6d9f0eccb29baf35028b296facd6a9786585559b
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 fs_reg dw = offset(vec4_result, bld, (const_offset & 0xf) / 4);
195 switch (type_sz(dst.type)) {
196 case 2:
197 shuffle_32bit_load_result_to_16bit_data(bld, dst, dw, 1);
198 bld.MOV(dst, subscript(dw, dst.type, (const_offset / 2) & 1));
199 break;
200 case 4:
201 bld.MOV(dst, retype(dw, dst.type));
202 break;
203 case 8:
204 shuffle_32bit_load_result_to_64bit_data(bld, dst, dw, 1);
205 break;
206 default:
207 unreachable("Unsupported bit_size");
208 }
209 }
210
211 /**
212 * A helper for MOV generation for fixing up broken hardware SEND dependency
213 * handling.
214 */
215 void
216 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
217 {
218 /* The caller always wants uncompressed to emit the minimal extra
219 * dependencies, and to avoid having to deal with aligning its regs to 2.
220 */
221 const fs_builder ubld = bld.annotate("send dependency resolve")
222 .half(0);
223
224 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
225 }
226
227 bool
228 fs_inst::equals(fs_inst *inst) const
229 {
230 return (opcode == inst->opcode &&
231 dst.equals(inst->dst) &&
232 src[0].equals(inst->src[0]) &&
233 src[1].equals(inst->src[1]) &&
234 src[2].equals(inst->src[2]) &&
235 saturate == inst->saturate &&
236 predicate == inst->predicate &&
237 conditional_mod == inst->conditional_mod &&
238 mlen == inst->mlen &&
239 base_mrf == inst->base_mrf &&
240 target == inst->target &&
241 eot == inst->eot &&
242 header_size == inst->header_size &&
243 shadow_compare == inst->shadow_compare &&
244 exec_size == inst->exec_size &&
245 offset == inst->offset);
246 }
247
248 bool
249 fs_inst::is_send_from_grf() const
250 {
251 switch (opcode) {
252 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
253 case SHADER_OPCODE_SHADER_TIME_ADD:
254 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
255 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
256 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
257 case SHADER_OPCODE_UNTYPED_ATOMIC:
258 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
259 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
260 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
261 case SHADER_OPCODE_BYTE_SCATTERED_READ:
262 case SHADER_OPCODE_TYPED_ATOMIC:
263 case SHADER_OPCODE_TYPED_SURFACE_READ:
264 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
265 case SHADER_OPCODE_URB_WRITE_SIMD8:
266 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
267 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
268 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
269 case SHADER_OPCODE_URB_READ_SIMD8:
270 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
271 return true;
272 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
273 return src[1].file == VGRF;
274 case FS_OPCODE_FB_WRITE:
275 case FS_OPCODE_FB_READ:
276 return src[0].file == VGRF;
277 default:
278 if (is_tex())
279 return src[0].file == VGRF;
280
281 return false;
282 }
283 }
284
285 /**
286 * Returns true if this instruction's sources and destinations cannot
287 * safely be the same register.
288 *
289 * In most cases, a register can be written over safely by the same
290 * instruction that is its last use. For a single instruction, the
291 * sources are dereferenced before writing of the destination starts
292 * (naturally).
293 *
294 * However, there are a few cases where this can be problematic:
295 *
296 * - Virtual opcodes that translate to multiple instructions in the
297 * code generator: if src == dst and one instruction writes the
298 * destination before a later instruction reads the source, then
299 * src will have been clobbered.
300 *
301 * - SIMD16 compressed instructions with certain regioning (see below).
302 *
303 * The register allocator uses this information to set up conflicts between
304 * GRF sources and the destination.
305 */
306 bool
307 fs_inst::has_source_and_destination_hazard() const
308 {
309 switch (opcode) {
310 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
311 /* Multiple partial writes to the destination */
312 return true;
313 default:
314 /* The SIMD16 compressed instruction
315 *
316 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
317 *
318 * is actually decoded in hardware as:
319 *
320 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
321 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
322 *
323 * Which is safe. However, if we have uniform accesses
324 * happening, we get into trouble:
325 *
326 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
327 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
328 *
329 * Now our destination for the first instruction overwrote the
330 * second instruction's src0, and we get garbage for those 8
331 * pixels. There's a similar issue for the pre-gen6
332 * pixel_x/pixel_y, which are registers of 16-bit values and thus
333 * would get stomped by the first decode as well.
334 */
335 if (exec_size == 16) {
336 for (int i = 0; i < sources; i++) {
337 if (src[i].file == VGRF && (src[i].stride == 0 ||
338 src[i].type == BRW_REGISTER_TYPE_UW ||
339 src[i].type == BRW_REGISTER_TYPE_W ||
340 src[i].type == BRW_REGISTER_TYPE_UB ||
341 src[i].type == BRW_REGISTER_TYPE_B)) {
342 return true;
343 }
344 }
345 }
346 return false;
347 }
348 }
349
350 bool
351 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
352 {
353 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
354 return false;
355
356 fs_reg reg = this->src[0];
357 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
358 return false;
359
360 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
361 return false;
362
363 for (int i = 0; i < this->sources; i++) {
364 reg.type = this->src[i].type;
365 if (!this->src[i].equals(reg))
366 return false;
367
368 if (i < this->header_size) {
369 reg.offset += REG_SIZE;
370 } else {
371 reg = horiz_offset(reg, this->exec_size);
372 }
373 }
374
375 return true;
376 }
377
378 bool
379 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
380 {
381 if (devinfo->gen == 6 && is_math())
382 return false;
383
384 if (is_send_from_grf())
385 return false;
386
387 if (!backend_instruction::can_do_source_mods())
388 return false;
389
390 return true;
391 }
392
393 bool
394 fs_inst::can_change_types() const
395 {
396 return dst.type == src[0].type &&
397 !src[0].abs && !src[0].negate && !saturate &&
398 (opcode == BRW_OPCODE_MOV ||
399 (opcode == BRW_OPCODE_SEL &&
400 dst.type == src[1].type &&
401 predicate != BRW_PREDICATE_NONE &&
402 !src[1].abs && !src[1].negate));
403 }
404
405 void
406 fs_reg::init()
407 {
408 memset(this, 0, sizeof(*this));
409 type = BRW_REGISTER_TYPE_UD;
410 stride = 1;
411 }
412
413 /** Generic unset register constructor. */
414 fs_reg::fs_reg()
415 {
416 init();
417 this->file = BAD_FILE;
418 }
419
420 fs_reg::fs_reg(struct ::brw_reg reg) :
421 backend_reg(reg)
422 {
423 this->offset = 0;
424 this->stride = 1;
425 if (this->file == IMM &&
426 (this->type != BRW_REGISTER_TYPE_V &&
427 this->type != BRW_REGISTER_TYPE_UV &&
428 this->type != BRW_REGISTER_TYPE_VF)) {
429 this->stride = 0;
430 }
431 }
432
433 bool
434 fs_reg::equals(const fs_reg &r) const
435 {
436 return (this->backend_reg::equals(r) &&
437 stride == r.stride);
438 }
439
440 bool
441 fs_reg::is_contiguous() const
442 {
443 return stride == 1;
444 }
445
446 unsigned
447 fs_reg::component_size(unsigned width) const
448 {
449 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
450 hstride == 0 ? 0 :
451 1 << (hstride - 1));
452 return MAX2(width * stride, 1) * type_sz(type);
453 }
454
455 extern "C" int
456 type_size_scalar(const struct glsl_type *type)
457 {
458 unsigned int size, i;
459
460 switch (type->base_type) {
461 case GLSL_TYPE_UINT:
462 case GLSL_TYPE_INT:
463 case GLSL_TYPE_FLOAT:
464 case GLSL_TYPE_BOOL:
465 return type->components();
466 case GLSL_TYPE_UINT16:
467 case GLSL_TYPE_INT16:
468 case GLSL_TYPE_FLOAT16:
469 return DIV_ROUND_UP(type->components(), 2);
470 case GLSL_TYPE_DOUBLE:
471 case GLSL_TYPE_UINT64:
472 case GLSL_TYPE_INT64:
473 return type->components() * 2;
474 case GLSL_TYPE_ARRAY:
475 return type_size_scalar(type->fields.array) * type->length;
476 case GLSL_TYPE_STRUCT:
477 size = 0;
478 for (i = 0; i < type->length; i++) {
479 size += type_size_scalar(type->fields.structure[i].type);
480 }
481 return size;
482 case GLSL_TYPE_SAMPLER:
483 /* Samplers take up no register space, since they're baked in at
484 * link time.
485 */
486 return 0;
487 case GLSL_TYPE_ATOMIC_UINT:
488 return 0;
489 case GLSL_TYPE_SUBROUTINE:
490 return 1;
491 case GLSL_TYPE_IMAGE:
492 return BRW_IMAGE_PARAM_SIZE;
493 case GLSL_TYPE_VOID:
494 case GLSL_TYPE_ERROR:
495 case GLSL_TYPE_INTERFACE:
496 case GLSL_TYPE_FUNCTION:
497 unreachable("not reached");
498 }
499
500 return 0;
501 }
502
503 /**
504 * Create a MOV to read the timestamp register.
505 *
506 * The caller is responsible for emitting the MOV. The return value is
507 * the destination of the MOV, with extra parameters set.
508 */
509 fs_reg
510 fs_visitor::get_timestamp(const fs_builder &bld)
511 {
512 assert(devinfo->gen >= 7);
513
514 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
515 BRW_ARF_TIMESTAMP,
516 0),
517 BRW_REGISTER_TYPE_UD));
518
519 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
520
521 /* We want to read the 3 fields we care about even if it's not enabled in
522 * the dispatch.
523 */
524 bld.group(4, 0).exec_all().MOV(dst, ts);
525
526 return dst;
527 }
528
529 void
530 fs_visitor::emit_shader_time_begin()
531 {
532 /* We want only the low 32 bits of the timestamp. Since it's running
533 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
534 * which is plenty of time for our purposes. It is identical across the
535 * EUs, but since it's tracking GPU core speed it will increment at a
536 * varying rate as render P-states change.
537 */
538 shader_start_time = component(
539 get_timestamp(bld.annotate("shader time start")), 0);
540 }
541
542 void
543 fs_visitor::emit_shader_time_end()
544 {
545 /* Insert our code just before the final SEND with EOT. */
546 exec_node *end = this->instructions.get_tail();
547 assert(end && ((fs_inst *) end)->eot);
548 const fs_builder ibld = bld.annotate("shader time end")
549 .exec_all().at(NULL, end);
550 const fs_reg timestamp = get_timestamp(ibld);
551
552 /* We only use the low 32 bits of the timestamp - see
553 * emit_shader_time_begin()).
554 *
555 * We could also check if render P-states have changed (or anything
556 * else that might disrupt timing) by setting smear to 2 and checking if
557 * that field is != 0.
558 */
559 const fs_reg shader_end_time = component(timestamp, 0);
560
561 /* Check that there weren't any timestamp reset events (assuming these
562 * were the only two timestamp reads that happened).
563 */
564 const fs_reg reset = component(timestamp, 2);
565 set_condmod(BRW_CONDITIONAL_Z,
566 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
567 ibld.IF(BRW_PREDICATE_NORMAL);
568
569 fs_reg start = shader_start_time;
570 start.negate = true;
571 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
572 BRW_REGISTER_TYPE_UD),
573 0);
574 const fs_builder cbld = ibld.group(1, 0);
575 cbld.group(1, 0).ADD(diff, start, shader_end_time);
576
577 /* If there were no instructions between the two timestamp gets, the diff
578 * is 2 cycles. Remove that overhead, so I can forget about that when
579 * trying to determine the time taken for single instructions.
580 */
581 cbld.ADD(diff, diff, brw_imm_ud(-2u));
582 SHADER_TIME_ADD(cbld, 0, diff);
583 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
584 ibld.emit(BRW_OPCODE_ELSE);
585 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
586 ibld.emit(BRW_OPCODE_ENDIF);
587 }
588
589 void
590 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
591 int shader_time_subindex,
592 fs_reg value)
593 {
594 int index = shader_time_index * 3 + shader_time_subindex;
595 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
596
597 fs_reg payload;
598 if (dispatch_width == 8)
599 payload = vgrf(glsl_type::uvec2_type);
600 else
601 payload = vgrf(glsl_type::uint_type);
602
603 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
604 }
605
606 void
607 fs_visitor::vfail(const char *format, va_list va)
608 {
609 char *msg;
610
611 if (failed)
612 return;
613
614 failed = true;
615
616 msg = ralloc_vasprintf(mem_ctx, format, va);
617 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
618
619 this->fail_msg = msg;
620
621 if (debug_enabled) {
622 fprintf(stderr, "%s", msg);
623 }
624 }
625
626 void
627 fs_visitor::fail(const char *format, ...)
628 {
629 va_list va;
630
631 va_start(va, format);
632 vfail(format, va);
633 va_end(va);
634 }
635
636 /**
637 * Mark this program as impossible to compile with dispatch width greater
638 * than n.
639 *
640 * During the SIMD8 compile (which happens first), we can detect and flag
641 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
642 * SIMD16+ compile altogether.
643 *
644 * During a compile of dispatch width greater than n (if one happens anyway),
645 * this just calls fail().
646 */
647 void
648 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
649 {
650 if (dispatch_width > n) {
651 fail("%s", msg);
652 } else {
653 max_dispatch_width = n;
654 compiler->shader_perf_log(log_data,
655 "Shader dispatch width limited to SIMD%d: %s",
656 n, msg);
657 }
658 }
659
660 /**
661 * Returns true if the instruction has a flag that means it won't
662 * update an entire destination register.
663 *
664 * For example, dead code elimination and live variable analysis want to know
665 * when a write to a variable screens off any preceding values that were in
666 * it.
667 */
668 bool
669 fs_inst::is_partial_write() const
670 {
671 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
672 (this->exec_size * type_sz(this->dst.type)) < 32 ||
673 !this->dst.is_contiguous() ||
674 this->dst.offset % REG_SIZE != 0);
675 }
676
677 unsigned
678 fs_inst::components_read(unsigned i) const
679 {
680 /* Return zero if the source is not present. */
681 if (src[i].file == BAD_FILE)
682 return 0;
683
684 switch (opcode) {
685 case FS_OPCODE_LINTERP:
686 if (i == 0)
687 return 2;
688 else
689 return 1;
690
691 case FS_OPCODE_PIXEL_X:
692 case FS_OPCODE_PIXEL_Y:
693 assert(i == 0);
694 return 2;
695
696 case FS_OPCODE_FB_WRITE_LOGICAL:
697 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
698 /* First/second FB write color. */
699 if (i < 2)
700 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
701 else
702 return 1;
703
704 case SHADER_OPCODE_TEX_LOGICAL:
705 case SHADER_OPCODE_TXD_LOGICAL:
706 case SHADER_OPCODE_TXF_LOGICAL:
707 case SHADER_OPCODE_TXL_LOGICAL:
708 case SHADER_OPCODE_TXS_LOGICAL:
709 case FS_OPCODE_TXB_LOGICAL:
710 case SHADER_OPCODE_TXF_CMS_LOGICAL:
711 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
712 case SHADER_OPCODE_TXF_UMS_LOGICAL:
713 case SHADER_OPCODE_TXF_MCS_LOGICAL:
714 case SHADER_OPCODE_LOD_LOGICAL:
715 case SHADER_OPCODE_TG4_LOGICAL:
716 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
717 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
718 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
719 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
720 /* Texture coordinates. */
721 if (i == TEX_LOGICAL_SRC_COORDINATE)
722 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
723 /* Texture derivatives. */
724 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
725 opcode == SHADER_OPCODE_TXD_LOGICAL)
726 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
727 /* Texture offset. */
728 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
729 return 2;
730 /* MCS */
731 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
732 return 2;
733 else
734 return 1;
735
736 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
737 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
738 assert(src[3].file == IMM);
739 /* Surface coordinates. */
740 if (i == 0)
741 return src[3].ud;
742 /* Surface operation source (ignored for reads). */
743 else if (i == 1)
744 return 0;
745 else
746 return 1;
747
748 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
749 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
750 assert(src[3].file == IMM &&
751 src[4].file == IMM);
752 /* Surface coordinates. */
753 if (i == 0)
754 return src[3].ud;
755 /* Surface operation source. */
756 else if (i == 1)
757 return src[4].ud;
758 else
759 return 1;
760
761 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
762 /* Scattered logical opcodes use the following params:
763 * src[0] Surface coordinates
764 * src[1] Surface operation source (ignored for reads)
765 * src[2] Surface
766 * src[3] IMM with always 1 dimension.
767 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
768 */
769 assert(src[3].file == IMM &&
770 src[4].file == IMM);
771 return i == 1 ? 0 : 1;
772
773 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
774 assert(src[3].file == IMM &&
775 src[4].file == IMM);
776 return 1;
777
778 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
779 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
780 assert(src[3].file == IMM &&
781 src[4].file == IMM);
782 const unsigned op = src[4].ud;
783 /* Surface coordinates. */
784 if (i == 0)
785 return src[3].ud;
786 /* Surface operation source. */
787 else if (i == 1 && op == BRW_AOP_CMPWR)
788 return 2;
789 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
790 op == BRW_AOP_PREDEC))
791 return 0;
792 else
793 return 1;
794 }
795
796 default:
797 return 1;
798 }
799 }
800
801 unsigned
802 fs_inst::size_read(int arg) const
803 {
804 switch (opcode) {
805 case FS_OPCODE_FB_WRITE:
806 case FS_OPCODE_FB_READ:
807 case SHADER_OPCODE_URB_WRITE_SIMD8:
808 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
809 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
810 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
811 case SHADER_OPCODE_URB_READ_SIMD8:
812 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
813 case SHADER_OPCODE_UNTYPED_ATOMIC:
814 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
815 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
816 case SHADER_OPCODE_TYPED_ATOMIC:
817 case SHADER_OPCODE_TYPED_SURFACE_READ:
818 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
819 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
820 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
821 case SHADER_OPCODE_BYTE_SCATTERED_READ:
822 if (arg == 0)
823 return mlen * REG_SIZE;
824 break;
825
826 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
827 /* The payload is actually stored in src1 */
828 if (arg == 1)
829 return mlen * REG_SIZE;
830 break;
831
832 case FS_OPCODE_LINTERP:
833 if (arg == 1)
834 return 16;
835 break;
836
837 case SHADER_OPCODE_LOAD_PAYLOAD:
838 if (arg < this->header_size)
839 return REG_SIZE;
840 break;
841
842 case CS_OPCODE_CS_TERMINATE:
843 case SHADER_OPCODE_BARRIER:
844 return REG_SIZE;
845
846 case SHADER_OPCODE_MOV_INDIRECT:
847 if (arg == 0) {
848 assert(src[2].file == IMM);
849 return src[2].ud;
850 }
851 break;
852
853 default:
854 if (is_tex() && arg == 0 && src[0].file == VGRF)
855 return mlen * REG_SIZE;
856 break;
857 }
858
859 switch (src[arg].file) {
860 case UNIFORM:
861 case IMM:
862 return components_read(arg) * type_sz(src[arg].type);
863 case BAD_FILE:
864 case ARF:
865 case FIXED_GRF:
866 case VGRF:
867 case ATTR:
868 return components_read(arg) * src[arg].component_size(exec_size);
869 case MRF:
870 unreachable("MRF registers are not allowed as sources");
871 }
872 return 0;
873 }
874
875 namespace {
876 /* Return the subset of flag registers that an instruction could
877 * potentially read or write based on the execution controls and flag
878 * subregister number of the instruction.
879 */
880 unsigned
881 flag_mask(const fs_inst *inst)
882 {
883 const unsigned start = inst->flag_subreg * 16 + inst->group;
884 const unsigned end = start + inst->exec_size;
885 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
886 }
887
888 unsigned
889 bit_mask(unsigned n)
890 {
891 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
892 }
893
894 unsigned
895 flag_mask(const fs_reg &r, unsigned sz)
896 {
897 if (r.file == ARF) {
898 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
899 const unsigned end = start + sz;
900 return bit_mask(end) & ~bit_mask(start);
901 } else {
902 return 0;
903 }
904 }
905 }
906
907 unsigned
908 fs_inst::flags_read(const gen_device_info *devinfo) const
909 {
910 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
911 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
912 /* The vertical predication modes combine corresponding bits from
913 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
914 */
915 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
916 return flag_mask(this) << shift | flag_mask(this);
917 } else if (predicate) {
918 return flag_mask(this);
919 } else {
920 unsigned mask = 0;
921 for (int i = 0; i < sources; i++) {
922 mask |= flag_mask(src[i], size_read(i));
923 }
924 return mask;
925 }
926 }
927
928 unsigned
929 fs_inst::flags_written() const
930 {
931 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
932 opcode != BRW_OPCODE_IF &&
933 opcode != BRW_OPCODE_WHILE)) ||
934 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
935 return flag_mask(this);
936 } else {
937 return flag_mask(dst, size_written);
938 }
939 }
940
941 /**
942 * Returns how many MRFs an FS opcode will write over.
943 *
944 * Note that this is not the 0 or 1 implied writes in an actual gen
945 * instruction -- the FS opcodes often generate MOVs in addition.
946 */
947 int
948 fs_visitor::implied_mrf_writes(fs_inst *inst) const
949 {
950 if (inst->mlen == 0)
951 return 0;
952
953 if (inst->base_mrf == -1)
954 return 0;
955
956 switch (inst->opcode) {
957 case SHADER_OPCODE_RCP:
958 case SHADER_OPCODE_RSQ:
959 case SHADER_OPCODE_SQRT:
960 case SHADER_OPCODE_EXP2:
961 case SHADER_OPCODE_LOG2:
962 case SHADER_OPCODE_SIN:
963 case SHADER_OPCODE_COS:
964 return 1 * dispatch_width / 8;
965 case SHADER_OPCODE_POW:
966 case SHADER_OPCODE_INT_QUOTIENT:
967 case SHADER_OPCODE_INT_REMAINDER:
968 return 2 * dispatch_width / 8;
969 case SHADER_OPCODE_TEX:
970 case FS_OPCODE_TXB:
971 case SHADER_OPCODE_TXD:
972 case SHADER_OPCODE_TXF:
973 case SHADER_OPCODE_TXF_CMS:
974 case SHADER_OPCODE_TXF_MCS:
975 case SHADER_OPCODE_TG4:
976 case SHADER_OPCODE_TG4_OFFSET:
977 case SHADER_OPCODE_TXL:
978 case SHADER_OPCODE_TXS:
979 case SHADER_OPCODE_LOD:
980 case SHADER_OPCODE_SAMPLEINFO:
981 return 1;
982 case FS_OPCODE_FB_WRITE:
983 return 2;
984 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
985 case SHADER_OPCODE_GEN4_SCRATCH_READ:
986 return 1;
987 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
988 return inst->mlen;
989 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
990 return inst->mlen;
991 default:
992 unreachable("not reached");
993 }
994 }
995
996 fs_reg
997 fs_visitor::vgrf(const glsl_type *const type)
998 {
999 int reg_width = dispatch_width / 8;
1000 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
1001 brw_type_for_base_type(type));
1002 }
1003
1004 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1005 {
1006 init();
1007 this->file = file;
1008 this->nr = nr;
1009 this->type = BRW_REGISTER_TYPE_F;
1010 this->stride = (file == UNIFORM ? 0 : 1);
1011 }
1012
1013 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1014 {
1015 init();
1016 this->file = file;
1017 this->nr = nr;
1018 this->type = type;
1019 this->stride = (file == UNIFORM ? 0 : 1);
1020 }
1021
1022 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1023 * This brings in those uniform definitions
1024 */
1025 void
1026 fs_visitor::import_uniforms(fs_visitor *v)
1027 {
1028 this->push_constant_loc = v->push_constant_loc;
1029 this->pull_constant_loc = v->pull_constant_loc;
1030 this->uniforms = v->uniforms;
1031 this->subgroup_id = v->subgroup_id;
1032 }
1033
1034 void
1035 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1036 {
1037 assert(stage == MESA_SHADER_FRAGMENT);
1038
1039 /* gl_FragCoord.x */
1040 bld.MOV(wpos, this->pixel_x);
1041 wpos = offset(wpos, bld, 1);
1042
1043 /* gl_FragCoord.y */
1044 bld.MOV(wpos, this->pixel_y);
1045 wpos = offset(wpos, bld, 1);
1046
1047 /* gl_FragCoord.z */
1048 if (devinfo->gen >= 6) {
1049 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1050 } else {
1051 bld.emit(FS_OPCODE_LINTERP, wpos,
1052 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1053 interp_reg(VARYING_SLOT_POS, 2));
1054 }
1055 wpos = offset(wpos, bld, 1);
1056
1057 /* gl_FragCoord.w: Already set up in emit_interpolation */
1058 bld.MOV(wpos, this->wpos_w);
1059 }
1060
1061 enum brw_barycentric_mode
1062 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1063 {
1064 /* Barycentric modes don't make sense for flat inputs. */
1065 assert(mode != INTERP_MODE_FLAT);
1066
1067 unsigned bary;
1068 switch (op) {
1069 case nir_intrinsic_load_barycentric_pixel:
1070 case nir_intrinsic_load_barycentric_at_offset:
1071 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1072 break;
1073 case nir_intrinsic_load_barycentric_centroid:
1074 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1075 break;
1076 case nir_intrinsic_load_barycentric_sample:
1077 case nir_intrinsic_load_barycentric_at_sample:
1078 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1079 break;
1080 default:
1081 unreachable("invalid intrinsic");
1082 }
1083
1084 if (mode == INTERP_MODE_NOPERSPECTIVE)
1085 bary += 3;
1086
1087 return (enum brw_barycentric_mode) bary;
1088 }
1089
1090 /**
1091 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1092 */
1093 static enum brw_barycentric_mode
1094 centroid_to_pixel(enum brw_barycentric_mode bary)
1095 {
1096 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1097 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1098 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1099 }
1100
1101 fs_reg *
1102 fs_visitor::emit_frontfacing_interpolation()
1103 {
1104 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1105
1106 if (devinfo->gen >= 6) {
1107 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1108 * a boolean result from this (~0/true or 0/false).
1109 *
1110 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1111 * this task in only one instruction:
1112 * - a negation source modifier will flip the bit; and
1113 * - a W -> D type conversion will sign extend the bit into the high
1114 * word of the destination.
1115 *
1116 * An ASR 15 fills the low word of the destination.
1117 */
1118 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1119 g0.negate = true;
1120
1121 bld.ASR(*reg, g0, brw_imm_d(15));
1122 } else {
1123 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1124 * a boolean result from this (1/true or 0/false).
1125 *
1126 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1127 * the negation source modifier to flip it. Unfortunately the SHR
1128 * instruction only operates on UD (or D with an abs source modifier)
1129 * sources without negation.
1130 *
1131 * Instead, use ASR (which will give ~0/true or 0/false).
1132 */
1133 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1134 g1_6.negate = true;
1135
1136 bld.ASR(*reg, g1_6, brw_imm_d(31));
1137 }
1138
1139 return reg;
1140 }
1141
1142 void
1143 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1144 {
1145 assert(stage == MESA_SHADER_FRAGMENT);
1146 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1147 assert(dst.type == BRW_REGISTER_TYPE_F);
1148
1149 if (wm_prog_data->persample_dispatch) {
1150 /* Convert int_sample_pos to floating point */
1151 bld.MOV(dst, int_sample_pos);
1152 /* Scale to the range [0, 1] */
1153 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1154 }
1155 else {
1156 /* From ARB_sample_shading specification:
1157 * "When rendering to a non-multisample buffer, or if multisample
1158 * rasterization is disabled, gl_SamplePosition will always be
1159 * (0.5, 0.5).
1160 */
1161 bld.MOV(dst, brw_imm_f(0.5f));
1162 }
1163 }
1164
1165 fs_reg *
1166 fs_visitor::emit_samplepos_setup()
1167 {
1168 assert(devinfo->gen >= 6);
1169
1170 const fs_builder abld = bld.annotate("compute sample position");
1171 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1172 fs_reg pos = *reg;
1173 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1174 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1175
1176 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1177 * mode will be enabled.
1178 *
1179 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1180 * R31.1:0 Position Offset X/Y for Slot[3:0]
1181 * R31.3:2 Position Offset X/Y for Slot[7:4]
1182 * .....
1183 *
1184 * The X, Y sample positions come in as bytes in thread payload. So, read
1185 * the positions using vstride=16, width=8, hstride=2.
1186 */
1187 struct brw_reg sample_pos_reg =
1188 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1189 BRW_REGISTER_TYPE_B), 16, 8, 2);
1190
1191 if (dispatch_width == 8) {
1192 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1193 } else {
1194 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1195 abld.half(1).MOV(half(int_sample_x, 1),
1196 fs_reg(suboffset(sample_pos_reg, 16)));
1197 }
1198 /* Compute gl_SamplePosition.x */
1199 compute_sample_position(pos, int_sample_x);
1200 pos = offset(pos, abld, 1);
1201 if (dispatch_width == 8) {
1202 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1203 } else {
1204 abld.half(0).MOV(half(int_sample_y, 0),
1205 fs_reg(suboffset(sample_pos_reg, 1)));
1206 abld.half(1).MOV(half(int_sample_y, 1),
1207 fs_reg(suboffset(sample_pos_reg, 17)));
1208 }
1209 /* Compute gl_SamplePosition.y */
1210 compute_sample_position(pos, int_sample_y);
1211 return reg;
1212 }
1213
1214 fs_reg *
1215 fs_visitor::emit_sampleid_setup()
1216 {
1217 assert(stage == MESA_SHADER_FRAGMENT);
1218 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1219 assert(devinfo->gen >= 6);
1220
1221 const fs_builder abld = bld.annotate("compute sample id");
1222 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1223
1224 if (!key->multisample_fbo) {
1225 /* As per GL_ARB_sample_shading specification:
1226 * "When rendering to a non-multisample buffer, or if multisample
1227 * rasterization is disabled, gl_SampleID will always be zero."
1228 */
1229 abld.MOV(*reg, brw_imm_d(0));
1230 } else if (devinfo->gen >= 8) {
1231 /* Sample ID comes in as 4-bit numbers in g1.0:
1232 *
1233 * 15:12 Slot 3 SampleID (only used in SIMD16)
1234 * 11:8 Slot 2 SampleID (only used in SIMD16)
1235 * 7:4 Slot 1 SampleID
1236 * 3:0 Slot 0 SampleID
1237 *
1238 * Each slot corresponds to four channels, so we want to replicate each
1239 * half-byte value to 4 channels in a row:
1240 *
1241 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1242 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1243 *
1244 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1245 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1246 *
1247 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1248 * channels to read the first byte (7:0), and the second group of 8
1249 * channels to read the second byte (15:8). Then, we shift right by
1250 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1251 * values into place. Finally, we AND with 0xf to keep the low nibble.
1252 *
1253 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1254 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1255 *
1256 * TODO: These payload bits exist on Gen7 too, but they appear to always
1257 * be zero, so this code fails to work. We should find out why.
1258 */
1259 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1260
1261 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1262 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1263 brw_imm_v(0x44440000));
1264 abld.AND(*reg, tmp, brw_imm_w(0xf));
1265 } else {
1266 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1267 BRW_REGISTER_TYPE_D), 0);
1268 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1269
1270 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1271 * 8x multisampling, subspan 0 will represent sample N (where N
1272 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1273 * 7. We can find the value of N by looking at R0.0 bits 7:6
1274 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1275 * (since samples are always delivered in pairs). That is, we
1276 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1277 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1278 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1279 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1280 * populating a temporary variable with the sequence (0, 1, 2, 3),
1281 * and then reading from it using vstride=1, width=4, hstride=0.
1282 * These computations hold good for 4x multisampling as well.
1283 *
1284 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1285 * the first four slots are sample 0 of subspan 0; the next four
1286 * are sample 1 of subspan 0; the third group is sample 0 of
1287 * subspan 1, and finally sample 1 of subspan 1.
1288 */
1289
1290 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1291 * accomodate 16x MSAA.
1292 */
1293 abld.exec_all().group(1, 0)
1294 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1295 brw_imm_ud(0xc0));
1296 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1297
1298 /* This works for both SIMD8 and SIMD16 */
1299 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1300
1301 /* This special instruction takes care of setting vstride=1,
1302 * width=4, hstride=0 of t2 during an ADD instruction.
1303 */
1304 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1305 }
1306
1307 return reg;
1308 }
1309
1310 fs_reg *
1311 fs_visitor::emit_samplemaskin_setup()
1312 {
1313 assert(stage == MESA_SHADER_FRAGMENT);
1314 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1315 assert(devinfo->gen >= 6);
1316
1317 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1318
1319 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1320 BRW_REGISTER_TYPE_D));
1321
1322 if (wm_prog_data->persample_dispatch) {
1323 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1324 * and a mask representing which sample is being processed by the
1325 * current shader invocation.
1326 *
1327 * From the OES_sample_variables specification:
1328 * "When per-sample shading is active due to the use of a fragment input
1329 * qualified by "sample" or due to the use of the gl_SampleID or
1330 * gl_SamplePosition variables, only the bit for the current sample is
1331 * set in gl_SampleMaskIn."
1332 */
1333 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1334
1335 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1336 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1337
1338 fs_reg one = vgrf(glsl_type::int_type);
1339 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1340 abld.MOV(one, brw_imm_d(1));
1341 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1342 abld.AND(*reg, enabled_mask, coverage_mask);
1343 } else {
1344 /* In per-pixel mode, the coverage mask is sufficient. */
1345 *reg = coverage_mask;
1346 }
1347 return reg;
1348 }
1349
1350 fs_reg
1351 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1352 {
1353 if (!src.abs && !src.negate)
1354 return src;
1355
1356 fs_reg temp = bld.vgrf(src.type);
1357 bld.MOV(temp, src);
1358
1359 return temp;
1360 }
1361
1362 void
1363 fs_visitor::emit_discard_jump()
1364 {
1365 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1366
1367 /* For performance, after a discard, jump to the end of the
1368 * shader if all relevant channels have been discarded.
1369 */
1370 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1371 discard_jump->flag_subreg = 1;
1372
1373 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1374 discard_jump->predicate_inverse = true;
1375 }
1376
1377 void
1378 fs_visitor::emit_gs_thread_end()
1379 {
1380 assert(stage == MESA_SHADER_GEOMETRY);
1381
1382 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1383
1384 if (gs_compile->control_data_header_size_bits > 0) {
1385 emit_gs_control_data_bits(this->final_gs_vertex_count);
1386 }
1387
1388 const fs_builder abld = bld.annotate("thread end");
1389 fs_inst *inst;
1390
1391 if (gs_prog_data->static_vertex_count != -1) {
1392 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1393 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1394 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1395 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1396 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1397 prev->eot = true;
1398
1399 /* Delete now dead instructions. */
1400 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1401 if (dead == prev)
1402 break;
1403 dead->remove();
1404 }
1405 return;
1406 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1407 break;
1408 }
1409 }
1410 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1411 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1412 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1413 inst->mlen = 1;
1414 } else {
1415 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1416 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1417 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1418 sources[1] = this->final_gs_vertex_count;
1419 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1420 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1421 inst->mlen = 2;
1422 }
1423 inst->eot = true;
1424 inst->offset = 0;
1425 }
1426
1427 void
1428 fs_visitor::assign_curb_setup()
1429 {
1430 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1431
1432 unsigned ubo_push_length = 0;
1433 unsigned ubo_push_start[4];
1434 for (int i = 0; i < 4; i++) {
1435 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1436 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1437 }
1438
1439 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1440
1441 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1442 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1443 for (unsigned int i = 0; i < inst->sources; i++) {
1444 if (inst->src[i].file == UNIFORM) {
1445 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1446 int constant_nr;
1447 if (inst->src[i].nr >= UBO_START) {
1448 /* constant_nr is in 32-bit units, the rest are in bytes */
1449 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1450 inst->src[i].offset / 4;
1451 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1452 constant_nr = push_constant_loc[uniform_nr];
1453 } else {
1454 /* Section 5.11 of the OpenGL 4.1 spec says:
1455 * "Out-of-bounds reads return undefined values, which include
1456 * values from other variables of the active program or zero."
1457 * Just return the first push constant.
1458 */
1459 constant_nr = 0;
1460 }
1461
1462 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1463 constant_nr / 8,
1464 constant_nr % 8);
1465 brw_reg.abs = inst->src[i].abs;
1466 brw_reg.negate = inst->src[i].negate;
1467
1468 assert(inst->src[i].stride == 0);
1469 inst->src[i] = byte_offset(
1470 retype(brw_reg, inst->src[i].type),
1471 inst->src[i].offset % 4);
1472 }
1473 }
1474 }
1475
1476 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1477 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1478 }
1479
1480 void
1481 fs_visitor::calculate_urb_setup()
1482 {
1483 assert(stage == MESA_SHADER_FRAGMENT);
1484 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1485 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1486
1487 memset(prog_data->urb_setup, -1,
1488 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1489
1490 int urb_next = 0;
1491 /* Figure out where each of the incoming setup attributes lands. */
1492 if (devinfo->gen >= 6) {
1493 if (_mesa_bitcount_64(nir->info.inputs_read &
1494 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1495 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1496 * first 16 varying inputs, so we can put them wherever we want.
1497 * Just put them in order.
1498 *
1499 * This is useful because it means that (a) inputs not used by the
1500 * fragment shader won't take up valuable register space, and (b) we
1501 * won't have to recompile the fragment shader if it gets paired with
1502 * a different vertex (or geometry) shader.
1503 */
1504 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1505 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1506 BITFIELD64_BIT(i)) {
1507 prog_data->urb_setup[i] = urb_next++;
1508 }
1509 }
1510 } else {
1511 /* We have enough input varyings that the SF/SBE pipeline stage can't
1512 * arbitrarily rearrange them to suit our whim; we have to put them
1513 * in an order that matches the output of the previous pipeline stage
1514 * (geometry or vertex shader).
1515 */
1516 struct brw_vue_map prev_stage_vue_map;
1517 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1518 key->input_slots_valid,
1519 nir->info.separate_shader);
1520
1521 int first_slot =
1522 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1523 &prev_stage_vue_map);
1524
1525 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1526 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1527 slot++) {
1528 int varying = prev_stage_vue_map.slot_to_varying[slot];
1529 if (varying != BRW_VARYING_SLOT_PAD &&
1530 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1531 BITFIELD64_BIT(varying))) {
1532 prog_data->urb_setup[varying] = slot - first_slot;
1533 }
1534 }
1535 urb_next = prev_stage_vue_map.num_slots - first_slot;
1536 }
1537 } else {
1538 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1539 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1540 /* Point size is packed into the header, not as a general attribute */
1541 if (i == VARYING_SLOT_PSIZ)
1542 continue;
1543
1544 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1545 /* The back color slot is skipped when the front color is
1546 * also written to. In addition, some slots can be
1547 * written in the vertex shader and not read in the
1548 * fragment shader. So the register number must always be
1549 * incremented, mapped or not.
1550 */
1551 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1552 prog_data->urb_setup[i] = urb_next;
1553 urb_next++;
1554 }
1555 }
1556
1557 /*
1558 * It's a FS only attribute, and we did interpolation for this attribute
1559 * in SF thread. So, count it here, too.
1560 *
1561 * See compile_sf_prog() for more info.
1562 */
1563 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1564 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1565 }
1566
1567 prog_data->num_varying_inputs = urb_next;
1568 }
1569
1570 void
1571 fs_visitor::assign_urb_setup()
1572 {
1573 assert(stage == MESA_SHADER_FRAGMENT);
1574 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1575
1576 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1577
1578 /* Offset all the urb_setup[] index by the actual position of the
1579 * setup regs, now that the location of the constants has been chosen.
1580 */
1581 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1582 if (inst->opcode == FS_OPCODE_LINTERP) {
1583 assert(inst->src[1].file == FIXED_GRF);
1584 inst->src[1].nr += urb_start;
1585 }
1586
1587 if (inst->opcode == FS_OPCODE_CINTERP) {
1588 assert(inst->src[0].file == FIXED_GRF);
1589 inst->src[0].nr += urb_start;
1590 }
1591 }
1592
1593 /* Each attribute is 4 setup channels, each of which is half a reg. */
1594 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1595 }
1596
1597 void
1598 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1599 {
1600 for (int i = 0; i < inst->sources; i++) {
1601 if (inst->src[i].file == ATTR) {
1602 int grf = payload.num_regs +
1603 prog_data->curb_read_length +
1604 inst->src[i].nr +
1605 inst->src[i].offset / REG_SIZE;
1606
1607 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1608 *
1609 * VertStride must be used to cross GRF register boundaries. This
1610 * rule implies that elements within a 'Width' cannot cross GRF
1611 * boundaries.
1612 *
1613 * So, for registers that are large enough, we have to split the exec
1614 * size in two and trust the compression state to sort it out.
1615 */
1616 unsigned total_size = inst->exec_size *
1617 inst->src[i].stride *
1618 type_sz(inst->src[i].type);
1619
1620 assert(total_size <= 2 * REG_SIZE);
1621 const unsigned exec_size =
1622 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1623
1624 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1625 struct brw_reg reg =
1626 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1627 inst->src[i].offset % REG_SIZE),
1628 exec_size * inst->src[i].stride,
1629 width, inst->src[i].stride);
1630 reg.abs = inst->src[i].abs;
1631 reg.negate = inst->src[i].negate;
1632
1633 inst->src[i] = reg;
1634 }
1635 }
1636 }
1637
1638 void
1639 fs_visitor::assign_vs_urb_setup()
1640 {
1641 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1642
1643 assert(stage == MESA_SHADER_VERTEX);
1644
1645 /* Each attribute is 4 regs. */
1646 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1647
1648 assert(vs_prog_data->base.urb_read_length <= 15);
1649
1650 /* Rewrite all ATTR file references to the hw grf that they land in. */
1651 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1652 convert_attr_sources_to_hw_regs(inst);
1653 }
1654 }
1655
1656 void
1657 fs_visitor::assign_tcs_single_patch_urb_setup()
1658 {
1659 assert(stage == MESA_SHADER_TESS_CTRL);
1660
1661 /* Rewrite all ATTR file references to HW_REGs. */
1662 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1663 convert_attr_sources_to_hw_regs(inst);
1664 }
1665 }
1666
1667 void
1668 fs_visitor::assign_tes_urb_setup()
1669 {
1670 assert(stage == MESA_SHADER_TESS_EVAL);
1671
1672 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1673
1674 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1675
1676 /* Rewrite all ATTR file references to HW_REGs. */
1677 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1678 convert_attr_sources_to_hw_regs(inst);
1679 }
1680 }
1681
1682 void
1683 fs_visitor::assign_gs_urb_setup()
1684 {
1685 assert(stage == MESA_SHADER_GEOMETRY);
1686
1687 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1688
1689 first_non_payload_grf +=
1690 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1691
1692 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1693 /* Rewrite all ATTR file references to GRFs. */
1694 convert_attr_sources_to_hw_regs(inst);
1695 }
1696 }
1697
1698
1699 /**
1700 * Split large virtual GRFs into separate components if we can.
1701 *
1702 * This is mostly duplicated with what brw_fs_vector_splitting does,
1703 * but that's really conservative because it's afraid of doing
1704 * splitting that doesn't result in real progress after the rest of
1705 * the optimization phases, which would cause infinite looping in
1706 * optimization. We can do it once here, safely. This also has the
1707 * opportunity to split interpolated values, or maybe even uniforms,
1708 * which we don't have at the IR level.
1709 *
1710 * We want to split, because virtual GRFs are what we register
1711 * allocate and spill (due to contiguousness requirements for some
1712 * instructions), and they're what we naturally generate in the
1713 * codegen process, but most virtual GRFs don't actually need to be
1714 * contiguous sets of GRFs. If we split, we'll end up with reduced
1715 * live intervals and better dead code elimination and coalescing.
1716 */
1717 void
1718 fs_visitor::split_virtual_grfs()
1719 {
1720 /* Compact the register file so we eliminate dead vgrfs. This
1721 * only defines split points for live registers, so if we have
1722 * too large dead registers they will hit assertions later.
1723 */
1724 compact_virtual_grfs();
1725
1726 int num_vars = this->alloc.count;
1727
1728 /* Count the total number of registers */
1729 int reg_count = 0;
1730 int vgrf_to_reg[num_vars];
1731 for (int i = 0; i < num_vars; i++) {
1732 vgrf_to_reg[i] = reg_count;
1733 reg_count += alloc.sizes[i];
1734 }
1735
1736 /* An array of "split points". For each register slot, this indicates
1737 * if this slot can be separated from the previous slot. Every time an
1738 * instruction uses multiple elements of a register (as a source or
1739 * destination), we mark the used slots as inseparable. Then we go
1740 * through and split the registers into the smallest pieces we can.
1741 */
1742 bool split_points[reg_count];
1743 memset(split_points, 0, sizeof(split_points));
1744
1745 /* Mark all used registers as fully splittable */
1746 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1747 if (inst->dst.file == VGRF) {
1748 int reg = vgrf_to_reg[inst->dst.nr];
1749 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1750 split_points[reg + j] = true;
1751 }
1752
1753 for (int i = 0; i < inst->sources; i++) {
1754 if (inst->src[i].file == VGRF) {
1755 int reg = vgrf_to_reg[inst->src[i].nr];
1756 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1757 split_points[reg + j] = true;
1758 }
1759 }
1760 }
1761
1762 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1763 if (inst->dst.file == VGRF) {
1764 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1765 for (unsigned j = 1; j < regs_written(inst); j++)
1766 split_points[reg + j] = false;
1767 }
1768 for (int i = 0; i < inst->sources; i++) {
1769 if (inst->src[i].file == VGRF) {
1770 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1771 for (unsigned j = 1; j < regs_read(inst, i); j++)
1772 split_points[reg + j] = false;
1773 }
1774 }
1775 }
1776
1777 int new_virtual_grf[reg_count];
1778 int new_reg_offset[reg_count];
1779
1780 int reg = 0;
1781 for (int i = 0; i < num_vars; i++) {
1782 /* The first one should always be 0 as a quick sanity check. */
1783 assert(split_points[reg] == false);
1784
1785 /* j = 0 case */
1786 new_reg_offset[reg] = 0;
1787 reg++;
1788 int offset = 1;
1789
1790 /* j > 0 case */
1791 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1792 /* If this is a split point, reset the offset to 0 and allocate a
1793 * new virtual GRF for the previous offset many registers
1794 */
1795 if (split_points[reg]) {
1796 assert(offset <= MAX_VGRF_SIZE);
1797 int grf = alloc.allocate(offset);
1798 for (int k = reg - offset; k < reg; k++)
1799 new_virtual_grf[k] = grf;
1800 offset = 0;
1801 }
1802 new_reg_offset[reg] = offset;
1803 offset++;
1804 reg++;
1805 }
1806
1807 /* The last one gets the original register number */
1808 assert(offset <= MAX_VGRF_SIZE);
1809 alloc.sizes[i] = offset;
1810 for (int k = reg - offset; k < reg; k++)
1811 new_virtual_grf[k] = i;
1812 }
1813 assert(reg == reg_count);
1814
1815 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1816 if (inst->dst.file == VGRF) {
1817 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1818 inst->dst.nr = new_virtual_grf[reg];
1819 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1820 inst->dst.offset % REG_SIZE;
1821 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1822 }
1823 for (int i = 0; i < inst->sources; i++) {
1824 if (inst->src[i].file == VGRF) {
1825 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1826 inst->src[i].nr = new_virtual_grf[reg];
1827 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1828 inst->src[i].offset % REG_SIZE;
1829 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1830 }
1831 }
1832 }
1833 invalidate_live_intervals();
1834 }
1835
1836 /**
1837 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1838 *
1839 * During code generation, we create tons of temporary variables, many of
1840 * which get immediately killed and are never used again. Yet, in later
1841 * optimization and analysis passes, such as compute_live_intervals, we need
1842 * to loop over all the virtual GRFs. Compacting them can save a lot of
1843 * overhead.
1844 */
1845 bool
1846 fs_visitor::compact_virtual_grfs()
1847 {
1848 bool progress = false;
1849 int remap_table[this->alloc.count];
1850 memset(remap_table, -1, sizeof(remap_table));
1851
1852 /* Mark which virtual GRFs are used. */
1853 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1854 if (inst->dst.file == VGRF)
1855 remap_table[inst->dst.nr] = 0;
1856
1857 for (int i = 0; i < inst->sources; i++) {
1858 if (inst->src[i].file == VGRF)
1859 remap_table[inst->src[i].nr] = 0;
1860 }
1861 }
1862
1863 /* Compact the GRF arrays. */
1864 int new_index = 0;
1865 for (unsigned i = 0; i < this->alloc.count; i++) {
1866 if (remap_table[i] == -1) {
1867 /* We just found an unused register. This means that we are
1868 * actually going to compact something.
1869 */
1870 progress = true;
1871 } else {
1872 remap_table[i] = new_index;
1873 alloc.sizes[new_index] = alloc.sizes[i];
1874 invalidate_live_intervals();
1875 ++new_index;
1876 }
1877 }
1878
1879 this->alloc.count = new_index;
1880
1881 /* Patch all the instructions to use the newly renumbered registers */
1882 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1883 if (inst->dst.file == VGRF)
1884 inst->dst.nr = remap_table[inst->dst.nr];
1885
1886 for (int i = 0; i < inst->sources; i++) {
1887 if (inst->src[i].file == VGRF)
1888 inst->src[i].nr = remap_table[inst->src[i].nr];
1889 }
1890 }
1891
1892 /* Patch all the references to delta_xy, since they're used in register
1893 * allocation. If they're unused, switch them to BAD_FILE so we don't
1894 * think some random VGRF is delta_xy.
1895 */
1896 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1897 if (delta_xy[i].file == VGRF) {
1898 if (remap_table[delta_xy[i].nr] != -1) {
1899 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1900 } else {
1901 delta_xy[i].file = BAD_FILE;
1902 }
1903 }
1904 }
1905
1906 return progress;
1907 }
1908
1909 static int
1910 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
1911 {
1912 if (prog_data->nr_params == 0)
1913 return -1;
1914
1915 /* The local thread id is always the last parameter in the list */
1916 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
1917 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
1918 return prog_data->nr_params - 1;
1919
1920 return -1;
1921 }
1922
1923 /**
1924 * Struct for handling complex alignments.
1925 *
1926 * A complex alignment is stored as multiplier and an offset. A value is
1927 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
1928 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
1929 * following:
1930 *
1931 * N | cplx_align_apply({8, 2}, N)
1932 * ----+-----------------------------
1933 * 4 | 6
1934 * 6 | 6
1935 * 8 | 14
1936 * 10 | 14
1937 * 12 | 14
1938 * 14 | 14
1939 * 16 | 22
1940 */
1941 struct cplx_align {
1942 unsigned mul:4;
1943 unsigned offset:4;
1944 };
1945
1946 #define CPLX_ALIGN_MAX_MUL 8
1947
1948 static void
1949 cplx_align_assert_sane(struct cplx_align a)
1950 {
1951 assert(a.mul > 0 && util_is_power_of_two(a.mul));
1952 assert(a.offset < a.mul);
1953 }
1954
1955 /**
1956 * Combines two alignments to produce a least multiple of sorts.
1957 *
1958 * The returned alignment is the smallest (in terms of multiplier) such that
1959 * anything aligned to both a and b will be aligned to the new alignment.
1960 * This function will assert-fail if a and b are not compatible, i.e. if the
1961 * offset parameters are such that no common alignment is possible.
1962 */
1963 static struct cplx_align
1964 cplx_align_combine(struct cplx_align a, struct cplx_align b)
1965 {
1966 cplx_align_assert_sane(a);
1967 cplx_align_assert_sane(b);
1968
1969 /* Assert that the alignments agree. */
1970 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
1971
1972 return a.mul > b.mul ? a : b;
1973 }
1974
1975 /**
1976 * Apply a complex alignment
1977 *
1978 * This function will return the smallest number greater than or equal to
1979 * offset that is aligned to align.
1980 */
1981 static unsigned
1982 cplx_align_apply(struct cplx_align align, unsigned offset)
1983 {
1984 return ALIGN(offset - align.offset, align.mul) + align.offset;
1985 }
1986
1987 #define UNIFORM_SLOT_SIZE 4
1988
1989 struct uniform_slot_info {
1990 /** True if the given uniform slot is live */
1991 unsigned is_live:1;
1992
1993 /** True if this slot and the next slot must remain contiguous */
1994 unsigned contiguous:1;
1995
1996 struct cplx_align align;
1997 };
1998
1999 static void
2000 mark_uniform_slots_read(struct uniform_slot_info *slots,
2001 unsigned num_slots, unsigned alignment)
2002 {
2003 assert(alignment > 0 && util_is_power_of_two(alignment));
2004 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2005
2006 /* We can't align a slot to anything less than the slot size */
2007 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2008
2009 struct cplx_align align = {alignment, 0};
2010 cplx_align_assert_sane(align);
2011
2012 for (unsigned i = 0; i < num_slots; i++) {
2013 slots[i].is_live = true;
2014 if (i < num_slots - 1)
2015 slots[i].contiguous = true;
2016
2017 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2018 if (slots[i].align.mul == 0) {
2019 slots[i].align = align;
2020 } else {
2021 slots[i].align = cplx_align_combine(slots[i].align, align);
2022 }
2023 }
2024 }
2025
2026 /**
2027 * Assign UNIFORM file registers to either push constants or pull constants.
2028 *
2029 * We allow a fragment shader to have more than the specified minimum
2030 * maximum number of fragment shader uniform components (64). If
2031 * there are too many of these, they'd fill up all of register space.
2032 * So, this will push some of them out to the pull constant buffer and
2033 * update the program to load them.
2034 */
2035 void
2036 fs_visitor::assign_constant_locations()
2037 {
2038 /* Only the first compile gets to decide on locations. */
2039 if (push_constant_loc) {
2040 assert(pull_constant_loc);
2041 return;
2042 }
2043
2044 struct uniform_slot_info slots[uniforms];
2045 memset(slots, 0, sizeof(slots));
2046
2047 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2048 for (int i = 0 ; i < inst->sources; i++) {
2049 if (inst->src[i].file != UNIFORM)
2050 continue;
2051
2052 /* NIR tightly packs things so the uniform number might not be
2053 * aligned (if we have a double right after a float, for instance).
2054 * This is fine because the process of re-arranging them will ensure
2055 * that things are properly aligned. The offset into that uniform,
2056 * however, must be aligned.
2057 *
2058 * In Vulkan, we have explicit offsets but everything is crammed
2059 * into a single "variable" so inst->src[i].nr will always be 0.
2060 * Everything will be properly aligned relative to that one base.
2061 */
2062 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2063
2064 unsigned u = inst->src[i].nr +
2065 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2066
2067 if (u >= uniforms)
2068 continue;
2069
2070 unsigned slots_read;
2071 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2072 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2073 } else {
2074 unsigned bytes_read = inst->components_read(i) *
2075 type_sz(inst->src[i].type);
2076 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2077 }
2078
2079 assert(u + slots_read <= uniforms);
2080 mark_uniform_slots_read(&slots[u], slots_read,
2081 type_sz(inst->src[i].type));
2082 }
2083 }
2084
2085 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2086
2087 /* Only allow 16 registers (128 uniform components) as push constants.
2088 *
2089 * Just demote the end of the list. We could probably do better
2090 * here, demoting things that are rarely used in the program first.
2091 *
2092 * If changing this value, note the limitation about total_regs in
2093 * brw_curbe.c.
2094 */
2095 unsigned int max_push_components = 16 * 8;
2096 if (subgroup_id_index >= 0)
2097 max_push_components--; /* Save a slot for the thread ID */
2098
2099 /* FIXME: We currently have some GPU hangs that happen apparently when using
2100 * push constants. Since we have no solution for such hangs yet, just
2101 * go ahead and use pull constants for now.
2102 */
2103 if (devinfo->gen == 10 && compiler->supports_pull_constants) {
2104 compiler->shader_perf_log(log_data, "Disabling push constants.");
2105 max_push_components = 0;
2106 }
2107
2108 /* We push small arrays, but no bigger than 16 floats. This is big enough
2109 * for a vec4 but hopefully not large enough to push out other stuff. We
2110 * should probably use a better heuristic at some point.
2111 */
2112 const unsigned int max_chunk_size = 16;
2113
2114 unsigned int num_push_constants = 0;
2115 unsigned int num_pull_constants = 0;
2116
2117 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2118 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2119
2120 /* Default to -1 meaning no location */
2121 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2122 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2123
2124 int chunk_start = -1;
2125 struct cplx_align align;
2126 for (unsigned u = 0; u < uniforms; u++) {
2127 if (!slots[u].is_live) {
2128 assert(chunk_start == -1);
2129 continue;
2130 }
2131
2132 /* Skip subgroup_id_index to put it in the last push register. */
2133 if (subgroup_id_index == (int)u)
2134 continue;
2135
2136 if (chunk_start == -1) {
2137 chunk_start = u;
2138 align = slots[u].align;
2139 } else {
2140 /* Offset into the chunk */
2141 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2142
2143 /* Shift the slot alignment down by the chunk offset so it is
2144 * comparable with the base chunk alignment.
2145 */
2146 struct cplx_align slot_align = slots[u].align;
2147 slot_align.offset =
2148 (slot_align.offset - chunk_offset) & (align.mul - 1);
2149
2150 align = cplx_align_combine(align, slot_align);
2151 }
2152
2153 /* Sanity check the alignment */
2154 cplx_align_assert_sane(align);
2155
2156 if (slots[u].contiguous)
2157 continue;
2158
2159 /* Adjust the alignment to be in terms of slots, not bytes */
2160 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2161 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2162 align.mul /= UNIFORM_SLOT_SIZE;
2163 align.offset /= UNIFORM_SLOT_SIZE;
2164
2165 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2166 unsigned chunk_size = u - chunk_start + 1;
2167 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2168 (chunk_size < max_chunk_size &&
2169 push_start_align + chunk_size <= max_push_components)) {
2170 /* Align up the number of push constants */
2171 num_push_constants = push_start_align;
2172 for (unsigned i = 0; i < chunk_size; i++)
2173 push_constant_loc[chunk_start + i] = num_push_constants++;
2174 } else {
2175 /* We need to pull this one */
2176 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2177 for (unsigned i = 0; i < chunk_size; i++)
2178 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2179 }
2180
2181 /* Reset the chunk and start again */
2182 chunk_start = -1;
2183 }
2184
2185 /* Add the CS local thread ID uniform at the end of the push constants */
2186 if (subgroup_id_index >= 0)
2187 push_constant_loc[subgroup_id_index] = num_push_constants++;
2188
2189 /* As the uniforms are going to be reordered, stash the old array and
2190 * create two new arrays for push/pull params.
2191 */
2192 uint32_t *param = stage_prog_data->param;
2193 stage_prog_data->nr_params = num_push_constants;
2194 if (num_push_constants) {
2195 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2196 num_push_constants);
2197 } else {
2198 stage_prog_data->param = NULL;
2199 }
2200 assert(stage_prog_data->nr_pull_params == 0);
2201 assert(stage_prog_data->pull_param == NULL);
2202 if (num_pull_constants > 0) {
2203 stage_prog_data->nr_pull_params = num_pull_constants;
2204 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2205 num_pull_constants);
2206 }
2207
2208 /* Now that we know how many regular uniforms we'll push, reduce the
2209 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2210 */
2211 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2212 for (int i = 0; i < 4; i++) {
2213 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2214
2215 if (push_length + range->length > 64)
2216 range->length = 64 - push_length;
2217
2218 push_length += range->length;
2219 }
2220 assert(push_length <= 64);
2221
2222 /* Up until now, the param[] array has been indexed by reg + offset
2223 * of UNIFORM registers. Move pull constants into pull_param[] and
2224 * condense param[] to only contain the uniforms we chose to push.
2225 *
2226 * NOTE: Because we are condensing the params[] array, we know that
2227 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2228 * having to make a copy.
2229 */
2230 for (unsigned int i = 0; i < uniforms; i++) {
2231 uint32_t value = param[i];
2232 if (pull_constant_loc[i] != -1) {
2233 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2234 } else if (push_constant_loc[i] != -1) {
2235 stage_prog_data->param[push_constant_loc[i]] = value;
2236 }
2237 }
2238 ralloc_free(param);
2239 }
2240
2241 bool
2242 fs_visitor::get_pull_locs(const fs_reg &src,
2243 unsigned *out_surf_index,
2244 unsigned *out_pull_index)
2245 {
2246 assert(src.file == UNIFORM);
2247
2248 if (src.nr >= UBO_START) {
2249 const struct brw_ubo_range *range =
2250 &prog_data->ubo_ranges[src.nr - UBO_START];
2251
2252 /* If this access is in our (reduced) range, use the push data. */
2253 if (src.offset / 32 < range->length)
2254 return false;
2255
2256 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2257 *out_pull_index = (32 * range->start + src.offset) / 4;
2258 return true;
2259 }
2260
2261 const unsigned location = src.nr + src.offset / 4;
2262
2263 if (location < uniforms && pull_constant_loc[location] != -1) {
2264 /* A regular uniform push constant */
2265 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2266 *out_pull_index = pull_constant_loc[location];
2267 return true;
2268 }
2269
2270 return false;
2271 }
2272
2273 /**
2274 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2275 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2276 */
2277 void
2278 fs_visitor::lower_constant_loads()
2279 {
2280 unsigned index, pull_index;
2281
2282 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2283 /* Set up the annotation tracking for new generated instructions. */
2284 const fs_builder ibld(this, block, inst);
2285
2286 for (int i = 0; i < inst->sources; i++) {
2287 if (inst->src[i].file != UNIFORM)
2288 continue;
2289
2290 /* We'll handle this case later */
2291 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2292 continue;
2293
2294 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2295 continue;
2296
2297 assert(inst->src[i].stride == 0);
2298
2299 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2300 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2301 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2302 const unsigned base = pull_index * 4;
2303
2304 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2305 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2306
2307 /* Rewrite the instruction to use the temporary VGRF. */
2308 inst->src[i].file = VGRF;
2309 inst->src[i].nr = dst.nr;
2310 inst->src[i].offset = (base & (block_sz - 1)) +
2311 inst->src[i].offset % 4;
2312
2313 brw_mark_surface_used(prog_data, index);
2314 }
2315
2316 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2317 inst->src[0].file == UNIFORM) {
2318
2319 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2320 continue;
2321
2322 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2323 brw_imm_ud(index),
2324 inst->src[1],
2325 pull_index * 4);
2326 inst->remove(block);
2327
2328 brw_mark_surface_used(prog_data, index);
2329 }
2330 }
2331 invalidate_live_intervals();
2332 }
2333
2334 bool
2335 fs_visitor::opt_algebraic()
2336 {
2337 bool progress = false;
2338
2339 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2340 switch (inst->opcode) {
2341 case BRW_OPCODE_MOV:
2342 if (inst->src[0].file != IMM)
2343 break;
2344
2345 if (inst->saturate) {
2346 if (inst->dst.type != inst->src[0].type)
2347 assert(!"unimplemented: saturate mixed types");
2348
2349 if (brw_saturate_immediate(inst->dst.type,
2350 &inst->src[0].as_brw_reg())) {
2351 inst->saturate = false;
2352 progress = true;
2353 }
2354 }
2355 break;
2356
2357 case BRW_OPCODE_MUL:
2358 if (inst->src[1].file != IMM)
2359 continue;
2360
2361 /* a * 1.0 = a */
2362 if (inst->src[1].is_one()) {
2363 inst->opcode = BRW_OPCODE_MOV;
2364 inst->src[1] = reg_undef;
2365 progress = true;
2366 break;
2367 }
2368
2369 /* a * -1.0 = -a */
2370 if (inst->src[1].is_negative_one()) {
2371 inst->opcode = BRW_OPCODE_MOV;
2372 inst->src[0].negate = !inst->src[0].negate;
2373 inst->src[1] = reg_undef;
2374 progress = true;
2375 break;
2376 }
2377
2378 /* a * 0.0 = 0.0 */
2379 if (inst->src[1].is_zero()) {
2380 inst->opcode = BRW_OPCODE_MOV;
2381 inst->src[0] = inst->src[1];
2382 inst->src[1] = reg_undef;
2383 progress = true;
2384 break;
2385 }
2386
2387 if (inst->src[0].file == IMM) {
2388 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2389 inst->opcode = BRW_OPCODE_MOV;
2390 inst->src[0].f *= inst->src[1].f;
2391 inst->src[1] = reg_undef;
2392 progress = true;
2393 break;
2394 }
2395 break;
2396 case BRW_OPCODE_ADD:
2397 if (inst->src[1].file != IMM)
2398 continue;
2399
2400 /* a + 0.0 = a */
2401 if (inst->src[1].is_zero()) {
2402 inst->opcode = BRW_OPCODE_MOV;
2403 inst->src[1] = reg_undef;
2404 progress = true;
2405 break;
2406 }
2407
2408 if (inst->src[0].file == IMM) {
2409 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2410 inst->opcode = BRW_OPCODE_MOV;
2411 inst->src[0].f += inst->src[1].f;
2412 inst->src[1] = reg_undef;
2413 progress = true;
2414 break;
2415 }
2416 break;
2417 case BRW_OPCODE_OR:
2418 if (inst->src[0].equals(inst->src[1])) {
2419 inst->opcode = BRW_OPCODE_MOV;
2420 inst->src[1] = reg_undef;
2421 progress = true;
2422 break;
2423 }
2424 break;
2425 case BRW_OPCODE_LRP:
2426 if (inst->src[1].equals(inst->src[2])) {
2427 inst->opcode = BRW_OPCODE_MOV;
2428 inst->src[0] = inst->src[1];
2429 inst->src[1] = reg_undef;
2430 inst->src[2] = reg_undef;
2431 progress = true;
2432 break;
2433 }
2434 break;
2435 case BRW_OPCODE_CMP:
2436 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2437 inst->src[0].abs &&
2438 inst->src[0].negate &&
2439 inst->src[1].is_zero()) {
2440 inst->src[0].abs = false;
2441 inst->src[0].negate = false;
2442 inst->conditional_mod = BRW_CONDITIONAL_Z;
2443 progress = true;
2444 break;
2445 }
2446 break;
2447 case BRW_OPCODE_SEL:
2448 if (inst->src[0].equals(inst->src[1])) {
2449 inst->opcode = BRW_OPCODE_MOV;
2450 inst->src[1] = reg_undef;
2451 inst->predicate = BRW_PREDICATE_NONE;
2452 inst->predicate_inverse = false;
2453 progress = true;
2454 } else if (inst->saturate && inst->src[1].file == IMM) {
2455 switch (inst->conditional_mod) {
2456 case BRW_CONDITIONAL_LE:
2457 case BRW_CONDITIONAL_L:
2458 switch (inst->src[1].type) {
2459 case BRW_REGISTER_TYPE_F:
2460 if (inst->src[1].f >= 1.0f) {
2461 inst->opcode = BRW_OPCODE_MOV;
2462 inst->src[1] = reg_undef;
2463 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2464 progress = true;
2465 }
2466 break;
2467 default:
2468 break;
2469 }
2470 break;
2471 case BRW_CONDITIONAL_GE:
2472 case BRW_CONDITIONAL_G:
2473 switch (inst->src[1].type) {
2474 case BRW_REGISTER_TYPE_F:
2475 if (inst->src[1].f <= 0.0f) {
2476 inst->opcode = BRW_OPCODE_MOV;
2477 inst->src[1] = reg_undef;
2478 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2479 progress = true;
2480 }
2481 break;
2482 default:
2483 break;
2484 }
2485 default:
2486 break;
2487 }
2488 }
2489 break;
2490 case BRW_OPCODE_MAD:
2491 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2492 inst->opcode = BRW_OPCODE_MOV;
2493 inst->src[1] = reg_undef;
2494 inst->src[2] = reg_undef;
2495 progress = true;
2496 } else if (inst->src[0].is_zero()) {
2497 inst->opcode = BRW_OPCODE_MUL;
2498 inst->src[0] = inst->src[2];
2499 inst->src[2] = reg_undef;
2500 progress = true;
2501 } else if (inst->src[1].is_one()) {
2502 inst->opcode = BRW_OPCODE_ADD;
2503 inst->src[1] = inst->src[2];
2504 inst->src[2] = reg_undef;
2505 progress = true;
2506 } else if (inst->src[2].is_one()) {
2507 inst->opcode = BRW_OPCODE_ADD;
2508 inst->src[2] = reg_undef;
2509 progress = true;
2510 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2511 inst->opcode = BRW_OPCODE_ADD;
2512 inst->src[1].f *= inst->src[2].f;
2513 inst->src[2] = reg_undef;
2514 progress = true;
2515 }
2516 break;
2517 case SHADER_OPCODE_BROADCAST:
2518 if (is_uniform(inst->src[0])) {
2519 inst->opcode = BRW_OPCODE_MOV;
2520 inst->sources = 1;
2521 inst->force_writemask_all = true;
2522 progress = true;
2523 } else if (inst->src[1].file == IMM) {
2524 inst->opcode = BRW_OPCODE_MOV;
2525 /* It's possible that the selected component will be too large and
2526 * overflow the register. This can happen if someone does a
2527 * readInvocation() from GLSL or SPIR-V and provides an OOB
2528 * invocationIndex. If this happens and we some how manage
2529 * to constant fold it in and get here, then component() may cause
2530 * us to start reading outside of the VGRF which will lead to an
2531 * assert later. Instead, just let it wrap around if it goes over
2532 * exec_size.
2533 */
2534 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2535 inst->src[0] = component(inst->src[0], comp);
2536 inst->sources = 1;
2537 inst->force_writemask_all = true;
2538 progress = true;
2539 }
2540 break;
2541
2542 default:
2543 break;
2544 }
2545
2546 /* Swap if src[0] is immediate. */
2547 if (progress && inst->is_commutative()) {
2548 if (inst->src[0].file == IMM) {
2549 fs_reg tmp = inst->src[1];
2550 inst->src[1] = inst->src[0];
2551 inst->src[0] = tmp;
2552 }
2553 }
2554 }
2555 return progress;
2556 }
2557
2558 /**
2559 * Optimize sample messages that have constant zero values for the trailing
2560 * texture coordinates. We can just reduce the message length for these
2561 * instructions instead of reserving a register for it. Trailing parameters
2562 * that aren't sent default to zero anyway. This will cause the dead code
2563 * eliminator to remove the MOV instruction that would otherwise be emitted to
2564 * set up the zero value.
2565 */
2566 bool
2567 fs_visitor::opt_zero_samples()
2568 {
2569 /* Gen4 infers the texturing opcode based on the message length so we can't
2570 * change it.
2571 */
2572 if (devinfo->gen < 5)
2573 return false;
2574
2575 bool progress = false;
2576
2577 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2578 if (!inst->is_tex())
2579 continue;
2580
2581 fs_inst *load_payload = (fs_inst *) inst->prev;
2582
2583 if (load_payload->is_head_sentinel() ||
2584 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2585 continue;
2586
2587 /* We don't want to remove the message header or the first parameter.
2588 * Removing the first parameter is not allowed, see the Haswell PRM
2589 * volume 7, page 149:
2590 *
2591 * "Parameter 0 is required except for the sampleinfo message, which
2592 * has no parameter 0"
2593 */
2594 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2595 load_payload->src[(inst->mlen - inst->header_size) /
2596 (inst->exec_size / 8) +
2597 inst->header_size - 1].is_zero()) {
2598 inst->mlen -= inst->exec_size / 8;
2599 progress = true;
2600 }
2601 }
2602
2603 if (progress)
2604 invalidate_live_intervals();
2605
2606 return progress;
2607 }
2608
2609 /**
2610 * Optimize sample messages which are followed by the final RT write.
2611 *
2612 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2613 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2614 * final texturing results copied to the framebuffer write payload and modify
2615 * them to write to the framebuffer directly.
2616 */
2617 bool
2618 fs_visitor::opt_sampler_eot()
2619 {
2620 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2621
2622 if (stage != MESA_SHADER_FRAGMENT)
2623 return false;
2624
2625 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2626 return false;
2627
2628 /* FINISHME: It should be possible to implement this optimization when there
2629 * are multiple drawbuffers.
2630 */
2631 if (key->nr_color_regions != 1)
2632 return false;
2633
2634 /* Requires emitting a bunch of saturating MOV instructions during logical
2635 * send lowering to clamp the color payload, which the sampler unit isn't
2636 * going to do for us.
2637 */
2638 if (key->clamp_fragment_color)
2639 return false;
2640
2641 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2642 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2643 fs_inst *fb_write = (fs_inst *)block->end();
2644 assert(fb_write->eot);
2645 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2646
2647 /* There wasn't one; nothing to do. */
2648 if (unlikely(fb_write->prev->is_head_sentinel()))
2649 return false;
2650
2651 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2652
2653 /* 3D Sampler » Messages » Message Format
2654 *
2655 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2656 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2657 */
2658 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2659 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2660 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2661 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2662 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2663 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2664 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2665 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2666 return false;
2667
2668 /* XXX - This shouldn't be necessary. */
2669 if (tex_inst->prev->is_head_sentinel())
2670 return false;
2671
2672 /* Check that the FB write sources are fully initialized by the single
2673 * texturing instruction.
2674 */
2675 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2676 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2677 if (!fb_write->src[i].equals(tex_inst->dst) ||
2678 fb_write->size_read(i) != tex_inst->size_written)
2679 return false;
2680 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2681 if (fb_write->src[i].file != BAD_FILE)
2682 return false;
2683 }
2684 }
2685
2686 assert(!tex_inst->eot); /* We can't get here twice */
2687 assert((tex_inst->offset & (0xff << 24)) == 0);
2688
2689 const fs_builder ibld(this, block, tex_inst);
2690
2691 tex_inst->offset |= fb_write->target << 24;
2692 tex_inst->eot = true;
2693 tex_inst->dst = ibld.null_reg_ud();
2694 tex_inst->size_written = 0;
2695 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2696
2697 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2698 * flag and submit a header together with the sampler message as required
2699 * by the hardware.
2700 */
2701 invalidate_live_intervals();
2702 return true;
2703 }
2704
2705 bool
2706 fs_visitor::opt_register_renaming()
2707 {
2708 bool progress = false;
2709 int depth = 0;
2710
2711 int remap[alloc.count];
2712 memset(remap, -1, sizeof(int) * alloc.count);
2713
2714 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2715 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2716 depth++;
2717 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2718 inst->opcode == BRW_OPCODE_WHILE) {
2719 depth--;
2720 }
2721
2722 /* Rewrite instruction sources. */
2723 for (int i = 0; i < inst->sources; i++) {
2724 if (inst->src[i].file == VGRF &&
2725 remap[inst->src[i].nr] != -1 &&
2726 remap[inst->src[i].nr] != inst->src[i].nr) {
2727 inst->src[i].nr = remap[inst->src[i].nr];
2728 progress = true;
2729 }
2730 }
2731
2732 const int dst = inst->dst.nr;
2733
2734 if (depth == 0 &&
2735 inst->dst.file == VGRF &&
2736 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2737 !inst->is_partial_write()) {
2738 if (remap[dst] == -1) {
2739 remap[dst] = dst;
2740 } else {
2741 remap[dst] = alloc.allocate(regs_written(inst));
2742 inst->dst.nr = remap[dst];
2743 progress = true;
2744 }
2745 } else if (inst->dst.file == VGRF &&
2746 remap[dst] != -1 &&
2747 remap[dst] != dst) {
2748 inst->dst.nr = remap[dst];
2749 progress = true;
2750 }
2751 }
2752
2753 if (progress) {
2754 invalidate_live_intervals();
2755
2756 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2757 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2758 delta_xy[i].nr = remap[delta_xy[i].nr];
2759 }
2760 }
2761 }
2762
2763 return progress;
2764 }
2765
2766 /**
2767 * Remove redundant or useless discard jumps.
2768 *
2769 * For example, we can eliminate jumps in the following sequence:
2770 *
2771 * discard-jump (redundant with the next jump)
2772 * discard-jump (useless; jumps to the next instruction)
2773 * placeholder-halt
2774 */
2775 bool
2776 fs_visitor::opt_redundant_discard_jumps()
2777 {
2778 bool progress = false;
2779
2780 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2781
2782 fs_inst *placeholder_halt = NULL;
2783 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2784 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2785 placeholder_halt = inst;
2786 break;
2787 }
2788 }
2789
2790 if (!placeholder_halt)
2791 return false;
2792
2793 /* Delete any HALTs immediately before the placeholder halt. */
2794 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2795 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2796 prev = (fs_inst *) placeholder_halt->prev) {
2797 prev->remove(last_bblock);
2798 progress = true;
2799 }
2800
2801 if (progress)
2802 invalidate_live_intervals();
2803
2804 return progress;
2805 }
2806
2807 /**
2808 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2809 * from \p r.offset which overlaps the region starting at \p s.offset and
2810 * spanning \p ds bytes.
2811 */
2812 static inline unsigned
2813 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2814 {
2815 const int rel_offset = reg_offset(s) - reg_offset(r);
2816 const int shift = rel_offset / REG_SIZE;
2817 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2818 assert(reg_space(r) == reg_space(s) &&
2819 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2820 return ((1 << n) - 1) << shift;
2821 }
2822
2823 bool
2824 fs_visitor::compute_to_mrf()
2825 {
2826 bool progress = false;
2827 int next_ip = 0;
2828
2829 /* No MRFs on Gen >= 7. */
2830 if (devinfo->gen >= 7)
2831 return false;
2832
2833 calculate_live_intervals();
2834
2835 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2836 int ip = next_ip;
2837 next_ip++;
2838
2839 if (inst->opcode != BRW_OPCODE_MOV ||
2840 inst->is_partial_write() ||
2841 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2842 inst->dst.type != inst->src[0].type ||
2843 inst->src[0].abs || inst->src[0].negate ||
2844 !inst->src[0].is_contiguous() ||
2845 inst->src[0].offset % REG_SIZE != 0)
2846 continue;
2847
2848 /* Can't compute-to-MRF this GRF if someone else was going to
2849 * read it later.
2850 */
2851 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2852 continue;
2853
2854 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2855 * things that computed the value of all GRFs of the source region. The
2856 * regs_left bitset keeps track of the registers we haven't yet found a
2857 * generating instruction for.
2858 */
2859 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2860
2861 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2862 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2863 inst->src[0], inst->size_read(0))) {
2864 /* Found the last thing to write our reg we want to turn
2865 * into a compute-to-MRF.
2866 */
2867
2868 /* If this one instruction didn't populate all the
2869 * channels, bail. We might be able to rewrite everything
2870 * that writes that reg, but it would require smarter
2871 * tracking.
2872 */
2873 if (scan_inst->is_partial_write())
2874 break;
2875
2876 /* Handling things not fully contained in the source of the copy
2877 * would need us to understand coalescing out more than one MOV at
2878 * a time.
2879 */
2880 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2881 inst->src[0], inst->size_read(0)))
2882 break;
2883
2884 /* SEND instructions can't have MRF as a destination. */
2885 if (scan_inst->mlen)
2886 break;
2887
2888 if (devinfo->gen == 6) {
2889 /* gen6 math instructions must have the destination be
2890 * GRF, so no compute-to-MRF for them.
2891 */
2892 if (scan_inst->is_math()) {
2893 break;
2894 }
2895 }
2896
2897 /* Clear the bits for any registers this instruction overwrites. */
2898 regs_left &= ~mask_relative_to(
2899 inst->src[0], scan_inst->dst, scan_inst->size_written);
2900 if (!regs_left)
2901 break;
2902 }
2903
2904 /* We don't handle control flow here. Most computation of
2905 * values that end up in MRFs are shortly before the MRF
2906 * write anyway.
2907 */
2908 if (block->start() == scan_inst)
2909 break;
2910
2911 /* You can't read from an MRF, so if someone else reads our
2912 * MRF's source GRF that we wanted to rewrite, that stops us.
2913 */
2914 bool interfered = false;
2915 for (int i = 0; i < scan_inst->sources; i++) {
2916 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2917 inst->src[0], inst->size_read(0))) {
2918 interfered = true;
2919 }
2920 }
2921 if (interfered)
2922 break;
2923
2924 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2925 inst->dst, inst->size_written)) {
2926 /* If somebody else writes our MRF here, we can't
2927 * compute-to-MRF before that.
2928 */
2929 break;
2930 }
2931
2932 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2933 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2934 inst->dst, inst->size_written)) {
2935 /* Found a SEND instruction, which means that there are
2936 * live values in MRFs from base_mrf to base_mrf +
2937 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2938 * above it.
2939 */
2940 break;
2941 }
2942 }
2943
2944 if (regs_left)
2945 continue;
2946
2947 /* Found all generating instructions of our MRF's source value, so it
2948 * should be safe to rewrite them to point to the MRF directly.
2949 */
2950 regs_left = (1 << regs_read(inst, 0)) - 1;
2951
2952 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2953 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2954 inst->src[0], inst->size_read(0))) {
2955 /* Clear the bits for any registers this instruction overwrites. */
2956 regs_left &= ~mask_relative_to(
2957 inst->src[0], scan_inst->dst, scan_inst->size_written);
2958
2959 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2960 reg_offset(inst->src[0]);
2961
2962 if (inst->dst.nr & BRW_MRF_COMPR4) {
2963 /* Apply the same address transformation done by the hardware
2964 * for COMPR4 MRF writes.
2965 */
2966 assert(rel_offset < 2 * REG_SIZE);
2967 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2968
2969 /* Clear the COMPR4 bit if the generating instruction is not
2970 * compressed.
2971 */
2972 if (scan_inst->size_written < 2 * REG_SIZE)
2973 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2974
2975 } else {
2976 /* Calculate the MRF number the result of this instruction is
2977 * ultimately written to.
2978 */
2979 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2980 }
2981
2982 scan_inst->dst.file = MRF;
2983 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2984 scan_inst->saturate |= inst->saturate;
2985 if (!regs_left)
2986 break;
2987 }
2988 }
2989
2990 assert(!regs_left);
2991 inst->remove(block);
2992 progress = true;
2993 }
2994
2995 if (progress)
2996 invalidate_live_intervals();
2997
2998 return progress;
2999 }
3000
3001 /**
3002 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3003 * flow. We could probably do better here with some form of divergence
3004 * analysis.
3005 */
3006 bool
3007 fs_visitor::eliminate_find_live_channel()
3008 {
3009 bool progress = false;
3010 unsigned depth = 0;
3011
3012 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3013 /* The optimization below assumes that channel zero is live on thread
3014 * dispatch, which may not be the case if the fixed function dispatches
3015 * threads sparsely.
3016 */
3017 return false;
3018 }
3019
3020 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3021 switch (inst->opcode) {
3022 case BRW_OPCODE_IF:
3023 case BRW_OPCODE_DO:
3024 depth++;
3025 break;
3026
3027 case BRW_OPCODE_ENDIF:
3028 case BRW_OPCODE_WHILE:
3029 depth--;
3030 break;
3031
3032 case FS_OPCODE_DISCARD_JUMP:
3033 /* This can potentially make control flow non-uniform until the end
3034 * of the program.
3035 */
3036 return progress;
3037
3038 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3039 if (depth == 0) {
3040 inst->opcode = BRW_OPCODE_MOV;
3041 inst->src[0] = brw_imm_ud(0u);
3042 inst->sources = 1;
3043 inst->force_writemask_all = true;
3044 progress = true;
3045 }
3046 break;
3047
3048 default:
3049 break;
3050 }
3051 }
3052
3053 return progress;
3054 }
3055
3056 /**
3057 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3058 * instructions to FS_OPCODE_REP_FB_WRITE.
3059 */
3060 void
3061 fs_visitor::emit_repclear_shader()
3062 {
3063 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3064 int base_mrf = 0;
3065 int color_mrf = base_mrf + 2;
3066 fs_inst *mov;
3067
3068 if (uniforms > 0) {
3069 mov = bld.exec_all().group(4, 0)
3070 .MOV(brw_message_reg(color_mrf),
3071 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3072 } else {
3073 struct brw_reg reg =
3074 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3075 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3076 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3077
3078 mov = bld.exec_all().group(4, 0)
3079 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3080 }
3081
3082 fs_inst *write;
3083 if (key->nr_color_regions == 1) {
3084 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3085 write->saturate = key->clamp_fragment_color;
3086 write->base_mrf = color_mrf;
3087 write->target = 0;
3088 write->header_size = 0;
3089 write->mlen = 1;
3090 } else {
3091 assume(key->nr_color_regions > 0);
3092 for (int i = 0; i < key->nr_color_regions; ++i) {
3093 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3094 write->saturate = key->clamp_fragment_color;
3095 write->base_mrf = base_mrf;
3096 write->target = i;
3097 write->header_size = 2;
3098 write->mlen = 3;
3099 }
3100 }
3101 write->eot = true;
3102
3103 calculate_cfg();
3104
3105 assign_constant_locations();
3106 assign_curb_setup();
3107
3108 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3109 if (uniforms > 0) {
3110 assert(mov->src[0].file == FIXED_GRF);
3111 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3112 }
3113 }
3114
3115 /**
3116 * Walks through basic blocks, looking for repeated MRF writes and
3117 * removing the later ones.
3118 */
3119 bool
3120 fs_visitor::remove_duplicate_mrf_writes()
3121 {
3122 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3123 bool progress = false;
3124
3125 /* Need to update the MRF tracking for compressed instructions. */
3126 if (dispatch_width >= 16)
3127 return false;
3128
3129 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3130
3131 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3132 if (inst->is_control_flow()) {
3133 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3134 }
3135
3136 if (inst->opcode == BRW_OPCODE_MOV &&
3137 inst->dst.file == MRF) {
3138 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3139 if (prev_inst && inst->equals(prev_inst)) {
3140 inst->remove(block);
3141 progress = true;
3142 continue;
3143 }
3144 }
3145
3146 /* Clear out the last-write records for MRFs that were overwritten. */
3147 if (inst->dst.file == MRF) {
3148 last_mrf_move[inst->dst.nr] = NULL;
3149 }
3150
3151 if (inst->mlen > 0 && inst->base_mrf != -1) {
3152 /* Found a SEND instruction, which will include two or fewer
3153 * implied MRF writes. We could do better here.
3154 */
3155 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3156 last_mrf_move[inst->base_mrf + i] = NULL;
3157 }
3158 }
3159
3160 /* Clear out any MRF move records whose sources got overwritten. */
3161 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3162 if (last_mrf_move[i] &&
3163 regions_overlap(inst->dst, inst->size_written,
3164 last_mrf_move[i]->src[0],
3165 last_mrf_move[i]->size_read(0))) {
3166 last_mrf_move[i] = NULL;
3167 }
3168 }
3169
3170 if (inst->opcode == BRW_OPCODE_MOV &&
3171 inst->dst.file == MRF &&
3172 inst->src[0].file != ARF &&
3173 !inst->is_partial_write()) {
3174 last_mrf_move[inst->dst.nr] = inst;
3175 }
3176 }
3177
3178 if (progress)
3179 invalidate_live_intervals();
3180
3181 return progress;
3182 }
3183
3184 /**
3185 * Rounding modes for conversion instructions are included for each
3186 * conversion, but right now it is a state. So once it is set,
3187 * we don't need to call it again for subsequent calls.
3188 *
3189 * This is useful for vector/matrices conversions, as setting the
3190 * mode once is enough for the full vector/matrix
3191 */
3192 bool
3193 fs_visitor::remove_extra_rounding_modes()
3194 {
3195 bool progress = false;
3196
3197 foreach_block (block, cfg) {
3198 brw_rnd_mode prev_mode = BRW_RND_MODE_UNSPECIFIED;
3199
3200 foreach_inst_in_block_safe (fs_inst, inst, block) {
3201 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3202 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3203 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3204 if (mode == prev_mode) {
3205 inst->remove(block);
3206 progress = true;
3207 } else {
3208 prev_mode = mode;
3209 }
3210 }
3211 }
3212 }
3213
3214 if (progress)
3215 invalidate_live_intervals();
3216
3217 return progress;
3218 }
3219
3220 static void
3221 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3222 {
3223 /* Clear the flag for registers that actually got read (as expected). */
3224 for (int i = 0; i < inst->sources; i++) {
3225 int grf;
3226 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3227 grf = inst->src[i].nr;
3228 } else {
3229 continue;
3230 }
3231
3232 if (grf >= first_grf &&
3233 grf < first_grf + grf_len) {
3234 deps[grf - first_grf] = false;
3235 if (inst->exec_size == 16)
3236 deps[grf - first_grf + 1] = false;
3237 }
3238 }
3239 }
3240
3241 /**
3242 * Implements this workaround for the original 965:
3243 *
3244 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3245 * check for post destination dependencies on this instruction, software
3246 * must ensure that there is no destination hazard for the case of ‘write
3247 * followed by a posted write’ shown in the following example.
3248 *
3249 * 1. mov r3 0
3250 * 2. send r3.xy <rest of send instruction>
3251 * 3. mov r2 r3
3252 *
3253 * Due to no post-destination dependency check on the ‘send’, the above
3254 * code sequence could have two instructions (1 and 2) in flight at the
3255 * same time that both consider ‘r3’ as the target of their final writes.
3256 */
3257 void
3258 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3259 fs_inst *inst)
3260 {
3261 int write_len = regs_written(inst);
3262 int first_write_grf = inst->dst.nr;
3263 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3264 assert(write_len < (int)sizeof(needs_dep) - 1);
3265
3266 memset(needs_dep, false, sizeof(needs_dep));
3267 memset(needs_dep, true, write_len);
3268
3269 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3270
3271 /* Walk backwards looking for writes to registers we're writing which
3272 * aren't read since being written. If we hit the start of the program,
3273 * we assume that there are no outstanding dependencies on entry to the
3274 * program.
3275 */
3276 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3277 /* If we hit control flow, assume that there *are* outstanding
3278 * dependencies, and force their cleanup before our instruction.
3279 */
3280 if (block->start() == scan_inst && block->num != 0) {
3281 for (int i = 0; i < write_len; i++) {
3282 if (needs_dep[i])
3283 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3284 first_write_grf + i);
3285 }
3286 return;
3287 }
3288
3289 /* We insert our reads as late as possible on the assumption that any
3290 * instruction but a MOV that might have left us an outstanding
3291 * dependency has more latency than a MOV.
3292 */
3293 if (scan_inst->dst.file == VGRF) {
3294 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3295 int reg = scan_inst->dst.nr + i;
3296
3297 if (reg >= first_write_grf &&
3298 reg < first_write_grf + write_len &&
3299 needs_dep[reg - first_write_grf]) {
3300 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3301 needs_dep[reg - first_write_grf] = false;
3302 if (scan_inst->exec_size == 16)
3303 needs_dep[reg - first_write_grf + 1] = false;
3304 }
3305 }
3306 }
3307
3308 /* Clear the flag for registers that actually got read (as expected). */
3309 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3310
3311 /* Continue the loop only if we haven't resolved all the dependencies */
3312 int i;
3313 for (i = 0; i < write_len; i++) {
3314 if (needs_dep[i])
3315 break;
3316 }
3317 if (i == write_len)
3318 return;
3319 }
3320 }
3321
3322 /**
3323 * Implements this workaround for the original 965:
3324 *
3325 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3326 * used as a destination register until after it has been sourced by an
3327 * instruction with a different destination register.
3328 */
3329 void
3330 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3331 {
3332 int write_len = regs_written(inst);
3333 int first_write_grf = inst->dst.nr;
3334 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3335 assert(write_len < (int)sizeof(needs_dep) - 1);
3336
3337 memset(needs_dep, false, sizeof(needs_dep));
3338 memset(needs_dep, true, write_len);
3339 /* Walk forwards looking for writes to registers we're writing which aren't
3340 * read before being written.
3341 */
3342 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3343 /* If we hit control flow, force resolve all remaining dependencies. */
3344 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3345 for (int i = 0; i < write_len; i++) {
3346 if (needs_dep[i])
3347 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3348 first_write_grf + i);
3349 }
3350 return;
3351 }
3352
3353 /* Clear the flag for registers that actually got read (as expected). */
3354 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3355
3356 /* We insert our reads as late as possible since they're reading the
3357 * result of a SEND, which has massive latency.
3358 */
3359 if (scan_inst->dst.file == VGRF &&
3360 scan_inst->dst.nr >= first_write_grf &&
3361 scan_inst->dst.nr < first_write_grf + write_len &&
3362 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3363 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3364 scan_inst->dst.nr);
3365 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3366 }
3367
3368 /* Continue the loop only if we haven't resolved all the dependencies */
3369 int i;
3370 for (i = 0; i < write_len; i++) {
3371 if (needs_dep[i])
3372 break;
3373 }
3374 if (i == write_len)
3375 return;
3376 }
3377 }
3378
3379 void
3380 fs_visitor::insert_gen4_send_dependency_workarounds()
3381 {
3382 if (devinfo->gen != 4 || devinfo->is_g4x)
3383 return;
3384
3385 bool progress = false;
3386
3387 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3388 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3389 insert_gen4_pre_send_dependency_workarounds(block, inst);
3390 insert_gen4_post_send_dependency_workarounds(block, inst);
3391 progress = true;
3392 }
3393 }
3394
3395 if (progress)
3396 invalidate_live_intervals();
3397 }
3398
3399 /**
3400 * Turns the generic expression-style uniform pull constant load instruction
3401 * into a hardware-specific series of instructions for loading a pull
3402 * constant.
3403 *
3404 * The expression style allows the CSE pass before this to optimize out
3405 * repeated loads from the same offset, and gives the pre-register-allocation
3406 * scheduling full flexibility, while the conversion to native instructions
3407 * allows the post-register-allocation scheduler the best information
3408 * possible.
3409 *
3410 * Note that execution masking for setting up pull constant loads is special:
3411 * the channels that need to be written are unrelated to the current execution
3412 * mask, since a later instruction will use one of the result channels as a
3413 * source operand for all 8 or 16 of its channels.
3414 */
3415 void
3416 fs_visitor::lower_uniform_pull_constant_loads()
3417 {
3418 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3419 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3420 continue;
3421
3422 if (devinfo->gen >= 7) {
3423 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3424 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3425
3426 ubld.group(8, 0).MOV(payload,
3427 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3428 ubld.group(1, 0).MOV(component(payload, 2),
3429 brw_imm_ud(inst->src[1].ud / 16));
3430
3431 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3432 inst->src[1] = payload;
3433 inst->header_size = 1;
3434 inst->mlen = 1;
3435
3436 invalidate_live_intervals();
3437 } else {
3438 /* Before register allocation, we didn't tell the scheduler about the
3439 * MRF we use. We know it's safe to use this MRF because nothing
3440 * else does except for register spill/unspill, which generates and
3441 * uses its MRF within a single IR instruction.
3442 */
3443 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3444 inst->mlen = 1;
3445 }
3446 }
3447 }
3448
3449 bool
3450 fs_visitor::lower_load_payload()
3451 {
3452 bool progress = false;
3453
3454 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3455 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3456 continue;
3457
3458 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3459 assert(inst->saturate == false);
3460 fs_reg dst = inst->dst;
3461
3462 /* Get rid of COMPR4. We'll add it back in if we need it */
3463 if (dst.file == MRF)
3464 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3465
3466 const fs_builder ibld(this, block, inst);
3467 const fs_builder hbld = ibld.exec_all().group(8, 0);
3468
3469 for (uint8_t i = 0; i < inst->header_size; i++) {
3470 if (inst->src[i].file != BAD_FILE) {
3471 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3472 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3473 hbld.MOV(mov_dst, mov_src);
3474 }
3475 dst = offset(dst, hbld, 1);
3476 }
3477
3478 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3479 inst->exec_size > 8) {
3480 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3481 * a straightforward copy. Instead, the result of the
3482 * LOAD_PAYLOAD is treated as interleaved and the first four
3483 * non-header sources are unpacked as:
3484 *
3485 * m + 0: r0
3486 * m + 1: g0
3487 * m + 2: b0
3488 * m + 3: a0
3489 * m + 4: r1
3490 * m + 5: g1
3491 * m + 6: b1
3492 * m + 7: a1
3493 *
3494 * This is used for gen <= 5 fb writes.
3495 */
3496 assert(inst->exec_size == 16);
3497 assert(inst->header_size + 4 <= inst->sources);
3498 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3499 if (inst->src[i].file != BAD_FILE) {
3500 if (devinfo->has_compr4) {
3501 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3502 compr4_dst.nr |= BRW_MRF_COMPR4;
3503 ibld.MOV(compr4_dst, inst->src[i]);
3504 } else {
3505 /* Platform doesn't have COMPR4. We have to fake it */
3506 fs_reg mov_dst = retype(dst, inst->src[i].type);
3507 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3508 mov_dst.nr += 4;
3509 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3510 }
3511 }
3512
3513 dst.nr++;
3514 }
3515
3516 /* The loop above only ever incremented us through the first set
3517 * of 4 registers. However, thanks to the magic of COMPR4, we
3518 * actually wrote to the first 8 registers, so we need to take
3519 * that into account now.
3520 */
3521 dst.nr += 4;
3522
3523 /* The COMPR4 code took care of the first 4 sources. We'll let
3524 * the regular path handle any remaining sources. Yes, we are
3525 * modifying the instruction but we're about to delete it so
3526 * this really doesn't hurt anything.
3527 */
3528 inst->header_size += 4;
3529 }
3530
3531 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3532 if (inst->src[i].file != BAD_FILE)
3533 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3534 dst = offset(dst, ibld, 1);
3535 }
3536
3537 inst->remove(block);
3538 progress = true;
3539 }
3540
3541 if (progress)
3542 invalidate_live_intervals();
3543
3544 return progress;
3545 }
3546
3547 bool
3548 fs_visitor::lower_integer_multiplication()
3549 {
3550 bool progress = false;
3551
3552 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3553 const fs_builder ibld(this, block, inst);
3554
3555 if (inst->opcode == BRW_OPCODE_MUL) {
3556 if (inst->dst.is_accumulator() ||
3557 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3558 inst->dst.type != BRW_REGISTER_TYPE_UD))
3559 continue;
3560
3561 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3562 * operation directly, but CHV/BXT cannot.
3563 */
3564 if (devinfo->gen >= 8 &&
3565 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3566 continue;
3567
3568 if (inst->src[1].file == IMM &&
3569 inst->src[1].ud < (1 << 16)) {
3570 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3571 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3572 * src1 are used.
3573 *
3574 * If multiplying by an immediate value that fits in 16-bits, do a
3575 * single MUL instruction with that value in the proper location.
3576 */
3577 if (devinfo->gen < 7) {
3578 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3579 inst->dst.type);
3580 ibld.MOV(imm, inst->src[1]);
3581 ibld.MUL(inst->dst, imm, inst->src[0]);
3582 } else {
3583 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3584 ibld.MUL(inst->dst, inst->src[0],
3585 ud ? brw_imm_uw(inst->src[1].ud)
3586 : brw_imm_w(inst->src[1].d));
3587 }
3588 } else {
3589 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3590 * do 32-bit integer multiplication in one instruction, but instead
3591 * must do a sequence (which actually calculates a 64-bit result):
3592 *
3593 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3594 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3595 * mov(8) g2<1>D acc0<8,8,1>D
3596 *
3597 * But on Gen > 6, the ability to use second accumulator register
3598 * (acc1) for non-float data types was removed, preventing a simple
3599 * implementation in SIMD16. A 16-channel result can be calculated by
3600 * executing the three instructions twice in SIMD8, once with quarter
3601 * control of 1Q for the first eight channels and again with 2Q for
3602 * the second eight channels.
3603 *
3604 * Which accumulator register is implicitly accessed (by AccWrEnable
3605 * for instance) is determined by the quarter control. Unfortunately
3606 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3607 * implicit accumulator access by an instruction with 2Q will access
3608 * acc1 regardless of whether the data type is usable in acc1.
3609 *
3610 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3611 * integer data types.
3612 *
3613 * Since we only want the low 32-bits of the result, we can do two
3614 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3615 * adjust the high result and add them (like the mach is doing):
3616 *
3617 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3618 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3619 * shl(8) g9<1>D g8<8,8,1>D 16D
3620 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3621 *
3622 * We avoid the shl instruction by realizing that we only want to add
3623 * the low 16-bits of the "high" result to the high 16-bits of the
3624 * "low" result and using proper regioning on the add:
3625 *
3626 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3627 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3628 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3629 *
3630 * Since it does not use the (single) accumulator register, we can
3631 * schedule multi-component multiplications much better.
3632 */
3633
3634 bool needs_mov = false;
3635 fs_reg orig_dst = inst->dst;
3636 fs_reg low = inst->dst;
3637 if (orig_dst.is_null() || orig_dst.file == MRF ||
3638 regions_overlap(inst->dst, inst->size_written,
3639 inst->src[0], inst->size_read(0)) ||
3640 regions_overlap(inst->dst, inst->size_written,
3641 inst->src[1], inst->size_read(1))) {
3642 needs_mov = true;
3643 low.nr = alloc.allocate(regs_written(inst));
3644 low.offset = low.offset % REG_SIZE;
3645 }
3646
3647 fs_reg high = inst->dst;
3648 high.nr = alloc.allocate(regs_written(inst));
3649 high.offset = high.offset % REG_SIZE;
3650
3651 if (devinfo->gen >= 7) {
3652 if (inst->src[1].file == IMM) {
3653 ibld.MUL(low, inst->src[0],
3654 brw_imm_uw(inst->src[1].ud & 0xffff));
3655 ibld.MUL(high, inst->src[0],
3656 brw_imm_uw(inst->src[1].ud >> 16));
3657 } else {
3658 ibld.MUL(low, inst->src[0],
3659 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3660 ibld.MUL(high, inst->src[0],
3661 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3662 }
3663 } else {
3664 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3665 inst->src[1]);
3666 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3667 inst->src[1]);
3668 }
3669
3670 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3671 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3672 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3673
3674 if (needs_mov || inst->conditional_mod) {
3675 set_condmod(inst->conditional_mod,
3676 ibld.MOV(orig_dst, low));
3677 }
3678 }
3679
3680 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3681 /* Should have been lowered to 8-wide. */
3682 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3683 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3684 inst->dst.type);
3685 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3686 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3687
3688 if (devinfo->gen >= 8) {
3689 /* Until Gen8, integer multiplies read 32-bits from one source,
3690 * and 16-bits from the other, and relying on the MACH instruction
3691 * to generate the high bits of the result.
3692 *
3693 * On Gen8, the multiply instruction does a full 32x32-bit
3694 * multiply, but in order to do a 64-bit multiply we can simulate
3695 * the previous behavior and then use a MACH instruction.
3696 *
3697 * FINISHME: Don't use source modifiers on src1.
3698 */
3699 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3700 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3701 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3702 mul->src[1].stride *= 2;
3703
3704 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3705 inst->group > 0) {
3706 /* Among other things the quarter control bits influence which
3707 * accumulator register is used by the hardware for instructions
3708 * that access the accumulator implicitly (e.g. MACH). A
3709 * second-half instruction would normally map to acc1, which
3710 * doesn't exist on Gen7 and up (the hardware does emulate it for
3711 * floating-point instructions *only* by taking advantage of the
3712 * extra precision of acc0 not normally used for floating point
3713 * arithmetic).
3714 *
3715 * HSW and up are careful enough not to try to access an
3716 * accumulator register that doesn't exist, but on earlier Gen7
3717 * hardware we need to make sure that the quarter control bits are
3718 * zero to avoid non-deterministic behaviour and emit an extra MOV
3719 * to get the result masked correctly according to the current
3720 * channel enables.
3721 */
3722 mach->group = 0;
3723 mach->force_writemask_all = true;
3724 mach->dst = ibld.vgrf(inst->dst.type);
3725 ibld.MOV(inst->dst, mach->dst);
3726 }
3727 } else {
3728 continue;
3729 }
3730
3731 inst->remove(block);
3732 progress = true;
3733 }
3734
3735 if (progress)
3736 invalidate_live_intervals();
3737
3738 return progress;
3739 }
3740
3741 bool
3742 fs_visitor::lower_minmax()
3743 {
3744 assert(devinfo->gen < 6);
3745
3746 bool progress = false;
3747
3748 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3749 const fs_builder ibld(this, block, inst);
3750
3751 if (inst->opcode == BRW_OPCODE_SEL &&
3752 inst->predicate == BRW_PREDICATE_NONE) {
3753 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3754 * the original SEL.L/GE instruction
3755 */
3756 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3757 inst->conditional_mod);
3758 inst->predicate = BRW_PREDICATE_NORMAL;
3759 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3760
3761 progress = true;
3762 }
3763 }
3764
3765 if (progress)
3766 invalidate_live_intervals();
3767
3768 return progress;
3769 }
3770
3771 static void
3772 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3773 fs_reg *dst, fs_reg color, unsigned components)
3774 {
3775 if (key->clamp_fragment_color) {
3776 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3777 assert(color.type == BRW_REGISTER_TYPE_F);
3778
3779 for (unsigned i = 0; i < components; i++)
3780 set_saturate(true,
3781 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3782
3783 color = tmp;
3784 }
3785
3786 for (unsigned i = 0; i < components; i++)
3787 dst[i] = offset(color, bld, i);
3788 }
3789
3790 static void
3791 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3792 const struct brw_wm_prog_data *prog_data,
3793 const brw_wm_prog_key *key,
3794 const fs_visitor::thread_payload &payload)
3795 {
3796 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3797 const gen_device_info *devinfo = bld.shader->devinfo;
3798 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3799 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3800 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3801 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3802 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3803 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3804 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3805 const unsigned components =
3806 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3807
3808 /* We can potentially have a message length of up to 15, so we have to set
3809 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3810 */
3811 fs_reg sources[15];
3812 int header_size = 2, payload_header_size;
3813 unsigned length = 0;
3814
3815 /* From the Sandy Bridge PRM, volume 4, page 198:
3816 *
3817 * "Dispatched Pixel Enables. One bit per pixel indicating
3818 * which pixels were originally enabled when the thread was
3819 * dispatched. This field is only required for the end-of-
3820 * thread message and on all dual-source messages."
3821 */
3822 if (devinfo->gen >= 6 &&
3823 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3824 color1.file == BAD_FILE &&
3825 key->nr_color_regions == 1) {
3826 header_size = 0;
3827 }
3828
3829 if (header_size != 0) {
3830 assert(header_size == 2);
3831 /* Allocate 2 registers for a header */
3832 length += 2;
3833 }
3834
3835 if (payload.aa_dest_stencil_reg) {
3836 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3837 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3838 .MOV(sources[length],
3839 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3840 length++;
3841 }
3842
3843 if (sample_mask.file != BAD_FILE) {
3844 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3845 BRW_REGISTER_TYPE_UD);
3846
3847 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3848 * relevant. Since it's unsigned single words one vgrf is always
3849 * 16-wide, but only the lower or higher 8 channels will be used by the
3850 * hardware when doing a SIMD8 write depending on whether we have
3851 * selected the subspans for the first or second half respectively.
3852 */
3853 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3854 sample_mask.type = BRW_REGISTER_TYPE_UW;
3855 sample_mask.stride *= 2;
3856
3857 bld.exec_all().annotate("FB write oMask")
3858 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3859 inst->group),
3860 sample_mask);
3861 length++;
3862 }
3863
3864 payload_header_size = length;
3865
3866 if (src0_alpha.file != BAD_FILE) {
3867 /* FIXME: This is being passed at the wrong location in the payload and
3868 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3869 * It's supposed to be immediately before oMask but there seems to be no
3870 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3871 * requires header sources to form a contiguous segment at the beginning
3872 * of the message and src0_alpha has per-channel semantics.
3873 */
3874 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3875 length++;
3876 } else if (key->replicate_alpha && inst->target != 0) {
3877 /* Handle the case when fragment shader doesn't write to draw buffer
3878 * zero. No need to call setup_color_payload() for src0_alpha because
3879 * alpha value will be undefined.
3880 */
3881 length++;
3882 }
3883
3884 setup_color_payload(bld, key, &sources[length], color0, components);
3885 length += 4;
3886
3887 if (color1.file != BAD_FILE) {
3888 setup_color_payload(bld, key, &sources[length], color1, components);
3889 length += 4;
3890 }
3891
3892 if (src_depth.file != BAD_FILE) {
3893 sources[length] = src_depth;
3894 length++;
3895 }
3896
3897 if (dst_depth.file != BAD_FILE) {
3898 sources[length] = dst_depth;
3899 length++;
3900 }
3901
3902 if (src_stencil.file != BAD_FILE) {
3903 assert(devinfo->gen >= 9);
3904 assert(bld.dispatch_width() != 16);
3905
3906 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3907 * available on gen9+. As such it's impossible to have both enabled at the
3908 * same time and therefore length cannot overrun the array.
3909 */
3910 assert(length < 15);
3911
3912 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3913 bld.exec_all().annotate("FB write OS")
3914 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3915 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3916 length++;
3917 }
3918
3919 fs_inst *load;
3920 if (devinfo->gen >= 7) {
3921 /* Send from the GRF */
3922 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3923 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3924 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3925 load->dst = payload;
3926
3927 inst->src[0] = payload;
3928 inst->resize_sources(1);
3929 } else {
3930 /* Send from the MRF */
3931 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3932 sources, length, payload_header_size);
3933
3934 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3935 * will do this for us if we just give it a COMPR4 destination.
3936 */
3937 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3938 load->dst.nr |= BRW_MRF_COMPR4;
3939
3940 inst->resize_sources(0);
3941 inst->base_mrf = 1;
3942 }
3943
3944 inst->opcode = FS_OPCODE_FB_WRITE;
3945 inst->mlen = regs_written(load);
3946 inst->header_size = header_size;
3947 }
3948
3949 static void
3950 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3951 {
3952 const fs_builder &ubld = bld.exec_all();
3953 const unsigned length = 2;
3954 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3955
3956 ubld.group(16, 0)
3957 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3958
3959 inst->resize_sources(1);
3960 inst->src[0] = header;
3961 inst->opcode = FS_OPCODE_FB_READ;
3962 inst->mlen = length;
3963 inst->header_size = length;
3964 }
3965
3966 static void
3967 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3968 const fs_reg &coordinate,
3969 const fs_reg &shadow_c,
3970 const fs_reg &lod, const fs_reg &lod2,
3971 const fs_reg &surface,
3972 const fs_reg &sampler,
3973 unsigned coord_components,
3974 unsigned grad_components)
3975 {
3976 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3977 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3978 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3979 fs_reg msg_end = msg_begin;
3980
3981 /* g0 header. */
3982 msg_end = offset(msg_end, bld.group(8, 0), 1);
3983
3984 for (unsigned i = 0; i < coord_components; i++)
3985 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3986 offset(coordinate, bld, i));
3987
3988 msg_end = offset(msg_end, bld, coord_components);
3989
3990 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3991 * require all three components to be present and zero if they are unused.
3992 */
3993 if (coord_components > 0 &&
3994 (has_lod || shadow_c.file != BAD_FILE ||
3995 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3996 for (unsigned i = coord_components; i < 3; i++)
3997 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3998
3999 msg_end = offset(msg_end, bld, 3 - coord_components);
4000 }
4001
4002 if (op == SHADER_OPCODE_TXD) {
4003 /* TXD unsupported in SIMD16 mode. */
4004 assert(bld.dispatch_width() == 8);
4005
4006 /* the slots for u and v are always present, but r is optional */
4007 if (coord_components < 2)
4008 msg_end = offset(msg_end, bld, 2 - coord_components);
4009
4010 /* P = u, v, r
4011 * dPdx = dudx, dvdx, drdx
4012 * dPdy = dudy, dvdy, drdy
4013 *
4014 * 1-arg: Does not exist.
4015 *
4016 * 2-arg: dudx dvdx dudy dvdy
4017 * dPdx.x dPdx.y dPdy.x dPdy.y
4018 * m4 m5 m6 m7
4019 *
4020 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4021 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4022 * m5 m6 m7 m8 m9 m10
4023 */
4024 for (unsigned i = 0; i < grad_components; i++)
4025 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4026
4027 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4028
4029 for (unsigned i = 0; i < grad_components; i++)
4030 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4031
4032 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4033 }
4034
4035 if (has_lod) {
4036 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4037 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4038 */
4039 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4040 bld.dispatch_width() == 16);
4041
4042 const brw_reg_type type =
4043 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4044 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4045 bld.MOV(retype(msg_end, type), lod);
4046 msg_end = offset(msg_end, bld, 1);
4047 }
4048
4049 if (shadow_c.file != BAD_FILE) {
4050 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4051 /* There's no plain shadow compare message, so we use shadow
4052 * compare with a bias of 0.0.
4053 */
4054 bld.MOV(msg_end, brw_imm_f(0.0f));
4055 msg_end = offset(msg_end, bld, 1);
4056 }
4057
4058 bld.MOV(msg_end, shadow_c);
4059 msg_end = offset(msg_end, bld, 1);
4060 }
4061
4062 inst->opcode = op;
4063 inst->src[0] = reg_undef;
4064 inst->src[1] = surface;
4065 inst->src[2] = sampler;
4066 inst->resize_sources(3);
4067 inst->base_mrf = msg_begin.nr;
4068 inst->mlen = msg_end.nr - msg_begin.nr;
4069 inst->header_size = 1;
4070 }
4071
4072 static void
4073 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4074 const fs_reg &coordinate,
4075 const fs_reg &shadow_c,
4076 const fs_reg &lod, const fs_reg &lod2,
4077 const fs_reg &sample_index,
4078 const fs_reg &surface,
4079 const fs_reg &sampler,
4080 unsigned coord_components,
4081 unsigned grad_components)
4082 {
4083 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4084 fs_reg msg_coords = message;
4085 unsigned header_size = 0;
4086
4087 if (inst->offset != 0) {
4088 /* The offsets set up by the visitor are in the m1 header, so we can't
4089 * go headerless.
4090 */
4091 header_size = 1;
4092 message.nr--;
4093 }
4094
4095 for (unsigned i = 0; i < coord_components; i++)
4096 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4097 offset(coordinate, bld, i));
4098
4099 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4100 fs_reg msg_lod = offset(msg_coords, bld, 4);
4101
4102 if (shadow_c.file != BAD_FILE) {
4103 fs_reg msg_shadow = msg_lod;
4104 bld.MOV(msg_shadow, shadow_c);
4105 msg_lod = offset(msg_shadow, bld, 1);
4106 msg_end = msg_lod;
4107 }
4108
4109 switch (op) {
4110 case SHADER_OPCODE_TXL:
4111 case FS_OPCODE_TXB:
4112 bld.MOV(msg_lod, lod);
4113 msg_end = offset(msg_lod, bld, 1);
4114 break;
4115 case SHADER_OPCODE_TXD:
4116 /**
4117 * P = u, v, r
4118 * dPdx = dudx, dvdx, drdx
4119 * dPdy = dudy, dvdy, drdy
4120 *
4121 * Load up these values:
4122 * - dudx dudy dvdx dvdy drdx drdy
4123 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4124 */
4125 msg_end = msg_lod;
4126 for (unsigned i = 0; i < grad_components; i++) {
4127 bld.MOV(msg_end, offset(lod, bld, i));
4128 msg_end = offset(msg_end, bld, 1);
4129
4130 bld.MOV(msg_end, offset(lod2, bld, i));
4131 msg_end = offset(msg_end, bld, 1);
4132 }
4133 break;
4134 case SHADER_OPCODE_TXS:
4135 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4136 bld.MOV(msg_lod, lod);
4137 msg_end = offset(msg_lod, bld, 1);
4138 break;
4139 case SHADER_OPCODE_TXF:
4140 msg_lod = offset(msg_coords, bld, 3);
4141 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4142 msg_end = offset(msg_lod, bld, 1);
4143 break;
4144 case SHADER_OPCODE_TXF_CMS:
4145 msg_lod = offset(msg_coords, bld, 3);
4146 /* lod */
4147 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4148 /* sample index */
4149 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4150 msg_end = offset(msg_lod, bld, 2);
4151 break;
4152 default:
4153 break;
4154 }
4155
4156 inst->opcode = op;
4157 inst->src[0] = reg_undef;
4158 inst->src[1] = surface;
4159 inst->src[2] = sampler;
4160 inst->resize_sources(3);
4161 inst->base_mrf = message.nr;
4162 inst->mlen = msg_end.nr - message.nr;
4163 inst->header_size = header_size;
4164
4165 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4166 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4167 }
4168
4169 static bool
4170 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4171 {
4172 if (devinfo->gen < 8 && !devinfo->is_haswell)
4173 return false;
4174
4175 return sampler.file != IMM || sampler.ud >= 16;
4176 }
4177
4178 static void
4179 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4180 const fs_reg &coordinate,
4181 const fs_reg &shadow_c,
4182 fs_reg lod, const fs_reg &lod2,
4183 const fs_reg &sample_index,
4184 const fs_reg &mcs,
4185 const fs_reg &surface,
4186 const fs_reg &sampler,
4187 const fs_reg &tg4_offset,
4188 unsigned coord_components,
4189 unsigned grad_components)
4190 {
4191 const gen_device_info *devinfo = bld.shader->devinfo;
4192 unsigned reg_width = bld.dispatch_width() / 8;
4193 unsigned header_size = 0, length = 0;
4194 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4195 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4196 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4197
4198 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4199 inst->offset != 0 || inst->eot ||
4200 op == SHADER_OPCODE_SAMPLEINFO ||
4201 is_high_sampler(devinfo, sampler)) {
4202 /* For general texture offsets (no txf workaround), we need a header to
4203 * put them in. Note that we're only reserving space for it in the
4204 * message payload as it will be initialized implicitly by the
4205 * generator.
4206 *
4207 * TG4 needs to place its channel select in the header, for interaction
4208 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4209 * larger sampler numbers we need to offset the Sampler State Pointer in
4210 * the header.
4211 */
4212 header_size = 1;
4213 sources[0] = fs_reg();
4214 length++;
4215
4216 /* If we're requesting fewer than four channels worth of response,
4217 * and we have an explicit header, we need to set up the sampler
4218 * writemask. It's reversed from normal: 1 means "don't write".
4219 */
4220 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4221 assert(regs_written(inst) % reg_width == 0);
4222 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4223 inst->offset |= mask << 12;
4224 }
4225 }
4226
4227 if (shadow_c.file != BAD_FILE) {
4228 bld.MOV(sources[length], shadow_c);
4229 length++;
4230 }
4231
4232 bool coordinate_done = false;
4233
4234 /* Set up the LOD info */
4235 switch (op) {
4236 case FS_OPCODE_TXB:
4237 case SHADER_OPCODE_TXL:
4238 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4239 op = SHADER_OPCODE_TXL_LZ;
4240 break;
4241 }
4242 bld.MOV(sources[length], lod);
4243 length++;
4244 break;
4245 case SHADER_OPCODE_TXD:
4246 /* TXD should have been lowered in SIMD16 mode. */
4247 assert(bld.dispatch_width() == 8);
4248
4249 /* Load dPdx and the coordinate together:
4250 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4251 */
4252 for (unsigned i = 0; i < coord_components; i++) {
4253 bld.MOV(sources[length++], offset(coordinate, bld, i));
4254
4255 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4256 * only derivatives for (u, v, r).
4257 */
4258 if (i < grad_components) {
4259 bld.MOV(sources[length++], offset(lod, bld, i));
4260 bld.MOV(sources[length++], offset(lod2, bld, i));
4261 }
4262 }
4263
4264 coordinate_done = true;
4265 break;
4266 case SHADER_OPCODE_TXS:
4267 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4268 length++;
4269 break;
4270 case SHADER_OPCODE_TXF:
4271 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4272 * On Gen9 they are u, v, lod, r
4273 */
4274 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4275
4276 if (devinfo->gen >= 9) {
4277 if (coord_components >= 2) {
4278 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4279 offset(coordinate, bld, 1));
4280 } else {
4281 sources[length] = brw_imm_d(0);
4282 }
4283 length++;
4284 }
4285
4286 if (devinfo->gen >= 9 && lod.is_zero()) {
4287 op = SHADER_OPCODE_TXF_LZ;
4288 } else {
4289 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4290 length++;
4291 }
4292
4293 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4294 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4295 offset(coordinate, bld, i));
4296
4297 coordinate_done = true;
4298 break;
4299
4300 case SHADER_OPCODE_TXF_CMS:
4301 case SHADER_OPCODE_TXF_CMS_W:
4302 case SHADER_OPCODE_TXF_UMS:
4303 case SHADER_OPCODE_TXF_MCS:
4304 if (op == SHADER_OPCODE_TXF_UMS ||
4305 op == SHADER_OPCODE_TXF_CMS ||
4306 op == SHADER_OPCODE_TXF_CMS_W) {
4307 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4308 length++;
4309 }
4310
4311 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4312 /* Data from the multisample control surface. */
4313 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4314 length++;
4315
4316 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4317 * the MCS data.
4318 */
4319 if (op == SHADER_OPCODE_TXF_CMS_W) {
4320 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4321 mcs.file == IMM ?
4322 mcs :
4323 offset(mcs, bld, 1));
4324 length++;
4325 }
4326 }
4327
4328 /* There is no offsetting for this message; just copy in the integer
4329 * texture coordinates.
4330 */
4331 for (unsigned i = 0; i < coord_components; i++)
4332 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4333 offset(coordinate, bld, i));
4334
4335 coordinate_done = true;
4336 break;
4337 case SHADER_OPCODE_TG4_OFFSET:
4338 /* More crazy intermixing */
4339 for (unsigned i = 0; i < 2; i++) /* u, v */
4340 bld.MOV(sources[length++], offset(coordinate, bld, i));
4341
4342 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4343 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4344 offset(tg4_offset, bld, i));
4345
4346 if (coord_components == 3) /* r if present */
4347 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4348
4349 coordinate_done = true;
4350 break;
4351 default:
4352 break;
4353 }
4354
4355 /* Set up the coordinate (except for cases where it was done above) */
4356 if (!coordinate_done) {
4357 for (unsigned i = 0; i < coord_components; i++)
4358 bld.MOV(sources[length++], offset(coordinate, bld, i));
4359 }
4360
4361 int mlen;
4362 if (reg_width == 2)
4363 mlen = length * reg_width - header_size;
4364 else
4365 mlen = length * reg_width;
4366
4367 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4368 BRW_REGISTER_TYPE_F);
4369 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4370
4371 /* Generate the SEND. */
4372 inst->opcode = op;
4373 inst->src[0] = src_payload;
4374 inst->src[1] = surface;
4375 inst->src[2] = sampler;
4376 inst->resize_sources(3);
4377 inst->mlen = mlen;
4378 inst->header_size = header_size;
4379
4380 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4381 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4382 }
4383
4384 static void
4385 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4386 {
4387 const gen_device_info *devinfo = bld.shader->devinfo;
4388 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4389 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4390 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4391 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4392 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4393 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4394 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4395 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4396 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4397 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4398 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4399 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4400 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4401
4402 if (devinfo->gen >= 7) {
4403 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4404 shadow_c, lod, lod2, sample_index,
4405 mcs, surface, sampler, tg4_offset,
4406 coord_components, grad_components);
4407 } else if (devinfo->gen >= 5) {
4408 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4409 shadow_c, lod, lod2, sample_index,
4410 surface, sampler,
4411 coord_components, grad_components);
4412 } else {
4413 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4414 shadow_c, lod, lod2,
4415 surface, sampler,
4416 coord_components, grad_components);
4417 }
4418 }
4419
4420 /**
4421 * Initialize the header present in some typed and untyped surface
4422 * messages.
4423 */
4424 static fs_reg
4425 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4426 {
4427 fs_builder ubld = bld.exec_all().group(8, 0);
4428 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4429 ubld.MOV(dst, brw_imm_d(0));
4430 ubld.group(1, 0).MOV(component(dst, 7), sample_mask);
4431 return dst;
4432 }
4433
4434 static void
4435 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4436 const fs_reg &sample_mask)
4437 {
4438 /* Get the logical send arguments. */
4439 const fs_reg &addr = inst->src[0];
4440 const fs_reg &src = inst->src[1];
4441 const fs_reg &surface = inst->src[2];
4442 const UNUSED fs_reg &dims = inst->src[3];
4443 const fs_reg &arg = inst->src[4];
4444
4445 /* Calculate the total number of components of the payload. */
4446 const unsigned addr_sz = inst->components_read(0);
4447 const unsigned src_sz = inst->components_read(1);
4448 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4449 const unsigned sz = header_sz + addr_sz + src_sz;
4450
4451 /* Allocate space for the payload. */
4452 fs_reg *const components = new fs_reg[sz];
4453 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4454 unsigned n = 0;
4455
4456 /* Construct the payload. */
4457 if (header_sz)
4458 components[n++] = emit_surface_header(bld, sample_mask);
4459
4460 for (unsigned i = 0; i < addr_sz; i++)
4461 components[n++] = offset(addr, bld, i);
4462
4463 for (unsigned i = 0; i < src_sz; i++)
4464 components[n++] = offset(src, bld, i);
4465
4466 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4467
4468 /* Update the original instruction. */
4469 inst->opcode = op;
4470 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4471 inst->header_size = header_sz;
4472
4473 inst->src[0] = payload;
4474 inst->src[1] = surface;
4475 inst->src[2] = arg;
4476 inst->resize_sources(3);
4477
4478 delete[] components;
4479 }
4480
4481 static void
4482 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4483 {
4484 const gen_device_info *devinfo = bld.shader->devinfo;
4485
4486 if (devinfo->gen >= 7) {
4487 /* We are switching the instruction from an ALU-like instruction to a
4488 * send-from-grf instruction. Since sends can't handle strides or
4489 * source modifiers, we have to make a copy of the offset source.
4490 */
4491 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4492 bld.MOV(tmp, inst->src[1]);
4493 inst->src[1] = tmp;
4494
4495 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4496
4497 } else {
4498 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4499 BRW_REGISTER_TYPE_UD);
4500
4501 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4502
4503 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4504 inst->resize_sources(1);
4505 inst->base_mrf = payload.nr;
4506 inst->header_size = 1;
4507 inst->mlen = 1 + inst->exec_size / 8;
4508 }
4509 }
4510
4511 static void
4512 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4513 {
4514 assert(bld.shader->devinfo->gen < 6);
4515
4516 inst->base_mrf = 2;
4517 inst->mlen = inst->sources * inst->exec_size / 8;
4518
4519 if (inst->sources > 1) {
4520 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4521 * "Message Payload":
4522 *
4523 * "Operand0[7]. For the INT DIV functions, this operand is the
4524 * denominator."
4525 * ...
4526 * "Operand1[7]. For the INT DIV functions, this operand is the
4527 * numerator."
4528 */
4529 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4530 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4531 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4532
4533 inst->resize_sources(1);
4534 inst->src[0] = src0;
4535
4536 assert(inst->exec_size == 8);
4537 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4538 }
4539 }
4540
4541 bool
4542 fs_visitor::lower_logical_sends()
4543 {
4544 bool progress = false;
4545
4546 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4547 const fs_builder ibld(this, block, inst);
4548
4549 switch (inst->opcode) {
4550 case FS_OPCODE_FB_WRITE_LOGICAL:
4551 assert(stage == MESA_SHADER_FRAGMENT);
4552 lower_fb_write_logical_send(ibld, inst,
4553 brw_wm_prog_data(prog_data),
4554 (const brw_wm_prog_key *)key,
4555 payload);
4556 break;
4557
4558 case FS_OPCODE_FB_READ_LOGICAL:
4559 lower_fb_read_logical_send(ibld, inst);
4560 break;
4561
4562 case SHADER_OPCODE_TEX_LOGICAL:
4563 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4564 break;
4565
4566 case SHADER_OPCODE_TXD_LOGICAL:
4567 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4568 break;
4569
4570 case SHADER_OPCODE_TXF_LOGICAL:
4571 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4572 break;
4573
4574 case SHADER_OPCODE_TXL_LOGICAL:
4575 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4576 break;
4577
4578 case SHADER_OPCODE_TXS_LOGICAL:
4579 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4580 break;
4581
4582 case FS_OPCODE_TXB_LOGICAL:
4583 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4584 break;
4585
4586 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4587 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4588 break;
4589
4590 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4591 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4592 break;
4593
4594 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4595 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4596 break;
4597
4598 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4599 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4600 break;
4601
4602 case SHADER_OPCODE_LOD_LOGICAL:
4603 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4604 break;
4605
4606 case SHADER_OPCODE_TG4_LOGICAL:
4607 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4608 break;
4609
4610 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4611 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4612 break;
4613
4614 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4615 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4616 break;
4617
4618 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4619 lower_surface_logical_send(ibld, inst,
4620 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4621 fs_reg());
4622 break;
4623
4624 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4625 lower_surface_logical_send(ibld, inst,
4626 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4627 ibld.sample_mask_reg());
4628 break;
4629
4630 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
4631 lower_surface_logical_send(ibld, inst,
4632 SHADER_OPCODE_BYTE_SCATTERED_READ,
4633 fs_reg());
4634 break;
4635
4636 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
4637 lower_surface_logical_send(ibld, inst,
4638 SHADER_OPCODE_BYTE_SCATTERED_WRITE,
4639 ibld.sample_mask_reg());
4640 break;
4641
4642 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4643 lower_surface_logical_send(ibld, inst,
4644 SHADER_OPCODE_UNTYPED_ATOMIC,
4645 ibld.sample_mask_reg());
4646 break;
4647
4648 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4649 lower_surface_logical_send(ibld, inst,
4650 SHADER_OPCODE_TYPED_SURFACE_READ,
4651 brw_imm_d(0xffff));
4652 break;
4653
4654 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4655 lower_surface_logical_send(ibld, inst,
4656 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4657 ibld.sample_mask_reg());
4658 break;
4659
4660 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4661 lower_surface_logical_send(ibld, inst,
4662 SHADER_OPCODE_TYPED_ATOMIC,
4663 ibld.sample_mask_reg());
4664 break;
4665
4666 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4667 lower_varying_pull_constant_logical_send(ibld, inst);
4668 break;
4669
4670 case SHADER_OPCODE_RCP:
4671 case SHADER_OPCODE_RSQ:
4672 case SHADER_OPCODE_SQRT:
4673 case SHADER_OPCODE_EXP2:
4674 case SHADER_OPCODE_LOG2:
4675 case SHADER_OPCODE_SIN:
4676 case SHADER_OPCODE_COS:
4677 case SHADER_OPCODE_POW:
4678 case SHADER_OPCODE_INT_QUOTIENT:
4679 case SHADER_OPCODE_INT_REMAINDER:
4680 /* The math opcodes are overloaded for the send-like and
4681 * expression-like instructions which seems kind of icky. Gen6+ has
4682 * a native (but rather quirky) MATH instruction so we don't need to
4683 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4684 * logical instructions (which we can easily recognize because they
4685 * have mlen = 0) into send-like virtual instructions.
4686 */
4687 if (devinfo->gen < 6 && inst->mlen == 0) {
4688 lower_math_logical_send(ibld, inst);
4689 break;
4690
4691 } else {
4692 continue;
4693 }
4694
4695 default:
4696 continue;
4697 }
4698
4699 progress = true;
4700 }
4701
4702 if (progress)
4703 invalidate_live_intervals();
4704
4705 return progress;
4706 }
4707
4708 /**
4709 * Get the closest allowed SIMD width for instruction \p inst accounting for
4710 * some common regioning and execution control restrictions that apply to FPU
4711 * instructions. These restrictions don't necessarily have any relevance to
4712 * instructions not executed by the FPU pipeline like extended math, control
4713 * flow or send message instructions.
4714 *
4715 * For virtual opcodes it's really up to the instruction -- In some cases
4716 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4717 * instructions) it may simplify virtual instruction lowering if we can
4718 * enforce FPU-like regioning restrictions already on the virtual instruction,
4719 * in other cases (e.g. virtual send-like instructions) this may be
4720 * excessively restrictive.
4721 */
4722 static unsigned
4723 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4724 const fs_inst *inst)
4725 {
4726 /* Maximum execution size representable in the instruction controls. */
4727 unsigned max_width = MIN2(32, inst->exec_size);
4728
4729 /* According to the PRMs:
4730 * "A. In Direct Addressing mode, a source cannot span more than 2
4731 * adjacent GRF registers.
4732 * B. A destination cannot span more than 2 adjacent GRF registers."
4733 *
4734 * Look for the source or destination with the largest register region
4735 * which is the one that is going to limit the overall execution size of
4736 * the instruction due to this rule.
4737 */
4738 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4739
4740 for (unsigned i = 0; i < inst->sources; i++)
4741 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4742
4743 /* Calculate the maximum execution size of the instruction based on the
4744 * factor by which it goes over the hardware limit of 2 GRFs.
4745 */
4746 if (reg_count > 2)
4747 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4748
4749 /* According to the IVB PRMs:
4750 * "When destination spans two registers, the source MUST span two
4751 * registers. The exception to the above rule:
4752 *
4753 * - When source is scalar, the source registers are not incremented.
4754 * - When source is packed integer Word and destination is packed
4755 * integer DWord, the source register is not incremented but the
4756 * source sub register is incremented."
4757 *
4758 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4759 * restrictions. The code below intentionally doesn't check whether the
4760 * destination type is integer because empirically the hardware doesn't
4761 * seem to care what the actual type is as long as it's dword-aligned.
4762 */
4763 if (devinfo->gen < 8) {
4764 for (unsigned i = 0; i < inst->sources; i++) {
4765 /* IVB implements DF scalars as <0;2,1> regions. */
4766 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4767 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4768 const bool is_packed_word_exception =
4769 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4770 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4771
4772 if (inst->size_written > REG_SIZE &&
4773 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4774 !is_scalar_exception && !is_packed_word_exception) {
4775 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4776 max_width = MIN2(max_width, inst->exec_size / reg_count);
4777 }
4778 }
4779 }
4780
4781 /* From the IVB PRMs:
4782 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4783 * are applied for both halves of the SIMD32 instruction. If different
4784 * execution mask channels are required, split the instruction into two
4785 * SIMD16 instructions."
4786 *
4787 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4788 * 32-wide control flow support in hardware and will behave similarly.
4789 */
4790 if (devinfo->gen < 8 && !inst->force_writemask_all)
4791 max_width = MIN2(max_width, 16);
4792
4793 /* From the IVB PRMs (applies to HSW too):
4794 * "Instructions with condition modifiers must not use SIMD32."
4795 *
4796 * From the BDW PRMs (applies to later hardware too):
4797 * "Ternary instruction with condition modifiers must not use SIMD32."
4798 */
4799 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4800 max_width = MIN2(max_width, 16);
4801
4802 /* From the IVB PRMs (applies to other devices that don't have the
4803 * gen_device_info::supports_simd16_3src flag set):
4804 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4805 * SIMD8 is not allowed for DF operations."
4806 */
4807 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4808 max_width = MIN2(max_width, inst->exec_size / reg_count);
4809
4810 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4811 * the 8-bit quarter of the execution mask signals specified in the
4812 * instruction control fields) for the second compressed half of any
4813 * single-precision instruction (for double-precision instructions
4814 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4815 * the EU will apply the wrong execution controls for the second
4816 * sequential GRF write if the number of channels per GRF is not exactly
4817 * eight in single-precision mode (or four in double-float mode).
4818 *
4819 * In this situation we calculate the maximum size of the split
4820 * instructions so they only ever write to a single register.
4821 */
4822 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4823 !inst->force_writemask_all) {
4824 const unsigned channels_per_grf = inst->exec_size /
4825 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4826 const unsigned exec_type_size = get_exec_type_size(inst);
4827 assert(exec_type_size);
4828
4829 /* The hardware shifts exactly 8 channels per compressed half of the
4830 * instruction in single-precision mode and exactly 4 in double-precision.
4831 */
4832 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4833 max_width = MIN2(max_width, channels_per_grf);
4834
4835 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4836 * because HW applies the same channel enable signals to both halves of
4837 * the compressed instruction which will be just wrong under
4838 * non-uniform control flow.
4839 */
4840 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4841 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4842 max_width = MIN2(max_width, 4);
4843 }
4844
4845 /* Only power-of-two execution sizes are representable in the instruction
4846 * control fields.
4847 */
4848 return 1 << _mesa_logbase2(max_width);
4849 }
4850
4851 /**
4852 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4853 * various payload size restrictions that apply to sampler message
4854 * instructions.
4855 *
4856 * This is only intended to provide a maximum theoretical bound for the
4857 * execution size of the message based on the number of argument components
4858 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4859 * variant of the message can be used, though some messages may have
4860 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4861 * the message length to determine the exact SIMD width and argument count,
4862 * which makes a number of sampler message combinations impossible to
4863 * represent).
4864 */
4865 static unsigned
4866 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4867 const fs_inst *inst)
4868 {
4869 /* Calculate the number of coordinate components that have to be present
4870 * assuming that additional arguments follow the texel coordinates in the
4871 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4872 * need to pad to four or three components depending on the message,
4873 * pre-ILK we need to pad to at most three components.
4874 */
4875 const unsigned req_coord_components =
4876 (devinfo->gen >= 7 ||
4877 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4878 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4879 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4880 3;
4881
4882 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4883 * variant of the TXL or TXF message.
4884 */
4885 const bool implicit_lod = devinfo->gen >= 9 &&
4886 (inst->opcode == SHADER_OPCODE_TXL ||
4887 inst->opcode == SHADER_OPCODE_TXF) &&
4888 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4889
4890 /* Calculate the total number of argument components that need to be passed
4891 * to the sampler unit.
4892 */
4893 const unsigned num_payload_components =
4894 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4895 req_coord_components) +
4896 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4897 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4898 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4899 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4900 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4901 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4902 inst->components_read(TEX_LOGICAL_SRC_MCS);
4903
4904 /* SIMD16 messages with more than five arguments exceed the maximum message
4905 * size supported by the sampler, regardless of whether a header is
4906 * provided or not.
4907 */
4908 return MIN2(inst->exec_size,
4909 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4910 }
4911
4912 /**
4913 * Get the closest native SIMD width supported by the hardware for instruction
4914 * \p inst. The instruction will be left untouched by
4915 * fs_visitor::lower_simd_width() if the returned value is equal to the
4916 * original execution size.
4917 */
4918 static unsigned
4919 get_lowered_simd_width(const struct gen_device_info *devinfo,
4920 const fs_inst *inst)
4921 {
4922 switch (inst->opcode) {
4923 case BRW_OPCODE_MOV:
4924 case BRW_OPCODE_SEL:
4925 case BRW_OPCODE_NOT:
4926 case BRW_OPCODE_AND:
4927 case BRW_OPCODE_OR:
4928 case BRW_OPCODE_XOR:
4929 case BRW_OPCODE_SHR:
4930 case BRW_OPCODE_SHL:
4931 case BRW_OPCODE_ASR:
4932 case BRW_OPCODE_CMPN:
4933 case BRW_OPCODE_CSEL:
4934 case BRW_OPCODE_F32TO16:
4935 case BRW_OPCODE_F16TO32:
4936 case BRW_OPCODE_BFREV:
4937 case BRW_OPCODE_BFE:
4938 case BRW_OPCODE_ADD:
4939 case BRW_OPCODE_MUL:
4940 case BRW_OPCODE_AVG:
4941 case BRW_OPCODE_FRC:
4942 case BRW_OPCODE_RNDU:
4943 case BRW_OPCODE_RNDD:
4944 case BRW_OPCODE_RNDE:
4945 case BRW_OPCODE_RNDZ:
4946 case BRW_OPCODE_LZD:
4947 case BRW_OPCODE_FBH:
4948 case BRW_OPCODE_FBL:
4949 case BRW_OPCODE_CBIT:
4950 case BRW_OPCODE_SAD2:
4951 case BRW_OPCODE_MAD:
4952 case BRW_OPCODE_LRP:
4953 case FS_OPCODE_PACK:
4954 return get_fpu_lowered_simd_width(devinfo, inst);
4955
4956 case BRW_OPCODE_CMP: {
4957 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4958 * when the destination is a GRF the dependency-clear bit on the flag
4959 * register is cleared early.
4960 *
4961 * Suggested workarounds are to disable coissuing CMP instructions
4962 * or to split CMP(16) instructions into two CMP(8) instructions.
4963 *
4964 * We choose to split into CMP(8) instructions since disabling
4965 * coissuing would affect CMP instructions not otherwise affected by
4966 * the errata.
4967 */
4968 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4969 !inst->dst.is_null() ? 8 : ~0);
4970 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4971 }
4972 case BRW_OPCODE_BFI1:
4973 case BRW_OPCODE_BFI2:
4974 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4975 * should
4976 * "Force BFI instructions to be executed always in SIMD8."
4977 */
4978 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4979 get_fpu_lowered_simd_width(devinfo, inst));
4980
4981 case BRW_OPCODE_IF:
4982 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4983 return inst->exec_size;
4984
4985 case SHADER_OPCODE_RCP:
4986 case SHADER_OPCODE_RSQ:
4987 case SHADER_OPCODE_SQRT:
4988 case SHADER_OPCODE_EXP2:
4989 case SHADER_OPCODE_LOG2:
4990 case SHADER_OPCODE_SIN:
4991 case SHADER_OPCODE_COS:
4992 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4993 * Gen6.
4994 */
4995 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4996 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4997 MIN2(8, inst->exec_size));
4998
4999 case SHADER_OPCODE_POW:
5000 /* SIMD16 is only allowed on Gen7+. */
5001 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
5002 MIN2(8, inst->exec_size));
5003
5004 case SHADER_OPCODE_INT_QUOTIENT:
5005 case SHADER_OPCODE_INT_REMAINDER:
5006 /* Integer division is limited to SIMD8 on all generations. */
5007 return MIN2(8, inst->exec_size);
5008
5009 case FS_OPCODE_LINTERP:
5010 case FS_OPCODE_GET_BUFFER_SIZE:
5011 case FS_OPCODE_DDX_COARSE:
5012 case FS_OPCODE_DDX_FINE:
5013 case FS_OPCODE_DDY_COARSE:
5014 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
5015 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
5016 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
5017 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
5018 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
5019 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
5020 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
5021 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
5022 return MIN2(16, inst->exec_size);
5023
5024 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5025 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
5026 * message used to implement varying pull constant loads, so expand it
5027 * to SIMD16. An alternative with longer message payload length but
5028 * shorter return payload would be to use the SIMD8 sampler message that
5029 * takes (header, u, v, r) as parameters instead of (header, u).
5030 */
5031 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
5032
5033 case FS_OPCODE_DDY_FINE:
5034 /* The implementation of this virtual opcode may require emitting
5035 * compressed Align16 instructions, which are severely limited on some
5036 * generations.
5037 *
5038 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
5039 * Region Restrictions):
5040 *
5041 * "In Align16 access mode, SIMD16 is not allowed for DW operations
5042 * and SIMD8 is not allowed for DF operations."
5043 *
5044 * In this context, "DW operations" means "operations acting on 32-bit
5045 * values", so it includes operations on floats.
5046 *
5047 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
5048 * (Instruction Compression -> Rules and Restrictions):
5049 *
5050 * "A compressed instruction must be in Align1 access mode. Align16
5051 * mode instructions cannot be compressed."
5052 *
5053 * Similar text exists in the g45 PRM.
5054 *
5055 * Empirically, compressed align16 instructions using odd register
5056 * numbers don't appear to work on Sandybridge either.
5057 */
5058 return (devinfo->gen == 4 || devinfo->gen == 6 ||
5059 (devinfo->gen == 7 && !devinfo->is_haswell) ?
5060 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
5061
5062 case SHADER_OPCODE_MULH:
5063 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
5064 * is 8-wide on Gen7+.
5065 */
5066 return (devinfo->gen >= 7 ? 8 :
5067 get_fpu_lowered_simd_width(devinfo, inst));
5068
5069 case FS_OPCODE_FB_WRITE_LOGICAL:
5070 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
5071 * here.
5072 */
5073 assert(devinfo->gen != 6 ||
5074 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
5075 inst->exec_size == 8);
5076 /* Dual-source FB writes are unsupported in SIMD16 mode. */
5077 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
5078 8 : MIN2(16, inst->exec_size));
5079
5080 case FS_OPCODE_FB_READ_LOGICAL:
5081 return MIN2(16, inst->exec_size);
5082
5083 case SHADER_OPCODE_TEX_LOGICAL:
5084 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5085 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5086 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5087 case SHADER_OPCODE_LOD_LOGICAL:
5088 case SHADER_OPCODE_TG4_LOGICAL:
5089 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5090 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5091 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5092 return get_sampler_lowered_simd_width(devinfo, inst);
5093
5094 case SHADER_OPCODE_TXD_LOGICAL:
5095 /* TXD is unsupported in SIMD16 mode. */
5096 return 8;
5097
5098 case SHADER_OPCODE_TXL_LOGICAL:
5099 case FS_OPCODE_TXB_LOGICAL:
5100 /* Only one execution size is representable pre-ILK depending on whether
5101 * the shadow reference argument is present.
5102 */
5103 if (devinfo->gen == 4)
5104 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
5105 else
5106 return get_sampler_lowered_simd_width(devinfo, inst);
5107
5108 case SHADER_OPCODE_TXF_LOGICAL:
5109 case SHADER_OPCODE_TXS_LOGICAL:
5110 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
5111 * messages. Use SIMD16 instead.
5112 */
5113 if (devinfo->gen == 4)
5114 return 16;
5115 else
5116 return get_sampler_lowered_simd_width(devinfo, inst);
5117
5118 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5119 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5120 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5121 return 8;
5122
5123 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5124 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5125 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5126 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5127 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5128 return MIN2(16, inst->exec_size);
5129
5130 case SHADER_OPCODE_URB_READ_SIMD8:
5131 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
5132 case SHADER_OPCODE_URB_WRITE_SIMD8:
5133 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
5134 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
5135 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
5136 return MIN2(8, inst->exec_size);
5137
5138 case SHADER_OPCODE_MOV_INDIRECT: {
5139 /* From IVB and HSW PRMs:
5140 *
5141 * "2.When the destination requires two registers and the sources are
5142 * indirect, the sources must use 1x1 regioning mode.
5143 *
5144 * In case of DF instructions in HSW/IVB, the exec_size is limited by
5145 * the EU decompression logic not handling VxH indirect addressing
5146 * correctly.
5147 */
5148 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
5149 /* Prior to Broadwell, we only have 8 address subregisters. */
5150 return MIN3(devinfo->gen >= 8 ? 16 : 8,
5151 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
5152 inst->exec_size);
5153 }
5154
5155 case SHADER_OPCODE_LOAD_PAYLOAD: {
5156 const unsigned reg_count =
5157 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
5158
5159 if (reg_count > 2) {
5160 /* Only LOAD_PAYLOAD instructions with per-channel destination region
5161 * can be easily lowered (which excludes headers and heterogeneous
5162 * types).
5163 */
5164 assert(!inst->header_size);
5165 for (unsigned i = 0; i < inst->sources; i++)
5166 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
5167 inst->src[i].file == BAD_FILE);
5168
5169 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
5170 } else {
5171 return inst->exec_size;
5172 }
5173 }
5174 default:
5175 return inst->exec_size;
5176 }
5177 }
5178
5179 /**
5180 * Return true if splitting out the group of channels of instruction \p inst
5181 * given by lbld.group() requires allocating a temporary for the i-th source
5182 * of the lowered instruction.
5183 */
5184 static inline bool
5185 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5186 {
5187 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5188 (inst->components_read(i) == 1 &&
5189 lbld.dispatch_width() <= inst->exec_size)) ||
5190 (inst->flags_written() &
5191 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
5192 }
5193
5194 /**
5195 * Extract the data that would be consumed by the channel group given by
5196 * lbld.group() from the i-th source region of instruction \p inst and return
5197 * it as result in packed form.
5198 */
5199 static fs_reg
5200 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
5201 {
5202 /* Specified channel group from the source region. */
5203 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5204
5205 if (needs_src_copy(lbld, inst, i)) {
5206 /* Builder of the right width to perform the copy avoiding uninitialized
5207 * data if the lowered execution size is greater than the original
5208 * execution size of the instruction.
5209 */
5210 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5211 inst->exec_size), 0);
5212 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5213
5214 for (unsigned k = 0; k < inst->components_read(i); ++k)
5215 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5216
5217 return tmp;
5218
5219 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5220 /* The source is invariant for all dispatch_width-wide groups of the
5221 * original region.
5222 */
5223 return inst->src[i];
5224
5225 } else {
5226 /* We can just point the lowered instruction at the right channel group
5227 * from the original region.
5228 */
5229 return src;
5230 }
5231 }
5232
5233 /**
5234 * Return true if splitting out the group of channels of instruction \p inst
5235 * given by lbld.group() requires allocating a temporary for the destination
5236 * of the lowered instruction and copying the data back to the original
5237 * destination region.
5238 */
5239 static inline bool
5240 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5241 {
5242 /* If the instruction writes more than one component we'll have to shuffle
5243 * the results of multiple lowered instructions in order to make sure that
5244 * they end up arranged correctly in the original destination region.
5245 */
5246 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5247 return true;
5248
5249 /* If the lowered execution size is larger than the original the result of
5250 * the instruction won't fit in the original destination, so we'll have to
5251 * allocate a temporary in any case.
5252 */
5253 if (lbld.dispatch_width() > inst->exec_size)
5254 return true;
5255
5256 for (unsigned i = 0; i < inst->sources; i++) {
5257 /* If we already made a copy of the source for other reasons there won't
5258 * be any overlap with the destination.
5259 */
5260 if (needs_src_copy(lbld, inst, i))
5261 continue;
5262
5263 /* In order to keep the logic simple we emit a copy whenever the
5264 * destination region doesn't exactly match an overlapping source, which
5265 * may point at the source and destination not being aligned group by
5266 * group which could cause one of the lowered instructions to overwrite
5267 * the data read from the same source by other lowered instructions.
5268 */
5269 if (regions_overlap(inst->dst, inst->size_written,
5270 inst->src[i], inst->size_read(i)) &&
5271 !inst->dst.equals(inst->src[i]))
5272 return true;
5273 }
5274
5275 return false;
5276 }
5277
5278 /**
5279 * Insert data from a packed temporary into the channel group given by
5280 * lbld.group() of the destination region of instruction \p inst and return
5281 * the temporary as result. Any copy instructions that are required for
5282 * unzipping the previous value (in the case of partial writes) will be
5283 * inserted using \p lbld_before and any copy instructions required for
5284 * zipping up the destination of \p inst will be inserted using \p lbld_after.
5285 */
5286 static fs_reg
5287 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
5288 fs_inst *inst)
5289 {
5290 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
5291 assert(lbld_before.group() == lbld_after.group());
5292
5293 /* Specified channel group from the destination region. */
5294 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group());
5295 const unsigned dst_size = inst->size_written /
5296 inst->dst.component_size(inst->exec_size);
5297
5298 if (needs_dst_copy(lbld_after, inst)) {
5299 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
5300
5301 if (inst->predicate) {
5302 /* Handle predication by copying the original contents of
5303 * the destination into the temporary before emitting the
5304 * lowered instruction.
5305 */
5306 const fs_builder gbld_before =
5307 lbld_before.group(MIN2(lbld_before.dispatch_width(),
5308 inst->exec_size), 0);
5309 for (unsigned k = 0; k < dst_size; ++k) {
5310 gbld_before.MOV(offset(tmp, lbld_before, k),
5311 offset(dst, inst->exec_size, k));
5312 }
5313 }
5314
5315 const fs_builder gbld_after =
5316 lbld_after.group(MIN2(lbld_after.dispatch_width(),
5317 inst->exec_size), 0);
5318 for (unsigned k = 0; k < dst_size; ++k) {
5319 /* Use a builder of the right width to perform the copy avoiding
5320 * uninitialized data if the lowered execution size is greater than
5321 * the original execution size of the instruction.
5322 */
5323 gbld_after.MOV(offset(dst, inst->exec_size, k),
5324 offset(tmp, lbld_after, k));
5325 }
5326
5327 return tmp;
5328
5329 } else {
5330 /* No need to allocate a temporary for the lowered instruction, just
5331 * take the right group of channels from the original region.
5332 */
5333 return dst;
5334 }
5335 }
5336
5337 bool
5338 fs_visitor::lower_simd_width()
5339 {
5340 bool progress = false;
5341
5342 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5343 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5344
5345 if (lower_width != inst->exec_size) {
5346 /* Builder matching the original instruction. We may also need to
5347 * emit an instruction of width larger than the original, set the
5348 * execution size of the builder to the highest of both for now so
5349 * we're sure that both cases can be handled.
5350 */
5351 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5352 const fs_builder ibld = bld.at(block, inst)
5353 .exec_all(inst->force_writemask_all)
5354 .group(max_width, inst->group / max_width);
5355
5356 /* Split the copies in chunks of the execution width of either the
5357 * original or the lowered instruction, whichever is lower.
5358 */
5359 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5360 const unsigned dst_size = inst->size_written /
5361 inst->dst.component_size(inst->exec_size);
5362
5363 assert(!inst->writes_accumulator && !inst->mlen);
5364
5365 /* Inserting the zip, unzip, and duplicated instructions in all of
5366 * the right spots is somewhat tricky. All of the unzip and any
5367 * instructions from the zip which unzip the destination prior to
5368 * writing need to happen before all of the per-group instructions
5369 * and the zip instructions need to happen after. In order to sort
5370 * this all out, we insert the unzip instructions before \p inst,
5371 * insert the per-group instructions after \p inst (i.e. before
5372 * inst->next), and insert the zip instructions before the
5373 * instruction after \p inst. Since we are inserting instructions
5374 * after \p inst, inst->next is a moving target and we need to save
5375 * it off here so that we insert the zip instructions in the right
5376 * place.
5377 */
5378 exec_node *const after_inst = inst->next;
5379 for (unsigned i = 0; i < n; i++) {
5380 /* Emit a copy of the original instruction with the lowered width.
5381 * If the EOT flag was set throw it away except for the last
5382 * instruction to avoid killing the thread prematurely.
5383 */
5384 fs_inst split_inst = *inst;
5385 split_inst.exec_size = lower_width;
5386 split_inst.eot = inst->eot && i == 0;
5387
5388 /* Select the correct channel enables for the i-th group, then
5389 * transform the sources and destination and emit the lowered
5390 * instruction.
5391 */
5392 const fs_builder lbld = ibld.group(lower_width, i);
5393
5394 for (unsigned j = 0; j < inst->sources; j++)
5395 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
5396
5397 split_inst.dst = emit_zip(lbld.at(block, inst),
5398 lbld.at(block, after_inst), inst);
5399 split_inst.size_written =
5400 split_inst.dst.component_size(lower_width) * dst_size;
5401
5402 lbld.at(block, inst->next).emit(split_inst);
5403 }
5404
5405 inst->remove(block);
5406 progress = true;
5407 }
5408 }
5409
5410 if (progress)
5411 invalidate_live_intervals();
5412
5413 return progress;
5414 }
5415
5416 void
5417 fs_visitor::dump_instructions()
5418 {
5419 dump_instructions(NULL);
5420 }
5421
5422 void
5423 fs_visitor::dump_instructions(const char *name)
5424 {
5425 FILE *file = stderr;
5426 if (name && geteuid() != 0) {
5427 file = fopen(name, "w");
5428 if (!file)
5429 file = stderr;
5430 }
5431
5432 if (cfg) {
5433 calculate_register_pressure();
5434 int ip = 0, max_pressure = 0;
5435 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5436 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5437 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5438 dump_instruction(inst, file);
5439 ip++;
5440 }
5441 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5442 } else {
5443 int ip = 0;
5444 foreach_in_list(backend_instruction, inst, &instructions) {
5445 fprintf(file, "%4d: ", ip++);
5446 dump_instruction(inst, file);
5447 }
5448 }
5449
5450 if (file != stderr) {
5451 fclose(file);
5452 }
5453 }
5454
5455 void
5456 fs_visitor::dump_instruction(backend_instruction *be_inst)
5457 {
5458 dump_instruction(be_inst, stderr);
5459 }
5460
5461 void
5462 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5463 {
5464 fs_inst *inst = (fs_inst *)be_inst;
5465
5466 if (inst->predicate) {
5467 fprintf(file, "(%cf0.%d) ",
5468 inst->predicate_inverse ? '-' : '+',
5469 inst->flag_subreg);
5470 }
5471
5472 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5473 if (inst->saturate)
5474 fprintf(file, ".sat");
5475 if (inst->conditional_mod) {
5476 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5477 if (!inst->predicate &&
5478 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5479 inst->opcode != BRW_OPCODE_IF &&
5480 inst->opcode != BRW_OPCODE_WHILE))) {
5481 fprintf(file, ".f0.%d", inst->flag_subreg);
5482 }
5483 }
5484 fprintf(file, "(%d) ", inst->exec_size);
5485
5486 if (inst->mlen) {
5487 fprintf(file, "(mlen: %d) ", inst->mlen);
5488 }
5489
5490 if (inst->eot) {
5491 fprintf(file, "(EOT) ");
5492 }
5493
5494 switch (inst->dst.file) {
5495 case VGRF:
5496 fprintf(file, "vgrf%d", inst->dst.nr);
5497 break;
5498 case FIXED_GRF:
5499 fprintf(file, "g%d", inst->dst.nr);
5500 break;
5501 case MRF:
5502 fprintf(file, "m%d", inst->dst.nr);
5503 break;
5504 case BAD_FILE:
5505 fprintf(file, "(null)");
5506 break;
5507 case UNIFORM:
5508 fprintf(file, "***u%d***", inst->dst.nr);
5509 break;
5510 case ATTR:
5511 fprintf(file, "***attr%d***", inst->dst.nr);
5512 break;
5513 case ARF:
5514 switch (inst->dst.nr) {
5515 case BRW_ARF_NULL:
5516 fprintf(file, "null");
5517 break;
5518 case BRW_ARF_ADDRESS:
5519 fprintf(file, "a0.%d", inst->dst.subnr);
5520 break;
5521 case BRW_ARF_ACCUMULATOR:
5522 fprintf(file, "acc%d", inst->dst.subnr);
5523 break;
5524 case BRW_ARF_FLAG:
5525 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5526 break;
5527 default:
5528 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5529 break;
5530 }
5531 break;
5532 case IMM:
5533 unreachable("not reached");
5534 }
5535
5536 if (inst->dst.offset ||
5537 (inst->dst.file == VGRF &&
5538 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5539 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5540 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5541 inst->dst.offset % reg_size);
5542 }
5543
5544 if (inst->dst.stride != 1)
5545 fprintf(file, "<%u>", inst->dst.stride);
5546 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5547
5548 for (int i = 0; i < inst->sources; i++) {
5549 if (inst->src[i].negate)
5550 fprintf(file, "-");
5551 if (inst->src[i].abs)
5552 fprintf(file, "|");
5553 switch (inst->src[i].file) {
5554 case VGRF:
5555 fprintf(file, "vgrf%d", inst->src[i].nr);
5556 break;
5557 case FIXED_GRF:
5558 fprintf(file, "g%d", inst->src[i].nr);
5559 break;
5560 case MRF:
5561 fprintf(file, "***m%d***", inst->src[i].nr);
5562 break;
5563 case ATTR:
5564 fprintf(file, "attr%d", inst->src[i].nr);
5565 break;
5566 case UNIFORM:
5567 fprintf(file, "u%d", inst->src[i].nr);
5568 break;
5569 case BAD_FILE:
5570 fprintf(file, "(null)");
5571 break;
5572 case IMM:
5573 switch (inst->src[i].type) {
5574 case BRW_REGISTER_TYPE_F:
5575 fprintf(file, "%-gf", inst->src[i].f);
5576 break;
5577 case BRW_REGISTER_TYPE_DF:
5578 fprintf(file, "%fdf", inst->src[i].df);
5579 break;
5580 case BRW_REGISTER_TYPE_W:
5581 case BRW_REGISTER_TYPE_D:
5582 fprintf(file, "%dd", inst->src[i].d);
5583 break;
5584 case BRW_REGISTER_TYPE_UW:
5585 case BRW_REGISTER_TYPE_UD:
5586 fprintf(file, "%uu", inst->src[i].ud);
5587 break;
5588 case BRW_REGISTER_TYPE_VF:
5589 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5590 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5591 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5592 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5593 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5594 break;
5595 default:
5596 fprintf(file, "???");
5597 break;
5598 }
5599 break;
5600 case ARF:
5601 switch (inst->src[i].nr) {
5602 case BRW_ARF_NULL:
5603 fprintf(file, "null");
5604 break;
5605 case BRW_ARF_ADDRESS:
5606 fprintf(file, "a0.%d", inst->src[i].subnr);
5607 break;
5608 case BRW_ARF_ACCUMULATOR:
5609 fprintf(file, "acc%d", inst->src[i].subnr);
5610 break;
5611 case BRW_ARF_FLAG:
5612 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5613 break;
5614 default:
5615 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5616 break;
5617 }
5618 break;
5619 }
5620
5621 if (inst->src[i].offset ||
5622 (inst->src[i].file == VGRF &&
5623 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5624 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5625 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5626 inst->src[i].offset % reg_size);
5627 }
5628
5629 if (inst->src[i].abs)
5630 fprintf(file, "|");
5631
5632 if (inst->src[i].file != IMM) {
5633 unsigned stride;
5634 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5635 unsigned hstride = inst->src[i].hstride;
5636 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5637 } else {
5638 stride = inst->src[i].stride;
5639 }
5640 if (stride != 1)
5641 fprintf(file, "<%u>", stride);
5642
5643 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5644 }
5645
5646 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5647 fprintf(file, ", ");
5648 }
5649
5650 fprintf(file, " ");
5651
5652 if (inst->force_writemask_all)
5653 fprintf(file, "NoMask ");
5654
5655 if (inst->exec_size != dispatch_width)
5656 fprintf(file, "group%d ", inst->group);
5657
5658 fprintf(file, "\n");
5659 }
5660
5661 /**
5662 * Possibly returns an instruction that set up @param reg.
5663 *
5664 * Sometimes we want to take the result of some expression/variable
5665 * dereference tree and rewrite the instruction generating the result
5666 * of the tree. When processing the tree, we know that the
5667 * instructions generated are all writing temporaries that are dead
5668 * outside of this tree. So, if we have some instructions that write
5669 * a temporary, we're free to point that temp write somewhere else.
5670 *
5671 * Note that this doesn't guarantee that the instruction generated
5672 * only reg -- it might be the size=4 destination of a texture instruction.
5673 */
5674 fs_inst *
5675 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5676 fs_inst *end,
5677 const fs_reg &reg)
5678 {
5679 if (end == start ||
5680 end->is_partial_write() ||
5681 !reg.equals(end->dst)) {
5682 return NULL;
5683 } else {
5684 return end;
5685 }
5686 }
5687
5688 void
5689 fs_visitor::setup_fs_payload_gen6()
5690 {
5691 assert(stage == MESA_SHADER_FRAGMENT);
5692 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5693
5694 assert(devinfo->gen >= 6);
5695
5696 /* R0-1: masks, pixel X/Y coordinates. */
5697 payload.num_regs = 2;
5698 /* R2: only for 32-pixel dispatch.*/
5699
5700 /* R3-26: barycentric interpolation coordinates. These appear in the
5701 * same order that they appear in the brw_barycentric_mode
5702 * enum. Each set of coordinates occupies 2 registers if dispatch width
5703 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5704 * appear if they were enabled using the "Barycentric Interpolation
5705 * Mode" bits in WM_STATE.
5706 */
5707 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5708 if (prog_data->barycentric_interp_modes & (1 << i)) {
5709 payload.barycentric_coord_reg[i] = payload.num_regs;
5710 payload.num_regs += 2;
5711 if (dispatch_width == 16) {
5712 payload.num_regs += 2;
5713 }
5714 }
5715 }
5716
5717 /* R27: interpolated depth if uses source depth */
5718 prog_data->uses_src_depth =
5719 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5720 if (prog_data->uses_src_depth) {
5721 payload.source_depth_reg = payload.num_regs;
5722 payload.num_regs++;
5723 if (dispatch_width == 16) {
5724 /* R28: interpolated depth if not SIMD8. */
5725 payload.num_regs++;
5726 }
5727 }
5728
5729 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5730 prog_data->uses_src_w =
5731 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5732 if (prog_data->uses_src_w) {
5733 payload.source_w_reg = payload.num_regs;
5734 payload.num_regs++;
5735 if (dispatch_width == 16) {
5736 /* R30: interpolated W if not SIMD8. */
5737 payload.num_regs++;
5738 }
5739 }
5740
5741 /* R31: MSAA position offsets. */
5742 if (prog_data->persample_dispatch &&
5743 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5744 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5745 *
5746 * "MSDISPMODE_PERSAMPLE is required in order to select
5747 * POSOFFSET_SAMPLE"
5748 *
5749 * So we can only really get sample positions if we are doing real
5750 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5751 * persample dispatch, we hard-code it to 0.5.
5752 */
5753 prog_data->uses_pos_offset = true;
5754 payload.sample_pos_reg = payload.num_regs;
5755 payload.num_regs++;
5756 }
5757
5758 /* R32: MSAA input coverage mask */
5759 prog_data->uses_sample_mask =
5760 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5761 if (prog_data->uses_sample_mask) {
5762 assert(devinfo->gen >= 7);
5763 payload.sample_mask_in_reg = payload.num_regs;
5764 payload.num_regs++;
5765 if (dispatch_width == 16) {
5766 /* R33: input coverage mask if not SIMD8. */
5767 payload.num_regs++;
5768 }
5769 }
5770
5771 /* R34-: bary for 32-pixel. */
5772 /* R58-59: interp W for 32-pixel. */
5773
5774 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5775 source_depth_to_render_target = true;
5776 }
5777 }
5778
5779 void
5780 fs_visitor::setup_vs_payload()
5781 {
5782 /* R0: thread header, R1: urb handles */
5783 payload.num_regs = 2;
5784 }
5785
5786 void
5787 fs_visitor::setup_gs_payload()
5788 {
5789 assert(stage == MESA_SHADER_GEOMETRY);
5790
5791 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5792 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5793
5794 /* R0: thread header, R1: output URB handles */
5795 payload.num_regs = 2;
5796
5797 if (gs_prog_data->include_primitive_id) {
5798 /* R2: Primitive ID 0..7 */
5799 payload.num_regs++;
5800 }
5801
5802 /* Always enable VUE handles so we can safely use pull model if needed.
5803 *
5804 * The push model for a GS uses a ton of register space even for trivial
5805 * scenarios with just a few inputs, so just make things easier and a bit
5806 * safer by always having pull model available.
5807 */
5808 gs_prog_data->base.include_vue_handles = true;
5809
5810 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5811 payload.num_regs += nir->info.gs.vertices_in;
5812
5813 /* Use a maximum of 24 registers for push-model inputs. */
5814 const unsigned max_push_components = 24;
5815
5816 /* If pushing our inputs would take too many registers, reduce the URB read
5817 * length (which is in HWords, or 8 registers), and resort to pulling.
5818 *
5819 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5820 * have to multiply by VerticesIn to obtain the total storage requirement.
5821 */
5822 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5823 max_push_components) {
5824 vue_prog_data->urb_read_length =
5825 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5826 }
5827 }
5828
5829 void
5830 fs_visitor::setup_cs_payload()
5831 {
5832 assert(devinfo->gen >= 7);
5833 payload.num_regs = 1;
5834 }
5835
5836 void
5837 fs_visitor::calculate_register_pressure()
5838 {
5839 invalidate_live_intervals();
5840 calculate_live_intervals();
5841
5842 unsigned num_instructions = 0;
5843 foreach_block(block, cfg)
5844 num_instructions += block->instructions.length();
5845
5846 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5847
5848 for (unsigned reg = 0; reg < alloc.count; reg++) {
5849 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5850 regs_live_at_ip[ip] += alloc.sizes[reg];
5851 }
5852 }
5853
5854 /**
5855 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5856 *
5857 * The needs_unlit_centroid_workaround ends up producing one of these per
5858 * channel of centroid input, so it's good to clean them up.
5859 *
5860 * An assumption here is that nothing ever modifies the dispatched pixels
5861 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5862 * dictates that anyway.
5863 */
5864 bool
5865 fs_visitor::opt_drop_redundant_mov_to_flags()
5866 {
5867 bool flag_mov_found[2] = {false};
5868 bool progress = false;
5869
5870 /* Instructions removed by this pass can only be added if this were true */
5871 if (!devinfo->needs_unlit_centroid_workaround)
5872 return false;
5873
5874 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5875 if (inst->is_control_flow()) {
5876 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5877 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5878 if (!flag_mov_found[inst->flag_subreg]) {
5879 flag_mov_found[inst->flag_subreg] = true;
5880 } else {
5881 inst->remove(block);
5882 progress = true;
5883 }
5884 } else if (inst->flags_written()) {
5885 flag_mov_found[inst->flag_subreg] = false;
5886 }
5887 }
5888
5889 return progress;
5890 }
5891
5892 void
5893 fs_visitor::optimize()
5894 {
5895 /* Start by validating the shader we currently have. */
5896 validate();
5897
5898 /* bld is the common builder object pointing at the end of the program we
5899 * used to translate it into i965 IR. For the optimization and lowering
5900 * passes coming next, any code added after the end of the program without
5901 * having explicitly called fs_builder::at() clearly points at a mistake.
5902 * Ideally optimization passes wouldn't be part of the visitor so they
5903 * wouldn't have access to bld at all, but they do, so just in case some
5904 * pass forgets to ask for a location explicitly set it to NULL here to
5905 * make it trip. The dispatch width is initialized to a bogus value to
5906 * make sure that optimizations set the execution controls explicitly to
5907 * match the code they are manipulating instead of relying on the defaults.
5908 */
5909 bld = fs_builder(this, 64);
5910
5911 assign_constant_locations();
5912 lower_constant_loads();
5913
5914 validate();
5915
5916 split_virtual_grfs();
5917 validate();
5918
5919 #define OPT(pass, args...) ({ \
5920 pass_num++; \
5921 bool this_progress = pass(args); \
5922 \
5923 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5924 char filename[64]; \
5925 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5926 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5927 \
5928 backend_shader::dump_instructions(filename); \
5929 } \
5930 \
5931 validate(); \
5932 \
5933 progress = progress || this_progress; \
5934 this_progress; \
5935 })
5936
5937 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5938 char filename[64];
5939 snprintf(filename, 64, "%s%d-%s-00-00-start",
5940 stage_abbrev, dispatch_width, nir->info.name);
5941
5942 backend_shader::dump_instructions(filename);
5943 }
5944
5945 bool progress = false;
5946 int iteration = 0;
5947 int pass_num = 0;
5948
5949 OPT(opt_drop_redundant_mov_to_flags);
5950 OPT(remove_extra_rounding_modes);
5951
5952 do {
5953 progress = false;
5954 pass_num = 0;
5955 iteration++;
5956
5957 OPT(remove_duplicate_mrf_writes);
5958
5959 OPT(opt_algebraic);
5960 OPT(opt_cse);
5961 OPT(opt_copy_propagation);
5962 OPT(opt_predicated_break, this);
5963 OPT(opt_cmod_propagation);
5964 OPT(dead_code_eliminate);
5965 OPT(opt_peephole_sel);
5966 OPT(dead_control_flow_eliminate, this);
5967 OPT(opt_register_renaming);
5968 OPT(opt_saturate_propagation);
5969 OPT(register_coalesce);
5970 OPT(compute_to_mrf);
5971 OPT(eliminate_find_live_channel);
5972
5973 OPT(compact_virtual_grfs);
5974 } while (progress);
5975
5976 progress = false;
5977 pass_num = 0;
5978
5979 if (OPT(lower_pack)) {
5980 OPT(register_coalesce);
5981 OPT(dead_code_eliminate);
5982 }
5983
5984 OPT(lower_simd_width);
5985
5986 /* After SIMD lowering just in case we had to unroll the EOT send. */
5987 OPT(opt_sampler_eot);
5988
5989 OPT(lower_logical_sends);
5990
5991 if (progress) {
5992 OPT(opt_copy_propagation);
5993 /* Only run after logical send lowering because it's easier to implement
5994 * in terms of physical sends.
5995 */
5996 if (OPT(opt_zero_samples))
5997 OPT(opt_copy_propagation);
5998 /* Run after logical send lowering to give it a chance to CSE the
5999 * LOAD_PAYLOAD instructions created to construct the payloads of
6000 * e.g. texturing messages in cases where it wasn't possible to CSE the
6001 * whole logical instruction.
6002 */
6003 OPT(opt_cse);
6004 OPT(register_coalesce);
6005 OPT(compute_to_mrf);
6006 OPT(dead_code_eliminate);
6007 OPT(remove_duplicate_mrf_writes);
6008 OPT(opt_peephole_sel);
6009 }
6010
6011 OPT(opt_redundant_discard_jumps);
6012
6013 if (OPT(lower_load_payload)) {
6014 split_virtual_grfs();
6015 OPT(register_coalesce);
6016 OPT(compute_to_mrf);
6017 OPT(dead_code_eliminate);
6018 }
6019
6020 OPT(opt_combine_constants);
6021 OPT(lower_integer_multiplication);
6022
6023 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
6024 OPT(opt_cmod_propagation);
6025 OPT(opt_cse);
6026 OPT(opt_copy_propagation);
6027 OPT(dead_code_eliminate);
6028 }
6029
6030 if (OPT(lower_conversions)) {
6031 OPT(opt_copy_propagation);
6032 OPT(dead_code_eliminate);
6033 OPT(lower_simd_width);
6034 }
6035
6036 lower_uniform_pull_constant_loads();
6037
6038 validate();
6039 }
6040
6041 /**
6042 * Three source instruction must have a GRF/MRF destination register.
6043 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
6044 */
6045 void
6046 fs_visitor::fixup_3src_null_dest()
6047 {
6048 bool progress = false;
6049
6050 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
6051 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
6052 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
6053 inst->dst.type);
6054 progress = true;
6055 }
6056 }
6057
6058 if (progress)
6059 invalidate_live_intervals();
6060 }
6061
6062 void
6063 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
6064 {
6065 bool allocated_without_spills;
6066
6067 static const enum instruction_scheduler_mode pre_modes[] = {
6068 SCHEDULE_PRE,
6069 SCHEDULE_PRE_NON_LIFO,
6070 SCHEDULE_PRE_LIFO,
6071 };
6072
6073 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
6074
6075 /* Try each scheduling heuristic to see if it can successfully register
6076 * allocate without spilling. They should be ordered by decreasing
6077 * performance but increasing likelihood of allocating.
6078 */
6079 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
6080 schedule_instructions(pre_modes[i]);
6081
6082 if (0) {
6083 assign_regs_trivial();
6084 allocated_without_spills = true;
6085 } else {
6086 allocated_without_spills = assign_regs(false, spill_all);
6087 }
6088 if (allocated_without_spills)
6089 break;
6090 }
6091
6092 if (!allocated_without_spills) {
6093 if (!allow_spilling)
6094 fail("Failure to register allocate and spilling is not allowed.");
6095
6096 /* We assume that any spilling is worse than just dropping back to
6097 * SIMD8. There's probably actually some intermediate point where
6098 * SIMD16 with a couple of spills is still better.
6099 */
6100 if (dispatch_width > min_dispatch_width) {
6101 fail("Failure to register allocate. Reduce number of "
6102 "live scalar values to avoid this.");
6103 } else {
6104 compiler->shader_perf_log(log_data,
6105 "%s shader triggered register spilling. "
6106 "Try reducing the number of live scalar "
6107 "values to improve performance.\n",
6108 stage_name);
6109 }
6110
6111 /* Since we're out of heuristics, just go spill registers until we
6112 * get an allocation.
6113 */
6114 while (!assign_regs(true, spill_all)) {
6115 if (failed)
6116 break;
6117 }
6118 }
6119
6120 /* This must come after all optimization and register allocation, since
6121 * it inserts dead code that happens to have side effects, and it does
6122 * so based on the actual physical registers in use.
6123 */
6124 insert_gen4_send_dependency_workarounds();
6125
6126 if (failed)
6127 return;
6128
6129 opt_bank_conflicts();
6130
6131 schedule_instructions(SCHEDULE_POST);
6132
6133 if (last_scratch > 0) {
6134 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
6135
6136 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
6137
6138 if (stage == MESA_SHADER_COMPUTE) {
6139 if (devinfo->is_haswell) {
6140 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6141 * field documentation, Haswell supports a minimum of 2kB of
6142 * scratch space for compute shaders, unlike every other stage
6143 * and platform.
6144 */
6145 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
6146 } else if (devinfo->gen <= 7) {
6147 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6148 * field documentation, platforms prior to Haswell measure scratch
6149 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
6150 */
6151 prog_data->total_scratch = ALIGN(last_scratch, 1024);
6152 max_scratch_size = 12 * 1024;
6153 }
6154 }
6155
6156 /* We currently only support up to 2MB of scratch space. If we
6157 * need to support more eventually, the documentation suggests
6158 * that we could allocate a larger buffer, and partition it out
6159 * ourselves. We'd just have to undo the hardware's address
6160 * calculation by subtracting (FFTID * Per Thread Scratch Space)
6161 * and then add FFTID * (Larger Per Thread Scratch Space).
6162 *
6163 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
6164 * Thread Group Tracking > Local Memory/Scratch Space.
6165 */
6166 assert(prog_data->total_scratch < max_scratch_size);
6167 }
6168 }
6169
6170 bool
6171 fs_visitor::run_vs()
6172 {
6173 assert(stage == MESA_SHADER_VERTEX);
6174
6175 setup_vs_payload();
6176
6177 if (shader_time_index >= 0)
6178 emit_shader_time_begin();
6179
6180 emit_nir_code();
6181
6182 if (failed)
6183 return false;
6184
6185 compute_clip_distance();
6186
6187 emit_urb_writes();
6188
6189 if (shader_time_index >= 0)
6190 emit_shader_time_end();
6191
6192 calculate_cfg();
6193
6194 optimize();
6195
6196 assign_curb_setup();
6197 assign_vs_urb_setup();
6198
6199 fixup_3src_null_dest();
6200 allocate_registers(8, true);
6201
6202 return !failed;
6203 }
6204
6205 bool
6206 fs_visitor::run_tcs_single_patch()
6207 {
6208 assert(stage == MESA_SHADER_TESS_CTRL);
6209
6210 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6211
6212 /* r1-r4 contain the ICP handles. */
6213 payload.num_regs = 5;
6214
6215 if (shader_time_index >= 0)
6216 emit_shader_time_begin();
6217
6218 /* Initialize gl_InvocationID */
6219 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6220 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6221 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6222 bld.MOV(channels_ud, channels_uw);
6223
6224 if (tcs_prog_data->instances == 1) {
6225 invocation_id = channels_ud;
6226 } else {
6227 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6228
6229 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6230 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6231 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6232 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6233 brw_imm_ud(INTEL_MASK(23, 17)));
6234 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6235
6236 bld.ADD(invocation_id, instance_times_8, channels_ud);
6237 }
6238
6239 /* Fix the disptach mask */
6240 if (nir->info.tess.tcs_vertices_out % 8) {
6241 bld.CMP(bld.null_reg_ud(), invocation_id,
6242 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6243 bld.IF(BRW_PREDICATE_NORMAL);
6244 }
6245
6246 emit_nir_code();
6247
6248 if (nir->info.tess.tcs_vertices_out % 8) {
6249 bld.emit(BRW_OPCODE_ENDIF);
6250 }
6251
6252 /* Emit EOT write; set TR DS Cache bit */
6253 fs_reg srcs[3] = {
6254 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6255 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6256 fs_reg(brw_imm_ud(0)),
6257 };
6258 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6259 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6260
6261 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6262 bld.null_reg_ud(), payload);
6263 inst->mlen = 3;
6264 inst->eot = true;
6265
6266 if (shader_time_index >= 0)
6267 emit_shader_time_end();
6268
6269 if (failed)
6270 return false;
6271
6272 calculate_cfg();
6273
6274 optimize();
6275
6276 assign_curb_setup();
6277 assign_tcs_single_patch_urb_setup();
6278
6279 fixup_3src_null_dest();
6280 allocate_registers(8, true);
6281
6282 return !failed;
6283 }
6284
6285 bool
6286 fs_visitor::run_tes()
6287 {
6288 assert(stage == MESA_SHADER_TESS_EVAL);
6289
6290 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6291 payload.num_regs = 5;
6292
6293 if (shader_time_index >= 0)
6294 emit_shader_time_begin();
6295
6296 emit_nir_code();
6297
6298 if (failed)
6299 return false;
6300
6301 emit_urb_writes();
6302
6303 if (shader_time_index >= 0)
6304 emit_shader_time_end();
6305
6306 calculate_cfg();
6307
6308 optimize();
6309
6310 assign_curb_setup();
6311 assign_tes_urb_setup();
6312
6313 fixup_3src_null_dest();
6314 allocate_registers(8, true);
6315
6316 return !failed;
6317 }
6318
6319 bool
6320 fs_visitor::run_gs()
6321 {
6322 assert(stage == MESA_SHADER_GEOMETRY);
6323
6324 setup_gs_payload();
6325
6326 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6327
6328 if (gs_compile->control_data_header_size_bits > 0) {
6329 /* Create a VGRF to store accumulated control data bits. */
6330 this->control_data_bits = vgrf(glsl_type::uint_type);
6331
6332 /* If we're outputting more than 32 control data bits, then EmitVertex()
6333 * will set control_data_bits to 0 after emitting the first vertex.
6334 * Otherwise, we need to initialize it to 0 here.
6335 */
6336 if (gs_compile->control_data_header_size_bits <= 32) {
6337 const fs_builder abld = bld.annotate("initialize control data bits");
6338 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6339 }
6340 }
6341
6342 if (shader_time_index >= 0)
6343 emit_shader_time_begin();
6344
6345 emit_nir_code();
6346
6347 emit_gs_thread_end();
6348
6349 if (shader_time_index >= 0)
6350 emit_shader_time_end();
6351
6352 if (failed)
6353 return false;
6354
6355 calculate_cfg();
6356
6357 optimize();
6358
6359 assign_curb_setup();
6360 assign_gs_urb_setup();
6361
6362 fixup_3src_null_dest();
6363 allocate_registers(8, true);
6364
6365 return !failed;
6366 }
6367
6368 /* From the SKL PRM, Volume 16, Workarounds:
6369 *
6370 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
6371 * only header phases (R0-R2)
6372 *
6373 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
6374 * have been header only.
6375 *
6376 * Instead of enabling push constants one can alternatively enable one of the
6377 * inputs. Here one simply chooses "layer" which shouldn't impose much
6378 * overhead.
6379 */
6380 static void
6381 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
6382 {
6383 if (wm_prog_data->num_varying_inputs)
6384 return;
6385
6386 if (wm_prog_data->base.curb_read_length)
6387 return;
6388
6389 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
6390 wm_prog_data->num_varying_inputs = 1;
6391 }
6392
6393 bool
6394 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6395 {
6396 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6397 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6398
6399 assert(stage == MESA_SHADER_FRAGMENT);
6400
6401 if (devinfo->gen >= 6)
6402 setup_fs_payload_gen6();
6403 else
6404 setup_fs_payload_gen4();
6405
6406 if (0) {
6407 emit_dummy_fs();
6408 } else if (do_rep_send) {
6409 assert(dispatch_width == 16);
6410 emit_repclear_shader();
6411 } else {
6412 if (shader_time_index >= 0)
6413 emit_shader_time_begin();
6414
6415 calculate_urb_setup();
6416 if (nir->info.inputs_read > 0 ||
6417 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6418 if (devinfo->gen < 6)
6419 emit_interpolation_setup_gen4();
6420 else
6421 emit_interpolation_setup_gen6();
6422 }
6423
6424 /* We handle discards by keeping track of the still-live pixels in f0.1.
6425 * Initialize it with the dispatched pixels.
6426 */
6427 if (wm_prog_data->uses_kill) {
6428 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6429 discard_init->flag_subreg = 1;
6430 }
6431
6432 /* Generate FS IR for main(). (the visitor only descends into
6433 * functions called "main").
6434 */
6435 emit_nir_code();
6436
6437 if (failed)
6438 return false;
6439
6440 if (wm_prog_data->uses_kill)
6441 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6442
6443 if (wm_key->alpha_test_func)
6444 emit_alpha_test();
6445
6446 emit_fb_writes();
6447
6448 if (shader_time_index >= 0)
6449 emit_shader_time_end();
6450
6451 calculate_cfg();
6452
6453 optimize();
6454
6455 assign_curb_setup();
6456
6457 if (devinfo->gen >= 9)
6458 gen9_ps_header_only_workaround(wm_prog_data);
6459
6460 assign_urb_setup();
6461
6462 fixup_3src_null_dest();
6463 allocate_registers(8, allow_spilling);
6464
6465 if (failed)
6466 return false;
6467 }
6468
6469 return !failed;
6470 }
6471
6472 bool
6473 fs_visitor::run_cs(unsigned min_dispatch_width)
6474 {
6475 assert(stage == MESA_SHADER_COMPUTE);
6476 assert(dispatch_width >= min_dispatch_width);
6477
6478 setup_cs_payload();
6479
6480 if (shader_time_index >= 0)
6481 emit_shader_time_begin();
6482
6483 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6484 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6485 const fs_builder abld = bld.exec_all().group(1, 0);
6486 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6487 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6488 }
6489
6490 emit_nir_code();
6491
6492 if (failed)
6493 return false;
6494
6495 emit_cs_terminate();
6496
6497 if (shader_time_index >= 0)
6498 emit_shader_time_end();
6499
6500 calculate_cfg();
6501
6502 optimize();
6503
6504 assign_curb_setup();
6505
6506 fixup_3src_null_dest();
6507 allocate_registers(min_dispatch_width, true);
6508
6509 if (failed)
6510 return false;
6511
6512 return !failed;
6513 }
6514
6515 /**
6516 * Return a bitfield where bit n is set if barycentric interpolation mode n
6517 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6518 *
6519 * We examine the load_barycentric intrinsics rather than looking at input
6520 * variables so that we catch interpolateAtCentroid() messages too, which
6521 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6522 */
6523 static unsigned
6524 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6525 const nir_shader *shader)
6526 {
6527 unsigned barycentric_interp_modes = 0;
6528
6529 nir_foreach_function(f, shader) {
6530 if (!f->impl)
6531 continue;
6532
6533 nir_foreach_block(block, f->impl) {
6534 nir_foreach_instr(instr, block) {
6535 if (instr->type != nir_instr_type_intrinsic)
6536 continue;
6537
6538 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6539 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6540 continue;
6541
6542 /* Ignore WPOS; it doesn't require interpolation. */
6543 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6544 continue;
6545
6546 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6547 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6548 nir_intrinsic_interp_mode(intrin);
6549 nir_intrinsic_op bary_op = intrin->intrinsic;
6550 enum brw_barycentric_mode bary =
6551 brw_barycentric_mode(interp, bary_op);
6552
6553 barycentric_interp_modes |= 1 << bary;
6554
6555 if (devinfo->needs_unlit_centroid_workaround &&
6556 bary_op == nir_intrinsic_load_barycentric_centroid)
6557 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6558 }
6559 }
6560 }
6561
6562 return barycentric_interp_modes;
6563 }
6564
6565 static void
6566 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6567 const nir_shader *shader)
6568 {
6569 prog_data->flat_inputs = 0;
6570
6571 nir_foreach_variable(var, &shader->inputs) {
6572 int input_index = prog_data->urb_setup[var->data.location];
6573
6574 if (input_index < 0)
6575 continue;
6576
6577 /* flat shading */
6578 if (var->data.interpolation == INTERP_MODE_FLAT)
6579 prog_data->flat_inputs |= (1 << input_index);
6580 }
6581 }
6582
6583 static uint8_t
6584 computed_depth_mode(const nir_shader *shader)
6585 {
6586 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6587 switch (shader->info.fs.depth_layout) {
6588 case FRAG_DEPTH_LAYOUT_NONE:
6589 case FRAG_DEPTH_LAYOUT_ANY:
6590 return BRW_PSCDEPTH_ON;
6591 case FRAG_DEPTH_LAYOUT_GREATER:
6592 return BRW_PSCDEPTH_ON_GE;
6593 case FRAG_DEPTH_LAYOUT_LESS:
6594 return BRW_PSCDEPTH_ON_LE;
6595 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6596 return BRW_PSCDEPTH_OFF;
6597 }
6598 }
6599 return BRW_PSCDEPTH_OFF;
6600 }
6601
6602 /**
6603 * Move load_interpolated_input with simple (payload-based) barycentric modes
6604 * to the top of the program so we don't emit multiple PLNs for the same input.
6605 *
6606 * This works around CSE not being able to handle non-dominating cases
6607 * such as:
6608 *
6609 * if (...) {
6610 * interpolate input
6611 * } else {
6612 * interpolate the same exact input
6613 * }
6614 *
6615 * This should be replaced by global value numbering someday.
6616 */
6617 static bool
6618 move_interpolation_to_top(nir_shader *nir)
6619 {
6620 bool progress = false;
6621
6622 nir_foreach_function(f, nir) {
6623 if (!f->impl)
6624 continue;
6625
6626 nir_block *top = nir_start_block(f->impl);
6627 exec_node *cursor_node = NULL;
6628
6629 nir_foreach_block(block, f->impl) {
6630 if (block == top)
6631 continue;
6632
6633 nir_foreach_instr_safe(instr, block) {
6634 if (instr->type != nir_instr_type_intrinsic)
6635 continue;
6636
6637 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6638 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6639 continue;
6640 nir_intrinsic_instr *bary_intrinsic =
6641 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6642 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6643
6644 /* Leave interpolateAtSample/Offset() where they are. */
6645 if (op == nir_intrinsic_load_barycentric_at_sample ||
6646 op == nir_intrinsic_load_barycentric_at_offset)
6647 continue;
6648
6649 nir_instr *move[3] = {
6650 &bary_intrinsic->instr,
6651 intrin->src[1].ssa->parent_instr,
6652 instr
6653 };
6654
6655 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6656 if (move[i]->block != top) {
6657 move[i]->block = top;
6658 exec_node_remove(&move[i]->node);
6659 if (cursor_node) {
6660 exec_node_insert_after(cursor_node, &move[i]->node);
6661 } else {
6662 exec_list_push_head(&top->instr_list, &move[i]->node);
6663 }
6664 cursor_node = &move[i]->node;
6665 progress = true;
6666 }
6667 }
6668 }
6669 }
6670 nir_metadata_preserve(f->impl, (nir_metadata)
6671 ((unsigned) nir_metadata_block_index |
6672 (unsigned) nir_metadata_dominance));
6673 }
6674
6675 return progress;
6676 }
6677
6678 /**
6679 * Demote per-sample barycentric intrinsics to centroid.
6680 *
6681 * Useful when rendering to a non-multisampled buffer.
6682 */
6683 static bool
6684 demote_sample_qualifiers(nir_shader *nir)
6685 {
6686 bool progress = true;
6687
6688 nir_foreach_function(f, nir) {
6689 if (!f->impl)
6690 continue;
6691
6692 nir_builder b;
6693 nir_builder_init(&b, f->impl);
6694
6695 nir_foreach_block(block, f->impl) {
6696 nir_foreach_instr_safe(instr, block) {
6697 if (instr->type != nir_instr_type_intrinsic)
6698 continue;
6699
6700 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6701 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6702 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6703 continue;
6704
6705 b.cursor = nir_before_instr(instr);
6706 nir_ssa_def *centroid =
6707 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6708 nir_intrinsic_interp_mode(intrin));
6709 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6710 nir_src_for_ssa(centroid));
6711 nir_instr_remove(instr);
6712 progress = true;
6713 }
6714 }
6715
6716 nir_metadata_preserve(f->impl, (nir_metadata)
6717 ((unsigned) nir_metadata_block_index |
6718 (unsigned) nir_metadata_dominance));
6719 }
6720
6721 return progress;
6722 }
6723
6724 /**
6725 * Pre-gen6, the register file of the EUs was shared between threads,
6726 * and each thread used some subset allocated on a 16-register block
6727 * granularity. The unit states wanted these block counts.
6728 */
6729 static inline int
6730 brw_register_blocks(int reg_count)
6731 {
6732 return ALIGN(reg_count, 16) / 16 - 1;
6733 }
6734
6735 const unsigned *
6736 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6737 void *mem_ctx,
6738 const struct brw_wm_prog_key *key,
6739 struct brw_wm_prog_data *prog_data,
6740 const nir_shader *src_shader,
6741 struct gl_program *prog,
6742 int shader_time_index8, int shader_time_index16,
6743 bool allow_spilling,
6744 bool use_rep_send, struct brw_vue_map *vue_map,
6745 char **error_str)
6746 {
6747 const struct gen_device_info *devinfo = compiler->devinfo;
6748
6749 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6750 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6751 brw_nir_lower_fs_inputs(shader, devinfo, key);
6752 brw_nir_lower_fs_outputs(shader);
6753
6754 if (devinfo->gen < 6) {
6755 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6756 }
6757
6758 if (!key->multisample_fbo)
6759 NIR_PASS_V(shader, demote_sample_qualifiers);
6760 NIR_PASS_V(shader, move_interpolation_to_top);
6761 shader = brw_postprocess_nir(shader, compiler, true);
6762
6763 /* key->alpha_test_func means simulating alpha testing via discards,
6764 * so the shader definitely kills pixels.
6765 */
6766 prog_data->uses_kill = shader->info.fs.uses_discard ||
6767 key->alpha_test_func;
6768 prog_data->uses_omask = key->multisample_fbo &&
6769 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6770 prog_data->computed_depth_mode = computed_depth_mode(shader);
6771 prog_data->computed_stencil =
6772 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6773
6774 prog_data->persample_dispatch =
6775 key->multisample_fbo &&
6776 (key->persample_interp ||
6777 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6778 SYSTEM_BIT_SAMPLE_POS)) ||
6779 shader->info.fs.uses_sample_qualifier ||
6780 shader->info.outputs_read);
6781
6782 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
6783
6784 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6785 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6786 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6787
6788 prog_data->barycentric_interp_modes =
6789 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6790
6791 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6792 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6793 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6794
6795 fs_visitor v8(compiler, log_data, mem_ctx, key,
6796 &prog_data->base, prog, shader, 8,
6797 shader_time_index8);
6798 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6799 if (error_str)
6800 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6801
6802 return NULL;
6803 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6804 simd8_cfg = v8.cfg;
6805 simd8_grf_start = v8.payload.num_regs;
6806 simd8_grf_used = v8.grf_used;
6807 }
6808
6809 if (v8.max_dispatch_width >= 16 &&
6810 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6811 /* Try a SIMD16 compile */
6812 fs_visitor v16(compiler, log_data, mem_ctx, key,
6813 &prog_data->base, prog, shader, 16,
6814 shader_time_index16);
6815 v16.import_uniforms(&v8);
6816 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6817 compiler->shader_perf_log(log_data,
6818 "SIMD16 shader failed to compile: %s",
6819 v16.fail_msg);
6820 } else {
6821 simd16_cfg = v16.cfg;
6822 simd16_grf_start = v16.payload.num_regs;
6823 simd16_grf_used = v16.grf_used;
6824 }
6825 }
6826
6827 /* When the caller requests a repclear shader, they want SIMD16-only */
6828 if (use_rep_send)
6829 simd8_cfg = NULL;
6830
6831 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6832 * at the top to select the shader. We've never implemented that.
6833 * Instead, we just give them exactly one shader and we pick the widest one
6834 * available.
6835 */
6836 if (compiler->devinfo->gen < 5 && simd16_cfg)
6837 simd8_cfg = NULL;
6838
6839 if (prog_data->persample_dispatch) {
6840 /* Starting with SandyBridge (where we first get MSAA), the different
6841 * pixel dispatch combinations are grouped into classifications A
6842 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6843 * generations, the only configurations supporting persample dispatch
6844 * are are this in which only one dispatch width is enabled.
6845 *
6846 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6847 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6848 */
6849 if (compiler->devinfo->gen == 6 &&
6850 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6851 simd16_cfg = NULL;
6852 } else if (simd16_cfg) {
6853 simd8_cfg = NULL;
6854 }
6855 }
6856
6857 /* We have to compute the flat inputs after the visitor is finished running
6858 * because it relies on prog_data->urb_setup which is computed in
6859 * fs_visitor::calculate_urb_setup().
6860 */
6861 brw_compute_flat_inputs(prog_data, shader);
6862
6863 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6864 v8.promoted_constants, v8.runtime_check_aads_emit,
6865 MESA_SHADER_FRAGMENT);
6866
6867 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6868 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6869 shader->info.label ?
6870 shader->info.label : "unnamed",
6871 shader->info.name));
6872 }
6873
6874 if (simd8_cfg) {
6875 prog_data->dispatch_8 = true;
6876 g.generate_code(simd8_cfg, 8);
6877 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6878 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6879
6880 if (simd16_cfg) {
6881 prog_data->dispatch_16 = true;
6882 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6883 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6884 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6885 }
6886 } else if (simd16_cfg) {
6887 prog_data->dispatch_16 = true;
6888 g.generate_code(simd16_cfg, 16);
6889 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6890 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6891 }
6892
6893 return g.get_assembly(&prog_data->base.program_size);
6894 }
6895
6896 fs_reg *
6897 fs_visitor::emit_cs_work_group_id_setup()
6898 {
6899 assert(stage == MESA_SHADER_COMPUTE);
6900
6901 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6902
6903 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6904 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6905 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6906
6907 bld.MOV(*reg, r0_1);
6908 bld.MOV(offset(*reg, bld, 1), r0_6);
6909 bld.MOV(offset(*reg, bld, 2), r0_7);
6910
6911 return reg;
6912 }
6913
6914 static void
6915 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6916 {
6917 block->dwords = dwords;
6918 block->regs = DIV_ROUND_UP(dwords, 8);
6919 block->size = block->regs * 32;
6920 }
6921
6922 static void
6923 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6924 struct brw_cs_prog_data *cs_prog_data)
6925 {
6926 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6927 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
6928 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6929
6930 /* The thread ID should be stored in the last param dword */
6931 assert(subgroup_id_index == -1 ||
6932 subgroup_id_index == (int)prog_data->nr_params - 1);
6933
6934 unsigned cross_thread_dwords, per_thread_dwords;
6935 if (!cross_thread_supported) {
6936 cross_thread_dwords = 0u;
6937 per_thread_dwords = prog_data->nr_params;
6938 } else if (subgroup_id_index >= 0) {
6939 /* Fill all but the last register with cross-thread payload */
6940 cross_thread_dwords = 8 * (subgroup_id_index / 8);
6941 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6942 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6943 } else {
6944 /* Fill all data using cross-thread payload */
6945 cross_thread_dwords = prog_data->nr_params;
6946 per_thread_dwords = 0u;
6947 }
6948
6949 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6950 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6951
6952 unsigned total_dwords =
6953 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6954 cs_prog_data->push.cross_thread.size) / 4;
6955 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6956
6957 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6958 cs_prog_data->push.per_thread.size == 0);
6959 assert(cs_prog_data->push.cross_thread.dwords +
6960 cs_prog_data->push.per_thread.dwords ==
6961 prog_data->nr_params);
6962 }
6963
6964 static void
6965 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6966 {
6967 cs_prog_data->simd_size = size;
6968 unsigned group_size = cs_prog_data->local_size[0] *
6969 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6970 cs_prog_data->threads = (group_size + size - 1) / size;
6971 }
6972
6973 static nir_shader *
6974 compile_cs_to_nir(const struct brw_compiler *compiler,
6975 void *mem_ctx,
6976 const struct brw_cs_prog_key *key,
6977 struct brw_cs_prog_data *prog_data,
6978 const nir_shader *src_shader,
6979 unsigned dispatch_width)
6980 {
6981 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6982 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6983 brw_nir_lower_cs_intrinsics(shader, dispatch_width);
6984 return brw_postprocess_nir(shader, compiler, true);
6985 }
6986
6987 const unsigned *
6988 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6989 void *mem_ctx,
6990 const struct brw_cs_prog_key *key,
6991 struct brw_cs_prog_data *prog_data,
6992 const nir_shader *src_shader,
6993 int shader_time_index,
6994 char **error_str)
6995 {
6996 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
6997 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
6998 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
6999 unsigned local_workgroup_size =
7000 src_shader->info.cs.local_size[0] * src_shader->info.cs.local_size[1] *
7001 src_shader->info.cs.local_size[2];
7002
7003 unsigned min_dispatch_width =
7004 DIV_ROUND_UP(local_workgroup_size, compiler->devinfo->max_cs_threads);
7005 min_dispatch_width = MAX2(8, min_dispatch_width);
7006 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
7007 assert(min_dispatch_width <= 32);
7008
7009 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
7010 cfg_t *cfg = NULL;
7011 const char *fail_msg = NULL;
7012 unsigned promoted_constants;
7013
7014 /* Now the main event: Visit the shader IR and generate our CS IR for it.
7015 */
7016 if (min_dispatch_width <= 8) {
7017 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
7018 prog_data, src_shader, 8);
7019 v8 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7020 NULL, /* Never used in core profile */
7021 nir8, 8, shader_time_index);
7022 if (!v8->run_cs(min_dispatch_width)) {
7023 fail_msg = v8->fail_msg;
7024 } else {
7025 /* We should always be able to do SIMD32 for compute shaders */
7026 assert(v8->max_dispatch_width >= 32);
7027
7028 cfg = v8->cfg;
7029 cs_set_simd_size(prog_data, 8);
7030 cs_fill_push_const_info(compiler->devinfo, prog_data);
7031 promoted_constants = v8->promoted_constants;
7032 }
7033 }
7034
7035 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
7036 !fail_msg && min_dispatch_width <= 16) {
7037 /* Try a SIMD16 compile */
7038 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
7039 prog_data, src_shader, 16);
7040 v16 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7041 NULL, /* Never used in core profile */
7042 nir16, 16, shader_time_index);
7043 if (v8)
7044 v16->import_uniforms(v8);
7045
7046 if (!v16->run_cs(min_dispatch_width)) {
7047 compiler->shader_perf_log(log_data,
7048 "SIMD16 shader failed to compile: %s",
7049 v16->fail_msg);
7050 if (!cfg) {
7051 fail_msg =
7052 "Couldn't generate SIMD16 program and not "
7053 "enough threads for SIMD8";
7054 }
7055 } else {
7056 /* We should always be able to do SIMD32 for compute shaders */
7057 assert(v16->max_dispatch_width >= 32);
7058
7059 cfg = v16->cfg;
7060 cs_set_simd_size(prog_data, 16);
7061 cs_fill_push_const_info(compiler->devinfo, prog_data);
7062 promoted_constants = v16->promoted_constants;
7063 }
7064 }
7065
7066 /* We should always be able to do SIMD32 for compute shaders */
7067 assert(!v16 || v16->max_dispatch_width >= 32);
7068
7069 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
7070 /* Try a SIMD32 compile */
7071 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
7072 prog_data, src_shader, 32);
7073 v32 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7074 NULL, /* Never used in core profile */
7075 nir32, 32, shader_time_index);
7076 if (v8)
7077 v32->import_uniforms(v8);
7078 else if (v16)
7079 v32->import_uniforms(v16);
7080
7081 if (!v32->run_cs(min_dispatch_width)) {
7082 compiler->shader_perf_log(log_data,
7083 "SIMD32 shader failed to compile: %s",
7084 v16->fail_msg);
7085 if (!cfg) {
7086 fail_msg =
7087 "Couldn't generate SIMD32 program and not "
7088 "enough threads for SIMD16";
7089 }
7090 } else {
7091 cfg = v32->cfg;
7092 cs_set_simd_size(prog_data, 32);
7093 cs_fill_push_const_info(compiler->devinfo, prog_data);
7094 promoted_constants = v32->promoted_constants;
7095 }
7096 }
7097
7098 const unsigned *ret = NULL;
7099 if (unlikely(cfg == NULL)) {
7100 assert(fail_msg);
7101 if (error_str)
7102 *error_str = ralloc_strdup(mem_ctx, fail_msg);
7103 } else {
7104 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
7105 promoted_constants, false, MESA_SHADER_COMPUTE);
7106 if (INTEL_DEBUG & DEBUG_CS) {
7107 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
7108 src_shader->info.label ?
7109 src_shader->info.label : "unnamed",
7110 src_shader->info.name);
7111 g.enable_debug(name);
7112 }
7113
7114 g.generate_code(cfg, prog_data->simd_size);
7115
7116 ret = g.get_assembly(&prog_data->base.program_size);
7117 }
7118
7119 delete v8;
7120 delete v16;
7121 delete v32;
7122
7123 return ret;
7124 }
7125
7126 /**
7127 * Test the dispatch mask packing assumptions of
7128 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
7129 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
7130 * executed with an unexpected dispatch mask.
7131 */
7132 static UNUSED void
7133 brw_fs_test_dispatch_packing(const fs_builder &bld)
7134 {
7135 const gl_shader_stage stage = bld.shader->stage;
7136
7137 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
7138 bld.shader->stage_prog_data)) {
7139 const fs_builder ubld = bld.exec_all().group(1, 0);
7140 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
7141 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
7142 brw_dmask_reg());
7143
7144 ubld.ADD(tmp, mask, brw_imm_ud(1));
7145 ubld.AND(tmp, mask, tmp);
7146
7147 /* This will loop forever if the dispatch mask doesn't have the expected
7148 * form '2^n-1', in which case tmp will be non-zero.
7149 */
7150 bld.emit(BRW_OPCODE_DO);
7151 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
7152 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
7153 }
7154 }