7782b23ff71d4e9983d8f885ae75c0df1083151f
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 if (type_sz(dst.type) == 8) {
195 shuffle_32bit_load_result_to_64bit_data(
196 bld, retype(vec4_result, dst.type), vec4_result, 2);
197 }
198
199 vec4_result.type = dst.type;
200 bld.MOV(dst, offset(vec4_result, bld,
201 (const_offset & 0xf) / type_sz(vec4_result.type)));
202 }
203
204 /**
205 * A helper for MOV generation for fixing up broken hardware SEND dependency
206 * handling.
207 */
208 void
209 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
210 {
211 /* The caller always wants uncompressed to emit the minimal extra
212 * dependencies, and to avoid having to deal with aligning its regs to 2.
213 */
214 const fs_builder ubld = bld.annotate("send dependency resolve")
215 .half(0);
216
217 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
218 }
219
220 bool
221 fs_inst::equals(fs_inst *inst) const
222 {
223 return (opcode == inst->opcode &&
224 dst.equals(inst->dst) &&
225 src[0].equals(inst->src[0]) &&
226 src[1].equals(inst->src[1]) &&
227 src[2].equals(inst->src[2]) &&
228 saturate == inst->saturate &&
229 predicate == inst->predicate &&
230 conditional_mod == inst->conditional_mod &&
231 mlen == inst->mlen &&
232 base_mrf == inst->base_mrf &&
233 target == inst->target &&
234 eot == inst->eot &&
235 header_size == inst->header_size &&
236 shadow_compare == inst->shadow_compare &&
237 exec_size == inst->exec_size &&
238 offset == inst->offset);
239 }
240
241 bool
242 fs_inst::is_send_from_grf() const
243 {
244 switch (opcode) {
245 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
246 case SHADER_OPCODE_SHADER_TIME_ADD:
247 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
248 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
249 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
250 case SHADER_OPCODE_UNTYPED_ATOMIC:
251 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
252 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
253 case SHADER_OPCODE_TYPED_ATOMIC:
254 case SHADER_OPCODE_TYPED_SURFACE_READ:
255 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
256 case SHADER_OPCODE_URB_WRITE_SIMD8:
257 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
258 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
260 case SHADER_OPCODE_URB_READ_SIMD8:
261 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
262 return true;
263 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
264 return src[1].file == VGRF;
265 case FS_OPCODE_FB_WRITE:
266 case FS_OPCODE_FB_READ:
267 return src[0].file == VGRF;
268 default:
269 if (is_tex())
270 return src[0].file == VGRF;
271
272 return false;
273 }
274 }
275
276 /**
277 * Returns true if this instruction's sources and destinations cannot
278 * safely be the same register.
279 *
280 * In most cases, a register can be written over safely by the same
281 * instruction that is its last use. For a single instruction, the
282 * sources are dereferenced before writing of the destination starts
283 * (naturally).
284 *
285 * However, there are a few cases where this can be problematic:
286 *
287 * - Virtual opcodes that translate to multiple instructions in the
288 * code generator: if src == dst and one instruction writes the
289 * destination before a later instruction reads the source, then
290 * src will have been clobbered.
291 *
292 * - SIMD16 compressed instructions with certain regioning (see below).
293 *
294 * The register allocator uses this information to set up conflicts between
295 * GRF sources and the destination.
296 */
297 bool
298 fs_inst::has_source_and_destination_hazard() const
299 {
300 switch (opcode) {
301 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
302 /* Multiple partial writes to the destination */
303 return true;
304 default:
305 /* The SIMD16 compressed instruction
306 *
307 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
308 *
309 * is actually decoded in hardware as:
310 *
311 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
312 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
313 *
314 * Which is safe. However, if we have uniform accesses
315 * happening, we get into trouble:
316 *
317 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
318 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
319 *
320 * Now our destination for the first instruction overwrote the
321 * second instruction's src0, and we get garbage for those 8
322 * pixels. There's a similar issue for the pre-gen6
323 * pixel_x/pixel_y, which are registers of 16-bit values and thus
324 * would get stomped by the first decode as well.
325 */
326 if (exec_size == 16) {
327 for (int i = 0; i < sources; i++) {
328 if (src[i].file == VGRF && (src[i].stride == 0 ||
329 src[i].type == BRW_REGISTER_TYPE_UW ||
330 src[i].type == BRW_REGISTER_TYPE_W ||
331 src[i].type == BRW_REGISTER_TYPE_UB ||
332 src[i].type == BRW_REGISTER_TYPE_B)) {
333 return true;
334 }
335 }
336 }
337 return false;
338 }
339 }
340
341 bool
342 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
343 {
344 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
345 return false;
346
347 fs_reg reg = this->src[0];
348 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
349 return false;
350
351 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
352 return false;
353
354 for (int i = 0; i < this->sources; i++) {
355 reg.type = this->src[i].type;
356 if (!this->src[i].equals(reg))
357 return false;
358
359 if (i < this->header_size) {
360 reg.offset += REG_SIZE;
361 } else {
362 reg = horiz_offset(reg, this->exec_size);
363 }
364 }
365
366 return true;
367 }
368
369 bool
370 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
371 {
372 if (devinfo->gen == 6 && is_math())
373 return false;
374
375 if (is_send_from_grf())
376 return false;
377
378 if (!backend_instruction::can_do_source_mods())
379 return false;
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_change_types() const
386 {
387 return dst.type == src[0].type &&
388 !src[0].abs && !src[0].negate && !saturate &&
389 (opcode == BRW_OPCODE_MOV ||
390 (opcode == BRW_OPCODE_SEL &&
391 dst.type == src[1].type &&
392 predicate != BRW_PREDICATE_NONE &&
393 !src[1].abs && !src[1].negate));
394 }
395
396 void
397 fs_reg::init()
398 {
399 memset(this, 0, sizeof(*this));
400 type = BRW_REGISTER_TYPE_UD;
401 stride = 1;
402 }
403
404 /** Generic unset register constructor. */
405 fs_reg::fs_reg()
406 {
407 init();
408 this->file = BAD_FILE;
409 }
410
411 fs_reg::fs_reg(struct ::brw_reg reg) :
412 backend_reg(reg)
413 {
414 this->offset = 0;
415 this->stride = 1;
416 if (this->file == IMM &&
417 (this->type != BRW_REGISTER_TYPE_V &&
418 this->type != BRW_REGISTER_TYPE_UV &&
419 this->type != BRW_REGISTER_TYPE_VF)) {
420 this->stride = 0;
421 }
422 }
423
424 bool
425 fs_reg::equals(const fs_reg &r) const
426 {
427 return (this->backend_reg::equals(r) &&
428 stride == r.stride);
429 }
430
431 bool
432 fs_reg::is_contiguous() const
433 {
434 return stride == 1;
435 }
436
437 unsigned
438 fs_reg::component_size(unsigned width) const
439 {
440 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
441 hstride == 0 ? 0 :
442 1 << (hstride - 1));
443 return MAX2(width * stride, 1) * type_sz(type);
444 }
445
446 extern "C" int
447 type_size_scalar(const struct glsl_type *type)
448 {
449 unsigned int size, i;
450
451 switch (type->base_type) {
452 case GLSL_TYPE_UINT:
453 case GLSL_TYPE_INT:
454 case GLSL_TYPE_FLOAT:
455 case GLSL_TYPE_BOOL:
456 return type->components();
457 case GLSL_TYPE_DOUBLE:
458 case GLSL_TYPE_UINT64:
459 case GLSL_TYPE_INT64:
460 return type->components() * 2;
461 case GLSL_TYPE_ARRAY:
462 return type_size_scalar(type->fields.array) * type->length;
463 case GLSL_TYPE_STRUCT:
464 size = 0;
465 for (i = 0; i < type->length; i++) {
466 size += type_size_scalar(type->fields.structure[i].type);
467 }
468 return size;
469 case GLSL_TYPE_SAMPLER:
470 /* Samplers take up no register space, since they're baked in at
471 * link time.
472 */
473 return 0;
474 case GLSL_TYPE_ATOMIC_UINT:
475 return 0;
476 case GLSL_TYPE_SUBROUTINE:
477 return 1;
478 case GLSL_TYPE_IMAGE:
479 return BRW_IMAGE_PARAM_SIZE;
480 case GLSL_TYPE_VOID:
481 case GLSL_TYPE_ERROR:
482 case GLSL_TYPE_INTERFACE:
483 case GLSL_TYPE_FUNCTION:
484 unreachable("not reached");
485 }
486
487 return 0;
488 }
489
490 /**
491 * Create a MOV to read the timestamp register.
492 *
493 * The caller is responsible for emitting the MOV. The return value is
494 * the destination of the MOV, with extra parameters set.
495 */
496 fs_reg
497 fs_visitor::get_timestamp(const fs_builder &bld)
498 {
499 assert(devinfo->gen >= 7);
500
501 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
502 BRW_ARF_TIMESTAMP,
503 0),
504 BRW_REGISTER_TYPE_UD));
505
506 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
507
508 /* We want to read the 3 fields we care about even if it's not enabled in
509 * the dispatch.
510 */
511 bld.group(4, 0).exec_all().MOV(dst, ts);
512
513 return dst;
514 }
515
516 void
517 fs_visitor::emit_shader_time_begin()
518 {
519 /* We want only the low 32 bits of the timestamp. Since it's running
520 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
521 * which is plenty of time for our purposes. It is identical across the
522 * EUs, but since it's tracking GPU core speed it will increment at a
523 * varying rate as render P-states change.
524 */
525 shader_start_time = component(
526 get_timestamp(bld.annotate("shader time start")), 0);
527 }
528
529 void
530 fs_visitor::emit_shader_time_end()
531 {
532 /* Insert our code just before the final SEND with EOT. */
533 exec_node *end = this->instructions.get_tail();
534 assert(end && ((fs_inst *) end)->eot);
535 const fs_builder ibld = bld.annotate("shader time end")
536 .exec_all().at(NULL, end);
537 const fs_reg timestamp = get_timestamp(ibld);
538
539 /* We only use the low 32 bits of the timestamp - see
540 * emit_shader_time_begin()).
541 *
542 * We could also check if render P-states have changed (or anything
543 * else that might disrupt timing) by setting smear to 2 and checking if
544 * that field is != 0.
545 */
546 const fs_reg shader_end_time = component(timestamp, 0);
547
548 /* Check that there weren't any timestamp reset events (assuming these
549 * were the only two timestamp reads that happened).
550 */
551 const fs_reg reset = component(timestamp, 2);
552 set_condmod(BRW_CONDITIONAL_Z,
553 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
554 ibld.IF(BRW_PREDICATE_NORMAL);
555
556 fs_reg start = shader_start_time;
557 start.negate = true;
558 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
559 BRW_REGISTER_TYPE_UD),
560 0);
561 const fs_builder cbld = ibld.group(1, 0);
562 cbld.group(1, 0).ADD(diff, start, shader_end_time);
563
564 /* If there were no instructions between the two timestamp gets, the diff
565 * is 2 cycles. Remove that overhead, so I can forget about that when
566 * trying to determine the time taken for single instructions.
567 */
568 cbld.ADD(diff, diff, brw_imm_ud(-2u));
569 SHADER_TIME_ADD(cbld, 0, diff);
570 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
571 ibld.emit(BRW_OPCODE_ELSE);
572 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
573 ibld.emit(BRW_OPCODE_ENDIF);
574 }
575
576 void
577 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
578 int shader_time_subindex,
579 fs_reg value)
580 {
581 int index = shader_time_index * 3 + shader_time_subindex;
582 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
583
584 fs_reg payload;
585 if (dispatch_width == 8)
586 payload = vgrf(glsl_type::uvec2_type);
587 else
588 payload = vgrf(glsl_type::uint_type);
589
590 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
591 }
592
593 void
594 fs_visitor::vfail(const char *format, va_list va)
595 {
596 char *msg;
597
598 if (failed)
599 return;
600
601 failed = true;
602
603 msg = ralloc_vasprintf(mem_ctx, format, va);
604 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
605
606 this->fail_msg = msg;
607
608 if (debug_enabled) {
609 fprintf(stderr, "%s", msg);
610 }
611 }
612
613 void
614 fs_visitor::fail(const char *format, ...)
615 {
616 va_list va;
617
618 va_start(va, format);
619 vfail(format, va);
620 va_end(va);
621 }
622
623 /**
624 * Mark this program as impossible to compile with dispatch width greater
625 * than n.
626 *
627 * During the SIMD8 compile (which happens first), we can detect and flag
628 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
629 * SIMD16+ compile altogether.
630 *
631 * During a compile of dispatch width greater than n (if one happens anyway),
632 * this just calls fail().
633 */
634 void
635 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
636 {
637 if (dispatch_width > n) {
638 fail("%s", msg);
639 } else {
640 max_dispatch_width = n;
641 compiler->shader_perf_log(log_data,
642 "Shader dispatch width limited to SIMD%d: %s",
643 n, msg);
644 }
645 }
646
647 /**
648 * Returns true if the instruction has a flag that means it won't
649 * update an entire destination register.
650 *
651 * For example, dead code elimination and live variable analysis want to know
652 * when a write to a variable screens off any preceding values that were in
653 * it.
654 */
655 bool
656 fs_inst::is_partial_write() const
657 {
658 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
659 (this->exec_size * type_sz(this->dst.type)) < 32 ||
660 !this->dst.is_contiguous() ||
661 this->dst.offset % REG_SIZE != 0);
662 }
663
664 unsigned
665 fs_inst::components_read(unsigned i) const
666 {
667 /* Return zero if the source is not present. */
668 if (src[i].file == BAD_FILE)
669 return 0;
670
671 switch (opcode) {
672 case FS_OPCODE_LINTERP:
673 if (i == 0)
674 return 2;
675 else
676 return 1;
677
678 case FS_OPCODE_PIXEL_X:
679 case FS_OPCODE_PIXEL_Y:
680 assert(i == 0);
681 return 2;
682
683 case FS_OPCODE_FB_WRITE_LOGICAL:
684 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
685 /* First/second FB write color. */
686 if (i < 2)
687 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
688 else
689 return 1;
690
691 case SHADER_OPCODE_TEX_LOGICAL:
692 case SHADER_OPCODE_TXD_LOGICAL:
693 case SHADER_OPCODE_TXF_LOGICAL:
694 case SHADER_OPCODE_TXL_LOGICAL:
695 case SHADER_OPCODE_TXS_LOGICAL:
696 case FS_OPCODE_TXB_LOGICAL:
697 case SHADER_OPCODE_TXF_CMS_LOGICAL:
698 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
699 case SHADER_OPCODE_TXF_UMS_LOGICAL:
700 case SHADER_OPCODE_TXF_MCS_LOGICAL:
701 case SHADER_OPCODE_LOD_LOGICAL:
702 case SHADER_OPCODE_TG4_LOGICAL:
703 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
704 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
705 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
706 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
707 /* Texture coordinates. */
708 if (i == TEX_LOGICAL_SRC_COORDINATE)
709 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
710 /* Texture derivatives. */
711 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
712 opcode == SHADER_OPCODE_TXD_LOGICAL)
713 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
714 /* Texture offset. */
715 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
716 return 2;
717 /* MCS */
718 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
719 return 2;
720 else
721 return 1;
722
723 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
724 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
725 assert(src[3].file == IMM);
726 /* Surface coordinates. */
727 if (i == 0)
728 return src[3].ud;
729 /* Surface operation source (ignored for reads). */
730 else if (i == 1)
731 return 0;
732 else
733 return 1;
734
735 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
736 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
737 assert(src[3].file == IMM &&
738 src[4].file == IMM);
739 /* Surface coordinates. */
740 if (i == 0)
741 return src[3].ud;
742 /* Surface operation source. */
743 else if (i == 1)
744 return src[4].ud;
745 else
746 return 1;
747
748 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
749 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
750 assert(src[3].file == IMM &&
751 src[4].file == IMM);
752 const unsigned op = src[4].ud;
753 /* Surface coordinates. */
754 if (i == 0)
755 return src[3].ud;
756 /* Surface operation source. */
757 else if (i == 1 && op == BRW_AOP_CMPWR)
758 return 2;
759 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
760 op == BRW_AOP_PREDEC))
761 return 0;
762 else
763 return 1;
764 }
765
766 default:
767 return 1;
768 }
769 }
770
771 unsigned
772 fs_inst::size_read(int arg) const
773 {
774 switch (opcode) {
775 case FS_OPCODE_FB_WRITE:
776 case FS_OPCODE_FB_READ:
777 case SHADER_OPCODE_URB_WRITE_SIMD8:
778 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
779 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
780 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
781 case SHADER_OPCODE_URB_READ_SIMD8:
782 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
783 case SHADER_OPCODE_UNTYPED_ATOMIC:
784 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
785 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
786 case SHADER_OPCODE_TYPED_ATOMIC:
787 case SHADER_OPCODE_TYPED_SURFACE_READ:
788 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
789 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
790 if (arg == 0)
791 return mlen * REG_SIZE;
792 break;
793
794 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
795 /* The payload is actually stored in src1 */
796 if (arg == 1)
797 return mlen * REG_SIZE;
798 break;
799
800 case FS_OPCODE_LINTERP:
801 if (arg == 1)
802 return 16;
803 break;
804
805 case SHADER_OPCODE_LOAD_PAYLOAD:
806 if (arg < this->header_size)
807 return REG_SIZE;
808 break;
809
810 case CS_OPCODE_CS_TERMINATE:
811 case SHADER_OPCODE_BARRIER:
812 return REG_SIZE;
813
814 case SHADER_OPCODE_MOV_INDIRECT:
815 if (arg == 0) {
816 assert(src[2].file == IMM);
817 return src[2].ud;
818 }
819 break;
820
821 default:
822 if (is_tex() && arg == 0 && src[0].file == VGRF)
823 return mlen * REG_SIZE;
824 break;
825 }
826
827 switch (src[arg].file) {
828 case UNIFORM:
829 case IMM:
830 return components_read(arg) * type_sz(src[arg].type);
831 case BAD_FILE:
832 case ARF:
833 case FIXED_GRF:
834 case VGRF:
835 case ATTR:
836 return components_read(arg) * src[arg].component_size(exec_size);
837 case MRF:
838 unreachable("MRF registers are not allowed as sources");
839 }
840 return 0;
841 }
842
843 namespace {
844 /* Return the subset of flag registers that an instruction could
845 * potentially read or write based on the execution controls and flag
846 * subregister number of the instruction.
847 */
848 unsigned
849 flag_mask(const fs_inst *inst)
850 {
851 const unsigned start = inst->flag_subreg * 16 + inst->group;
852 const unsigned end = start + inst->exec_size;
853 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
854 }
855
856 unsigned
857 bit_mask(unsigned n)
858 {
859 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
860 }
861
862 unsigned
863 flag_mask(const fs_reg &r, unsigned sz)
864 {
865 if (r.file == ARF) {
866 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
867 const unsigned end = start + sz;
868 return bit_mask(end) & ~bit_mask(start);
869 } else {
870 return 0;
871 }
872 }
873 }
874
875 unsigned
876 fs_inst::flags_read(const gen_device_info *devinfo) const
877 {
878 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
879 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
880 /* The vertical predication modes combine corresponding bits from
881 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
882 */
883 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
884 return flag_mask(this) << shift | flag_mask(this);
885 } else if (predicate) {
886 return flag_mask(this);
887 } else {
888 unsigned mask = 0;
889 for (int i = 0; i < sources; i++) {
890 mask |= flag_mask(src[i], size_read(i));
891 }
892 return mask;
893 }
894 }
895
896 unsigned
897 fs_inst::flags_written() const
898 {
899 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
900 opcode != BRW_OPCODE_IF &&
901 opcode != BRW_OPCODE_WHILE)) ||
902 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
903 return flag_mask(this);
904 } else {
905 return flag_mask(dst, size_written);
906 }
907 }
908
909 /**
910 * Returns how many MRFs an FS opcode will write over.
911 *
912 * Note that this is not the 0 or 1 implied writes in an actual gen
913 * instruction -- the FS opcodes often generate MOVs in addition.
914 */
915 int
916 fs_visitor::implied_mrf_writes(fs_inst *inst)
917 {
918 if (inst->mlen == 0)
919 return 0;
920
921 if (inst->base_mrf == -1)
922 return 0;
923
924 switch (inst->opcode) {
925 case SHADER_OPCODE_RCP:
926 case SHADER_OPCODE_RSQ:
927 case SHADER_OPCODE_SQRT:
928 case SHADER_OPCODE_EXP2:
929 case SHADER_OPCODE_LOG2:
930 case SHADER_OPCODE_SIN:
931 case SHADER_OPCODE_COS:
932 return 1 * dispatch_width / 8;
933 case SHADER_OPCODE_POW:
934 case SHADER_OPCODE_INT_QUOTIENT:
935 case SHADER_OPCODE_INT_REMAINDER:
936 return 2 * dispatch_width / 8;
937 case SHADER_OPCODE_TEX:
938 case FS_OPCODE_TXB:
939 case SHADER_OPCODE_TXD:
940 case SHADER_OPCODE_TXF:
941 case SHADER_OPCODE_TXF_CMS:
942 case SHADER_OPCODE_TXF_MCS:
943 case SHADER_OPCODE_TG4:
944 case SHADER_OPCODE_TG4_OFFSET:
945 case SHADER_OPCODE_TXL:
946 case SHADER_OPCODE_TXS:
947 case SHADER_OPCODE_LOD:
948 case SHADER_OPCODE_SAMPLEINFO:
949 return 1;
950 case FS_OPCODE_FB_WRITE:
951 return 2;
952 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
953 case SHADER_OPCODE_GEN4_SCRATCH_READ:
954 return 1;
955 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
956 return inst->mlen;
957 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
958 return inst->mlen;
959 default:
960 unreachable("not reached");
961 }
962 }
963
964 fs_reg
965 fs_visitor::vgrf(const glsl_type *const type)
966 {
967 int reg_width = dispatch_width / 8;
968 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
969 brw_type_for_base_type(type));
970 }
971
972 fs_reg::fs_reg(enum brw_reg_file file, int nr)
973 {
974 init();
975 this->file = file;
976 this->nr = nr;
977 this->type = BRW_REGISTER_TYPE_F;
978 this->stride = (file == UNIFORM ? 0 : 1);
979 }
980
981 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
982 {
983 init();
984 this->file = file;
985 this->nr = nr;
986 this->type = type;
987 this->stride = (file == UNIFORM ? 0 : 1);
988 }
989
990 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
991 * This brings in those uniform definitions
992 */
993 void
994 fs_visitor::import_uniforms(fs_visitor *v)
995 {
996 this->push_constant_loc = v->push_constant_loc;
997 this->pull_constant_loc = v->pull_constant_loc;
998 this->uniforms = v->uniforms;
999 }
1000
1001 void
1002 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1003 {
1004 assert(stage == MESA_SHADER_FRAGMENT);
1005
1006 /* gl_FragCoord.x */
1007 bld.MOV(wpos, this->pixel_x);
1008 wpos = offset(wpos, bld, 1);
1009
1010 /* gl_FragCoord.y */
1011 bld.MOV(wpos, this->pixel_y);
1012 wpos = offset(wpos, bld, 1);
1013
1014 /* gl_FragCoord.z */
1015 if (devinfo->gen >= 6) {
1016 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1017 } else {
1018 bld.emit(FS_OPCODE_LINTERP, wpos,
1019 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1020 interp_reg(VARYING_SLOT_POS, 2));
1021 }
1022 wpos = offset(wpos, bld, 1);
1023
1024 /* gl_FragCoord.w: Already set up in emit_interpolation */
1025 bld.MOV(wpos, this->wpos_w);
1026 }
1027
1028 enum brw_barycentric_mode
1029 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1030 {
1031 /* Barycentric modes don't make sense for flat inputs. */
1032 assert(mode != INTERP_MODE_FLAT);
1033
1034 unsigned bary;
1035 switch (op) {
1036 case nir_intrinsic_load_barycentric_pixel:
1037 case nir_intrinsic_load_barycentric_at_offset:
1038 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1039 break;
1040 case nir_intrinsic_load_barycentric_centroid:
1041 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1042 break;
1043 case nir_intrinsic_load_barycentric_sample:
1044 case nir_intrinsic_load_barycentric_at_sample:
1045 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1046 break;
1047 default:
1048 unreachable("invalid intrinsic");
1049 }
1050
1051 if (mode == INTERP_MODE_NOPERSPECTIVE)
1052 bary += 3;
1053
1054 return (enum brw_barycentric_mode) bary;
1055 }
1056
1057 /**
1058 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1059 */
1060 static enum brw_barycentric_mode
1061 centroid_to_pixel(enum brw_barycentric_mode bary)
1062 {
1063 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1064 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1065 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1066 }
1067
1068 fs_reg *
1069 fs_visitor::emit_frontfacing_interpolation()
1070 {
1071 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1072
1073 if (devinfo->gen >= 6) {
1074 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1075 * a boolean result from this (~0/true or 0/false).
1076 *
1077 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1078 * this task in only one instruction:
1079 * - a negation source modifier will flip the bit; and
1080 * - a W -> D type conversion will sign extend the bit into the high
1081 * word of the destination.
1082 *
1083 * An ASR 15 fills the low word of the destination.
1084 */
1085 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1086 g0.negate = true;
1087
1088 bld.ASR(*reg, g0, brw_imm_d(15));
1089 } else {
1090 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1091 * a boolean result from this (1/true or 0/false).
1092 *
1093 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1094 * the negation source modifier to flip it. Unfortunately the SHR
1095 * instruction only operates on UD (or D with an abs source modifier)
1096 * sources without negation.
1097 *
1098 * Instead, use ASR (which will give ~0/true or 0/false).
1099 */
1100 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1101 g1_6.negate = true;
1102
1103 bld.ASR(*reg, g1_6, brw_imm_d(31));
1104 }
1105
1106 return reg;
1107 }
1108
1109 void
1110 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1111 {
1112 assert(stage == MESA_SHADER_FRAGMENT);
1113 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1114 assert(dst.type == BRW_REGISTER_TYPE_F);
1115
1116 if (wm_prog_data->persample_dispatch) {
1117 /* Convert int_sample_pos to floating point */
1118 bld.MOV(dst, int_sample_pos);
1119 /* Scale to the range [0, 1] */
1120 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1121 }
1122 else {
1123 /* From ARB_sample_shading specification:
1124 * "When rendering to a non-multisample buffer, or if multisample
1125 * rasterization is disabled, gl_SamplePosition will always be
1126 * (0.5, 0.5).
1127 */
1128 bld.MOV(dst, brw_imm_f(0.5f));
1129 }
1130 }
1131
1132 fs_reg *
1133 fs_visitor::emit_samplepos_setup()
1134 {
1135 assert(devinfo->gen >= 6);
1136
1137 const fs_builder abld = bld.annotate("compute sample position");
1138 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1139 fs_reg pos = *reg;
1140 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1141 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1142
1143 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1144 * mode will be enabled.
1145 *
1146 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1147 * R31.1:0 Position Offset X/Y for Slot[3:0]
1148 * R31.3:2 Position Offset X/Y for Slot[7:4]
1149 * .....
1150 *
1151 * The X, Y sample positions come in as bytes in thread payload. So, read
1152 * the positions using vstride=16, width=8, hstride=2.
1153 */
1154 struct brw_reg sample_pos_reg =
1155 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1156 BRW_REGISTER_TYPE_B), 16, 8, 2);
1157
1158 if (dispatch_width == 8) {
1159 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1160 } else {
1161 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1162 abld.half(1).MOV(half(int_sample_x, 1),
1163 fs_reg(suboffset(sample_pos_reg, 16)));
1164 }
1165 /* Compute gl_SamplePosition.x */
1166 compute_sample_position(pos, int_sample_x);
1167 pos = offset(pos, abld, 1);
1168 if (dispatch_width == 8) {
1169 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1170 } else {
1171 abld.half(0).MOV(half(int_sample_y, 0),
1172 fs_reg(suboffset(sample_pos_reg, 1)));
1173 abld.half(1).MOV(half(int_sample_y, 1),
1174 fs_reg(suboffset(sample_pos_reg, 17)));
1175 }
1176 /* Compute gl_SamplePosition.y */
1177 compute_sample_position(pos, int_sample_y);
1178 return reg;
1179 }
1180
1181 fs_reg *
1182 fs_visitor::emit_sampleid_setup()
1183 {
1184 assert(stage == MESA_SHADER_FRAGMENT);
1185 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1186 assert(devinfo->gen >= 6);
1187
1188 const fs_builder abld = bld.annotate("compute sample id");
1189 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1190
1191 if (!key->multisample_fbo) {
1192 /* As per GL_ARB_sample_shading specification:
1193 * "When rendering to a non-multisample buffer, or if multisample
1194 * rasterization is disabled, gl_SampleID will always be zero."
1195 */
1196 abld.MOV(*reg, brw_imm_d(0));
1197 } else if (devinfo->gen >= 8) {
1198 /* Sample ID comes in as 4-bit numbers in g1.0:
1199 *
1200 * 15:12 Slot 3 SampleID (only used in SIMD16)
1201 * 11:8 Slot 2 SampleID (only used in SIMD16)
1202 * 7:4 Slot 1 SampleID
1203 * 3:0 Slot 0 SampleID
1204 *
1205 * Each slot corresponds to four channels, so we want to replicate each
1206 * half-byte value to 4 channels in a row:
1207 *
1208 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1209 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1210 *
1211 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1212 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1213 *
1214 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1215 * channels to read the first byte (7:0), and the second group of 8
1216 * channels to read the second byte (15:8). Then, we shift right by
1217 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1218 * values into place. Finally, we AND with 0xf to keep the low nibble.
1219 *
1220 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1221 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1222 *
1223 * TODO: These payload bits exist on Gen7 too, but they appear to always
1224 * be zero, so this code fails to work. We should find out why.
1225 */
1226 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1227
1228 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1229 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1230 brw_imm_v(0x44440000));
1231 abld.AND(*reg, tmp, brw_imm_w(0xf));
1232 } else {
1233 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1234 BRW_REGISTER_TYPE_D), 0);
1235 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1236
1237 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1238 * 8x multisampling, subspan 0 will represent sample N (where N
1239 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1240 * 7. We can find the value of N by looking at R0.0 bits 7:6
1241 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1242 * (since samples are always delivered in pairs). That is, we
1243 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1244 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1245 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1246 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1247 * populating a temporary variable with the sequence (0, 1, 2, 3),
1248 * and then reading from it using vstride=1, width=4, hstride=0.
1249 * These computations hold good for 4x multisampling as well.
1250 *
1251 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1252 * the first four slots are sample 0 of subspan 0; the next four
1253 * are sample 1 of subspan 0; the third group is sample 0 of
1254 * subspan 1, and finally sample 1 of subspan 1.
1255 */
1256
1257 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1258 * accomodate 16x MSAA.
1259 */
1260 abld.exec_all().group(1, 0)
1261 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1262 brw_imm_ud(0xc0));
1263 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1264
1265 /* This works for both SIMD8 and SIMD16 */
1266 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1267
1268 /* This special instruction takes care of setting vstride=1,
1269 * width=4, hstride=0 of t2 during an ADD instruction.
1270 */
1271 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1272 }
1273
1274 return reg;
1275 }
1276
1277 fs_reg *
1278 fs_visitor::emit_samplemaskin_setup()
1279 {
1280 assert(stage == MESA_SHADER_FRAGMENT);
1281 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1282 assert(devinfo->gen >= 6);
1283
1284 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1285
1286 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1287 BRW_REGISTER_TYPE_D));
1288
1289 if (wm_prog_data->persample_dispatch) {
1290 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1291 * and a mask representing which sample is being processed by the
1292 * current shader invocation.
1293 *
1294 * From the OES_sample_variables specification:
1295 * "When per-sample shading is active due to the use of a fragment input
1296 * qualified by "sample" or due to the use of the gl_SampleID or
1297 * gl_SamplePosition variables, only the bit for the current sample is
1298 * set in gl_SampleMaskIn."
1299 */
1300 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1301
1302 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1303 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1304
1305 fs_reg one = vgrf(glsl_type::int_type);
1306 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1307 abld.MOV(one, brw_imm_d(1));
1308 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1309 abld.AND(*reg, enabled_mask, coverage_mask);
1310 } else {
1311 /* In per-pixel mode, the coverage mask is sufficient. */
1312 *reg = coverage_mask;
1313 }
1314 return reg;
1315 }
1316
1317 fs_reg
1318 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1319 {
1320 if (!src.abs && !src.negate)
1321 return src;
1322
1323 fs_reg temp = bld.vgrf(src.type);
1324 bld.MOV(temp, src);
1325
1326 return temp;
1327 }
1328
1329 void
1330 fs_visitor::emit_discard_jump()
1331 {
1332 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1333
1334 /* For performance, after a discard, jump to the end of the
1335 * shader if all relevant channels have been discarded.
1336 */
1337 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1338 discard_jump->flag_subreg = 1;
1339
1340 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1341 discard_jump->predicate_inverse = true;
1342 }
1343
1344 void
1345 fs_visitor::emit_gs_thread_end()
1346 {
1347 assert(stage == MESA_SHADER_GEOMETRY);
1348
1349 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1350
1351 if (gs_compile->control_data_header_size_bits > 0) {
1352 emit_gs_control_data_bits(this->final_gs_vertex_count);
1353 }
1354
1355 const fs_builder abld = bld.annotate("thread end");
1356 fs_inst *inst;
1357
1358 if (gs_prog_data->static_vertex_count != -1) {
1359 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1360 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1361 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1362 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1363 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1364 prev->eot = true;
1365
1366 /* Delete now dead instructions. */
1367 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1368 if (dead == prev)
1369 break;
1370 dead->remove();
1371 }
1372 return;
1373 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1374 break;
1375 }
1376 }
1377 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1378 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1379 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1380 inst->mlen = 1;
1381 } else {
1382 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1383 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1384 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1385 sources[1] = this->final_gs_vertex_count;
1386 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1387 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1388 inst->mlen = 2;
1389 }
1390 inst->eot = true;
1391 inst->offset = 0;
1392 }
1393
1394 void
1395 fs_visitor::assign_curb_setup()
1396 {
1397 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1398
1399 unsigned ubo_push_length = 0;
1400 unsigned ubo_push_start[4];
1401 for (int i = 0; i < 4; i++) {
1402 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1403 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1404 }
1405
1406 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1407
1408 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1409 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1410 for (unsigned int i = 0; i < inst->sources; i++) {
1411 if (inst->src[i].file == UNIFORM) {
1412 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1413 int constant_nr;
1414 if (inst->src[i].nr >= UBO_START) {
1415 /* constant_nr is in 32-bit units, the rest are in bytes */
1416 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1417 inst->src[i].offset / 4;
1418 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1419 constant_nr = push_constant_loc[uniform_nr];
1420 } else {
1421 /* Section 5.11 of the OpenGL 4.1 spec says:
1422 * "Out-of-bounds reads return undefined values, which include
1423 * values from other variables of the active program or zero."
1424 * Just return the first push constant.
1425 */
1426 constant_nr = 0;
1427 }
1428
1429 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1430 constant_nr / 8,
1431 constant_nr % 8);
1432 brw_reg.abs = inst->src[i].abs;
1433 brw_reg.negate = inst->src[i].negate;
1434
1435 assert(inst->src[i].stride == 0);
1436 inst->src[i] = byte_offset(
1437 retype(brw_reg, inst->src[i].type),
1438 inst->src[i].offset % 4);
1439 }
1440 }
1441 }
1442
1443 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1444 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1445 }
1446
1447 void
1448 fs_visitor::calculate_urb_setup()
1449 {
1450 assert(stage == MESA_SHADER_FRAGMENT);
1451 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1452 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1453
1454 memset(prog_data->urb_setup, -1,
1455 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1456
1457 int urb_next = 0;
1458 /* Figure out where each of the incoming setup attributes lands. */
1459 if (devinfo->gen >= 6) {
1460 if (_mesa_bitcount_64(nir->info.inputs_read &
1461 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1462 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1463 * first 16 varying inputs, so we can put them wherever we want.
1464 * Just put them in order.
1465 *
1466 * This is useful because it means that (a) inputs not used by the
1467 * fragment shader won't take up valuable register space, and (b) we
1468 * won't have to recompile the fragment shader if it gets paired with
1469 * a different vertex (or geometry) shader.
1470 */
1471 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1472 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1473 BITFIELD64_BIT(i)) {
1474 prog_data->urb_setup[i] = urb_next++;
1475 }
1476 }
1477 } else {
1478 /* We have enough input varyings that the SF/SBE pipeline stage can't
1479 * arbitrarily rearrange them to suit our whim; we have to put them
1480 * in an order that matches the output of the previous pipeline stage
1481 * (geometry or vertex shader).
1482 */
1483 struct brw_vue_map prev_stage_vue_map;
1484 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1485 key->input_slots_valid,
1486 nir->info.separate_shader);
1487
1488 int first_slot =
1489 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1490 &prev_stage_vue_map);
1491
1492 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1493 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1494 slot++) {
1495 int varying = prev_stage_vue_map.slot_to_varying[slot];
1496 if (varying != BRW_VARYING_SLOT_PAD &&
1497 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1498 BITFIELD64_BIT(varying))) {
1499 prog_data->urb_setup[varying] = slot - first_slot;
1500 }
1501 }
1502 urb_next = prev_stage_vue_map.num_slots - first_slot;
1503 }
1504 } else {
1505 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1506 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1507 /* Point size is packed into the header, not as a general attribute */
1508 if (i == VARYING_SLOT_PSIZ)
1509 continue;
1510
1511 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1512 /* The back color slot is skipped when the front color is
1513 * also written to. In addition, some slots can be
1514 * written in the vertex shader and not read in the
1515 * fragment shader. So the register number must always be
1516 * incremented, mapped or not.
1517 */
1518 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1519 prog_data->urb_setup[i] = urb_next;
1520 urb_next++;
1521 }
1522 }
1523
1524 /*
1525 * It's a FS only attribute, and we did interpolation for this attribute
1526 * in SF thread. So, count it here, too.
1527 *
1528 * See compile_sf_prog() for more info.
1529 */
1530 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1531 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1532 }
1533
1534 prog_data->num_varying_inputs = urb_next;
1535 }
1536
1537 void
1538 fs_visitor::assign_urb_setup()
1539 {
1540 assert(stage == MESA_SHADER_FRAGMENT);
1541 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1542
1543 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1544
1545 /* Offset all the urb_setup[] index by the actual position of the
1546 * setup regs, now that the location of the constants has been chosen.
1547 */
1548 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1549 if (inst->opcode == FS_OPCODE_LINTERP) {
1550 assert(inst->src[1].file == FIXED_GRF);
1551 inst->src[1].nr += urb_start;
1552 }
1553
1554 if (inst->opcode == FS_OPCODE_CINTERP) {
1555 assert(inst->src[0].file == FIXED_GRF);
1556 inst->src[0].nr += urb_start;
1557 }
1558 }
1559
1560 /* Each attribute is 4 setup channels, each of which is half a reg. */
1561 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1562 }
1563
1564 void
1565 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1566 {
1567 for (int i = 0; i < inst->sources; i++) {
1568 if (inst->src[i].file == ATTR) {
1569 int grf = payload.num_regs +
1570 prog_data->curb_read_length +
1571 inst->src[i].nr +
1572 inst->src[i].offset / REG_SIZE;
1573
1574 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1575 *
1576 * VertStride must be used to cross GRF register boundaries. This
1577 * rule implies that elements within a 'Width' cannot cross GRF
1578 * boundaries.
1579 *
1580 * So, for registers that are large enough, we have to split the exec
1581 * size in two and trust the compression state to sort it out.
1582 */
1583 unsigned total_size = inst->exec_size *
1584 inst->src[i].stride *
1585 type_sz(inst->src[i].type);
1586
1587 assert(total_size <= 2 * REG_SIZE);
1588 const unsigned exec_size =
1589 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1590
1591 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1592 struct brw_reg reg =
1593 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1594 inst->src[i].offset % REG_SIZE),
1595 exec_size * inst->src[i].stride,
1596 width, inst->src[i].stride);
1597 reg.abs = inst->src[i].abs;
1598 reg.negate = inst->src[i].negate;
1599
1600 inst->src[i] = reg;
1601 }
1602 }
1603 }
1604
1605 void
1606 fs_visitor::assign_vs_urb_setup()
1607 {
1608 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1609
1610 assert(stage == MESA_SHADER_VERTEX);
1611
1612 /* Each attribute is 4 regs. */
1613 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1614
1615 assert(vs_prog_data->base.urb_read_length <= 15);
1616
1617 /* Rewrite all ATTR file references to the hw grf that they land in. */
1618 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1619 convert_attr_sources_to_hw_regs(inst);
1620 }
1621 }
1622
1623 void
1624 fs_visitor::assign_tcs_single_patch_urb_setup()
1625 {
1626 assert(stage == MESA_SHADER_TESS_CTRL);
1627
1628 /* Rewrite all ATTR file references to HW_REGs. */
1629 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1630 convert_attr_sources_to_hw_regs(inst);
1631 }
1632 }
1633
1634 void
1635 fs_visitor::assign_tes_urb_setup()
1636 {
1637 assert(stage == MESA_SHADER_TESS_EVAL);
1638
1639 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1640
1641 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1642
1643 /* Rewrite all ATTR file references to HW_REGs. */
1644 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1645 convert_attr_sources_to_hw_regs(inst);
1646 }
1647 }
1648
1649 void
1650 fs_visitor::assign_gs_urb_setup()
1651 {
1652 assert(stage == MESA_SHADER_GEOMETRY);
1653
1654 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1655
1656 first_non_payload_grf +=
1657 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1658
1659 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1660 /* Rewrite all ATTR file references to GRFs. */
1661 convert_attr_sources_to_hw_regs(inst);
1662 }
1663 }
1664
1665
1666 /**
1667 * Split large virtual GRFs into separate components if we can.
1668 *
1669 * This is mostly duplicated with what brw_fs_vector_splitting does,
1670 * but that's really conservative because it's afraid of doing
1671 * splitting that doesn't result in real progress after the rest of
1672 * the optimization phases, which would cause infinite looping in
1673 * optimization. We can do it once here, safely. This also has the
1674 * opportunity to split interpolated values, or maybe even uniforms,
1675 * which we don't have at the IR level.
1676 *
1677 * We want to split, because virtual GRFs are what we register
1678 * allocate and spill (due to contiguousness requirements for some
1679 * instructions), and they're what we naturally generate in the
1680 * codegen process, but most virtual GRFs don't actually need to be
1681 * contiguous sets of GRFs. If we split, we'll end up with reduced
1682 * live intervals and better dead code elimination and coalescing.
1683 */
1684 void
1685 fs_visitor::split_virtual_grfs()
1686 {
1687 /* Compact the register file so we eliminate dead vgrfs. This
1688 * only defines split points for live registers, so if we have
1689 * too large dead registers they will hit assertions later.
1690 */
1691 compact_virtual_grfs();
1692
1693 int num_vars = this->alloc.count;
1694
1695 /* Count the total number of registers */
1696 int reg_count = 0;
1697 int vgrf_to_reg[num_vars];
1698 for (int i = 0; i < num_vars; i++) {
1699 vgrf_to_reg[i] = reg_count;
1700 reg_count += alloc.sizes[i];
1701 }
1702
1703 /* An array of "split points". For each register slot, this indicates
1704 * if this slot can be separated from the previous slot. Every time an
1705 * instruction uses multiple elements of a register (as a source or
1706 * destination), we mark the used slots as inseparable. Then we go
1707 * through and split the registers into the smallest pieces we can.
1708 */
1709 bool split_points[reg_count];
1710 memset(split_points, 0, sizeof(split_points));
1711
1712 /* Mark all used registers as fully splittable */
1713 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1714 if (inst->dst.file == VGRF) {
1715 int reg = vgrf_to_reg[inst->dst.nr];
1716 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1717 split_points[reg + j] = true;
1718 }
1719
1720 for (int i = 0; i < inst->sources; i++) {
1721 if (inst->src[i].file == VGRF) {
1722 int reg = vgrf_to_reg[inst->src[i].nr];
1723 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1724 split_points[reg + j] = true;
1725 }
1726 }
1727 }
1728
1729 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1730 if (inst->dst.file == VGRF) {
1731 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1732 for (unsigned j = 1; j < regs_written(inst); j++)
1733 split_points[reg + j] = false;
1734 }
1735 for (int i = 0; i < inst->sources; i++) {
1736 if (inst->src[i].file == VGRF) {
1737 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1738 for (unsigned j = 1; j < regs_read(inst, i); j++)
1739 split_points[reg + j] = false;
1740 }
1741 }
1742 }
1743
1744 int new_virtual_grf[reg_count];
1745 int new_reg_offset[reg_count];
1746
1747 int reg = 0;
1748 for (int i = 0; i < num_vars; i++) {
1749 /* The first one should always be 0 as a quick sanity check. */
1750 assert(split_points[reg] == false);
1751
1752 /* j = 0 case */
1753 new_reg_offset[reg] = 0;
1754 reg++;
1755 int offset = 1;
1756
1757 /* j > 0 case */
1758 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1759 /* If this is a split point, reset the offset to 0 and allocate a
1760 * new virtual GRF for the previous offset many registers
1761 */
1762 if (split_points[reg]) {
1763 assert(offset <= MAX_VGRF_SIZE);
1764 int grf = alloc.allocate(offset);
1765 for (int k = reg - offset; k < reg; k++)
1766 new_virtual_grf[k] = grf;
1767 offset = 0;
1768 }
1769 new_reg_offset[reg] = offset;
1770 offset++;
1771 reg++;
1772 }
1773
1774 /* The last one gets the original register number */
1775 assert(offset <= MAX_VGRF_SIZE);
1776 alloc.sizes[i] = offset;
1777 for (int k = reg - offset; k < reg; k++)
1778 new_virtual_grf[k] = i;
1779 }
1780 assert(reg == reg_count);
1781
1782 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1783 if (inst->dst.file == VGRF) {
1784 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1785 inst->dst.nr = new_virtual_grf[reg];
1786 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1787 inst->dst.offset % REG_SIZE;
1788 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1789 }
1790 for (int i = 0; i < inst->sources; i++) {
1791 if (inst->src[i].file == VGRF) {
1792 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1793 inst->src[i].nr = new_virtual_grf[reg];
1794 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1795 inst->src[i].offset % REG_SIZE;
1796 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1797 }
1798 }
1799 }
1800 invalidate_live_intervals();
1801 }
1802
1803 /**
1804 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1805 *
1806 * During code generation, we create tons of temporary variables, many of
1807 * which get immediately killed and are never used again. Yet, in later
1808 * optimization and analysis passes, such as compute_live_intervals, we need
1809 * to loop over all the virtual GRFs. Compacting them can save a lot of
1810 * overhead.
1811 */
1812 bool
1813 fs_visitor::compact_virtual_grfs()
1814 {
1815 bool progress = false;
1816 int remap_table[this->alloc.count];
1817 memset(remap_table, -1, sizeof(remap_table));
1818
1819 /* Mark which virtual GRFs are used. */
1820 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1821 if (inst->dst.file == VGRF)
1822 remap_table[inst->dst.nr] = 0;
1823
1824 for (int i = 0; i < inst->sources; i++) {
1825 if (inst->src[i].file == VGRF)
1826 remap_table[inst->src[i].nr] = 0;
1827 }
1828 }
1829
1830 /* Compact the GRF arrays. */
1831 int new_index = 0;
1832 for (unsigned i = 0; i < this->alloc.count; i++) {
1833 if (remap_table[i] == -1) {
1834 /* We just found an unused register. This means that we are
1835 * actually going to compact something.
1836 */
1837 progress = true;
1838 } else {
1839 remap_table[i] = new_index;
1840 alloc.sizes[new_index] = alloc.sizes[i];
1841 invalidate_live_intervals();
1842 ++new_index;
1843 }
1844 }
1845
1846 this->alloc.count = new_index;
1847
1848 /* Patch all the instructions to use the newly renumbered registers */
1849 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1850 if (inst->dst.file == VGRF)
1851 inst->dst.nr = remap_table[inst->dst.nr];
1852
1853 for (int i = 0; i < inst->sources; i++) {
1854 if (inst->src[i].file == VGRF)
1855 inst->src[i].nr = remap_table[inst->src[i].nr];
1856 }
1857 }
1858
1859 /* Patch all the references to delta_xy, since they're used in register
1860 * allocation. If they're unused, switch them to BAD_FILE so we don't
1861 * think some random VGRF is delta_xy.
1862 */
1863 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1864 if (delta_xy[i].file == VGRF) {
1865 if (remap_table[delta_xy[i].nr] != -1) {
1866 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1867 } else {
1868 delta_xy[i].file = BAD_FILE;
1869 }
1870 }
1871 }
1872
1873 return progress;
1874 }
1875
1876 static void
1877 set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1878 unsigned *max_chunk_bitsize,
1879 bool contiguous, unsigned bitsize,
1880 const unsigned target_bitsize,
1881 int *push_constant_loc, int *pull_constant_loc,
1882 unsigned *num_push_constants,
1883 unsigned *num_pull_constants,
1884 const unsigned max_push_components,
1885 const unsigned max_chunk_size,
1886 bool allow_pull_constants,
1887 struct brw_stage_prog_data *stage_prog_data)
1888 {
1889 /* This is the first live uniform in the chunk */
1890 if (*chunk_start < 0)
1891 *chunk_start = uniform;
1892
1893 /* Keep track of the maximum bit size access in contiguous uniforms */
1894 *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1895
1896 /* If this element does not need to be contiguous with the next, we
1897 * split at this point and everything between chunk_start and u forms a
1898 * single chunk.
1899 */
1900 if (!contiguous) {
1901 /* If bitsize doesn't match the target one, skip it */
1902 if (*max_chunk_bitsize != target_bitsize) {
1903 /* FIXME: right now we only support 32 and 64-bit accesses */
1904 assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1905 *max_chunk_bitsize = 0;
1906 *chunk_start = -1;
1907 return;
1908 }
1909
1910 unsigned chunk_size = uniform - *chunk_start + 1;
1911
1912 /* Decide whether we should push or pull this parameter. In the
1913 * Vulkan driver, push constants are explicitly exposed via the API
1914 * so we push everything. In GL, we only push small arrays.
1915 */
1916 if (!allow_pull_constants ||
1917 (*num_push_constants + chunk_size <= max_push_components &&
1918 chunk_size <= max_chunk_size)) {
1919 assert(*num_push_constants + chunk_size <= max_push_components);
1920 for (unsigned j = *chunk_start; j <= uniform; j++)
1921 push_constant_loc[j] = (*num_push_constants)++;
1922 } else {
1923 for (unsigned j = *chunk_start; j <= uniform; j++)
1924 pull_constant_loc[j] = (*num_pull_constants)++;
1925 }
1926
1927 *max_chunk_bitsize = 0;
1928 *chunk_start = -1;
1929 }
1930 }
1931
1932 static int
1933 get_thread_local_id_param_index(const brw_stage_prog_data *prog_data)
1934 {
1935 if (prog_data->nr_params == 0)
1936 return -1;
1937
1938 /* The local thread id is always the last parameter in the list */
1939 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
1940 if (last_param == BRW_PARAM_BUILTIN_THREAD_LOCAL_ID)
1941 return prog_data->nr_params - 1;
1942
1943 return -1;
1944 }
1945
1946 /**
1947 * Assign UNIFORM file registers to either push constants or pull constants.
1948 *
1949 * We allow a fragment shader to have more than the specified minimum
1950 * maximum number of fragment shader uniform components (64). If
1951 * there are too many of these, they'd fill up all of register space.
1952 * So, this will push some of them out to the pull constant buffer and
1953 * update the program to load them.
1954 */
1955 void
1956 fs_visitor::assign_constant_locations()
1957 {
1958 /* Only the first compile gets to decide on locations. */
1959 if (push_constant_loc) {
1960 assert(pull_constant_loc);
1961 return;
1962 }
1963
1964 bool is_live[uniforms];
1965 memset(is_live, 0, sizeof(is_live));
1966 unsigned bitsize_access[uniforms];
1967 memset(bitsize_access, 0, sizeof(bitsize_access));
1968
1969 /* For each uniform slot, a value of true indicates that the given slot and
1970 * the next slot must remain contiguous. This is used to keep us from
1971 * splitting arrays apart.
1972 */
1973 bool contiguous[uniforms];
1974 memset(contiguous, 0, sizeof(contiguous));
1975
1976 /* First, we walk through the instructions and do two things:
1977 *
1978 * 1) Figure out which uniforms are live.
1979 *
1980 * 2) Mark any indirectly used ranges of registers as contiguous.
1981 *
1982 * Note that we don't move constant-indexed accesses to arrays. No
1983 * testing has been done of the performance impact of this choice.
1984 */
1985 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1986 for (int i = 0 ; i < inst->sources; i++) {
1987 if (inst->src[i].file != UNIFORM)
1988 continue;
1989
1990 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1991
1992 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1993 assert(inst->src[2].ud % 4 == 0);
1994 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1995 assert(last < uniforms);
1996
1997 for (unsigned j = constant_nr; j < last; j++) {
1998 is_live[j] = true;
1999 contiguous[j] = true;
2000 bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
2001 }
2002 is_live[last] = true;
2003 bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
2004 } else {
2005 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
2006 int regs_read = inst->components_read(i) *
2007 type_sz(inst->src[i].type) / 4;
2008 for (int j = 0; j < regs_read; j++) {
2009 is_live[constant_nr + j] = true;
2010 bitsize_access[constant_nr + j] =
2011 MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
2012 }
2013 }
2014 }
2015 }
2016 }
2017
2018 int thread_local_id_index = get_thread_local_id_param_index(stage_prog_data);
2019
2020 /* Only allow 16 registers (128 uniform components) as push constants.
2021 *
2022 * Just demote the end of the list. We could probably do better
2023 * here, demoting things that are rarely used in the program first.
2024 *
2025 * If changing this value, note the limitation about total_regs in
2026 * brw_curbe.c.
2027 */
2028 unsigned int max_push_components = 16 * 8;
2029 if (thread_local_id_index >= 0)
2030 max_push_components--; /* Save a slot for the thread ID */
2031
2032 /* We push small arrays, but no bigger than 16 floats. This is big enough
2033 * for a vec4 but hopefully not large enough to push out other stuff. We
2034 * should probably use a better heuristic at some point.
2035 */
2036 const unsigned int max_chunk_size = 16;
2037
2038 unsigned int num_push_constants = 0;
2039 unsigned int num_pull_constants = 0;
2040
2041 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2042 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2043
2044 /* Default to -1 meaning no location */
2045 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2046 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2047
2048 int chunk_start = -1;
2049 unsigned max_chunk_bitsize = 0;
2050
2051 /* First push 64-bit uniforms to ensure they are properly aligned */
2052 const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2053 for (unsigned u = 0; u < uniforms; u++) {
2054 if (!is_live[u])
2055 continue;
2056
2057 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2058 contiguous[u], bitsize_access[u],
2059 uniform_64_bit_size,
2060 push_constant_loc, pull_constant_loc,
2061 &num_push_constants, &num_pull_constants,
2062 max_push_components, max_chunk_size,
2063 compiler->supports_pull_constants,
2064 stage_prog_data);
2065
2066 }
2067
2068 /* Then push the rest of uniforms */
2069 const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2070 for (unsigned u = 0; u < uniforms; u++) {
2071 if (!is_live[u])
2072 continue;
2073
2074 /* Skip thread_local_id_index to put it in the last push register. */
2075 if (thread_local_id_index == (int)u)
2076 continue;
2077
2078 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2079 contiguous[u], bitsize_access[u],
2080 uniform_32_bit_size,
2081 push_constant_loc, pull_constant_loc,
2082 &num_push_constants, &num_pull_constants,
2083 max_push_components, max_chunk_size,
2084 compiler->supports_pull_constants,
2085 stage_prog_data);
2086 }
2087
2088 /* Add the CS local thread ID uniform at the end of the push constants */
2089 if (thread_local_id_index >= 0)
2090 push_constant_loc[thread_local_id_index] = num_push_constants++;
2091
2092 /* As the uniforms are going to be reordered, stash the old array and
2093 * create two new arrays for push/pull params.
2094 */
2095 uint32_t *param = stage_prog_data->param;
2096 stage_prog_data->nr_params = num_push_constants;
2097 if (num_push_constants) {
2098 stage_prog_data->param = ralloc_array(mem_ctx, uint32_t,
2099 num_push_constants);
2100 } else {
2101 stage_prog_data->param = NULL;
2102 }
2103 assert(stage_prog_data->nr_pull_params == 0);
2104 assert(stage_prog_data->pull_param == NULL);
2105 if (num_pull_constants > 0) {
2106 stage_prog_data->nr_pull_params = num_pull_constants;
2107 stage_prog_data->pull_param = ralloc_array(mem_ctx, uint32_t,
2108 num_pull_constants);
2109 }
2110
2111 /* Now that we know how many regular uniforms we'll push, reduce the
2112 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2113 */
2114 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2115 for (int i = 0; i < 4; i++) {
2116 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2117
2118 if (push_length + range->length > 64)
2119 range->length = 64 - push_length;
2120
2121 push_length += range->length;
2122 }
2123 assert(push_length <= 64);
2124
2125 /* Up until now, the param[] array has been indexed by reg + offset
2126 * of UNIFORM registers. Move pull constants into pull_param[] and
2127 * condense param[] to only contain the uniforms we chose to push.
2128 *
2129 * NOTE: Because we are condensing the params[] array, we know that
2130 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2131 * having to make a copy.
2132 */
2133 for (unsigned int i = 0; i < uniforms; i++) {
2134 uint32_t value = param[i];
2135 if (pull_constant_loc[i] != -1) {
2136 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2137 } else if (push_constant_loc[i] != -1) {
2138 stage_prog_data->param[push_constant_loc[i]] = value;
2139 }
2140 }
2141 ralloc_free(param);
2142 }
2143
2144 bool
2145 fs_visitor::get_pull_locs(const fs_reg &src,
2146 unsigned *out_surf_index,
2147 unsigned *out_pull_index)
2148 {
2149 assert(src.file == UNIFORM);
2150
2151 if (src.nr >= UBO_START) {
2152 const struct brw_ubo_range *range =
2153 &prog_data->ubo_ranges[src.nr - UBO_START];
2154
2155 /* If this access is in our (reduced) range, use the push data. */
2156 if (src.offset / 32 < range->length)
2157 return false;
2158
2159 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2160 *out_pull_index = (32 * range->start + src.offset) / 4;
2161 return true;
2162 }
2163
2164 const unsigned location = src.nr + src.offset / 4;
2165
2166 if (location < uniforms && pull_constant_loc[location] != -1) {
2167 /* A regular uniform push constant */
2168 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2169 *out_pull_index = pull_constant_loc[location];
2170 return true;
2171 }
2172
2173 return false;
2174 }
2175
2176 /**
2177 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2178 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2179 */
2180 void
2181 fs_visitor::lower_constant_loads()
2182 {
2183 unsigned index, pull_index;
2184
2185 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2186 /* Set up the annotation tracking for new generated instructions. */
2187 const fs_builder ibld(this, block, inst);
2188
2189 for (int i = 0; i < inst->sources; i++) {
2190 if (inst->src[i].file != UNIFORM)
2191 continue;
2192
2193 /* We'll handle this case later */
2194 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2195 continue;
2196
2197 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2198 continue;
2199
2200 assert(inst->src[i].stride == 0);
2201
2202 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2203 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2204 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2205 const unsigned base = pull_index * 4;
2206
2207 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2208 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2209
2210 /* Rewrite the instruction to use the temporary VGRF. */
2211 inst->src[i].file = VGRF;
2212 inst->src[i].nr = dst.nr;
2213 inst->src[i].offset = (base & (block_sz - 1)) +
2214 inst->src[i].offset % 4;
2215
2216 brw_mark_surface_used(prog_data, index);
2217 }
2218
2219 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2220 inst->src[0].file == UNIFORM) {
2221
2222 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2223 continue;
2224
2225 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2226 brw_imm_ud(index),
2227 inst->src[1],
2228 pull_index * 4);
2229 inst->remove(block);
2230
2231 brw_mark_surface_used(prog_data, index);
2232 }
2233 }
2234 invalidate_live_intervals();
2235 }
2236
2237 bool
2238 fs_visitor::opt_algebraic()
2239 {
2240 bool progress = false;
2241
2242 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2243 switch (inst->opcode) {
2244 case BRW_OPCODE_MOV:
2245 if (inst->src[0].file != IMM)
2246 break;
2247
2248 if (inst->saturate) {
2249 if (inst->dst.type != inst->src[0].type)
2250 assert(!"unimplemented: saturate mixed types");
2251
2252 if (brw_saturate_immediate(inst->dst.type,
2253 &inst->src[0].as_brw_reg())) {
2254 inst->saturate = false;
2255 progress = true;
2256 }
2257 }
2258 break;
2259
2260 case BRW_OPCODE_MUL:
2261 if (inst->src[1].file != IMM)
2262 continue;
2263
2264 /* a * 1.0 = a */
2265 if (inst->src[1].is_one()) {
2266 inst->opcode = BRW_OPCODE_MOV;
2267 inst->src[1] = reg_undef;
2268 progress = true;
2269 break;
2270 }
2271
2272 /* a * -1.0 = -a */
2273 if (inst->src[1].is_negative_one()) {
2274 inst->opcode = BRW_OPCODE_MOV;
2275 inst->src[0].negate = !inst->src[0].negate;
2276 inst->src[1] = reg_undef;
2277 progress = true;
2278 break;
2279 }
2280
2281 /* a * 0.0 = 0.0 */
2282 if (inst->src[1].is_zero()) {
2283 inst->opcode = BRW_OPCODE_MOV;
2284 inst->src[0] = inst->src[1];
2285 inst->src[1] = reg_undef;
2286 progress = true;
2287 break;
2288 }
2289
2290 if (inst->src[0].file == IMM) {
2291 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2292 inst->opcode = BRW_OPCODE_MOV;
2293 inst->src[0].f *= inst->src[1].f;
2294 inst->src[1] = reg_undef;
2295 progress = true;
2296 break;
2297 }
2298 break;
2299 case BRW_OPCODE_ADD:
2300 if (inst->src[1].file != IMM)
2301 continue;
2302
2303 /* a + 0.0 = a */
2304 if (inst->src[1].is_zero()) {
2305 inst->opcode = BRW_OPCODE_MOV;
2306 inst->src[1] = reg_undef;
2307 progress = true;
2308 break;
2309 }
2310
2311 if (inst->src[0].file == IMM) {
2312 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2313 inst->opcode = BRW_OPCODE_MOV;
2314 inst->src[0].f += inst->src[1].f;
2315 inst->src[1] = reg_undef;
2316 progress = true;
2317 break;
2318 }
2319 break;
2320 case BRW_OPCODE_OR:
2321 if (inst->src[0].equals(inst->src[1])) {
2322 inst->opcode = BRW_OPCODE_MOV;
2323 inst->src[1] = reg_undef;
2324 progress = true;
2325 break;
2326 }
2327 break;
2328 case BRW_OPCODE_LRP:
2329 if (inst->src[1].equals(inst->src[2])) {
2330 inst->opcode = BRW_OPCODE_MOV;
2331 inst->src[0] = inst->src[1];
2332 inst->src[1] = reg_undef;
2333 inst->src[2] = reg_undef;
2334 progress = true;
2335 break;
2336 }
2337 break;
2338 case BRW_OPCODE_CMP:
2339 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2340 inst->src[0].abs &&
2341 inst->src[0].negate &&
2342 inst->src[1].is_zero()) {
2343 inst->src[0].abs = false;
2344 inst->src[0].negate = false;
2345 inst->conditional_mod = BRW_CONDITIONAL_Z;
2346 progress = true;
2347 break;
2348 }
2349 break;
2350 case BRW_OPCODE_SEL:
2351 if (inst->src[0].equals(inst->src[1])) {
2352 inst->opcode = BRW_OPCODE_MOV;
2353 inst->src[1] = reg_undef;
2354 inst->predicate = BRW_PREDICATE_NONE;
2355 inst->predicate_inverse = false;
2356 progress = true;
2357 } else if (inst->saturate && inst->src[1].file == IMM) {
2358 switch (inst->conditional_mod) {
2359 case BRW_CONDITIONAL_LE:
2360 case BRW_CONDITIONAL_L:
2361 switch (inst->src[1].type) {
2362 case BRW_REGISTER_TYPE_F:
2363 if (inst->src[1].f >= 1.0f) {
2364 inst->opcode = BRW_OPCODE_MOV;
2365 inst->src[1] = reg_undef;
2366 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2367 progress = true;
2368 }
2369 break;
2370 default:
2371 break;
2372 }
2373 break;
2374 case BRW_CONDITIONAL_GE:
2375 case BRW_CONDITIONAL_G:
2376 switch (inst->src[1].type) {
2377 case BRW_REGISTER_TYPE_F:
2378 if (inst->src[1].f <= 0.0f) {
2379 inst->opcode = BRW_OPCODE_MOV;
2380 inst->src[1] = reg_undef;
2381 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2382 progress = true;
2383 }
2384 break;
2385 default:
2386 break;
2387 }
2388 default:
2389 break;
2390 }
2391 }
2392 break;
2393 case BRW_OPCODE_MAD:
2394 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2395 inst->opcode = BRW_OPCODE_MOV;
2396 inst->src[1] = reg_undef;
2397 inst->src[2] = reg_undef;
2398 progress = true;
2399 } else if (inst->src[0].is_zero()) {
2400 inst->opcode = BRW_OPCODE_MUL;
2401 inst->src[0] = inst->src[2];
2402 inst->src[2] = reg_undef;
2403 progress = true;
2404 } else if (inst->src[1].is_one()) {
2405 inst->opcode = BRW_OPCODE_ADD;
2406 inst->src[1] = inst->src[2];
2407 inst->src[2] = reg_undef;
2408 progress = true;
2409 } else if (inst->src[2].is_one()) {
2410 inst->opcode = BRW_OPCODE_ADD;
2411 inst->src[2] = reg_undef;
2412 progress = true;
2413 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2414 inst->opcode = BRW_OPCODE_ADD;
2415 inst->src[1].f *= inst->src[2].f;
2416 inst->src[2] = reg_undef;
2417 progress = true;
2418 }
2419 break;
2420 case SHADER_OPCODE_BROADCAST:
2421 if (is_uniform(inst->src[0])) {
2422 inst->opcode = BRW_OPCODE_MOV;
2423 inst->sources = 1;
2424 inst->force_writemask_all = true;
2425 progress = true;
2426 } else if (inst->src[1].file == IMM) {
2427 inst->opcode = BRW_OPCODE_MOV;
2428 /* It's possible that the selected component will be too large and
2429 * overflow the register. This can happen if someone does a
2430 * readInvocation() from GLSL or SPIR-V and provides an OOB
2431 * invocationIndex. If this happens and we some how manage
2432 * to constant fold it in and get here, then component() may cause
2433 * us to start reading outside of the VGRF which will lead to an
2434 * assert later. Instead, just let it wrap around if it goes over
2435 * exec_size.
2436 */
2437 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2438 inst->src[0] = component(inst->src[0], comp);
2439 inst->sources = 1;
2440 inst->force_writemask_all = true;
2441 progress = true;
2442 }
2443 break;
2444
2445 default:
2446 break;
2447 }
2448
2449 /* Swap if src[0] is immediate. */
2450 if (progress && inst->is_commutative()) {
2451 if (inst->src[0].file == IMM) {
2452 fs_reg tmp = inst->src[1];
2453 inst->src[1] = inst->src[0];
2454 inst->src[0] = tmp;
2455 }
2456 }
2457 }
2458 return progress;
2459 }
2460
2461 /**
2462 * Optimize sample messages that have constant zero values for the trailing
2463 * texture coordinates. We can just reduce the message length for these
2464 * instructions instead of reserving a register for it. Trailing parameters
2465 * that aren't sent default to zero anyway. This will cause the dead code
2466 * eliminator to remove the MOV instruction that would otherwise be emitted to
2467 * set up the zero value.
2468 */
2469 bool
2470 fs_visitor::opt_zero_samples()
2471 {
2472 /* Gen4 infers the texturing opcode based on the message length so we can't
2473 * change it.
2474 */
2475 if (devinfo->gen < 5)
2476 return false;
2477
2478 bool progress = false;
2479
2480 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2481 if (!inst->is_tex())
2482 continue;
2483
2484 fs_inst *load_payload = (fs_inst *) inst->prev;
2485
2486 if (load_payload->is_head_sentinel() ||
2487 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2488 continue;
2489
2490 /* We don't want to remove the message header or the first parameter.
2491 * Removing the first parameter is not allowed, see the Haswell PRM
2492 * volume 7, page 149:
2493 *
2494 * "Parameter 0 is required except for the sampleinfo message, which
2495 * has no parameter 0"
2496 */
2497 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2498 load_payload->src[(inst->mlen - inst->header_size) /
2499 (inst->exec_size / 8) +
2500 inst->header_size - 1].is_zero()) {
2501 inst->mlen -= inst->exec_size / 8;
2502 progress = true;
2503 }
2504 }
2505
2506 if (progress)
2507 invalidate_live_intervals();
2508
2509 return progress;
2510 }
2511
2512 /**
2513 * Optimize sample messages which are followed by the final RT write.
2514 *
2515 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2516 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2517 * final texturing results copied to the framebuffer write payload and modify
2518 * them to write to the framebuffer directly.
2519 */
2520 bool
2521 fs_visitor::opt_sampler_eot()
2522 {
2523 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2524
2525 if (stage != MESA_SHADER_FRAGMENT)
2526 return false;
2527
2528 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2529 return false;
2530
2531 /* FINISHME: It should be possible to implement this optimization when there
2532 * are multiple drawbuffers.
2533 */
2534 if (key->nr_color_regions != 1)
2535 return false;
2536
2537 /* Requires emitting a bunch of saturating MOV instructions during logical
2538 * send lowering to clamp the color payload, which the sampler unit isn't
2539 * going to do for us.
2540 */
2541 if (key->clamp_fragment_color)
2542 return false;
2543
2544 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2545 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2546 fs_inst *fb_write = (fs_inst *)block->end();
2547 assert(fb_write->eot);
2548 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2549
2550 /* There wasn't one; nothing to do. */
2551 if (unlikely(fb_write->prev->is_head_sentinel()))
2552 return false;
2553
2554 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2555
2556 /* 3D Sampler » Messages » Message Format
2557 *
2558 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2559 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2560 */
2561 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2562 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2563 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2564 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2565 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2566 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2567 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2568 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2569 return false;
2570
2571 /* XXX - This shouldn't be necessary. */
2572 if (tex_inst->prev->is_head_sentinel())
2573 return false;
2574
2575 /* Check that the FB write sources are fully initialized by the single
2576 * texturing instruction.
2577 */
2578 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2579 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2580 if (!fb_write->src[i].equals(tex_inst->dst) ||
2581 fb_write->size_read(i) != tex_inst->size_written)
2582 return false;
2583 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2584 if (fb_write->src[i].file != BAD_FILE)
2585 return false;
2586 }
2587 }
2588
2589 assert(!tex_inst->eot); /* We can't get here twice */
2590 assert((tex_inst->offset & (0xff << 24)) == 0);
2591
2592 const fs_builder ibld(this, block, tex_inst);
2593
2594 tex_inst->offset |= fb_write->target << 24;
2595 tex_inst->eot = true;
2596 tex_inst->dst = ibld.null_reg_ud();
2597 tex_inst->size_written = 0;
2598 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2599
2600 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2601 * flag and submit a header together with the sampler message as required
2602 * by the hardware.
2603 */
2604 invalidate_live_intervals();
2605 return true;
2606 }
2607
2608 bool
2609 fs_visitor::opt_register_renaming()
2610 {
2611 bool progress = false;
2612 int depth = 0;
2613
2614 int remap[alloc.count];
2615 memset(remap, -1, sizeof(int) * alloc.count);
2616
2617 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2618 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2619 depth++;
2620 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2621 inst->opcode == BRW_OPCODE_WHILE) {
2622 depth--;
2623 }
2624
2625 /* Rewrite instruction sources. */
2626 for (int i = 0; i < inst->sources; i++) {
2627 if (inst->src[i].file == VGRF &&
2628 remap[inst->src[i].nr] != -1 &&
2629 remap[inst->src[i].nr] != inst->src[i].nr) {
2630 inst->src[i].nr = remap[inst->src[i].nr];
2631 progress = true;
2632 }
2633 }
2634
2635 const int dst = inst->dst.nr;
2636
2637 if (depth == 0 &&
2638 inst->dst.file == VGRF &&
2639 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2640 !inst->is_partial_write()) {
2641 if (remap[dst] == -1) {
2642 remap[dst] = dst;
2643 } else {
2644 remap[dst] = alloc.allocate(regs_written(inst));
2645 inst->dst.nr = remap[dst];
2646 progress = true;
2647 }
2648 } else if (inst->dst.file == VGRF &&
2649 remap[dst] != -1 &&
2650 remap[dst] != dst) {
2651 inst->dst.nr = remap[dst];
2652 progress = true;
2653 }
2654 }
2655
2656 if (progress) {
2657 invalidate_live_intervals();
2658
2659 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2660 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2661 delta_xy[i].nr = remap[delta_xy[i].nr];
2662 }
2663 }
2664 }
2665
2666 return progress;
2667 }
2668
2669 /**
2670 * Remove redundant or useless discard jumps.
2671 *
2672 * For example, we can eliminate jumps in the following sequence:
2673 *
2674 * discard-jump (redundant with the next jump)
2675 * discard-jump (useless; jumps to the next instruction)
2676 * placeholder-halt
2677 */
2678 bool
2679 fs_visitor::opt_redundant_discard_jumps()
2680 {
2681 bool progress = false;
2682
2683 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2684
2685 fs_inst *placeholder_halt = NULL;
2686 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2687 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2688 placeholder_halt = inst;
2689 break;
2690 }
2691 }
2692
2693 if (!placeholder_halt)
2694 return false;
2695
2696 /* Delete any HALTs immediately before the placeholder halt. */
2697 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2698 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2699 prev = (fs_inst *) placeholder_halt->prev) {
2700 prev->remove(last_bblock);
2701 progress = true;
2702 }
2703
2704 if (progress)
2705 invalidate_live_intervals();
2706
2707 return progress;
2708 }
2709
2710 /**
2711 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2712 * from \p r.offset which overlaps the region starting at \p s.offset and
2713 * spanning \p ds bytes.
2714 */
2715 static inline unsigned
2716 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2717 {
2718 const int rel_offset = reg_offset(s) - reg_offset(r);
2719 const int shift = rel_offset / REG_SIZE;
2720 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2721 assert(reg_space(r) == reg_space(s) &&
2722 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2723 return ((1 << n) - 1) << shift;
2724 }
2725
2726 bool
2727 fs_visitor::compute_to_mrf()
2728 {
2729 bool progress = false;
2730 int next_ip = 0;
2731
2732 /* No MRFs on Gen >= 7. */
2733 if (devinfo->gen >= 7)
2734 return false;
2735
2736 calculate_live_intervals();
2737
2738 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2739 int ip = next_ip;
2740 next_ip++;
2741
2742 if (inst->opcode != BRW_OPCODE_MOV ||
2743 inst->is_partial_write() ||
2744 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2745 inst->dst.type != inst->src[0].type ||
2746 inst->src[0].abs || inst->src[0].negate ||
2747 !inst->src[0].is_contiguous() ||
2748 inst->src[0].offset % REG_SIZE != 0)
2749 continue;
2750
2751 /* Can't compute-to-MRF this GRF if someone else was going to
2752 * read it later.
2753 */
2754 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2755 continue;
2756
2757 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2758 * things that computed the value of all GRFs of the source region. The
2759 * regs_left bitset keeps track of the registers we haven't yet found a
2760 * generating instruction for.
2761 */
2762 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2763
2764 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2765 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2766 inst->src[0], inst->size_read(0))) {
2767 /* Found the last thing to write our reg we want to turn
2768 * into a compute-to-MRF.
2769 */
2770
2771 /* If this one instruction didn't populate all the
2772 * channels, bail. We might be able to rewrite everything
2773 * that writes that reg, but it would require smarter
2774 * tracking.
2775 */
2776 if (scan_inst->is_partial_write())
2777 break;
2778
2779 /* Handling things not fully contained in the source of the copy
2780 * would need us to understand coalescing out more than one MOV at
2781 * a time.
2782 */
2783 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2784 inst->src[0], inst->size_read(0)))
2785 break;
2786
2787 /* SEND instructions can't have MRF as a destination. */
2788 if (scan_inst->mlen)
2789 break;
2790
2791 if (devinfo->gen == 6) {
2792 /* gen6 math instructions must have the destination be
2793 * GRF, so no compute-to-MRF for them.
2794 */
2795 if (scan_inst->is_math()) {
2796 break;
2797 }
2798 }
2799
2800 /* Clear the bits for any registers this instruction overwrites. */
2801 regs_left &= ~mask_relative_to(
2802 inst->src[0], scan_inst->dst, scan_inst->size_written);
2803 if (!regs_left)
2804 break;
2805 }
2806
2807 /* We don't handle control flow here. Most computation of
2808 * values that end up in MRFs are shortly before the MRF
2809 * write anyway.
2810 */
2811 if (block->start() == scan_inst)
2812 break;
2813
2814 /* You can't read from an MRF, so if someone else reads our
2815 * MRF's source GRF that we wanted to rewrite, that stops us.
2816 */
2817 bool interfered = false;
2818 for (int i = 0; i < scan_inst->sources; i++) {
2819 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2820 inst->src[0], inst->size_read(0))) {
2821 interfered = true;
2822 }
2823 }
2824 if (interfered)
2825 break;
2826
2827 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2828 inst->dst, inst->size_written)) {
2829 /* If somebody else writes our MRF here, we can't
2830 * compute-to-MRF before that.
2831 */
2832 break;
2833 }
2834
2835 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2836 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2837 inst->dst, inst->size_written)) {
2838 /* Found a SEND instruction, which means that there are
2839 * live values in MRFs from base_mrf to base_mrf +
2840 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2841 * above it.
2842 */
2843 break;
2844 }
2845 }
2846
2847 if (regs_left)
2848 continue;
2849
2850 /* Found all generating instructions of our MRF's source value, so it
2851 * should be safe to rewrite them to point to the MRF directly.
2852 */
2853 regs_left = (1 << regs_read(inst, 0)) - 1;
2854
2855 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2856 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2857 inst->src[0], inst->size_read(0))) {
2858 /* Clear the bits for any registers this instruction overwrites. */
2859 regs_left &= ~mask_relative_to(
2860 inst->src[0], scan_inst->dst, scan_inst->size_written);
2861
2862 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2863 reg_offset(inst->src[0]);
2864
2865 if (inst->dst.nr & BRW_MRF_COMPR4) {
2866 /* Apply the same address transformation done by the hardware
2867 * for COMPR4 MRF writes.
2868 */
2869 assert(rel_offset < 2 * REG_SIZE);
2870 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2871
2872 /* Clear the COMPR4 bit if the generating instruction is not
2873 * compressed.
2874 */
2875 if (scan_inst->size_written < 2 * REG_SIZE)
2876 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2877
2878 } else {
2879 /* Calculate the MRF number the result of this instruction is
2880 * ultimately written to.
2881 */
2882 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2883 }
2884
2885 scan_inst->dst.file = MRF;
2886 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2887 scan_inst->saturate |= inst->saturate;
2888 if (!regs_left)
2889 break;
2890 }
2891 }
2892
2893 assert(!regs_left);
2894 inst->remove(block);
2895 progress = true;
2896 }
2897
2898 if (progress)
2899 invalidate_live_intervals();
2900
2901 return progress;
2902 }
2903
2904 /**
2905 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2906 * flow. We could probably do better here with some form of divergence
2907 * analysis.
2908 */
2909 bool
2910 fs_visitor::eliminate_find_live_channel()
2911 {
2912 bool progress = false;
2913 unsigned depth = 0;
2914
2915 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2916 /* The optimization below assumes that channel zero is live on thread
2917 * dispatch, which may not be the case if the fixed function dispatches
2918 * threads sparsely.
2919 */
2920 return false;
2921 }
2922
2923 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2924 switch (inst->opcode) {
2925 case BRW_OPCODE_IF:
2926 case BRW_OPCODE_DO:
2927 depth++;
2928 break;
2929
2930 case BRW_OPCODE_ENDIF:
2931 case BRW_OPCODE_WHILE:
2932 depth--;
2933 break;
2934
2935 case FS_OPCODE_DISCARD_JUMP:
2936 /* This can potentially make control flow non-uniform until the end
2937 * of the program.
2938 */
2939 return progress;
2940
2941 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2942 if (depth == 0) {
2943 inst->opcode = BRW_OPCODE_MOV;
2944 inst->src[0] = brw_imm_ud(0u);
2945 inst->sources = 1;
2946 inst->force_writemask_all = true;
2947 progress = true;
2948 }
2949 break;
2950
2951 default:
2952 break;
2953 }
2954 }
2955
2956 return progress;
2957 }
2958
2959 /**
2960 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2961 * instructions to FS_OPCODE_REP_FB_WRITE.
2962 */
2963 void
2964 fs_visitor::emit_repclear_shader()
2965 {
2966 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2967 int base_mrf = 0;
2968 int color_mrf = base_mrf + 2;
2969 fs_inst *mov;
2970
2971 if (uniforms > 0) {
2972 mov = bld.exec_all().group(4, 0)
2973 .MOV(brw_message_reg(color_mrf),
2974 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2975 } else {
2976 struct brw_reg reg =
2977 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2978 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2979 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2980
2981 mov = bld.exec_all().group(4, 0)
2982 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2983 }
2984
2985 fs_inst *write;
2986 if (key->nr_color_regions == 1) {
2987 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2988 write->saturate = key->clamp_fragment_color;
2989 write->base_mrf = color_mrf;
2990 write->target = 0;
2991 write->header_size = 0;
2992 write->mlen = 1;
2993 } else {
2994 assume(key->nr_color_regions > 0);
2995 for (int i = 0; i < key->nr_color_regions; ++i) {
2996 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2997 write->saturate = key->clamp_fragment_color;
2998 write->base_mrf = base_mrf;
2999 write->target = i;
3000 write->header_size = 2;
3001 write->mlen = 3;
3002 }
3003 }
3004 write->eot = true;
3005
3006 calculate_cfg();
3007
3008 assign_constant_locations();
3009 assign_curb_setup();
3010
3011 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3012 if (uniforms > 0) {
3013 assert(mov->src[0].file == FIXED_GRF);
3014 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3015 }
3016 }
3017
3018 /**
3019 * Walks through basic blocks, looking for repeated MRF writes and
3020 * removing the later ones.
3021 */
3022 bool
3023 fs_visitor::remove_duplicate_mrf_writes()
3024 {
3025 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3026 bool progress = false;
3027
3028 /* Need to update the MRF tracking for compressed instructions. */
3029 if (dispatch_width >= 16)
3030 return false;
3031
3032 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3033
3034 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3035 if (inst->is_control_flow()) {
3036 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3037 }
3038
3039 if (inst->opcode == BRW_OPCODE_MOV &&
3040 inst->dst.file == MRF) {
3041 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3042 if (prev_inst && inst->equals(prev_inst)) {
3043 inst->remove(block);
3044 progress = true;
3045 continue;
3046 }
3047 }
3048
3049 /* Clear out the last-write records for MRFs that were overwritten. */
3050 if (inst->dst.file == MRF) {
3051 last_mrf_move[inst->dst.nr] = NULL;
3052 }
3053
3054 if (inst->mlen > 0 && inst->base_mrf != -1) {
3055 /* Found a SEND instruction, which will include two or fewer
3056 * implied MRF writes. We could do better here.
3057 */
3058 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3059 last_mrf_move[inst->base_mrf + i] = NULL;
3060 }
3061 }
3062
3063 /* Clear out any MRF move records whose sources got overwritten. */
3064 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3065 if (last_mrf_move[i] &&
3066 regions_overlap(inst->dst, inst->size_written,
3067 last_mrf_move[i]->src[0],
3068 last_mrf_move[i]->size_read(0))) {
3069 last_mrf_move[i] = NULL;
3070 }
3071 }
3072
3073 if (inst->opcode == BRW_OPCODE_MOV &&
3074 inst->dst.file == MRF &&
3075 inst->src[0].file != ARF &&
3076 !inst->is_partial_write()) {
3077 last_mrf_move[inst->dst.nr] = inst;
3078 }
3079 }
3080
3081 if (progress)
3082 invalidate_live_intervals();
3083
3084 return progress;
3085 }
3086
3087 static void
3088 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3089 {
3090 /* Clear the flag for registers that actually got read (as expected). */
3091 for (int i = 0; i < inst->sources; i++) {
3092 int grf;
3093 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3094 grf = inst->src[i].nr;
3095 } else {
3096 continue;
3097 }
3098
3099 if (grf >= first_grf &&
3100 grf < first_grf + grf_len) {
3101 deps[grf - first_grf] = false;
3102 if (inst->exec_size == 16)
3103 deps[grf - first_grf + 1] = false;
3104 }
3105 }
3106 }
3107
3108 /**
3109 * Implements this workaround for the original 965:
3110 *
3111 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3112 * check for post destination dependencies on this instruction, software
3113 * must ensure that there is no destination hazard for the case of ‘write
3114 * followed by a posted write’ shown in the following example.
3115 *
3116 * 1. mov r3 0
3117 * 2. send r3.xy <rest of send instruction>
3118 * 3. mov r2 r3
3119 *
3120 * Due to no post-destination dependency check on the ‘send’, the above
3121 * code sequence could have two instructions (1 and 2) in flight at the
3122 * same time that both consider ‘r3’ as the target of their final writes.
3123 */
3124 void
3125 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3126 fs_inst *inst)
3127 {
3128 int write_len = regs_written(inst);
3129 int first_write_grf = inst->dst.nr;
3130 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3131 assert(write_len < (int)sizeof(needs_dep) - 1);
3132
3133 memset(needs_dep, false, sizeof(needs_dep));
3134 memset(needs_dep, true, write_len);
3135
3136 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3137
3138 /* Walk backwards looking for writes to registers we're writing which
3139 * aren't read since being written. If we hit the start of the program,
3140 * we assume that there are no outstanding dependencies on entry to the
3141 * program.
3142 */
3143 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3144 /* If we hit control flow, assume that there *are* outstanding
3145 * dependencies, and force their cleanup before our instruction.
3146 */
3147 if (block->start() == scan_inst && block->num != 0) {
3148 for (int i = 0; i < write_len; i++) {
3149 if (needs_dep[i])
3150 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3151 first_write_grf + i);
3152 }
3153 return;
3154 }
3155
3156 /* We insert our reads as late as possible on the assumption that any
3157 * instruction but a MOV that might have left us an outstanding
3158 * dependency has more latency than a MOV.
3159 */
3160 if (scan_inst->dst.file == VGRF) {
3161 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3162 int reg = scan_inst->dst.nr + i;
3163
3164 if (reg >= first_write_grf &&
3165 reg < first_write_grf + write_len &&
3166 needs_dep[reg - first_write_grf]) {
3167 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3168 needs_dep[reg - first_write_grf] = false;
3169 if (scan_inst->exec_size == 16)
3170 needs_dep[reg - first_write_grf + 1] = false;
3171 }
3172 }
3173 }
3174
3175 /* Clear the flag for registers that actually got read (as expected). */
3176 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3177
3178 /* Continue the loop only if we haven't resolved all the dependencies */
3179 int i;
3180 for (i = 0; i < write_len; i++) {
3181 if (needs_dep[i])
3182 break;
3183 }
3184 if (i == write_len)
3185 return;
3186 }
3187 }
3188
3189 /**
3190 * Implements this workaround for the original 965:
3191 *
3192 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3193 * used as a destination register until after it has been sourced by an
3194 * instruction with a different destination register.
3195 */
3196 void
3197 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3198 {
3199 int write_len = regs_written(inst);
3200 int first_write_grf = inst->dst.nr;
3201 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3202 assert(write_len < (int)sizeof(needs_dep) - 1);
3203
3204 memset(needs_dep, false, sizeof(needs_dep));
3205 memset(needs_dep, true, write_len);
3206 /* Walk forwards looking for writes to registers we're writing which aren't
3207 * read before being written.
3208 */
3209 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3210 /* If we hit control flow, force resolve all remaining dependencies. */
3211 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3212 for (int i = 0; i < write_len; i++) {
3213 if (needs_dep[i])
3214 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3215 first_write_grf + i);
3216 }
3217 return;
3218 }
3219
3220 /* Clear the flag for registers that actually got read (as expected). */
3221 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3222
3223 /* We insert our reads as late as possible since they're reading the
3224 * result of a SEND, which has massive latency.
3225 */
3226 if (scan_inst->dst.file == VGRF &&
3227 scan_inst->dst.nr >= first_write_grf &&
3228 scan_inst->dst.nr < first_write_grf + write_len &&
3229 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3230 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3231 scan_inst->dst.nr);
3232 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3233 }
3234
3235 /* Continue the loop only if we haven't resolved all the dependencies */
3236 int i;
3237 for (i = 0; i < write_len; i++) {
3238 if (needs_dep[i])
3239 break;
3240 }
3241 if (i == write_len)
3242 return;
3243 }
3244 }
3245
3246 void
3247 fs_visitor::insert_gen4_send_dependency_workarounds()
3248 {
3249 if (devinfo->gen != 4 || devinfo->is_g4x)
3250 return;
3251
3252 bool progress = false;
3253
3254 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3255 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3256 insert_gen4_pre_send_dependency_workarounds(block, inst);
3257 insert_gen4_post_send_dependency_workarounds(block, inst);
3258 progress = true;
3259 }
3260 }
3261
3262 if (progress)
3263 invalidate_live_intervals();
3264 }
3265
3266 /**
3267 * Turns the generic expression-style uniform pull constant load instruction
3268 * into a hardware-specific series of instructions for loading a pull
3269 * constant.
3270 *
3271 * The expression style allows the CSE pass before this to optimize out
3272 * repeated loads from the same offset, and gives the pre-register-allocation
3273 * scheduling full flexibility, while the conversion to native instructions
3274 * allows the post-register-allocation scheduler the best information
3275 * possible.
3276 *
3277 * Note that execution masking for setting up pull constant loads is special:
3278 * the channels that need to be written are unrelated to the current execution
3279 * mask, since a later instruction will use one of the result channels as a
3280 * source operand for all 8 or 16 of its channels.
3281 */
3282 void
3283 fs_visitor::lower_uniform_pull_constant_loads()
3284 {
3285 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3286 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3287 continue;
3288
3289 if (devinfo->gen >= 7) {
3290 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3291 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3292
3293 ubld.group(8, 0).MOV(payload,
3294 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3295 ubld.group(1, 0).MOV(component(payload, 2),
3296 brw_imm_ud(inst->src[1].ud / 16));
3297
3298 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3299 inst->src[1] = payload;
3300 inst->header_size = 1;
3301 inst->mlen = 1;
3302
3303 invalidate_live_intervals();
3304 } else {
3305 /* Before register allocation, we didn't tell the scheduler about the
3306 * MRF we use. We know it's safe to use this MRF because nothing
3307 * else does except for register spill/unspill, which generates and
3308 * uses its MRF within a single IR instruction.
3309 */
3310 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3311 inst->mlen = 1;
3312 }
3313 }
3314 }
3315
3316 bool
3317 fs_visitor::lower_load_payload()
3318 {
3319 bool progress = false;
3320
3321 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3322 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3323 continue;
3324
3325 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3326 assert(inst->saturate == false);
3327 fs_reg dst = inst->dst;
3328
3329 /* Get rid of COMPR4. We'll add it back in if we need it */
3330 if (dst.file == MRF)
3331 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3332
3333 const fs_builder ibld(this, block, inst);
3334 const fs_builder hbld = ibld.exec_all().group(8, 0);
3335
3336 for (uint8_t i = 0; i < inst->header_size; i++) {
3337 if (inst->src[i].file != BAD_FILE) {
3338 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3339 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3340 hbld.MOV(mov_dst, mov_src);
3341 }
3342 dst = offset(dst, hbld, 1);
3343 }
3344
3345 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3346 inst->exec_size > 8) {
3347 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3348 * a straightforward copy. Instead, the result of the
3349 * LOAD_PAYLOAD is treated as interleaved and the first four
3350 * non-header sources are unpacked as:
3351 *
3352 * m + 0: r0
3353 * m + 1: g0
3354 * m + 2: b0
3355 * m + 3: a0
3356 * m + 4: r1
3357 * m + 5: g1
3358 * m + 6: b1
3359 * m + 7: a1
3360 *
3361 * This is used for gen <= 5 fb writes.
3362 */
3363 assert(inst->exec_size == 16);
3364 assert(inst->header_size + 4 <= inst->sources);
3365 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3366 if (inst->src[i].file != BAD_FILE) {
3367 if (devinfo->has_compr4) {
3368 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3369 compr4_dst.nr |= BRW_MRF_COMPR4;
3370 ibld.MOV(compr4_dst, inst->src[i]);
3371 } else {
3372 /* Platform doesn't have COMPR4. We have to fake it */
3373 fs_reg mov_dst = retype(dst, inst->src[i].type);
3374 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3375 mov_dst.nr += 4;
3376 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3377 }
3378 }
3379
3380 dst.nr++;
3381 }
3382
3383 /* The loop above only ever incremented us through the first set
3384 * of 4 registers. However, thanks to the magic of COMPR4, we
3385 * actually wrote to the first 8 registers, so we need to take
3386 * that into account now.
3387 */
3388 dst.nr += 4;
3389
3390 /* The COMPR4 code took care of the first 4 sources. We'll let
3391 * the regular path handle any remaining sources. Yes, we are
3392 * modifying the instruction but we're about to delete it so
3393 * this really doesn't hurt anything.
3394 */
3395 inst->header_size += 4;
3396 }
3397
3398 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3399 if (inst->src[i].file != BAD_FILE)
3400 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3401 dst = offset(dst, ibld, 1);
3402 }
3403
3404 inst->remove(block);
3405 progress = true;
3406 }
3407
3408 if (progress)
3409 invalidate_live_intervals();
3410
3411 return progress;
3412 }
3413
3414 bool
3415 fs_visitor::lower_integer_multiplication()
3416 {
3417 bool progress = false;
3418
3419 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3420 const fs_builder ibld(this, block, inst);
3421
3422 if (inst->opcode == BRW_OPCODE_MUL) {
3423 if (inst->dst.is_accumulator() ||
3424 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3425 inst->dst.type != BRW_REGISTER_TYPE_UD))
3426 continue;
3427
3428 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3429 * operation directly, but CHV/BXT cannot.
3430 */
3431 if (devinfo->gen >= 8 &&
3432 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3433 continue;
3434
3435 if (inst->src[1].file == IMM &&
3436 inst->src[1].ud < (1 << 16)) {
3437 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3438 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3439 * src1 are used.
3440 *
3441 * If multiplying by an immediate value that fits in 16-bits, do a
3442 * single MUL instruction with that value in the proper location.
3443 */
3444 if (devinfo->gen < 7) {
3445 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3446 inst->dst.type);
3447 ibld.MOV(imm, inst->src[1]);
3448 ibld.MUL(inst->dst, imm, inst->src[0]);
3449 } else {
3450 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3451 ibld.MUL(inst->dst, inst->src[0],
3452 ud ? brw_imm_uw(inst->src[1].ud)
3453 : brw_imm_w(inst->src[1].d));
3454 }
3455 } else {
3456 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3457 * do 32-bit integer multiplication in one instruction, but instead
3458 * must do a sequence (which actually calculates a 64-bit result):
3459 *
3460 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3461 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3462 * mov(8) g2<1>D acc0<8,8,1>D
3463 *
3464 * But on Gen > 6, the ability to use second accumulator register
3465 * (acc1) for non-float data types was removed, preventing a simple
3466 * implementation in SIMD16. A 16-channel result can be calculated by
3467 * executing the three instructions twice in SIMD8, once with quarter
3468 * control of 1Q for the first eight channels and again with 2Q for
3469 * the second eight channels.
3470 *
3471 * Which accumulator register is implicitly accessed (by AccWrEnable
3472 * for instance) is determined by the quarter control. Unfortunately
3473 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3474 * implicit accumulator access by an instruction with 2Q will access
3475 * acc1 regardless of whether the data type is usable in acc1.
3476 *
3477 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3478 * integer data types.
3479 *
3480 * Since we only want the low 32-bits of the result, we can do two
3481 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3482 * adjust the high result and add them (like the mach is doing):
3483 *
3484 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3485 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3486 * shl(8) g9<1>D g8<8,8,1>D 16D
3487 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3488 *
3489 * We avoid the shl instruction by realizing that we only want to add
3490 * the low 16-bits of the "high" result to the high 16-bits of the
3491 * "low" result and using proper regioning on the add:
3492 *
3493 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3494 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3495 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3496 *
3497 * Since it does not use the (single) accumulator register, we can
3498 * schedule multi-component multiplications much better.
3499 */
3500
3501 bool needs_mov = false;
3502 fs_reg orig_dst = inst->dst;
3503 fs_reg low = inst->dst;
3504 if (orig_dst.is_null() || orig_dst.file == MRF ||
3505 regions_overlap(inst->dst, inst->size_written,
3506 inst->src[0], inst->size_read(0)) ||
3507 regions_overlap(inst->dst, inst->size_written,
3508 inst->src[1], inst->size_read(1))) {
3509 needs_mov = true;
3510 low.nr = alloc.allocate(regs_written(inst));
3511 low.offset = low.offset % REG_SIZE;
3512 }
3513
3514 fs_reg high = inst->dst;
3515 high.nr = alloc.allocate(regs_written(inst));
3516 high.offset = high.offset % REG_SIZE;
3517
3518 if (devinfo->gen >= 7) {
3519 if (inst->src[1].file == IMM) {
3520 ibld.MUL(low, inst->src[0],
3521 brw_imm_uw(inst->src[1].ud & 0xffff));
3522 ibld.MUL(high, inst->src[0],
3523 brw_imm_uw(inst->src[1].ud >> 16));
3524 } else {
3525 ibld.MUL(low, inst->src[0],
3526 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3527 ibld.MUL(high, inst->src[0],
3528 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3529 }
3530 } else {
3531 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3532 inst->src[1]);
3533 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3534 inst->src[1]);
3535 }
3536
3537 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3538 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3539 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3540
3541 if (needs_mov || inst->conditional_mod) {
3542 set_condmod(inst->conditional_mod,
3543 ibld.MOV(orig_dst, low));
3544 }
3545 }
3546
3547 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3548 /* Should have been lowered to 8-wide. */
3549 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3550 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3551 inst->dst.type);
3552 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3553 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3554
3555 if (devinfo->gen >= 8) {
3556 /* Until Gen8, integer multiplies read 32-bits from one source,
3557 * and 16-bits from the other, and relying on the MACH instruction
3558 * to generate the high bits of the result.
3559 *
3560 * On Gen8, the multiply instruction does a full 32x32-bit
3561 * multiply, but in order to do a 64-bit multiply we can simulate
3562 * the previous behavior and then use a MACH instruction.
3563 *
3564 * FINISHME: Don't use source modifiers on src1.
3565 */
3566 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3567 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3568 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3569 mul->src[1].stride *= 2;
3570
3571 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3572 inst->group > 0) {
3573 /* Among other things the quarter control bits influence which
3574 * accumulator register is used by the hardware for instructions
3575 * that access the accumulator implicitly (e.g. MACH). A
3576 * second-half instruction would normally map to acc1, which
3577 * doesn't exist on Gen7 and up (the hardware does emulate it for
3578 * floating-point instructions *only* by taking advantage of the
3579 * extra precision of acc0 not normally used for floating point
3580 * arithmetic).
3581 *
3582 * HSW and up are careful enough not to try to access an
3583 * accumulator register that doesn't exist, but on earlier Gen7
3584 * hardware we need to make sure that the quarter control bits are
3585 * zero to avoid non-deterministic behaviour and emit an extra MOV
3586 * to get the result masked correctly according to the current
3587 * channel enables.
3588 */
3589 mach->group = 0;
3590 mach->force_writemask_all = true;
3591 mach->dst = ibld.vgrf(inst->dst.type);
3592 ibld.MOV(inst->dst, mach->dst);
3593 }
3594 } else {
3595 continue;
3596 }
3597
3598 inst->remove(block);
3599 progress = true;
3600 }
3601
3602 if (progress)
3603 invalidate_live_intervals();
3604
3605 return progress;
3606 }
3607
3608 bool
3609 fs_visitor::lower_minmax()
3610 {
3611 assert(devinfo->gen < 6);
3612
3613 bool progress = false;
3614
3615 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3616 const fs_builder ibld(this, block, inst);
3617
3618 if (inst->opcode == BRW_OPCODE_SEL &&
3619 inst->predicate == BRW_PREDICATE_NONE) {
3620 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3621 * the original SEL.L/GE instruction
3622 */
3623 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3624 inst->conditional_mod);
3625 inst->predicate = BRW_PREDICATE_NORMAL;
3626 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3627
3628 progress = true;
3629 }
3630 }
3631
3632 if (progress)
3633 invalidate_live_intervals();
3634
3635 return progress;
3636 }
3637
3638 static void
3639 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3640 fs_reg *dst, fs_reg color, unsigned components)
3641 {
3642 if (key->clamp_fragment_color) {
3643 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3644 assert(color.type == BRW_REGISTER_TYPE_F);
3645
3646 for (unsigned i = 0; i < components; i++)
3647 set_saturate(true,
3648 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3649
3650 color = tmp;
3651 }
3652
3653 for (unsigned i = 0; i < components; i++)
3654 dst[i] = offset(color, bld, i);
3655 }
3656
3657 static void
3658 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3659 const struct brw_wm_prog_data *prog_data,
3660 const brw_wm_prog_key *key,
3661 const fs_visitor::thread_payload &payload)
3662 {
3663 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3664 const gen_device_info *devinfo = bld.shader->devinfo;
3665 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3666 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3667 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3668 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3669 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3670 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3671 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3672 const unsigned components =
3673 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3674
3675 /* We can potentially have a message length of up to 15, so we have to set
3676 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3677 */
3678 fs_reg sources[15];
3679 int header_size = 2, payload_header_size;
3680 unsigned length = 0;
3681
3682 /* From the Sandy Bridge PRM, volume 4, page 198:
3683 *
3684 * "Dispatched Pixel Enables. One bit per pixel indicating
3685 * which pixels were originally enabled when the thread was
3686 * dispatched. This field is only required for the end-of-
3687 * thread message and on all dual-source messages."
3688 */
3689 if (devinfo->gen >= 6 &&
3690 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3691 color1.file == BAD_FILE &&
3692 key->nr_color_regions == 1) {
3693 header_size = 0;
3694 }
3695
3696 if (header_size != 0) {
3697 assert(header_size == 2);
3698 /* Allocate 2 registers for a header */
3699 length += 2;
3700 }
3701
3702 if (payload.aa_dest_stencil_reg) {
3703 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3704 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3705 .MOV(sources[length],
3706 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3707 length++;
3708 }
3709
3710 if (sample_mask.file != BAD_FILE) {
3711 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3712 BRW_REGISTER_TYPE_UD);
3713
3714 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3715 * relevant. Since it's unsigned single words one vgrf is always
3716 * 16-wide, but only the lower or higher 8 channels will be used by the
3717 * hardware when doing a SIMD8 write depending on whether we have
3718 * selected the subspans for the first or second half respectively.
3719 */
3720 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3721 sample_mask.type = BRW_REGISTER_TYPE_UW;
3722 sample_mask.stride *= 2;
3723
3724 bld.exec_all().annotate("FB write oMask")
3725 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3726 inst->group),
3727 sample_mask);
3728 length++;
3729 }
3730
3731 payload_header_size = length;
3732
3733 if (src0_alpha.file != BAD_FILE) {
3734 /* FIXME: This is being passed at the wrong location in the payload and
3735 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3736 * It's supposed to be immediately before oMask but there seems to be no
3737 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3738 * requires header sources to form a contiguous segment at the beginning
3739 * of the message and src0_alpha has per-channel semantics.
3740 */
3741 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3742 length++;
3743 } else if (key->replicate_alpha && inst->target != 0) {
3744 /* Handle the case when fragment shader doesn't write to draw buffer
3745 * zero. No need to call setup_color_payload() for src0_alpha because
3746 * alpha value will be undefined.
3747 */
3748 length++;
3749 }
3750
3751 setup_color_payload(bld, key, &sources[length], color0, components);
3752 length += 4;
3753
3754 if (color1.file != BAD_FILE) {
3755 setup_color_payload(bld, key, &sources[length], color1, components);
3756 length += 4;
3757 }
3758
3759 if (src_depth.file != BAD_FILE) {
3760 sources[length] = src_depth;
3761 length++;
3762 }
3763
3764 if (dst_depth.file != BAD_FILE) {
3765 sources[length] = dst_depth;
3766 length++;
3767 }
3768
3769 if (src_stencil.file != BAD_FILE) {
3770 assert(devinfo->gen >= 9);
3771 assert(bld.dispatch_width() != 16);
3772
3773 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3774 * available on gen9+. As such it's impossible to have both enabled at the
3775 * same time and therefore length cannot overrun the array.
3776 */
3777 assert(length < 15);
3778
3779 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3780 bld.exec_all().annotate("FB write OS")
3781 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3782 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3783 length++;
3784 }
3785
3786 fs_inst *load;
3787 if (devinfo->gen >= 7) {
3788 /* Send from the GRF */
3789 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3790 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3791 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3792 load->dst = payload;
3793
3794 inst->src[0] = payload;
3795 inst->resize_sources(1);
3796 } else {
3797 /* Send from the MRF */
3798 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3799 sources, length, payload_header_size);
3800
3801 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3802 * will do this for us if we just give it a COMPR4 destination.
3803 */
3804 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3805 load->dst.nr |= BRW_MRF_COMPR4;
3806
3807 inst->resize_sources(0);
3808 inst->base_mrf = 1;
3809 }
3810
3811 inst->opcode = FS_OPCODE_FB_WRITE;
3812 inst->mlen = regs_written(load);
3813 inst->header_size = header_size;
3814 }
3815
3816 static void
3817 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3818 {
3819 const fs_builder &ubld = bld.exec_all();
3820 const unsigned length = 2;
3821 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3822
3823 ubld.group(16, 0)
3824 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3825
3826 inst->resize_sources(1);
3827 inst->src[0] = header;
3828 inst->opcode = FS_OPCODE_FB_READ;
3829 inst->mlen = length;
3830 inst->header_size = length;
3831 }
3832
3833 static void
3834 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3835 const fs_reg &coordinate,
3836 const fs_reg &shadow_c,
3837 const fs_reg &lod, const fs_reg &lod2,
3838 const fs_reg &surface,
3839 const fs_reg &sampler,
3840 unsigned coord_components,
3841 unsigned grad_components)
3842 {
3843 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3844 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3845 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3846 fs_reg msg_end = msg_begin;
3847
3848 /* g0 header. */
3849 msg_end = offset(msg_end, bld.group(8, 0), 1);
3850
3851 for (unsigned i = 0; i < coord_components; i++)
3852 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3853 offset(coordinate, bld, i));
3854
3855 msg_end = offset(msg_end, bld, coord_components);
3856
3857 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3858 * require all three components to be present and zero if they are unused.
3859 */
3860 if (coord_components > 0 &&
3861 (has_lod || shadow_c.file != BAD_FILE ||
3862 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3863 for (unsigned i = coord_components; i < 3; i++)
3864 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3865
3866 msg_end = offset(msg_end, bld, 3 - coord_components);
3867 }
3868
3869 if (op == SHADER_OPCODE_TXD) {
3870 /* TXD unsupported in SIMD16 mode. */
3871 assert(bld.dispatch_width() == 8);
3872
3873 /* the slots for u and v are always present, but r is optional */
3874 if (coord_components < 2)
3875 msg_end = offset(msg_end, bld, 2 - coord_components);
3876
3877 /* P = u, v, r
3878 * dPdx = dudx, dvdx, drdx
3879 * dPdy = dudy, dvdy, drdy
3880 *
3881 * 1-arg: Does not exist.
3882 *
3883 * 2-arg: dudx dvdx dudy dvdy
3884 * dPdx.x dPdx.y dPdy.x dPdy.y
3885 * m4 m5 m6 m7
3886 *
3887 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3888 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3889 * m5 m6 m7 m8 m9 m10
3890 */
3891 for (unsigned i = 0; i < grad_components; i++)
3892 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3893
3894 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3895
3896 for (unsigned i = 0; i < grad_components; i++)
3897 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3898
3899 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3900 }
3901
3902 if (has_lod) {
3903 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3904 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3905 */
3906 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3907 bld.dispatch_width() == 16);
3908
3909 const brw_reg_type type =
3910 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3911 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3912 bld.MOV(retype(msg_end, type), lod);
3913 msg_end = offset(msg_end, bld, 1);
3914 }
3915
3916 if (shadow_c.file != BAD_FILE) {
3917 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3918 /* There's no plain shadow compare message, so we use shadow
3919 * compare with a bias of 0.0.
3920 */
3921 bld.MOV(msg_end, brw_imm_f(0.0f));
3922 msg_end = offset(msg_end, bld, 1);
3923 }
3924
3925 bld.MOV(msg_end, shadow_c);
3926 msg_end = offset(msg_end, bld, 1);
3927 }
3928
3929 inst->opcode = op;
3930 inst->src[0] = reg_undef;
3931 inst->src[1] = surface;
3932 inst->src[2] = sampler;
3933 inst->resize_sources(3);
3934 inst->base_mrf = msg_begin.nr;
3935 inst->mlen = msg_end.nr - msg_begin.nr;
3936 inst->header_size = 1;
3937 }
3938
3939 static void
3940 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3941 const fs_reg &coordinate,
3942 const fs_reg &shadow_c,
3943 const fs_reg &lod, const fs_reg &lod2,
3944 const fs_reg &sample_index,
3945 const fs_reg &surface,
3946 const fs_reg &sampler,
3947 unsigned coord_components,
3948 unsigned grad_components)
3949 {
3950 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3951 fs_reg msg_coords = message;
3952 unsigned header_size = 0;
3953
3954 if (inst->offset != 0) {
3955 /* The offsets set up by the visitor are in the m1 header, so we can't
3956 * go headerless.
3957 */
3958 header_size = 1;
3959 message.nr--;
3960 }
3961
3962 for (unsigned i = 0; i < coord_components; i++)
3963 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3964 offset(coordinate, bld, i));
3965
3966 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3967 fs_reg msg_lod = offset(msg_coords, bld, 4);
3968
3969 if (shadow_c.file != BAD_FILE) {
3970 fs_reg msg_shadow = msg_lod;
3971 bld.MOV(msg_shadow, shadow_c);
3972 msg_lod = offset(msg_shadow, bld, 1);
3973 msg_end = msg_lod;
3974 }
3975
3976 switch (op) {
3977 case SHADER_OPCODE_TXL:
3978 case FS_OPCODE_TXB:
3979 bld.MOV(msg_lod, lod);
3980 msg_end = offset(msg_lod, bld, 1);
3981 break;
3982 case SHADER_OPCODE_TXD:
3983 /**
3984 * P = u, v, r
3985 * dPdx = dudx, dvdx, drdx
3986 * dPdy = dudy, dvdy, drdy
3987 *
3988 * Load up these values:
3989 * - dudx dudy dvdx dvdy drdx drdy
3990 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3991 */
3992 msg_end = msg_lod;
3993 for (unsigned i = 0; i < grad_components; i++) {
3994 bld.MOV(msg_end, offset(lod, bld, i));
3995 msg_end = offset(msg_end, bld, 1);
3996
3997 bld.MOV(msg_end, offset(lod2, bld, i));
3998 msg_end = offset(msg_end, bld, 1);
3999 }
4000 break;
4001 case SHADER_OPCODE_TXS:
4002 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4003 bld.MOV(msg_lod, lod);
4004 msg_end = offset(msg_lod, bld, 1);
4005 break;
4006 case SHADER_OPCODE_TXF:
4007 msg_lod = offset(msg_coords, bld, 3);
4008 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4009 msg_end = offset(msg_lod, bld, 1);
4010 break;
4011 case SHADER_OPCODE_TXF_CMS:
4012 msg_lod = offset(msg_coords, bld, 3);
4013 /* lod */
4014 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4015 /* sample index */
4016 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4017 msg_end = offset(msg_lod, bld, 2);
4018 break;
4019 default:
4020 break;
4021 }
4022
4023 inst->opcode = op;
4024 inst->src[0] = reg_undef;
4025 inst->src[1] = surface;
4026 inst->src[2] = sampler;
4027 inst->resize_sources(3);
4028 inst->base_mrf = message.nr;
4029 inst->mlen = msg_end.nr - message.nr;
4030 inst->header_size = header_size;
4031
4032 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4033 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4034 }
4035
4036 static bool
4037 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4038 {
4039 if (devinfo->gen < 8 && !devinfo->is_haswell)
4040 return false;
4041
4042 return sampler.file != IMM || sampler.ud >= 16;
4043 }
4044
4045 static void
4046 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4047 const fs_reg &coordinate,
4048 const fs_reg &shadow_c,
4049 fs_reg lod, const fs_reg &lod2,
4050 const fs_reg &sample_index,
4051 const fs_reg &mcs,
4052 const fs_reg &surface,
4053 const fs_reg &sampler,
4054 const fs_reg &tg4_offset,
4055 unsigned coord_components,
4056 unsigned grad_components)
4057 {
4058 const gen_device_info *devinfo = bld.shader->devinfo;
4059 unsigned reg_width = bld.dispatch_width() / 8;
4060 unsigned header_size = 0, length = 0;
4061 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4062 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4063 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4064
4065 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4066 inst->offset != 0 || inst->eot ||
4067 op == SHADER_OPCODE_SAMPLEINFO ||
4068 is_high_sampler(devinfo, sampler)) {
4069 /* For general texture offsets (no txf workaround), we need a header to
4070 * put them in. Note that we're only reserving space for it in the
4071 * message payload as it will be initialized implicitly by the
4072 * generator.
4073 *
4074 * TG4 needs to place its channel select in the header, for interaction
4075 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4076 * larger sampler numbers we need to offset the Sampler State Pointer in
4077 * the header.
4078 */
4079 header_size = 1;
4080 sources[0] = fs_reg();
4081 length++;
4082
4083 /* If we're requesting fewer than four channels worth of response,
4084 * and we have an explicit header, we need to set up the sampler
4085 * writemask. It's reversed from normal: 1 means "don't write".
4086 */
4087 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4088 assert(regs_written(inst) % reg_width == 0);
4089 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4090 inst->offset |= mask << 12;
4091 }
4092 }
4093
4094 if (shadow_c.file != BAD_FILE) {
4095 bld.MOV(sources[length], shadow_c);
4096 length++;
4097 }
4098
4099 bool coordinate_done = false;
4100
4101 /* Set up the LOD info */
4102 switch (op) {
4103 case FS_OPCODE_TXB:
4104 case SHADER_OPCODE_TXL:
4105 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4106 op = SHADER_OPCODE_TXL_LZ;
4107 break;
4108 }
4109 bld.MOV(sources[length], lod);
4110 length++;
4111 break;
4112 case SHADER_OPCODE_TXD:
4113 /* TXD should have been lowered in SIMD16 mode. */
4114 assert(bld.dispatch_width() == 8);
4115
4116 /* Load dPdx and the coordinate together:
4117 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4118 */
4119 for (unsigned i = 0; i < coord_components; i++) {
4120 bld.MOV(sources[length++], offset(coordinate, bld, i));
4121
4122 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4123 * only derivatives for (u, v, r).
4124 */
4125 if (i < grad_components) {
4126 bld.MOV(sources[length++], offset(lod, bld, i));
4127 bld.MOV(sources[length++], offset(lod2, bld, i));
4128 }
4129 }
4130
4131 coordinate_done = true;
4132 break;
4133 case SHADER_OPCODE_TXS:
4134 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4135 length++;
4136 break;
4137 case SHADER_OPCODE_TXF:
4138 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4139 * On Gen9 they are u, v, lod, r
4140 */
4141 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4142
4143 if (devinfo->gen >= 9) {
4144 if (coord_components >= 2) {
4145 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4146 offset(coordinate, bld, 1));
4147 } else {
4148 sources[length] = brw_imm_d(0);
4149 }
4150 length++;
4151 }
4152
4153 if (devinfo->gen >= 9 && lod.is_zero()) {
4154 op = SHADER_OPCODE_TXF_LZ;
4155 } else {
4156 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4157 length++;
4158 }
4159
4160 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4161 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4162 offset(coordinate, bld, i));
4163
4164 coordinate_done = true;
4165 break;
4166
4167 case SHADER_OPCODE_TXF_CMS:
4168 case SHADER_OPCODE_TXF_CMS_W:
4169 case SHADER_OPCODE_TXF_UMS:
4170 case SHADER_OPCODE_TXF_MCS:
4171 if (op == SHADER_OPCODE_TXF_UMS ||
4172 op == SHADER_OPCODE_TXF_CMS ||
4173 op == SHADER_OPCODE_TXF_CMS_W) {
4174 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4175 length++;
4176 }
4177
4178 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4179 /* Data from the multisample control surface. */
4180 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4181 length++;
4182
4183 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4184 * the MCS data.
4185 */
4186 if (op == SHADER_OPCODE_TXF_CMS_W) {
4187 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4188 mcs.file == IMM ?
4189 mcs :
4190 offset(mcs, bld, 1));
4191 length++;
4192 }
4193 }
4194
4195 /* There is no offsetting for this message; just copy in the integer
4196 * texture coordinates.
4197 */
4198 for (unsigned i = 0; i < coord_components; i++)
4199 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4200 offset(coordinate, bld, i));
4201
4202 coordinate_done = true;
4203 break;
4204 case SHADER_OPCODE_TG4_OFFSET:
4205 /* More crazy intermixing */
4206 for (unsigned i = 0; i < 2; i++) /* u, v */
4207 bld.MOV(sources[length++], offset(coordinate, bld, i));
4208
4209 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4210 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4211 offset(tg4_offset, bld, i));
4212
4213 if (coord_components == 3) /* r if present */
4214 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4215
4216 coordinate_done = true;
4217 break;
4218 default:
4219 break;
4220 }
4221
4222 /* Set up the coordinate (except for cases where it was done above) */
4223 if (!coordinate_done) {
4224 for (unsigned i = 0; i < coord_components; i++)
4225 bld.MOV(sources[length++], offset(coordinate, bld, i));
4226 }
4227
4228 int mlen;
4229 if (reg_width == 2)
4230 mlen = length * reg_width - header_size;
4231 else
4232 mlen = length * reg_width;
4233
4234 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4235 BRW_REGISTER_TYPE_F);
4236 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4237
4238 /* Generate the SEND. */
4239 inst->opcode = op;
4240 inst->src[0] = src_payload;
4241 inst->src[1] = surface;
4242 inst->src[2] = sampler;
4243 inst->resize_sources(3);
4244 inst->mlen = mlen;
4245 inst->header_size = header_size;
4246
4247 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4248 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4249 }
4250
4251 static void
4252 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4253 {
4254 const gen_device_info *devinfo = bld.shader->devinfo;
4255 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4256 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4257 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4258 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4259 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4260 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4261 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4262 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4263 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4264 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4265 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4266 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4267 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4268
4269 if (devinfo->gen >= 7) {
4270 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4271 shadow_c, lod, lod2, sample_index,
4272 mcs, surface, sampler, tg4_offset,
4273 coord_components, grad_components);
4274 } else if (devinfo->gen >= 5) {
4275 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4276 shadow_c, lod, lod2, sample_index,
4277 surface, sampler,
4278 coord_components, grad_components);
4279 } else {
4280 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4281 shadow_c, lod, lod2,
4282 surface, sampler,
4283 coord_components, grad_components);
4284 }
4285 }
4286
4287 /**
4288 * Initialize the header present in some typed and untyped surface
4289 * messages.
4290 */
4291 static fs_reg
4292 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4293 {
4294 fs_builder ubld = bld.exec_all().group(8, 0);
4295 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4296 ubld.MOV(dst, brw_imm_d(0));
4297 ubld.MOV(component(dst, 7), sample_mask);
4298 return dst;
4299 }
4300
4301 static void
4302 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4303 const fs_reg &sample_mask)
4304 {
4305 /* Get the logical send arguments. */
4306 const fs_reg &addr = inst->src[0];
4307 const fs_reg &src = inst->src[1];
4308 const fs_reg &surface = inst->src[2];
4309 const UNUSED fs_reg &dims = inst->src[3];
4310 const fs_reg &arg = inst->src[4];
4311
4312 /* Calculate the total number of components of the payload. */
4313 const unsigned addr_sz = inst->components_read(0);
4314 const unsigned src_sz = inst->components_read(1);
4315 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4316 const unsigned sz = header_sz + addr_sz + src_sz;
4317
4318 /* Allocate space for the payload. */
4319 fs_reg *const components = new fs_reg[sz];
4320 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4321 unsigned n = 0;
4322
4323 /* Construct the payload. */
4324 if (header_sz)
4325 components[n++] = emit_surface_header(bld, sample_mask);
4326
4327 for (unsigned i = 0; i < addr_sz; i++)
4328 components[n++] = offset(addr, bld, i);
4329
4330 for (unsigned i = 0; i < src_sz; i++)
4331 components[n++] = offset(src, bld, i);
4332
4333 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4334
4335 /* Update the original instruction. */
4336 inst->opcode = op;
4337 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4338 inst->header_size = header_sz;
4339
4340 inst->src[0] = payload;
4341 inst->src[1] = surface;
4342 inst->src[2] = arg;
4343 inst->resize_sources(3);
4344
4345 delete[] components;
4346 }
4347
4348 static void
4349 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4350 {
4351 const gen_device_info *devinfo = bld.shader->devinfo;
4352
4353 if (devinfo->gen >= 7) {
4354 /* We are switching the instruction from an ALU-like instruction to a
4355 * send-from-grf instruction. Since sends can't handle strides or
4356 * source modifiers, we have to make a copy of the offset source.
4357 */
4358 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4359 bld.MOV(tmp, inst->src[1]);
4360 inst->src[1] = tmp;
4361
4362 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4363
4364 } else {
4365 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4366 BRW_REGISTER_TYPE_UD);
4367
4368 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4369
4370 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4371 inst->resize_sources(1);
4372 inst->base_mrf = payload.nr;
4373 inst->header_size = 1;
4374 inst->mlen = 1 + inst->exec_size / 8;
4375 }
4376 }
4377
4378 static void
4379 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4380 {
4381 assert(bld.shader->devinfo->gen < 6);
4382
4383 inst->base_mrf = 2;
4384 inst->mlen = inst->sources * inst->exec_size / 8;
4385
4386 if (inst->sources > 1) {
4387 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4388 * "Message Payload":
4389 *
4390 * "Operand0[7]. For the INT DIV functions, this operand is the
4391 * denominator."
4392 * ...
4393 * "Operand1[7]. For the INT DIV functions, this operand is the
4394 * numerator."
4395 */
4396 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4397 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4398 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4399
4400 inst->resize_sources(1);
4401 inst->src[0] = src0;
4402
4403 assert(inst->exec_size == 8);
4404 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4405 }
4406 }
4407
4408 bool
4409 fs_visitor::lower_logical_sends()
4410 {
4411 bool progress = false;
4412
4413 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4414 const fs_builder ibld(this, block, inst);
4415
4416 switch (inst->opcode) {
4417 case FS_OPCODE_FB_WRITE_LOGICAL:
4418 assert(stage == MESA_SHADER_FRAGMENT);
4419 lower_fb_write_logical_send(ibld, inst,
4420 brw_wm_prog_data(prog_data),
4421 (const brw_wm_prog_key *)key,
4422 payload);
4423 break;
4424
4425 case FS_OPCODE_FB_READ_LOGICAL:
4426 lower_fb_read_logical_send(ibld, inst);
4427 break;
4428
4429 case SHADER_OPCODE_TEX_LOGICAL:
4430 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4431 break;
4432
4433 case SHADER_OPCODE_TXD_LOGICAL:
4434 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4435 break;
4436
4437 case SHADER_OPCODE_TXF_LOGICAL:
4438 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4439 break;
4440
4441 case SHADER_OPCODE_TXL_LOGICAL:
4442 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4443 break;
4444
4445 case SHADER_OPCODE_TXS_LOGICAL:
4446 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4447 break;
4448
4449 case FS_OPCODE_TXB_LOGICAL:
4450 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4451 break;
4452
4453 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4454 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4455 break;
4456
4457 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4458 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4459 break;
4460
4461 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4462 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4463 break;
4464
4465 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4466 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4467 break;
4468
4469 case SHADER_OPCODE_LOD_LOGICAL:
4470 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4471 break;
4472
4473 case SHADER_OPCODE_TG4_LOGICAL:
4474 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4475 break;
4476
4477 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4478 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4479 break;
4480
4481 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4482 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4483 break;
4484
4485 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4486 lower_surface_logical_send(ibld, inst,
4487 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4488 fs_reg());
4489 break;
4490
4491 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4492 lower_surface_logical_send(ibld, inst,
4493 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4494 ibld.sample_mask_reg());
4495 break;
4496
4497 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4498 lower_surface_logical_send(ibld, inst,
4499 SHADER_OPCODE_UNTYPED_ATOMIC,
4500 ibld.sample_mask_reg());
4501 break;
4502
4503 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4504 lower_surface_logical_send(ibld, inst,
4505 SHADER_OPCODE_TYPED_SURFACE_READ,
4506 brw_imm_d(0xffff));
4507 break;
4508
4509 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4510 lower_surface_logical_send(ibld, inst,
4511 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4512 ibld.sample_mask_reg());
4513 break;
4514
4515 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4516 lower_surface_logical_send(ibld, inst,
4517 SHADER_OPCODE_TYPED_ATOMIC,
4518 ibld.sample_mask_reg());
4519 break;
4520
4521 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4522 lower_varying_pull_constant_logical_send(ibld, inst);
4523 break;
4524
4525 case SHADER_OPCODE_RCP:
4526 case SHADER_OPCODE_RSQ:
4527 case SHADER_OPCODE_SQRT:
4528 case SHADER_OPCODE_EXP2:
4529 case SHADER_OPCODE_LOG2:
4530 case SHADER_OPCODE_SIN:
4531 case SHADER_OPCODE_COS:
4532 case SHADER_OPCODE_POW:
4533 case SHADER_OPCODE_INT_QUOTIENT:
4534 case SHADER_OPCODE_INT_REMAINDER:
4535 /* The math opcodes are overloaded for the send-like and
4536 * expression-like instructions which seems kind of icky. Gen6+ has
4537 * a native (but rather quirky) MATH instruction so we don't need to
4538 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4539 * logical instructions (which we can easily recognize because they
4540 * have mlen = 0) into send-like virtual instructions.
4541 */
4542 if (devinfo->gen < 6 && inst->mlen == 0) {
4543 lower_math_logical_send(ibld, inst);
4544 break;
4545
4546 } else {
4547 continue;
4548 }
4549
4550 default:
4551 continue;
4552 }
4553
4554 progress = true;
4555 }
4556
4557 if (progress)
4558 invalidate_live_intervals();
4559
4560 return progress;
4561 }
4562
4563 /**
4564 * Get the closest allowed SIMD width for instruction \p inst accounting for
4565 * some common regioning and execution control restrictions that apply to FPU
4566 * instructions. These restrictions don't necessarily have any relevance to
4567 * instructions not executed by the FPU pipeline like extended math, control
4568 * flow or send message instructions.
4569 *
4570 * For virtual opcodes it's really up to the instruction -- In some cases
4571 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4572 * instructions) it may simplify virtual instruction lowering if we can
4573 * enforce FPU-like regioning restrictions already on the virtual instruction,
4574 * in other cases (e.g. virtual send-like instructions) this may be
4575 * excessively restrictive.
4576 */
4577 static unsigned
4578 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4579 const fs_inst *inst)
4580 {
4581 /* Maximum execution size representable in the instruction controls. */
4582 unsigned max_width = MIN2(32, inst->exec_size);
4583
4584 /* According to the PRMs:
4585 * "A. In Direct Addressing mode, a source cannot span more than 2
4586 * adjacent GRF registers.
4587 * B. A destination cannot span more than 2 adjacent GRF registers."
4588 *
4589 * Look for the source or destination with the largest register region
4590 * which is the one that is going to limit the overall execution size of
4591 * the instruction due to this rule.
4592 */
4593 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4594
4595 for (unsigned i = 0; i < inst->sources; i++)
4596 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4597
4598 /* Calculate the maximum execution size of the instruction based on the
4599 * factor by which it goes over the hardware limit of 2 GRFs.
4600 */
4601 if (reg_count > 2)
4602 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4603
4604 /* According to the IVB PRMs:
4605 * "When destination spans two registers, the source MUST span two
4606 * registers. The exception to the above rule:
4607 *
4608 * - When source is scalar, the source registers are not incremented.
4609 * - When source is packed integer Word and destination is packed
4610 * integer DWord, the source register is not incremented but the
4611 * source sub register is incremented."
4612 *
4613 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4614 * restrictions. The code below intentionally doesn't check whether the
4615 * destination type is integer because empirically the hardware doesn't
4616 * seem to care what the actual type is as long as it's dword-aligned.
4617 */
4618 if (devinfo->gen < 8) {
4619 for (unsigned i = 0; i < inst->sources; i++) {
4620 /* IVB implements DF scalars as <0;2,1> regions. */
4621 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4622 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4623 const bool is_packed_word_exception =
4624 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4625 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4626
4627 if (inst->size_written > REG_SIZE &&
4628 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4629 !is_scalar_exception && !is_packed_word_exception) {
4630 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4631 max_width = MIN2(max_width, inst->exec_size / reg_count);
4632 }
4633 }
4634 }
4635
4636 /* From the IVB PRMs:
4637 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4638 * are applied for both halves of the SIMD32 instruction. If different
4639 * execution mask channels are required, split the instruction into two
4640 * SIMD16 instructions."
4641 *
4642 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4643 * 32-wide control flow support in hardware and will behave similarly.
4644 */
4645 if (devinfo->gen < 8 && !inst->force_writemask_all)
4646 max_width = MIN2(max_width, 16);
4647
4648 /* From the IVB PRMs (applies to HSW too):
4649 * "Instructions with condition modifiers must not use SIMD32."
4650 *
4651 * From the BDW PRMs (applies to later hardware too):
4652 * "Ternary instruction with condition modifiers must not use SIMD32."
4653 */
4654 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4655 max_width = MIN2(max_width, 16);
4656
4657 /* From the IVB PRMs (applies to other devices that don't have the
4658 * gen_device_info::supports_simd16_3src flag set):
4659 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4660 * SIMD8 is not allowed for DF operations."
4661 */
4662 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4663 max_width = MIN2(max_width, inst->exec_size / reg_count);
4664
4665 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4666 * the 8-bit quarter of the execution mask signals specified in the
4667 * instruction control fields) for the second compressed half of any
4668 * single-precision instruction (for double-precision instructions
4669 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4670 * the EU will apply the wrong execution controls for the second
4671 * sequential GRF write if the number of channels per GRF is not exactly
4672 * eight in single-precision mode (or four in double-float mode).
4673 *
4674 * In this situation we calculate the maximum size of the split
4675 * instructions so they only ever write to a single register.
4676 */
4677 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4678 !inst->force_writemask_all) {
4679 const unsigned channels_per_grf = inst->exec_size /
4680 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4681 const unsigned exec_type_size = get_exec_type_size(inst);
4682 assert(exec_type_size);
4683
4684 /* The hardware shifts exactly 8 channels per compressed half of the
4685 * instruction in single-precision mode and exactly 4 in double-precision.
4686 */
4687 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4688 max_width = MIN2(max_width, channels_per_grf);
4689
4690 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4691 * because HW applies the same channel enable signals to both halves of
4692 * the compressed instruction which will be just wrong under
4693 * non-uniform control flow.
4694 */
4695 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4696 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4697 max_width = MIN2(max_width, 4);
4698 }
4699
4700 /* Only power-of-two execution sizes are representable in the instruction
4701 * control fields.
4702 */
4703 return 1 << _mesa_logbase2(max_width);
4704 }
4705
4706 /**
4707 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4708 * various payload size restrictions that apply to sampler message
4709 * instructions.
4710 *
4711 * This is only intended to provide a maximum theoretical bound for the
4712 * execution size of the message based on the number of argument components
4713 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4714 * variant of the message can be used, though some messages may have
4715 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4716 * the message length to determine the exact SIMD width and argument count,
4717 * which makes a number of sampler message combinations impossible to
4718 * represent).
4719 */
4720 static unsigned
4721 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4722 const fs_inst *inst)
4723 {
4724 /* Calculate the number of coordinate components that have to be present
4725 * assuming that additional arguments follow the texel coordinates in the
4726 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4727 * need to pad to four or three components depending on the message,
4728 * pre-ILK we need to pad to at most three components.
4729 */
4730 const unsigned req_coord_components =
4731 (devinfo->gen >= 7 ||
4732 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4733 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4734 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4735 3;
4736
4737 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4738 * variant of the TXL or TXF message.
4739 */
4740 const bool implicit_lod = devinfo->gen >= 9 &&
4741 (inst->opcode == SHADER_OPCODE_TXL ||
4742 inst->opcode == SHADER_OPCODE_TXF) &&
4743 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4744
4745 /* Calculate the total number of argument components that need to be passed
4746 * to the sampler unit.
4747 */
4748 const unsigned num_payload_components =
4749 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4750 req_coord_components) +
4751 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4752 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4753 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4754 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4755 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4756 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4757 inst->components_read(TEX_LOGICAL_SRC_MCS);
4758
4759 /* SIMD16 messages with more than five arguments exceed the maximum message
4760 * size supported by the sampler, regardless of whether a header is
4761 * provided or not.
4762 */
4763 return MIN2(inst->exec_size,
4764 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4765 }
4766
4767 /**
4768 * Get the closest native SIMD width supported by the hardware for instruction
4769 * \p inst. The instruction will be left untouched by
4770 * fs_visitor::lower_simd_width() if the returned value is equal to the
4771 * original execution size.
4772 */
4773 static unsigned
4774 get_lowered_simd_width(const struct gen_device_info *devinfo,
4775 const fs_inst *inst)
4776 {
4777 switch (inst->opcode) {
4778 case BRW_OPCODE_MOV:
4779 case BRW_OPCODE_SEL:
4780 case BRW_OPCODE_NOT:
4781 case BRW_OPCODE_AND:
4782 case BRW_OPCODE_OR:
4783 case BRW_OPCODE_XOR:
4784 case BRW_OPCODE_SHR:
4785 case BRW_OPCODE_SHL:
4786 case BRW_OPCODE_ASR:
4787 case BRW_OPCODE_CMPN:
4788 case BRW_OPCODE_CSEL:
4789 case BRW_OPCODE_F32TO16:
4790 case BRW_OPCODE_F16TO32:
4791 case BRW_OPCODE_BFREV:
4792 case BRW_OPCODE_BFE:
4793 case BRW_OPCODE_ADD:
4794 case BRW_OPCODE_MUL:
4795 case BRW_OPCODE_AVG:
4796 case BRW_OPCODE_FRC:
4797 case BRW_OPCODE_RNDU:
4798 case BRW_OPCODE_RNDD:
4799 case BRW_OPCODE_RNDE:
4800 case BRW_OPCODE_RNDZ:
4801 case BRW_OPCODE_LZD:
4802 case BRW_OPCODE_FBH:
4803 case BRW_OPCODE_FBL:
4804 case BRW_OPCODE_CBIT:
4805 case BRW_OPCODE_SAD2:
4806 case BRW_OPCODE_MAD:
4807 case BRW_OPCODE_LRP:
4808 case FS_OPCODE_PACK:
4809 return get_fpu_lowered_simd_width(devinfo, inst);
4810
4811 case BRW_OPCODE_CMP: {
4812 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4813 * when the destination is a GRF the dependency-clear bit on the flag
4814 * register is cleared early.
4815 *
4816 * Suggested workarounds are to disable coissuing CMP instructions
4817 * or to split CMP(16) instructions into two CMP(8) instructions.
4818 *
4819 * We choose to split into CMP(8) instructions since disabling
4820 * coissuing would affect CMP instructions not otherwise affected by
4821 * the errata.
4822 */
4823 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4824 !inst->dst.is_null() ? 8 : ~0);
4825 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4826 }
4827 case BRW_OPCODE_BFI1:
4828 case BRW_OPCODE_BFI2:
4829 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4830 * should
4831 * "Force BFI instructions to be executed always in SIMD8."
4832 */
4833 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4834 get_fpu_lowered_simd_width(devinfo, inst));
4835
4836 case BRW_OPCODE_IF:
4837 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4838 return inst->exec_size;
4839
4840 case SHADER_OPCODE_RCP:
4841 case SHADER_OPCODE_RSQ:
4842 case SHADER_OPCODE_SQRT:
4843 case SHADER_OPCODE_EXP2:
4844 case SHADER_OPCODE_LOG2:
4845 case SHADER_OPCODE_SIN:
4846 case SHADER_OPCODE_COS:
4847 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4848 * Gen6.
4849 */
4850 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4851 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4852 MIN2(8, inst->exec_size));
4853
4854 case SHADER_OPCODE_POW:
4855 /* SIMD16 is only allowed on Gen7+. */
4856 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4857 MIN2(8, inst->exec_size));
4858
4859 case SHADER_OPCODE_INT_QUOTIENT:
4860 case SHADER_OPCODE_INT_REMAINDER:
4861 /* Integer division is limited to SIMD8 on all generations. */
4862 return MIN2(8, inst->exec_size);
4863
4864 case FS_OPCODE_LINTERP:
4865 case FS_OPCODE_GET_BUFFER_SIZE:
4866 case FS_OPCODE_DDX_COARSE:
4867 case FS_OPCODE_DDX_FINE:
4868 case FS_OPCODE_DDY_COARSE:
4869 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4870 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4871 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4872 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4873 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4874 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4875 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4876 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4877 return MIN2(16, inst->exec_size);
4878
4879 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4880 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4881 * message used to implement varying pull constant loads, so expand it
4882 * to SIMD16. An alternative with longer message payload length but
4883 * shorter return payload would be to use the SIMD8 sampler message that
4884 * takes (header, u, v, r) as parameters instead of (header, u).
4885 */
4886 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4887
4888 case FS_OPCODE_DDY_FINE:
4889 /* The implementation of this virtual opcode may require emitting
4890 * compressed Align16 instructions, which are severely limited on some
4891 * generations.
4892 *
4893 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4894 * Region Restrictions):
4895 *
4896 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4897 * and SIMD8 is not allowed for DF operations."
4898 *
4899 * In this context, "DW operations" means "operations acting on 32-bit
4900 * values", so it includes operations on floats.
4901 *
4902 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4903 * (Instruction Compression -> Rules and Restrictions):
4904 *
4905 * "A compressed instruction must be in Align1 access mode. Align16
4906 * mode instructions cannot be compressed."
4907 *
4908 * Similar text exists in the g45 PRM.
4909 *
4910 * Empirically, compressed align16 instructions using odd register
4911 * numbers don't appear to work on Sandybridge either.
4912 */
4913 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4914 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4915 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4916
4917 case SHADER_OPCODE_MULH:
4918 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4919 * is 8-wide on Gen7+.
4920 */
4921 return (devinfo->gen >= 7 ? 8 :
4922 get_fpu_lowered_simd_width(devinfo, inst));
4923
4924 case FS_OPCODE_FB_WRITE_LOGICAL:
4925 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4926 * here.
4927 */
4928 assert(devinfo->gen != 6 ||
4929 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4930 inst->exec_size == 8);
4931 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4932 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4933 8 : MIN2(16, inst->exec_size));
4934
4935 case FS_OPCODE_FB_READ_LOGICAL:
4936 return MIN2(16, inst->exec_size);
4937
4938 case SHADER_OPCODE_TEX_LOGICAL:
4939 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4940 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4941 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4942 case SHADER_OPCODE_LOD_LOGICAL:
4943 case SHADER_OPCODE_TG4_LOGICAL:
4944 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4945 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4946 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4947 return get_sampler_lowered_simd_width(devinfo, inst);
4948
4949 case SHADER_OPCODE_TXD_LOGICAL:
4950 /* TXD is unsupported in SIMD16 mode. */
4951 return 8;
4952
4953 case SHADER_OPCODE_TXL_LOGICAL:
4954 case FS_OPCODE_TXB_LOGICAL:
4955 /* Only one execution size is representable pre-ILK depending on whether
4956 * the shadow reference argument is present.
4957 */
4958 if (devinfo->gen == 4)
4959 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4960 else
4961 return get_sampler_lowered_simd_width(devinfo, inst);
4962
4963 case SHADER_OPCODE_TXF_LOGICAL:
4964 case SHADER_OPCODE_TXS_LOGICAL:
4965 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4966 * messages. Use SIMD16 instead.
4967 */
4968 if (devinfo->gen == 4)
4969 return 16;
4970 else
4971 return get_sampler_lowered_simd_width(devinfo, inst);
4972
4973 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4974 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4975 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4976 return 8;
4977
4978 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4979 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4980 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4981 return MIN2(16, inst->exec_size);
4982
4983 case SHADER_OPCODE_URB_READ_SIMD8:
4984 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4985 case SHADER_OPCODE_URB_WRITE_SIMD8:
4986 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4987 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4988 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4989 return MIN2(8, inst->exec_size);
4990
4991 case SHADER_OPCODE_MOV_INDIRECT: {
4992 /* From IVB and HSW PRMs:
4993 *
4994 * "2.When the destination requires two registers and the sources are
4995 * indirect, the sources must use 1x1 regioning mode.
4996 *
4997 * In case of DF instructions in HSW/IVB, the exec_size is limited by
4998 * the EU decompression logic not handling VxH indirect addressing
4999 * correctly.
5000 */
5001 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
5002 /* Prior to Broadwell, we only have 8 address subregisters. */
5003 return MIN3(devinfo->gen >= 8 ? 16 : 8,
5004 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
5005 inst->exec_size);
5006 }
5007
5008 case SHADER_OPCODE_LOAD_PAYLOAD: {
5009 const unsigned reg_count =
5010 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
5011
5012 if (reg_count > 2) {
5013 /* Only LOAD_PAYLOAD instructions with per-channel destination region
5014 * can be easily lowered (which excludes headers and heterogeneous
5015 * types).
5016 */
5017 assert(!inst->header_size);
5018 for (unsigned i = 0; i < inst->sources; i++)
5019 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
5020 inst->src[i].file == BAD_FILE);
5021
5022 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
5023 } else {
5024 return inst->exec_size;
5025 }
5026 }
5027 default:
5028 return inst->exec_size;
5029 }
5030 }
5031
5032 /**
5033 * Return true if splitting out the group of channels of instruction \p inst
5034 * given by lbld.group() requires allocating a temporary for the i-th source
5035 * of the lowered instruction.
5036 */
5037 static inline bool
5038 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5039 {
5040 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5041 (inst->components_read(i) == 1 &&
5042 lbld.dispatch_width() <= inst->exec_size)) ||
5043 (inst->flags_written() &
5044 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
5045 }
5046
5047 /**
5048 * Extract the data that would be consumed by the channel group given by
5049 * lbld.group() from the i-th source region of instruction \p inst and return
5050 * it as result in packed form.
5051 */
5052 static fs_reg
5053 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
5054 {
5055 /* Specified channel group from the source region. */
5056 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5057
5058 if (needs_src_copy(lbld, inst, i)) {
5059 /* Builder of the right width to perform the copy avoiding uninitialized
5060 * data if the lowered execution size is greater than the original
5061 * execution size of the instruction.
5062 */
5063 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5064 inst->exec_size), 0);
5065 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5066
5067 for (unsigned k = 0; k < inst->components_read(i); ++k)
5068 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5069
5070 return tmp;
5071
5072 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5073 /* The source is invariant for all dispatch_width-wide groups of the
5074 * original region.
5075 */
5076 return inst->src[i];
5077
5078 } else {
5079 /* We can just point the lowered instruction at the right channel group
5080 * from the original region.
5081 */
5082 return src;
5083 }
5084 }
5085
5086 /**
5087 * Return true if splitting out the group of channels of instruction \p inst
5088 * given by lbld.group() requires allocating a temporary for the destination
5089 * of the lowered instruction and copying the data back to the original
5090 * destination region.
5091 */
5092 static inline bool
5093 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5094 {
5095 /* If the instruction writes more than one component we'll have to shuffle
5096 * the results of multiple lowered instructions in order to make sure that
5097 * they end up arranged correctly in the original destination region.
5098 */
5099 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5100 return true;
5101
5102 /* If the lowered execution size is larger than the original the result of
5103 * the instruction won't fit in the original destination, so we'll have to
5104 * allocate a temporary in any case.
5105 */
5106 if (lbld.dispatch_width() > inst->exec_size)
5107 return true;
5108
5109 for (unsigned i = 0; i < inst->sources; i++) {
5110 /* If we already made a copy of the source for other reasons there won't
5111 * be any overlap with the destination.
5112 */
5113 if (needs_src_copy(lbld, inst, i))
5114 continue;
5115
5116 /* In order to keep the logic simple we emit a copy whenever the
5117 * destination region doesn't exactly match an overlapping source, which
5118 * may point at the source and destination not being aligned group by
5119 * group which could cause one of the lowered instructions to overwrite
5120 * the data read from the same source by other lowered instructions.
5121 */
5122 if (regions_overlap(inst->dst, inst->size_written,
5123 inst->src[i], inst->size_read(i)) &&
5124 !inst->dst.equals(inst->src[i]))
5125 return true;
5126 }
5127
5128 return false;
5129 }
5130
5131 /**
5132 * Insert data from a packed temporary into the channel group given by
5133 * lbld.group() of the destination region of instruction \p inst and return
5134 * the temporary as result. Any copy instructions that are required for
5135 * unzipping the previous value (in the case of partial writes) will be
5136 * inserted using \p lbld_before and any copy instructions required for
5137 * zipping up the destination of \p inst will be inserted using \p lbld_after.
5138 */
5139 static fs_reg
5140 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
5141 fs_inst *inst)
5142 {
5143 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
5144 assert(lbld_before.group() == lbld_after.group());
5145
5146 /* Specified channel group from the destination region. */
5147 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group());
5148 const unsigned dst_size = inst->size_written /
5149 inst->dst.component_size(inst->exec_size);
5150
5151 if (needs_dst_copy(lbld_after, inst)) {
5152 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
5153
5154 if (inst->predicate) {
5155 /* Handle predication by copying the original contents of
5156 * the destination into the temporary before emitting the
5157 * lowered instruction.
5158 */
5159 const fs_builder gbld_before =
5160 lbld_before.group(MIN2(lbld_before.dispatch_width(),
5161 inst->exec_size), 0);
5162 for (unsigned k = 0; k < dst_size; ++k) {
5163 gbld_before.MOV(offset(tmp, lbld_before, k),
5164 offset(dst, inst->exec_size, k));
5165 }
5166 }
5167
5168 const fs_builder gbld_after =
5169 lbld_after.group(MIN2(lbld_after.dispatch_width(),
5170 inst->exec_size), 0);
5171 for (unsigned k = 0; k < dst_size; ++k) {
5172 /* Use a builder of the right width to perform the copy avoiding
5173 * uninitialized data if the lowered execution size is greater than
5174 * the original execution size of the instruction.
5175 */
5176 gbld_after.MOV(offset(dst, inst->exec_size, k),
5177 offset(tmp, lbld_after, k));
5178 }
5179
5180 return tmp;
5181
5182 } else {
5183 /* No need to allocate a temporary for the lowered instruction, just
5184 * take the right group of channels from the original region.
5185 */
5186 return dst;
5187 }
5188 }
5189
5190 bool
5191 fs_visitor::lower_simd_width()
5192 {
5193 bool progress = false;
5194
5195 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5196 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5197
5198 if (lower_width != inst->exec_size) {
5199 /* Builder matching the original instruction. We may also need to
5200 * emit an instruction of width larger than the original, set the
5201 * execution size of the builder to the highest of both for now so
5202 * we're sure that both cases can be handled.
5203 */
5204 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5205 const fs_builder ibld = bld.at(block, inst)
5206 .exec_all(inst->force_writemask_all)
5207 .group(max_width, inst->group / max_width);
5208
5209 /* Split the copies in chunks of the execution width of either the
5210 * original or the lowered instruction, whichever is lower.
5211 */
5212 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5213 const unsigned dst_size = inst->size_written /
5214 inst->dst.component_size(inst->exec_size);
5215
5216 assert(!inst->writes_accumulator && !inst->mlen);
5217
5218 /* Inserting the zip, unzip, and duplicated instructions in all of
5219 * the right spots is somewhat tricky. All of the unzip and any
5220 * instructions from the zip which unzip the destination prior to
5221 * writing need to happen before all of the per-group instructions
5222 * and the zip instructions need to happen after. In order to sort
5223 * this all out, we insert the unzip instructions before \p inst,
5224 * insert the per-group instructions after \p inst (i.e. before
5225 * inst->next), and insert the zip instructions before the
5226 * instruction after \p inst. Since we are inserting instructions
5227 * after \p inst, inst->next is a moving target and we need to save
5228 * it off here so that we insert the zip instructions in the right
5229 * place.
5230 */
5231 exec_node *const after_inst = inst->next;
5232 for (unsigned i = 0; i < n; i++) {
5233 /* Emit a copy of the original instruction with the lowered width.
5234 * If the EOT flag was set throw it away except for the last
5235 * instruction to avoid killing the thread prematurely.
5236 */
5237 fs_inst split_inst = *inst;
5238 split_inst.exec_size = lower_width;
5239 split_inst.eot = inst->eot && i == 0;
5240
5241 /* Select the correct channel enables for the i-th group, then
5242 * transform the sources and destination and emit the lowered
5243 * instruction.
5244 */
5245 const fs_builder lbld = ibld.group(lower_width, i);
5246
5247 for (unsigned j = 0; j < inst->sources; j++)
5248 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
5249
5250 split_inst.dst = emit_zip(lbld.at(block, inst),
5251 lbld.at(block, after_inst), inst);
5252 split_inst.size_written =
5253 split_inst.dst.component_size(lower_width) * dst_size;
5254
5255 lbld.at(block, inst->next).emit(split_inst);
5256 }
5257
5258 inst->remove(block);
5259 progress = true;
5260 }
5261 }
5262
5263 if (progress)
5264 invalidate_live_intervals();
5265
5266 return progress;
5267 }
5268
5269 void
5270 fs_visitor::dump_instructions()
5271 {
5272 dump_instructions(NULL);
5273 }
5274
5275 void
5276 fs_visitor::dump_instructions(const char *name)
5277 {
5278 FILE *file = stderr;
5279 if (name && geteuid() != 0) {
5280 file = fopen(name, "w");
5281 if (!file)
5282 file = stderr;
5283 }
5284
5285 if (cfg) {
5286 calculate_register_pressure();
5287 int ip = 0, max_pressure = 0;
5288 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5289 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5290 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5291 dump_instruction(inst, file);
5292 ip++;
5293 }
5294 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5295 } else {
5296 int ip = 0;
5297 foreach_in_list(backend_instruction, inst, &instructions) {
5298 fprintf(file, "%4d: ", ip++);
5299 dump_instruction(inst, file);
5300 }
5301 }
5302
5303 if (file != stderr) {
5304 fclose(file);
5305 }
5306 }
5307
5308 void
5309 fs_visitor::dump_instruction(backend_instruction *be_inst)
5310 {
5311 dump_instruction(be_inst, stderr);
5312 }
5313
5314 void
5315 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5316 {
5317 fs_inst *inst = (fs_inst *)be_inst;
5318
5319 if (inst->predicate) {
5320 fprintf(file, "(%cf0.%d) ",
5321 inst->predicate_inverse ? '-' : '+',
5322 inst->flag_subreg);
5323 }
5324
5325 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5326 if (inst->saturate)
5327 fprintf(file, ".sat");
5328 if (inst->conditional_mod) {
5329 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5330 if (!inst->predicate &&
5331 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5332 inst->opcode != BRW_OPCODE_IF &&
5333 inst->opcode != BRW_OPCODE_WHILE))) {
5334 fprintf(file, ".f0.%d", inst->flag_subreg);
5335 }
5336 }
5337 fprintf(file, "(%d) ", inst->exec_size);
5338
5339 if (inst->mlen) {
5340 fprintf(file, "(mlen: %d) ", inst->mlen);
5341 }
5342
5343 if (inst->eot) {
5344 fprintf(file, "(EOT) ");
5345 }
5346
5347 switch (inst->dst.file) {
5348 case VGRF:
5349 fprintf(file, "vgrf%d", inst->dst.nr);
5350 break;
5351 case FIXED_GRF:
5352 fprintf(file, "g%d", inst->dst.nr);
5353 break;
5354 case MRF:
5355 fprintf(file, "m%d", inst->dst.nr);
5356 break;
5357 case BAD_FILE:
5358 fprintf(file, "(null)");
5359 break;
5360 case UNIFORM:
5361 fprintf(file, "***u%d***", inst->dst.nr);
5362 break;
5363 case ATTR:
5364 fprintf(file, "***attr%d***", inst->dst.nr);
5365 break;
5366 case ARF:
5367 switch (inst->dst.nr) {
5368 case BRW_ARF_NULL:
5369 fprintf(file, "null");
5370 break;
5371 case BRW_ARF_ADDRESS:
5372 fprintf(file, "a0.%d", inst->dst.subnr);
5373 break;
5374 case BRW_ARF_ACCUMULATOR:
5375 fprintf(file, "acc%d", inst->dst.subnr);
5376 break;
5377 case BRW_ARF_FLAG:
5378 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5379 break;
5380 default:
5381 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5382 break;
5383 }
5384 break;
5385 case IMM:
5386 unreachable("not reached");
5387 }
5388
5389 if (inst->dst.offset ||
5390 (inst->dst.file == VGRF &&
5391 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5392 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5393 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5394 inst->dst.offset % reg_size);
5395 }
5396
5397 if (inst->dst.stride != 1)
5398 fprintf(file, "<%u>", inst->dst.stride);
5399 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5400
5401 for (int i = 0; i < inst->sources; i++) {
5402 if (inst->src[i].negate)
5403 fprintf(file, "-");
5404 if (inst->src[i].abs)
5405 fprintf(file, "|");
5406 switch (inst->src[i].file) {
5407 case VGRF:
5408 fprintf(file, "vgrf%d", inst->src[i].nr);
5409 break;
5410 case FIXED_GRF:
5411 fprintf(file, "g%d", inst->src[i].nr);
5412 break;
5413 case MRF:
5414 fprintf(file, "***m%d***", inst->src[i].nr);
5415 break;
5416 case ATTR:
5417 fprintf(file, "attr%d", inst->src[i].nr);
5418 break;
5419 case UNIFORM:
5420 fprintf(file, "u%d", inst->src[i].nr);
5421 break;
5422 case BAD_FILE:
5423 fprintf(file, "(null)");
5424 break;
5425 case IMM:
5426 switch (inst->src[i].type) {
5427 case BRW_REGISTER_TYPE_F:
5428 fprintf(file, "%-gf", inst->src[i].f);
5429 break;
5430 case BRW_REGISTER_TYPE_DF:
5431 fprintf(file, "%fdf", inst->src[i].df);
5432 break;
5433 case BRW_REGISTER_TYPE_W:
5434 case BRW_REGISTER_TYPE_D:
5435 fprintf(file, "%dd", inst->src[i].d);
5436 break;
5437 case BRW_REGISTER_TYPE_UW:
5438 case BRW_REGISTER_TYPE_UD:
5439 fprintf(file, "%uu", inst->src[i].ud);
5440 break;
5441 case BRW_REGISTER_TYPE_VF:
5442 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5443 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5444 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5445 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5446 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5447 break;
5448 default:
5449 fprintf(file, "???");
5450 break;
5451 }
5452 break;
5453 case ARF:
5454 switch (inst->src[i].nr) {
5455 case BRW_ARF_NULL:
5456 fprintf(file, "null");
5457 break;
5458 case BRW_ARF_ADDRESS:
5459 fprintf(file, "a0.%d", inst->src[i].subnr);
5460 break;
5461 case BRW_ARF_ACCUMULATOR:
5462 fprintf(file, "acc%d", inst->src[i].subnr);
5463 break;
5464 case BRW_ARF_FLAG:
5465 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5466 break;
5467 default:
5468 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5469 break;
5470 }
5471 break;
5472 }
5473
5474 if (inst->src[i].offset ||
5475 (inst->src[i].file == VGRF &&
5476 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5477 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5478 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5479 inst->src[i].offset % reg_size);
5480 }
5481
5482 if (inst->src[i].abs)
5483 fprintf(file, "|");
5484
5485 if (inst->src[i].file != IMM) {
5486 unsigned stride;
5487 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5488 unsigned hstride = inst->src[i].hstride;
5489 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5490 } else {
5491 stride = inst->src[i].stride;
5492 }
5493 if (stride != 1)
5494 fprintf(file, "<%u>", stride);
5495
5496 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5497 }
5498
5499 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5500 fprintf(file, ", ");
5501 }
5502
5503 fprintf(file, " ");
5504
5505 if (inst->force_writemask_all)
5506 fprintf(file, "NoMask ");
5507
5508 if (inst->exec_size != dispatch_width)
5509 fprintf(file, "group%d ", inst->group);
5510
5511 fprintf(file, "\n");
5512 }
5513
5514 /**
5515 * Possibly returns an instruction that set up @param reg.
5516 *
5517 * Sometimes we want to take the result of some expression/variable
5518 * dereference tree and rewrite the instruction generating the result
5519 * of the tree. When processing the tree, we know that the
5520 * instructions generated are all writing temporaries that are dead
5521 * outside of this tree. So, if we have some instructions that write
5522 * a temporary, we're free to point that temp write somewhere else.
5523 *
5524 * Note that this doesn't guarantee that the instruction generated
5525 * only reg -- it might be the size=4 destination of a texture instruction.
5526 */
5527 fs_inst *
5528 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5529 fs_inst *end,
5530 const fs_reg &reg)
5531 {
5532 if (end == start ||
5533 end->is_partial_write() ||
5534 !reg.equals(end->dst)) {
5535 return NULL;
5536 } else {
5537 return end;
5538 }
5539 }
5540
5541 void
5542 fs_visitor::setup_fs_payload_gen6()
5543 {
5544 assert(stage == MESA_SHADER_FRAGMENT);
5545 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5546
5547 assert(devinfo->gen >= 6);
5548
5549 /* R0-1: masks, pixel X/Y coordinates. */
5550 payload.num_regs = 2;
5551 /* R2: only for 32-pixel dispatch.*/
5552
5553 /* R3-26: barycentric interpolation coordinates. These appear in the
5554 * same order that they appear in the brw_barycentric_mode
5555 * enum. Each set of coordinates occupies 2 registers if dispatch width
5556 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5557 * appear if they were enabled using the "Barycentric Interpolation
5558 * Mode" bits in WM_STATE.
5559 */
5560 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5561 if (prog_data->barycentric_interp_modes & (1 << i)) {
5562 payload.barycentric_coord_reg[i] = payload.num_regs;
5563 payload.num_regs += 2;
5564 if (dispatch_width == 16) {
5565 payload.num_regs += 2;
5566 }
5567 }
5568 }
5569
5570 /* R27: interpolated depth if uses source depth */
5571 prog_data->uses_src_depth =
5572 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5573 if (prog_data->uses_src_depth) {
5574 payload.source_depth_reg = payload.num_regs;
5575 payload.num_regs++;
5576 if (dispatch_width == 16) {
5577 /* R28: interpolated depth if not SIMD8. */
5578 payload.num_regs++;
5579 }
5580 }
5581
5582 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5583 prog_data->uses_src_w =
5584 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5585 if (prog_data->uses_src_w) {
5586 payload.source_w_reg = payload.num_regs;
5587 payload.num_regs++;
5588 if (dispatch_width == 16) {
5589 /* R30: interpolated W if not SIMD8. */
5590 payload.num_regs++;
5591 }
5592 }
5593
5594 /* R31: MSAA position offsets. */
5595 if (prog_data->persample_dispatch &&
5596 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5597 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5598 *
5599 * "MSDISPMODE_PERSAMPLE is required in order to select
5600 * POSOFFSET_SAMPLE"
5601 *
5602 * So we can only really get sample positions if we are doing real
5603 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5604 * persample dispatch, we hard-code it to 0.5.
5605 */
5606 prog_data->uses_pos_offset = true;
5607 payload.sample_pos_reg = payload.num_regs;
5608 payload.num_regs++;
5609 }
5610
5611 /* R32: MSAA input coverage mask */
5612 prog_data->uses_sample_mask =
5613 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5614 if (prog_data->uses_sample_mask) {
5615 assert(devinfo->gen >= 7);
5616 payload.sample_mask_in_reg = payload.num_regs;
5617 payload.num_regs++;
5618 if (dispatch_width == 16) {
5619 /* R33: input coverage mask if not SIMD8. */
5620 payload.num_regs++;
5621 }
5622 }
5623
5624 /* R34-: bary for 32-pixel. */
5625 /* R58-59: interp W for 32-pixel. */
5626
5627 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5628 source_depth_to_render_target = true;
5629 }
5630 }
5631
5632 void
5633 fs_visitor::setup_vs_payload()
5634 {
5635 /* R0: thread header, R1: urb handles */
5636 payload.num_regs = 2;
5637 }
5638
5639 void
5640 fs_visitor::setup_gs_payload()
5641 {
5642 assert(stage == MESA_SHADER_GEOMETRY);
5643
5644 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5645 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5646
5647 /* R0: thread header, R1: output URB handles */
5648 payload.num_regs = 2;
5649
5650 if (gs_prog_data->include_primitive_id) {
5651 /* R2: Primitive ID 0..7 */
5652 payload.num_regs++;
5653 }
5654
5655 /* Always enable VUE handles so we can safely use pull model if needed.
5656 *
5657 * The push model for a GS uses a ton of register space even for trivial
5658 * scenarios with just a few inputs, so just make things easier and a bit
5659 * safer by always having pull model available.
5660 */
5661 gs_prog_data->base.include_vue_handles = true;
5662
5663 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5664 payload.num_regs += nir->info.gs.vertices_in;
5665
5666 /* Use a maximum of 24 registers for push-model inputs. */
5667 const unsigned max_push_components = 24;
5668
5669 /* If pushing our inputs would take too many registers, reduce the URB read
5670 * length (which is in HWords, or 8 registers), and resort to pulling.
5671 *
5672 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5673 * have to multiply by VerticesIn to obtain the total storage requirement.
5674 */
5675 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5676 max_push_components) {
5677 vue_prog_data->urb_read_length =
5678 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5679 }
5680 }
5681
5682 void
5683 fs_visitor::setup_cs_payload()
5684 {
5685 assert(devinfo->gen >= 7);
5686 payload.num_regs = 1;
5687 }
5688
5689 void
5690 fs_visitor::calculate_register_pressure()
5691 {
5692 invalidate_live_intervals();
5693 calculate_live_intervals();
5694
5695 unsigned num_instructions = 0;
5696 foreach_block(block, cfg)
5697 num_instructions += block->instructions.length();
5698
5699 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5700
5701 for (unsigned reg = 0; reg < alloc.count; reg++) {
5702 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5703 regs_live_at_ip[ip] += alloc.sizes[reg];
5704 }
5705 }
5706
5707 /**
5708 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5709 *
5710 * The needs_unlit_centroid_workaround ends up producing one of these per
5711 * channel of centroid input, so it's good to clean them up.
5712 *
5713 * An assumption here is that nothing ever modifies the dispatched pixels
5714 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5715 * dictates that anyway.
5716 */
5717 bool
5718 fs_visitor::opt_drop_redundant_mov_to_flags()
5719 {
5720 bool flag_mov_found[2] = {false};
5721 bool progress = false;
5722
5723 /* Instructions removed by this pass can only be added if this were true */
5724 if (!devinfo->needs_unlit_centroid_workaround)
5725 return false;
5726
5727 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5728 if (inst->is_control_flow()) {
5729 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5730 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5731 if (!flag_mov_found[inst->flag_subreg]) {
5732 flag_mov_found[inst->flag_subreg] = true;
5733 } else {
5734 inst->remove(block);
5735 progress = true;
5736 }
5737 } else if (inst->flags_written()) {
5738 flag_mov_found[inst->flag_subreg] = false;
5739 }
5740 }
5741
5742 return progress;
5743 }
5744
5745 void
5746 fs_visitor::optimize()
5747 {
5748 /* Start by validating the shader we currently have. */
5749 validate();
5750
5751 /* bld is the common builder object pointing at the end of the program we
5752 * used to translate it into i965 IR. For the optimization and lowering
5753 * passes coming next, any code added after the end of the program without
5754 * having explicitly called fs_builder::at() clearly points at a mistake.
5755 * Ideally optimization passes wouldn't be part of the visitor so they
5756 * wouldn't have access to bld at all, but they do, so just in case some
5757 * pass forgets to ask for a location explicitly set it to NULL here to
5758 * make it trip. The dispatch width is initialized to a bogus value to
5759 * make sure that optimizations set the execution controls explicitly to
5760 * match the code they are manipulating instead of relying on the defaults.
5761 */
5762 bld = fs_builder(this, 64);
5763
5764 assign_constant_locations();
5765 lower_constant_loads();
5766
5767 validate();
5768
5769 split_virtual_grfs();
5770 validate();
5771
5772 #define OPT(pass, args...) ({ \
5773 pass_num++; \
5774 bool this_progress = pass(args); \
5775 \
5776 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5777 char filename[64]; \
5778 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5779 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5780 \
5781 backend_shader::dump_instructions(filename); \
5782 } \
5783 \
5784 validate(); \
5785 \
5786 progress = progress || this_progress; \
5787 this_progress; \
5788 })
5789
5790 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5791 char filename[64];
5792 snprintf(filename, 64, "%s%d-%s-00-00-start",
5793 stage_abbrev, dispatch_width, nir->info.name);
5794
5795 backend_shader::dump_instructions(filename);
5796 }
5797
5798 bool progress = false;
5799 int iteration = 0;
5800 int pass_num = 0;
5801
5802 OPT(opt_drop_redundant_mov_to_flags);
5803
5804 do {
5805 progress = false;
5806 pass_num = 0;
5807 iteration++;
5808
5809 OPT(remove_duplicate_mrf_writes);
5810
5811 OPT(opt_algebraic);
5812 OPT(opt_cse);
5813 OPT(opt_copy_propagation);
5814 OPT(opt_predicated_break, this);
5815 OPT(opt_cmod_propagation);
5816 OPT(dead_code_eliminate);
5817 OPT(opt_peephole_sel);
5818 OPT(dead_control_flow_eliminate, this);
5819 OPT(opt_register_renaming);
5820 OPT(opt_saturate_propagation);
5821 OPT(register_coalesce);
5822 OPT(compute_to_mrf);
5823 OPT(eliminate_find_live_channel);
5824
5825 OPT(compact_virtual_grfs);
5826 } while (progress);
5827
5828 progress = false;
5829 pass_num = 0;
5830
5831 if (OPT(lower_pack)) {
5832 OPT(register_coalesce);
5833 OPT(dead_code_eliminate);
5834 }
5835
5836 OPT(lower_simd_width);
5837
5838 /* After SIMD lowering just in case we had to unroll the EOT send. */
5839 OPT(opt_sampler_eot);
5840
5841 OPT(lower_logical_sends);
5842
5843 if (progress) {
5844 OPT(opt_copy_propagation);
5845 /* Only run after logical send lowering because it's easier to implement
5846 * in terms of physical sends.
5847 */
5848 if (OPT(opt_zero_samples))
5849 OPT(opt_copy_propagation);
5850 /* Run after logical send lowering to give it a chance to CSE the
5851 * LOAD_PAYLOAD instructions created to construct the payloads of
5852 * e.g. texturing messages in cases where it wasn't possible to CSE the
5853 * whole logical instruction.
5854 */
5855 OPT(opt_cse);
5856 OPT(register_coalesce);
5857 OPT(compute_to_mrf);
5858 OPT(dead_code_eliminate);
5859 OPT(remove_duplicate_mrf_writes);
5860 OPT(opt_peephole_sel);
5861 }
5862
5863 OPT(opt_redundant_discard_jumps);
5864
5865 if (OPT(lower_load_payload)) {
5866 split_virtual_grfs();
5867 OPT(register_coalesce);
5868 OPT(compute_to_mrf);
5869 OPT(dead_code_eliminate);
5870 }
5871
5872 OPT(opt_combine_constants);
5873 OPT(lower_integer_multiplication);
5874
5875 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5876 OPT(opt_cmod_propagation);
5877 OPT(opt_cse);
5878 OPT(opt_copy_propagation);
5879 OPT(dead_code_eliminate);
5880 }
5881
5882 if (OPT(lower_conversions)) {
5883 OPT(opt_copy_propagation);
5884 OPT(dead_code_eliminate);
5885 OPT(lower_simd_width);
5886 }
5887
5888 lower_uniform_pull_constant_loads();
5889
5890 validate();
5891 }
5892
5893 /**
5894 * Three source instruction must have a GRF/MRF destination register.
5895 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5896 */
5897 void
5898 fs_visitor::fixup_3src_null_dest()
5899 {
5900 bool progress = false;
5901
5902 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5903 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5904 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5905 inst->dst.type);
5906 progress = true;
5907 }
5908 }
5909
5910 if (progress)
5911 invalidate_live_intervals();
5912 }
5913
5914 void
5915 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
5916 {
5917 bool allocated_without_spills;
5918
5919 static const enum instruction_scheduler_mode pre_modes[] = {
5920 SCHEDULE_PRE,
5921 SCHEDULE_PRE_NON_LIFO,
5922 SCHEDULE_PRE_LIFO,
5923 };
5924
5925 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5926
5927 /* Try each scheduling heuristic to see if it can successfully register
5928 * allocate without spilling. They should be ordered by decreasing
5929 * performance but increasing likelihood of allocating.
5930 */
5931 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5932 schedule_instructions(pre_modes[i]);
5933
5934 if (0) {
5935 assign_regs_trivial();
5936 allocated_without_spills = true;
5937 } else {
5938 allocated_without_spills = assign_regs(false, spill_all);
5939 }
5940 if (allocated_without_spills)
5941 break;
5942 }
5943
5944 if (!allocated_without_spills) {
5945 if (!allow_spilling)
5946 fail("Failure to register allocate and spilling is not allowed.");
5947
5948 /* We assume that any spilling is worse than just dropping back to
5949 * SIMD8. There's probably actually some intermediate point where
5950 * SIMD16 with a couple of spills is still better.
5951 */
5952 if (dispatch_width > min_dispatch_width) {
5953 fail("Failure to register allocate. Reduce number of "
5954 "live scalar values to avoid this.");
5955 } else {
5956 compiler->shader_perf_log(log_data,
5957 "%s shader triggered register spilling. "
5958 "Try reducing the number of live scalar "
5959 "values to improve performance.\n",
5960 stage_name);
5961 }
5962
5963 /* Since we're out of heuristics, just go spill registers until we
5964 * get an allocation.
5965 */
5966 while (!assign_regs(true, spill_all)) {
5967 if (failed)
5968 break;
5969 }
5970 }
5971
5972 /* This must come after all optimization and register allocation, since
5973 * it inserts dead code that happens to have side effects, and it does
5974 * so based on the actual physical registers in use.
5975 */
5976 insert_gen4_send_dependency_workarounds();
5977
5978 if (failed)
5979 return;
5980
5981 schedule_instructions(SCHEDULE_POST);
5982
5983 if (last_scratch > 0) {
5984 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5985
5986 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5987
5988 if (stage == MESA_SHADER_COMPUTE) {
5989 if (devinfo->is_haswell) {
5990 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5991 * field documentation, Haswell supports a minimum of 2kB of
5992 * scratch space for compute shaders, unlike every other stage
5993 * and platform.
5994 */
5995 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5996 } else if (devinfo->gen <= 7) {
5997 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5998 * field documentation, platforms prior to Haswell measure scratch
5999 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
6000 */
6001 prog_data->total_scratch = ALIGN(last_scratch, 1024);
6002 max_scratch_size = 12 * 1024;
6003 }
6004 }
6005
6006 /* We currently only support up to 2MB of scratch space. If we
6007 * need to support more eventually, the documentation suggests
6008 * that we could allocate a larger buffer, and partition it out
6009 * ourselves. We'd just have to undo the hardware's address
6010 * calculation by subtracting (FFTID * Per Thread Scratch Space)
6011 * and then add FFTID * (Larger Per Thread Scratch Space).
6012 *
6013 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
6014 * Thread Group Tracking > Local Memory/Scratch Space.
6015 */
6016 assert(prog_data->total_scratch < max_scratch_size);
6017 }
6018 }
6019
6020 bool
6021 fs_visitor::run_vs()
6022 {
6023 assert(stage == MESA_SHADER_VERTEX);
6024
6025 setup_vs_payload();
6026
6027 if (shader_time_index >= 0)
6028 emit_shader_time_begin();
6029
6030 emit_nir_code();
6031
6032 if (failed)
6033 return false;
6034
6035 compute_clip_distance();
6036
6037 emit_urb_writes();
6038
6039 if (shader_time_index >= 0)
6040 emit_shader_time_end();
6041
6042 calculate_cfg();
6043
6044 optimize();
6045
6046 assign_curb_setup();
6047 assign_vs_urb_setup();
6048
6049 fixup_3src_null_dest();
6050 allocate_registers(8, true);
6051
6052 return !failed;
6053 }
6054
6055 bool
6056 fs_visitor::run_tcs_single_patch()
6057 {
6058 assert(stage == MESA_SHADER_TESS_CTRL);
6059
6060 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6061
6062 /* r1-r4 contain the ICP handles. */
6063 payload.num_regs = 5;
6064
6065 if (shader_time_index >= 0)
6066 emit_shader_time_begin();
6067
6068 /* Initialize gl_InvocationID */
6069 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6070 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6071 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6072 bld.MOV(channels_ud, channels_uw);
6073
6074 if (tcs_prog_data->instances == 1) {
6075 invocation_id = channels_ud;
6076 } else {
6077 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6078
6079 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6080 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6081 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6082 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6083 brw_imm_ud(INTEL_MASK(23, 17)));
6084 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6085
6086 bld.ADD(invocation_id, instance_times_8, channels_ud);
6087 }
6088
6089 /* Fix the disptach mask */
6090 if (nir->info.tess.tcs_vertices_out % 8) {
6091 bld.CMP(bld.null_reg_ud(), invocation_id,
6092 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6093 bld.IF(BRW_PREDICATE_NORMAL);
6094 }
6095
6096 emit_nir_code();
6097
6098 if (nir->info.tess.tcs_vertices_out % 8) {
6099 bld.emit(BRW_OPCODE_ENDIF);
6100 }
6101
6102 /* Emit EOT write; set TR DS Cache bit */
6103 fs_reg srcs[3] = {
6104 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6105 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6106 fs_reg(brw_imm_ud(0)),
6107 };
6108 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6109 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6110
6111 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6112 bld.null_reg_ud(), payload);
6113 inst->mlen = 3;
6114 inst->eot = true;
6115
6116 if (shader_time_index >= 0)
6117 emit_shader_time_end();
6118
6119 if (failed)
6120 return false;
6121
6122 calculate_cfg();
6123
6124 optimize();
6125
6126 assign_curb_setup();
6127 assign_tcs_single_patch_urb_setup();
6128
6129 fixup_3src_null_dest();
6130 allocate_registers(8, true);
6131
6132 return !failed;
6133 }
6134
6135 bool
6136 fs_visitor::run_tes()
6137 {
6138 assert(stage == MESA_SHADER_TESS_EVAL);
6139
6140 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6141 payload.num_regs = 5;
6142
6143 if (shader_time_index >= 0)
6144 emit_shader_time_begin();
6145
6146 emit_nir_code();
6147
6148 if (failed)
6149 return false;
6150
6151 emit_urb_writes();
6152
6153 if (shader_time_index >= 0)
6154 emit_shader_time_end();
6155
6156 calculate_cfg();
6157
6158 optimize();
6159
6160 assign_curb_setup();
6161 assign_tes_urb_setup();
6162
6163 fixup_3src_null_dest();
6164 allocate_registers(8, true);
6165
6166 return !failed;
6167 }
6168
6169 bool
6170 fs_visitor::run_gs()
6171 {
6172 assert(stage == MESA_SHADER_GEOMETRY);
6173
6174 setup_gs_payload();
6175
6176 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6177
6178 if (gs_compile->control_data_header_size_bits > 0) {
6179 /* Create a VGRF to store accumulated control data bits. */
6180 this->control_data_bits = vgrf(glsl_type::uint_type);
6181
6182 /* If we're outputting more than 32 control data bits, then EmitVertex()
6183 * will set control_data_bits to 0 after emitting the first vertex.
6184 * Otherwise, we need to initialize it to 0 here.
6185 */
6186 if (gs_compile->control_data_header_size_bits <= 32) {
6187 const fs_builder abld = bld.annotate("initialize control data bits");
6188 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6189 }
6190 }
6191
6192 if (shader_time_index >= 0)
6193 emit_shader_time_begin();
6194
6195 emit_nir_code();
6196
6197 emit_gs_thread_end();
6198
6199 if (shader_time_index >= 0)
6200 emit_shader_time_end();
6201
6202 if (failed)
6203 return false;
6204
6205 calculate_cfg();
6206
6207 optimize();
6208
6209 assign_curb_setup();
6210 assign_gs_urb_setup();
6211
6212 fixup_3src_null_dest();
6213 allocate_registers(8, true);
6214
6215 return !failed;
6216 }
6217
6218 /* From the SKL PRM, Volume 16, Workarounds:
6219 *
6220 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
6221 * only header phases (R0-R2)
6222 *
6223 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
6224 * have been header only.
6225 *
6226 * Instead of enabling push constants one can alternatively enable one of the
6227 * inputs. Here one simply chooses "layer" which shouldn't impose much
6228 * overhead.
6229 */
6230 static void
6231 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
6232 {
6233 if (wm_prog_data->num_varying_inputs)
6234 return;
6235
6236 if (wm_prog_data->base.curb_read_length)
6237 return;
6238
6239 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
6240 wm_prog_data->num_varying_inputs = 1;
6241 }
6242
6243 bool
6244 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6245 {
6246 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6247 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6248
6249 assert(stage == MESA_SHADER_FRAGMENT);
6250
6251 if (devinfo->gen >= 6)
6252 setup_fs_payload_gen6();
6253 else
6254 setup_fs_payload_gen4();
6255
6256 if (0) {
6257 emit_dummy_fs();
6258 } else if (do_rep_send) {
6259 assert(dispatch_width == 16);
6260 emit_repclear_shader();
6261 } else {
6262 if (shader_time_index >= 0)
6263 emit_shader_time_begin();
6264
6265 calculate_urb_setup();
6266 if (nir->info.inputs_read > 0 ||
6267 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6268 if (devinfo->gen < 6)
6269 emit_interpolation_setup_gen4();
6270 else
6271 emit_interpolation_setup_gen6();
6272 }
6273
6274 /* We handle discards by keeping track of the still-live pixels in f0.1.
6275 * Initialize it with the dispatched pixels.
6276 */
6277 if (wm_prog_data->uses_kill) {
6278 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6279 discard_init->flag_subreg = 1;
6280 }
6281
6282 /* Generate FS IR for main(). (the visitor only descends into
6283 * functions called "main").
6284 */
6285 emit_nir_code();
6286
6287 if (failed)
6288 return false;
6289
6290 if (wm_prog_data->uses_kill)
6291 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6292
6293 if (wm_key->alpha_test_func)
6294 emit_alpha_test();
6295
6296 emit_fb_writes();
6297
6298 if (shader_time_index >= 0)
6299 emit_shader_time_end();
6300
6301 calculate_cfg();
6302
6303 optimize();
6304
6305 assign_curb_setup();
6306
6307 if (devinfo->gen >= 9)
6308 gen9_ps_header_only_workaround(wm_prog_data);
6309
6310 assign_urb_setup();
6311
6312 fixup_3src_null_dest();
6313 allocate_registers(8, allow_spilling);
6314
6315 if (failed)
6316 return false;
6317 }
6318
6319 return !failed;
6320 }
6321
6322 bool
6323 fs_visitor::run_cs(unsigned min_dispatch_width)
6324 {
6325 assert(stage == MESA_SHADER_COMPUTE);
6326 assert(dispatch_width >= min_dispatch_width);
6327
6328 setup_cs_payload();
6329
6330 if (shader_time_index >= 0)
6331 emit_shader_time_begin();
6332
6333 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6334 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6335 const fs_builder abld = bld.exec_all().group(1, 0);
6336 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6337 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6338 }
6339
6340 emit_nir_code();
6341
6342 if (failed)
6343 return false;
6344
6345 emit_cs_terminate();
6346
6347 if (shader_time_index >= 0)
6348 emit_shader_time_end();
6349
6350 calculate_cfg();
6351
6352 optimize();
6353
6354 assign_curb_setup();
6355
6356 fixup_3src_null_dest();
6357 allocate_registers(min_dispatch_width, true);
6358
6359 if (failed)
6360 return false;
6361
6362 return !failed;
6363 }
6364
6365 /**
6366 * Return a bitfield where bit n is set if barycentric interpolation mode n
6367 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6368 *
6369 * We examine the load_barycentric intrinsics rather than looking at input
6370 * variables so that we catch interpolateAtCentroid() messages too, which
6371 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6372 */
6373 static unsigned
6374 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6375 const nir_shader *shader)
6376 {
6377 unsigned barycentric_interp_modes = 0;
6378
6379 nir_foreach_function(f, shader) {
6380 if (!f->impl)
6381 continue;
6382
6383 nir_foreach_block(block, f->impl) {
6384 nir_foreach_instr(instr, block) {
6385 if (instr->type != nir_instr_type_intrinsic)
6386 continue;
6387
6388 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6389 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6390 continue;
6391
6392 /* Ignore WPOS; it doesn't require interpolation. */
6393 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6394 continue;
6395
6396 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6397 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6398 nir_intrinsic_interp_mode(intrin);
6399 nir_intrinsic_op bary_op = intrin->intrinsic;
6400 enum brw_barycentric_mode bary =
6401 brw_barycentric_mode(interp, bary_op);
6402
6403 barycentric_interp_modes |= 1 << bary;
6404
6405 if (devinfo->needs_unlit_centroid_workaround &&
6406 bary_op == nir_intrinsic_load_barycentric_centroid)
6407 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6408 }
6409 }
6410 }
6411
6412 return barycentric_interp_modes;
6413 }
6414
6415 static void
6416 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6417 const nir_shader *shader)
6418 {
6419 prog_data->flat_inputs = 0;
6420
6421 nir_foreach_variable(var, &shader->inputs) {
6422 int input_index = prog_data->urb_setup[var->data.location];
6423
6424 if (input_index < 0)
6425 continue;
6426
6427 /* flat shading */
6428 if (var->data.interpolation == INTERP_MODE_FLAT)
6429 prog_data->flat_inputs |= (1 << input_index);
6430 }
6431 }
6432
6433 static uint8_t
6434 computed_depth_mode(const nir_shader *shader)
6435 {
6436 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6437 switch (shader->info.fs.depth_layout) {
6438 case FRAG_DEPTH_LAYOUT_NONE:
6439 case FRAG_DEPTH_LAYOUT_ANY:
6440 return BRW_PSCDEPTH_ON;
6441 case FRAG_DEPTH_LAYOUT_GREATER:
6442 return BRW_PSCDEPTH_ON_GE;
6443 case FRAG_DEPTH_LAYOUT_LESS:
6444 return BRW_PSCDEPTH_ON_LE;
6445 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6446 return BRW_PSCDEPTH_OFF;
6447 }
6448 }
6449 return BRW_PSCDEPTH_OFF;
6450 }
6451
6452 /**
6453 * Move load_interpolated_input with simple (payload-based) barycentric modes
6454 * to the top of the program so we don't emit multiple PLNs for the same input.
6455 *
6456 * This works around CSE not being able to handle non-dominating cases
6457 * such as:
6458 *
6459 * if (...) {
6460 * interpolate input
6461 * } else {
6462 * interpolate the same exact input
6463 * }
6464 *
6465 * This should be replaced by global value numbering someday.
6466 */
6467 static bool
6468 move_interpolation_to_top(nir_shader *nir)
6469 {
6470 bool progress = false;
6471
6472 nir_foreach_function(f, nir) {
6473 if (!f->impl)
6474 continue;
6475
6476 nir_block *top = nir_start_block(f->impl);
6477 exec_node *cursor_node = NULL;
6478
6479 nir_foreach_block(block, f->impl) {
6480 if (block == top)
6481 continue;
6482
6483 nir_foreach_instr_safe(instr, block) {
6484 if (instr->type != nir_instr_type_intrinsic)
6485 continue;
6486
6487 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6488 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6489 continue;
6490 nir_intrinsic_instr *bary_intrinsic =
6491 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6492 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6493
6494 /* Leave interpolateAtSample/Offset() where they are. */
6495 if (op == nir_intrinsic_load_barycentric_at_sample ||
6496 op == nir_intrinsic_load_barycentric_at_offset)
6497 continue;
6498
6499 nir_instr *move[3] = {
6500 &bary_intrinsic->instr,
6501 intrin->src[1].ssa->parent_instr,
6502 instr
6503 };
6504
6505 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6506 if (move[i]->block != top) {
6507 move[i]->block = top;
6508 exec_node_remove(&move[i]->node);
6509 if (cursor_node) {
6510 exec_node_insert_after(cursor_node, &move[i]->node);
6511 } else {
6512 exec_list_push_head(&top->instr_list, &move[i]->node);
6513 }
6514 cursor_node = &move[i]->node;
6515 progress = true;
6516 }
6517 }
6518 }
6519 }
6520 nir_metadata_preserve(f->impl, (nir_metadata)
6521 ((unsigned) nir_metadata_block_index |
6522 (unsigned) nir_metadata_dominance));
6523 }
6524
6525 return progress;
6526 }
6527
6528 /**
6529 * Demote per-sample barycentric intrinsics to centroid.
6530 *
6531 * Useful when rendering to a non-multisampled buffer.
6532 */
6533 static bool
6534 demote_sample_qualifiers(nir_shader *nir)
6535 {
6536 bool progress = true;
6537
6538 nir_foreach_function(f, nir) {
6539 if (!f->impl)
6540 continue;
6541
6542 nir_builder b;
6543 nir_builder_init(&b, f->impl);
6544
6545 nir_foreach_block(block, f->impl) {
6546 nir_foreach_instr_safe(instr, block) {
6547 if (instr->type != nir_instr_type_intrinsic)
6548 continue;
6549
6550 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6551 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6552 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6553 continue;
6554
6555 b.cursor = nir_before_instr(instr);
6556 nir_ssa_def *centroid =
6557 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6558 nir_intrinsic_interp_mode(intrin));
6559 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6560 nir_src_for_ssa(centroid));
6561 nir_instr_remove(instr);
6562 progress = true;
6563 }
6564 }
6565
6566 nir_metadata_preserve(f->impl, (nir_metadata)
6567 ((unsigned) nir_metadata_block_index |
6568 (unsigned) nir_metadata_dominance));
6569 }
6570
6571 return progress;
6572 }
6573
6574 /**
6575 * Pre-gen6, the register file of the EUs was shared between threads,
6576 * and each thread used some subset allocated on a 16-register block
6577 * granularity. The unit states wanted these block counts.
6578 */
6579 static inline int
6580 brw_register_blocks(int reg_count)
6581 {
6582 return ALIGN(reg_count, 16) / 16 - 1;
6583 }
6584
6585 const unsigned *
6586 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6587 void *mem_ctx,
6588 const struct brw_wm_prog_key *key,
6589 struct brw_wm_prog_data *prog_data,
6590 const nir_shader *src_shader,
6591 struct gl_program *prog,
6592 int shader_time_index8, int shader_time_index16,
6593 bool allow_spilling,
6594 bool use_rep_send, struct brw_vue_map *vue_map,
6595 char **error_str)
6596 {
6597 const struct gen_device_info *devinfo = compiler->devinfo;
6598
6599 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6600 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6601 brw_nir_lower_fs_inputs(shader, devinfo, key);
6602 brw_nir_lower_fs_outputs(shader);
6603
6604 if (devinfo->gen < 6) {
6605 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6606 }
6607
6608 if (!key->multisample_fbo)
6609 NIR_PASS_V(shader, demote_sample_qualifiers);
6610 NIR_PASS_V(shader, move_interpolation_to_top);
6611 shader = brw_postprocess_nir(shader, compiler, true);
6612
6613 /* key->alpha_test_func means simulating alpha testing via discards,
6614 * so the shader definitely kills pixels.
6615 */
6616 prog_data->uses_kill = shader->info.fs.uses_discard ||
6617 key->alpha_test_func;
6618 prog_data->uses_omask = key->multisample_fbo &&
6619 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6620 prog_data->computed_depth_mode = computed_depth_mode(shader);
6621 prog_data->computed_stencil =
6622 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6623
6624 prog_data->persample_dispatch =
6625 key->multisample_fbo &&
6626 (key->persample_interp ||
6627 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6628 SYSTEM_BIT_SAMPLE_POS)) ||
6629 shader->info.fs.uses_sample_qualifier ||
6630 shader->info.outputs_read);
6631
6632 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
6633
6634 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6635 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6636 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6637
6638 prog_data->barycentric_interp_modes =
6639 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6640
6641 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6642 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6643 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6644
6645 fs_visitor v8(compiler, log_data, mem_ctx, key,
6646 &prog_data->base, prog, shader, 8,
6647 shader_time_index8);
6648 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6649 if (error_str)
6650 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6651
6652 return NULL;
6653 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6654 simd8_cfg = v8.cfg;
6655 simd8_grf_start = v8.payload.num_regs;
6656 simd8_grf_used = v8.grf_used;
6657 }
6658
6659 if (v8.max_dispatch_width >= 16 &&
6660 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6661 /* Try a SIMD16 compile */
6662 fs_visitor v16(compiler, log_data, mem_ctx, key,
6663 &prog_data->base, prog, shader, 16,
6664 shader_time_index16);
6665 v16.import_uniforms(&v8);
6666 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6667 compiler->shader_perf_log(log_data,
6668 "SIMD16 shader failed to compile: %s",
6669 v16.fail_msg);
6670 } else {
6671 simd16_cfg = v16.cfg;
6672 simd16_grf_start = v16.payload.num_regs;
6673 simd16_grf_used = v16.grf_used;
6674 }
6675 }
6676
6677 /* When the caller requests a repclear shader, they want SIMD16-only */
6678 if (use_rep_send)
6679 simd8_cfg = NULL;
6680
6681 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6682 * at the top to select the shader. We've never implemented that.
6683 * Instead, we just give them exactly one shader and we pick the widest one
6684 * available.
6685 */
6686 if (compiler->devinfo->gen < 5 && simd16_cfg)
6687 simd8_cfg = NULL;
6688
6689 if (prog_data->persample_dispatch) {
6690 /* Starting with SandyBridge (where we first get MSAA), the different
6691 * pixel dispatch combinations are grouped into classifications A
6692 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6693 * generations, the only configurations supporting persample dispatch
6694 * are are this in which only one dispatch width is enabled.
6695 *
6696 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6697 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6698 */
6699 if (compiler->devinfo->gen == 6 &&
6700 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6701 simd16_cfg = NULL;
6702 } else if (simd16_cfg) {
6703 simd8_cfg = NULL;
6704 }
6705 }
6706
6707 /* We have to compute the flat inputs after the visitor is finished running
6708 * because it relies on prog_data->urb_setup which is computed in
6709 * fs_visitor::calculate_urb_setup().
6710 */
6711 brw_compute_flat_inputs(prog_data, shader);
6712
6713 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6714 v8.promoted_constants, v8.runtime_check_aads_emit,
6715 MESA_SHADER_FRAGMENT);
6716
6717 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6718 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6719 shader->info.label ?
6720 shader->info.label : "unnamed",
6721 shader->info.name));
6722 }
6723
6724 if (simd8_cfg) {
6725 prog_data->dispatch_8 = true;
6726 g.generate_code(simd8_cfg, 8);
6727 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6728 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6729
6730 if (simd16_cfg) {
6731 prog_data->dispatch_16 = true;
6732 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6733 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6734 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6735 }
6736 } else if (simd16_cfg) {
6737 prog_data->dispatch_16 = true;
6738 g.generate_code(simd16_cfg, 16);
6739 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6740 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6741 }
6742
6743 return g.get_assembly(&prog_data->base.program_size);
6744 }
6745
6746 fs_reg *
6747 fs_visitor::emit_cs_work_group_id_setup()
6748 {
6749 assert(stage == MESA_SHADER_COMPUTE);
6750
6751 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6752
6753 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6754 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6755 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6756
6757 bld.MOV(*reg, r0_1);
6758 bld.MOV(offset(*reg, bld, 1), r0_6);
6759 bld.MOV(offset(*reg, bld, 2), r0_7);
6760
6761 return reg;
6762 }
6763
6764 static void
6765 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6766 {
6767 block->dwords = dwords;
6768 block->regs = DIV_ROUND_UP(dwords, 8);
6769 block->size = block->regs * 32;
6770 }
6771
6772 static void
6773 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6774 struct brw_cs_prog_data *cs_prog_data)
6775 {
6776 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6777 int thread_local_id_index = get_thread_local_id_param_index(prog_data);
6778 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6779
6780 /* The thread ID should be stored in the last param dword */
6781 assert(thread_local_id_index == -1 ||
6782 thread_local_id_index == (int)prog_data->nr_params - 1);
6783
6784 unsigned cross_thread_dwords, per_thread_dwords;
6785 if (!cross_thread_supported) {
6786 cross_thread_dwords = 0u;
6787 per_thread_dwords = prog_data->nr_params;
6788 } else if (thread_local_id_index >= 0) {
6789 /* Fill all but the last register with cross-thread payload */
6790 cross_thread_dwords = 8 * (thread_local_id_index / 8);
6791 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6792 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6793 } else {
6794 /* Fill all data using cross-thread payload */
6795 cross_thread_dwords = prog_data->nr_params;
6796 per_thread_dwords = 0u;
6797 }
6798
6799 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6800 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6801
6802 unsigned total_dwords =
6803 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6804 cs_prog_data->push.cross_thread.size) / 4;
6805 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6806
6807 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6808 cs_prog_data->push.per_thread.size == 0);
6809 assert(cs_prog_data->push.cross_thread.dwords +
6810 cs_prog_data->push.per_thread.dwords ==
6811 prog_data->nr_params);
6812 }
6813
6814 static void
6815 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6816 {
6817 cs_prog_data->simd_size = size;
6818 unsigned group_size = cs_prog_data->local_size[0] *
6819 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6820 cs_prog_data->threads = (group_size + size - 1) / size;
6821 }
6822
6823 const unsigned *
6824 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6825 void *mem_ctx,
6826 const struct brw_cs_prog_key *key,
6827 struct brw_cs_prog_data *prog_data,
6828 const nir_shader *src_shader,
6829 int shader_time_index,
6830 char **error_str)
6831 {
6832 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6833 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6834
6835 brw_nir_lower_cs_intrinsics(shader, prog_data);
6836 shader = brw_postprocess_nir(shader, compiler, true);
6837
6838 prog_data->local_size[0] = shader->info.cs.local_size[0];
6839 prog_data->local_size[1] = shader->info.cs.local_size[1];
6840 prog_data->local_size[2] = shader->info.cs.local_size[2];
6841 unsigned local_workgroup_size =
6842 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6843 shader->info.cs.local_size[2];
6844
6845 unsigned min_dispatch_width =
6846 DIV_ROUND_UP(local_workgroup_size, compiler->devinfo->max_cs_threads);
6847 min_dispatch_width = MAX2(8, min_dispatch_width);
6848 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
6849 assert(min_dispatch_width <= 32);
6850
6851 cfg_t *cfg = NULL;
6852 const char *fail_msg = NULL;
6853
6854 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6855 */
6856 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6857 NULL, /* Never used in core profile */
6858 shader, 8, shader_time_index);
6859 if (min_dispatch_width <= 8) {
6860 if (!v8.run_cs(min_dispatch_width)) {
6861 fail_msg = v8.fail_msg;
6862 } else {
6863 cfg = v8.cfg;
6864 cs_set_simd_size(prog_data, 8);
6865 cs_fill_push_const_info(compiler->devinfo, prog_data);
6866 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6867 }
6868 }
6869
6870 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6871 NULL, /* Never used in core profile */
6872 shader, 16, shader_time_index);
6873 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6874 !fail_msg && v8.max_dispatch_width >= 16 &&
6875 min_dispatch_width <= 16) {
6876 /* Try a SIMD16 compile */
6877 if (min_dispatch_width <= 8)
6878 v16.import_uniforms(&v8);
6879 if (!v16.run_cs(min_dispatch_width)) {
6880 compiler->shader_perf_log(log_data,
6881 "SIMD16 shader failed to compile: %s",
6882 v16.fail_msg);
6883 if (!cfg) {
6884 fail_msg =
6885 "Couldn't generate SIMD16 program and not "
6886 "enough threads for SIMD8";
6887 }
6888 } else {
6889 cfg = v16.cfg;
6890 cs_set_simd_size(prog_data, 16);
6891 cs_fill_push_const_info(compiler->devinfo, prog_data);
6892 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6893 }
6894 }
6895
6896 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6897 NULL, /* Never used in core profile */
6898 shader, 32, shader_time_index);
6899 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6900 (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6901 /* Try a SIMD32 compile */
6902 if (min_dispatch_width <= 8)
6903 v32.import_uniforms(&v8);
6904 else if (min_dispatch_width <= 16)
6905 v32.import_uniforms(&v16);
6906
6907 if (!v32.run_cs(min_dispatch_width)) {
6908 compiler->shader_perf_log(log_data,
6909 "SIMD32 shader failed to compile: %s",
6910 v16.fail_msg);
6911 if (!cfg) {
6912 fail_msg =
6913 "Couldn't generate SIMD32 program and not "
6914 "enough threads for SIMD16";
6915 }
6916 } else {
6917 cfg = v32.cfg;
6918 cs_set_simd_size(prog_data, 32);
6919 cs_fill_push_const_info(compiler->devinfo, prog_data);
6920 }
6921 }
6922
6923 if (unlikely(cfg == NULL)) {
6924 assert(fail_msg);
6925 if (error_str)
6926 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6927
6928 return NULL;
6929 }
6930
6931 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6932 v8.promoted_constants, v8.runtime_check_aads_emit,
6933 MESA_SHADER_COMPUTE);
6934 if (INTEL_DEBUG & DEBUG_CS) {
6935 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6936 shader->info.label ? shader->info.label :
6937 "unnamed",
6938 shader->info.name);
6939 g.enable_debug(name);
6940 }
6941
6942 g.generate_code(cfg, prog_data->simd_size);
6943
6944 return g.get_assembly(&prog_data->base.program_size);
6945 }
6946
6947 /**
6948 * Test the dispatch mask packing assumptions of
6949 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6950 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6951 * executed with an unexpected dispatch mask.
6952 */
6953 static UNUSED void
6954 brw_fs_test_dispatch_packing(const fs_builder &bld)
6955 {
6956 const gl_shader_stage stage = bld.shader->stage;
6957
6958 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6959 bld.shader->stage_prog_data)) {
6960 const fs_builder ubld = bld.exec_all().group(1, 0);
6961 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6962 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6963 brw_dmask_reg());
6964
6965 ubld.ADD(tmp, mask, brw_imm_ud(1));
6966 ubld.AND(tmp, mask, tmp);
6967
6968 /* This will loop forever if the dispatch mask doesn't have the expected
6969 * form '2^n-1', in which case tmp will be non-zero.
6970 */
6971 bld.emit(BRW_OPCODE_DO);
6972 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6973 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6974 }
6975 }