destination region is entirely contained in the lower OWord
822 * of a register.
823 * 2. The destination region is entirely contained in the upper OWord
824 * of a register.
825 * 3. The destination elements are evenly split between the two OWords
826 * of a register.
827 */
828 if (devinfo->gen <= 8) {
829 if (dst_regs == 1 && (src0_regs == 2 || src1_regs == 2)) {
830 unsigned upper_oword_writes = 0, lower_oword_writes = 0;
831
832 for (unsigned i = 0; i < exec_size; i++) {
833 if (dst_access_mask[i] > 0x0000FFFF) {
834 upper_oword_writes++;
835 } else {
836 assert(dst_access_mask[i] != 0);
837 lower_oword_writes++;
838 }
839 }
840
841 ERROR_IF(lower_oword_writes != 0 &&
842 upper_oword_writes != 0 &&
843 upper_oword_writes != lower_oword_writes,
844 "Writes must be to only one OWord or "
845 "evenly split between OWords");
846 }
847 }
848
849 /* The IVB and HSW PRMs say:
850 *
851 * When an instruction has a source region that spans two registers and
852 * the destination spans two registers, the destination elements must be
853 * evenly split between the two registers [...]
854 *
855 * The SNB PRM contains similar wording (but written in a much more
856 * confusing manner).
857 *
858 * The BDW PRM says:
859 *
860 * When destination spans two registers, the source may be one or two
861 * registers. The destination elements must be evenly split between the
862 * two registers.
863 *
864 * The SKL PRM says:
865 *
866 * When destination of MATH instruction spans two registers, the
867 * destination elements must be evenly split between the two registers.
868 *
869 * It is not known whether this restriction applies to KBL other Gens after
870 * SKL.
871 */
872 if (devinfo->gen <= 8 ||
873 brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
874
875 /* Nothing explicitly states that on Gen < 8 elements must be evenly
876 * split between two destination registers in the two exceptional
877 * source-region-spans-one-register cases, but since Broadwell requires
878 * evenly split writes regardless of source region, we assume that it was
879 * an oversight and require it.
880 */
881 if (dst_regs == 2) {
882 unsigned upper_reg_writes = 0, lower_reg_writes = 0;
883
884 for (unsigned i = 0; i < exec_size; i++) {
885 if (dst_access_mask[i] > 0xFFFFFFFF) {
886 upper_reg_writes++;
887 } else {
888 assert(dst_access_mask[i] != 0);
889 lower_reg_writes++;
890 }
891 }
892
893 ERROR_IF(upper_reg_writes != lower_reg_writes,
894 "Writes must be evenly split between the two "
895 "destination registers");
896 }
897 }
898
899 /* The IVB and HSW PRMs say:
900 *
901 * When an instruction has a source region that spans two registers and
902 * the destination spans two registers, the destination elements must be
903 * evenly split between the two registers and each destination register
904 * must be entirely derived from one source register.
905 *
906 * Note: In such cases, the regioning parameters must ensure that the
907 * offset from the two source registers is the same.
908 *
909 * The SNB PRM contains similar wording (but written in a much more
910 * confusing manner).
911 *
912 * There are effectively three rules stated here:
913 *
914 * For an instruction with a source and a destination spanning two
915 * registers,
916 *
917 * (1) destination elements must be evenly split between the two
918 * registers
919 * (2) all destination elements in a register must be derived
920 * from one source register
921 * (3) the offset (i.e. the starting location in each of the two
922 * registers spanned by a region) must be the same in the two
923 * registers spanned by a region
924 *
925 * It is impossible to violate rule (1) without violating (2) or (3), so we
926 * do not attempt to validate it.
927 */
928 if (devinfo->gen <= 7 && dst_regs == 2) {
929 for (unsigned i = 0; i < num_sources; i++) {
930 #define DO_SRC(n) \
931 if (src ## n ## _regs <= 1) \
932 continue; \
933 \
934 for (unsigned i = 0; i < exec_size; i++) { \
935 if ((dst_access_mask[i] > 0xFFFFFFFF) != \
936 (src ## n ## _access_mask[i] > 0xFFFFFFFF)) { \
937 ERROR("Each destination register must be entirely derived " \
938 "from one source register"); \
939 break; \
940 } \
941 } \
942 \
943 unsigned offset_0 = \
944 brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
945 unsigned offset_1 = offset_0; \
946 \
947 for (unsigned i = 0; i < exec_size; i++) { \
948 if (src ## n ## _access_mask[i] > 0xFFFFFFFF) { \
949 offset_1 = __builtin_ctzll(src ## n ## _access_mask[i]) - 32; \
950 break; \
951 } \
952 } \
953 \
954 ERROR_IF(num_sources == 2 && offset_0 != offset_1, \
955 "The offset from the two source registers " \
956 "must be the same")
957
958 if (i == 0) {
959 DO_SRC(0);
960 } else {
961 DO_SRC(1);
962 }
963 #undef DO_SRC
964 }
965 }
966
967 /* The IVB and HSW PRMs say:
968 *
969 * When destination spans two registers, the source MUST span two
970 * registers. The exception to the above rule:
971 * 1. When source is scalar, the source registers are not
972 * incremented.
973 * 2. When source is packed integer Word and destination is packed
974 * integer DWord, the source register is not incremented by the
975 * source sub register is incremented.
976 *
977 * The SNB PRM does not contain this rule, but the internal documentation
978 * indicates that it applies to SNB as well. We assume that the rule applies
979 * to Gen <= 5 although their PRMs do not state it.
980 *
981 * While the documentation explicitly says in exception (2) that the
982 * destination must be an integer DWord, the hardware allows at least a
983 * float destination type as well. We emit such instructions from
984 *
985 * fs_visitor::emit_interpolation_setup_gen6
986 * fs_visitor::emit_fragcoord_interpolation
987 *
988 * and have for years with no ill effects.
989 *
990 * Additionally the simulator source code indicates that the real condition
991 * is that the size of the destination type is 4 bytes.
992 */
993 if (devinfo->gen <= 7 && dst_regs == 2) {
994 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
995 bool dst_is_packed_dword =
996 is_packed(exec_size * stride, exec_size, stride) &&
997 brw_reg_type_to_size(dst_type) == 4;
998
999 for (unsigned i = 0; i < num_sources; i++) {
1000 #define DO_SRC(n) \
1001 unsigned vstride, width, hstride; \
1002 vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
1003 width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
1004 hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
1005 bool src ## n ## _is_packed_word = \
1006 is_packed(vstride, width, hstride) && \
1007 (brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_W || \
1008 brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_UW); \
1009 \
1010 ERROR_IF(src ## n ## _regs == 1 && \
1011 !src ## n ## _has_scalar_region(devinfo, inst) && \
1012 !(dst_is_packed_dword && src ## n ## _is_packed_word), \
1013 "When the destination spans two registers, the source must " \
1014 "span two registers\n" ERROR_INDENT "(exceptions for scalar " \
1015 "source and packed-word to packed-dword expansion)")
1016
1017 if (i == 0) {
1018 DO_SRC(0);
1019 } else {
1020 DO_SRC(1);
1021 }
1022 #undef DO_SRC
1023 }
1024 }
1025
1026 return error_msg;
1027 }
1028
1029 static struct string
1030 vector_immediate_restrictions(const struct gen_device_info *devinfo,
1031 const brw_inst *inst)
1032 {
1033 unsigned num_sources = num_sources_from_inst(devinfo, inst);
1034 struct string error_msg = { .str = NULL, .len = 0 };
1035
1036 if (num_sources == 3 || num_sources == 0)
1037 return (struct string){};
1038
1039 unsigned file = num_sources == 1 ?
1040 brw_inst_src0_reg_file(devinfo, inst) :
1041 brw_inst_src1_reg_file(devinfo, inst);
1042 if (file != BRW_IMMEDIATE_VALUE)
1043 return (struct string){};
1044
1045 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
1046 unsigned dst_type_size = brw_reg_type_to_size(dst_type);
1047 unsigned dst_subreg = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 ?
1048 brw_inst_dst_da1_subreg_nr(devinfo, inst) : 0;
1049 unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1050 enum brw_reg_type type = num_sources == 1 ?
1051 brw_inst_src0_type(devinfo, inst) :
1052 brw_inst_src1_type(devinfo, inst);
1053
1054 /* The PRMs say:
1055 *
1056 * When an immediate vector is used in an instruction, the destination
1057 * must be 128-bit aligned with destination horizontal stride equivalent
1058 * to a word for an immediate integer vector (v) and equivalent to a
1059 * DWord for an immediate float vector (vf).
1060 *
1061 * The text has not been updated for the addition of the immediate unsigned
1062 * integer vector type (uv) on SNB, but presumably the same restriction
1063 * applies.
1064 */
1065 switch (type) {
1066 case BRW_REGISTER_TYPE_V:
1067 case BRW_REGISTER_TYPE_UV:
1068 case BRW_REGISTER_TYPE_VF:
1069 ERROR_IF(dst_subreg % (128 / 8) != 0,
1070 "Destination must be 128-bit aligned in order to use immediate "
1071 "vector types");
1072
1073 if (type == BRW_REGISTER_TYPE_VF) {
1074 ERROR_IF(dst_type_size * dst_stride != 4,
1075 "Destination must have stride equivalent to dword in order "
1076 "to use the VF type");
1077 } else {
1078 ERROR_IF(dst_type_size * dst_stride != 2,
1079 "Destination must have stride equivalent to word in order "
1080 "to use the V or UV type");
1081 }
1082 break;
1083 default:
1084 break;
1085 }
1086
1087 return error_msg;
1088 }
1089
1090 static struct string
1091 special_requirements_for_handling_double_precision_data_types(
1092 const struct gen_device_info *devinfo,
1093 const brw_inst *inst)
1094 {
1095 unsigned num_sources = num_sources_from_inst(devinfo, inst);
1096 struct string error_msg = { .str = NULL, .len = 0 };
1097
1098 if (num_sources == 3 || num_sources == 0)
1099 return (struct string){};
1100
1101 enum brw_reg_type exec_type = execution_type(devinfo, inst);
1102 unsigned exec_type_size = brw_reg_type_to_size(exec_type);
1103
1104 enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, inst);
1105 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
1106 unsigned dst_type_size = brw_reg_type_to_size(dst_type);
1107 unsigned dst_hstride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1108 unsigned dst_reg = brw_inst_dst_da_reg_nr(devinfo, inst);
1109 unsigned dst_subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
1110 unsigned dst_address_mode = brw_inst_dst_address_mode(devinfo, inst);
1111
1112 bool is_integer_dword_multiply =
1113 devinfo->gen >= 8 &&
1114 brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MUL &&
1115 (brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_D ||
1116 brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UD) &&
1117 (brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_D ||
1118 brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_UD);
1119
1120 if (dst_type_size != 8 && exec_type_size != 8 && !is_integer_dword_multiply)
1121 return (struct string){};
1122
1123 for (unsigned i = 0; i < num_sources; i++) {
1124 unsigned vstride, width, hstride, type_size, reg, subreg, address_mode;
1125 bool is_scalar_region;
1126 enum brw_reg_file file;
1127 enum brw_reg_type type;
1128
1129 #define DO_SRC(n) \
1130 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
1131 BRW_IMMEDIATE_VALUE) \
1132 continue; \
1133 \
1134 is_scalar_region = src ## n ## _has_scalar_region(devinfo, inst); \
1135 vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
1136 width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
1137 hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
1138 file = brw_inst_src ## n ## _reg_file(devinfo, inst); \
1139 type = brw_inst_src ## n ## _type(devinfo, inst); \
1140 type_size = brw_reg_type_to_size(type); \
1141 reg = brw_inst_src ## n ## _da_reg_nr(devinfo, inst); \
1142 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
1143 address_mode = brw_inst_src ## n ## _address_mode(devinfo, inst)
1144
1145 if (i == 0) {
1146 DO_SRC(0);
1147 } else {
1148 DO_SRC(1);
1149 }
1150 #undef DO_SRC
1151
1152 /* The PRMs say that for CHV, BXT:
1153 *
1154 * When source or destination datatype is 64b or operation is integer
1155 * DWord multiply, regioning in Align1 must follow these rules:
1156 *
1157 * 1. Source and Destination horizontal stride must be aligned to the
1158 * same qword.
1159 * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
1160 * 3. Source and Destination offset must be the same, except the case
1161 * of scalar source.
1162 *
1163 * We assume that the restriction applies to GLK as well.
1164 */
1165 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
1166 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
1167 unsigned src_stride = hstride * type_size;
1168 unsigned dst_stride = dst_hstride * dst_type_size;
1169
1170 ERROR_IF(!is_scalar_region &&
1171 (src_stride % 8 != 0 ||
1172 dst_stride % 8 != 0 ||
1173 src_stride != dst_stride),
1174 "Source and destination horizontal stride must equal and a "
1175 "multiple of a qword when the execution type is 64-bit");
1176
1177 ERROR_IF(vstride != width * hstride,
1178 "Vstride must be Width * Hstride when the execution type is "
1179 "64-bit");
1180
1181 ERROR_IF(!is_scalar_region && dst_subreg != subreg,
1182 "Source and destination offset must be the same when the "
1183 "execution type is 64-bit");
1184 }
1185
1186 /* The PRMs say that for CHV, BXT:
1187 *
1188 * When source or destination datatype is 64b or operation is integer
1189 * DWord multiply, indirect addressing must not be used.
1190 *
1191 * We assume that the restriction applies to GLK as well.
1192 */
1193 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1194 ERROR_IF(BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == address_mode ||
1195 BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == dst_address_mode,
1196 "Indirect addressing is not allowed when the execution type "
1197 "is 64-bit");
1198 }
1199
1200 /* The PRMs say that for CHV, BXT:
1201 *
1202 * ARF registers must never be used with 64b datatype or when
1203 * operation is integer DWord multiply.
1204 *
1205 * We assume that the restriction applies to GLK as well.
1206 *
1207 * We assume that the restriction does not apply to the null register.
1208 */
1209 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1210 ERROR_IF(brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MAC ||
1211 brw_inst_acc_wr_control(devinfo, inst) ||
1212 (BRW_ARCHITECTURE_REGISTER_FILE == file &&
1213 reg != BRW_ARF_NULL) ||
1214 (BRW_ARCHITECTURE_REGISTER_FILE == dst_file &&
1215 dst_reg != BRW_ARF_NULL),
1216 "Architecture registers cannot be used when the execution "
1217 "type is 64-bit");
1218 }
1219 }
1220
1221 /* The PRMs say that for BDW, SKL:
1222 *
1223 * If Align16 is required for an operation with QW destination and non-QW
1224 * source datatypes, the execution size cannot exceed 2.
1225 *
1226 * We assume that the restriction applies to all Gen8+ parts.
1227 */
1228 if (devinfo->gen >= 8) {
1229 enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
1230 enum brw_reg_type src1_type =
1231 num_sources > 1 ? brw_inst_src1_type(devinfo, inst) : src0_type;
1232 unsigned src0_type_size = brw_reg_type_to_size(src0_type);
1233 unsigned src1_type_size = brw_reg_type_to_size(src1_type);
1234
1235 ERROR_IF(brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16 &&
1236 dst_type_size == 8 &&
1237 (src0_type_size != 8 || src1_type_size != 8) &&
1238 brw_inst_exec_size(devinfo, inst) > BRW_EXECUTE_2,
1239 "In Align16 exec size cannot exceed 2 with a QWord destination "
1240 "and a non-QWord source");
1241 }
1242
1243 /* The PRMs say that for CHV, BXT:
1244 *
1245 * When source or destination datatype is 64b or operation is integer
1246 * DWord multiply, DepCtrl must not be used.
1247 *
1248 * We assume that the restriction applies to GLK as well.
1249 */
1250 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1251 ERROR_IF(brw_inst_no_dd_check(devinfo, inst) ||
1252 brw_inst_no_dd_clear(devinfo, inst),
1253 "DepCtrl is not allowed when the execution type is 64-bit");
1254 }
1255
1256 return error_msg;
1257 }
1258
1259 bool
1260 brw_validate_instructions(const struct gen_device_info *devinfo,
1261 const void *assembly, int start_offset, int end_offset,
1262 struct disasm_info *disasm)
1263 {
1264 bool valid = true;
1265
1266 for (int src_offset = start_offset; src_offset < end_offset;) {
1267 struct string error_msg = { .str = NULL, .len = 0 };
1268 const brw_inst *inst = assembly + src_offset;
1269 bool is_compact = brw_inst_cmpt_control(devinfo, inst);
1270 brw_inst uncompacted;
1271
1272 if (is_compact) {
1273 brw_compact_inst *compacted = (void *)inst;
1274 brw_uncompact_instruction(devinfo, &uncompacted, compacted);
1275 inst = &uncompacted;
1276 }
1277
1278 if (is_unsupported_inst(devinfo, inst)) {
1279 ERROR("Instruction not supported on this Gen");
1280 } else {
1281 CHECK(sources_not_null);
1282 CHECK(send_restrictions);
1283 CHECK(general_restrictions_based_on_operand_types);
1284 CHECK(general_restrictions_on_region_parameters);
1285 CHECK(region_alignment_rules);
1286 CHECK(vector_immediate_restrictions);
1287 CHECK(special_requirements_for_handling_double_precision_data_types);
1288 }
1289
1290 if (error_msg.str && disasm) {
1291 disasm_insert_error(disasm, src_offset, error_msg.str);
1292 }
1293 valid = valid && error_msg.len == 0;
1294 free(error_msg.str);
1295
1296 if (is_compact) {
1297 src_offset += sizeof(brw_compact_inst);
1298 } else {
1299 src_offset += sizeof(brw_inst);
1300 }
1301 }
1302
1303 return valid;
1304 }