i965: Push UBO data, but don't use it just yet.
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 if (type_sz(dst.type) == 8) {
195 shuffle_32bit_load_result_to_64bit_data(
196 bld, retype(vec4_result, dst.type), vec4_result, 2);
197 }
198
199 vec4_result.type = dst.type;
200 bld.MOV(dst, offset(vec4_result, bld,
201 (const_offset & 0xf) / type_sz(vec4_result.type)));
202 }
203
204 /**
205 * A helper for MOV generation for fixing up broken hardware SEND dependency
206 * handling.
207 */
208 void
209 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
210 {
211 /* The caller always wants uncompressed to emit the minimal extra
212 * dependencies, and to avoid having to deal with aligning its regs to 2.
213 */
214 const fs_builder ubld = bld.annotate("send dependency resolve")
215 .half(0);
216
217 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
218 }
219
220 bool
221 fs_inst::equals(fs_inst *inst) const
222 {
223 return (opcode == inst->opcode &&
224 dst.equals(inst->dst) &&
225 src[0].equals(inst->src[0]) &&
226 src[1].equals(inst->src[1]) &&
227 src[2].equals(inst->src[2]) &&
228 saturate == inst->saturate &&
229 predicate == inst->predicate &&
230 conditional_mod == inst->conditional_mod &&
231 mlen == inst->mlen &&
232 base_mrf == inst->base_mrf &&
233 target == inst->target &&
234 eot == inst->eot &&
235 header_size == inst->header_size &&
236 shadow_compare == inst->shadow_compare &&
237 exec_size == inst->exec_size &&
238 offset == inst->offset);
239 }
240
241 bool
242 fs_inst::is_send_from_grf() const
243 {
244 switch (opcode) {
245 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
246 case SHADER_OPCODE_SHADER_TIME_ADD:
247 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
248 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
249 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
250 case SHADER_OPCODE_UNTYPED_ATOMIC:
251 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
252 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
253 case SHADER_OPCODE_TYPED_ATOMIC:
254 case SHADER_OPCODE_TYPED_SURFACE_READ:
255 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
256 case SHADER_OPCODE_URB_WRITE_SIMD8:
257 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
258 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
260 case SHADER_OPCODE_URB_READ_SIMD8:
261 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
262 return true;
263 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
264 return src[1].file == VGRF;
265 case FS_OPCODE_FB_WRITE:
266 case FS_OPCODE_FB_READ:
267 return src[0].file == VGRF;
268 default:
269 if (is_tex())
270 return src[0].file == VGRF;
271
272 return false;
273 }
274 }
275
276 /**
277 * Returns true if this instruction's sources and destinations cannot
278 * safely be the same register.
279 *
280 * In most cases, a register can be written over safely by the same
281 * instruction that is its last use. For a single instruction, the
282 * sources are dereferenced before writing of the destination starts
283 * (naturally).
284 *
285 * However, there are a few cases where this can be problematic:
286 *
287 * - Virtual opcodes that translate to multiple instructions in the
288 * code generator: if src == dst and one instruction writes the
289 * destination before a later instruction reads the source, then
290 * src will have been clobbered.
291 *
292 * - SIMD16 compressed instructions with certain regioning (see below).
293 *
294 * The register allocator uses this information to set up conflicts between
295 * GRF sources and the destination.
296 */
297 bool
298 fs_inst::has_source_and_destination_hazard() const
299 {
300 switch (opcode) {
301 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
302 /* Multiple partial writes to the destination */
303 return true;
304 default:
305 /* The SIMD16 compressed instruction
306 *
307 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
308 *
309 * is actually decoded in hardware as:
310 *
311 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
312 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
313 *
314 * Which is safe. However, if we have uniform accesses
315 * happening, we get into trouble:
316 *
317 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
318 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
319 *
320 * Now our destination for the first instruction overwrote the
321 * second instruction's src0, and we get garbage for those 8
322 * pixels. There's a similar issue for the pre-gen6
323 * pixel_x/pixel_y, which are registers of 16-bit values and thus
324 * would get stomped by the first decode as well.
325 */
326 if (exec_size == 16) {
327 for (int i = 0; i < sources; i++) {
328 if (src[i].file == VGRF && (src[i].stride == 0 ||
329 src[i].type == BRW_REGISTER_TYPE_UW ||
330 src[i].type == BRW_REGISTER_TYPE_W ||
331 src[i].type == BRW_REGISTER_TYPE_UB ||
332 src[i].type == BRW_REGISTER_TYPE_B)) {
333 return true;
334 }
335 }
336 }
337 return false;
338 }
339 }
340
341 bool
342 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
343 {
344 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
345 return false;
346
347 fs_reg reg = this->src[0];
348 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
349 return false;
350
351 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
352 return false;
353
354 for (int i = 0; i < this->sources; i++) {
355 reg.type = this->src[i].type;
356 if (!this->src[i].equals(reg))
357 return false;
358
359 if (i < this->header_size) {
360 reg.offset += REG_SIZE;
361 } else {
362 reg = horiz_offset(reg, this->exec_size);
363 }
364 }
365
366 return true;
367 }
368
369 bool
370 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
371 {
372 if (devinfo->gen == 6 && is_math())
373 return false;
374
375 if (is_send_from_grf())
376 return false;
377
378 if (!backend_instruction::can_do_source_mods())
379 return false;
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_change_types() const
386 {
387 return dst.type == src[0].type &&
388 !src[0].abs && !src[0].negate && !saturate &&
389 (opcode == BRW_OPCODE_MOV ||
390 (opcode == BRW_OPCODE_SEL &&
391 dst.type == src[1].type &&
392 predicate != BRW_PREDICATE_NONE &&
393 !src[1].abs && !src[1].negate));
394 }
395
396 bool
397 fs_inst::has_side_effects() const
398 {
399 return this->eot || backend_instruction::has_side_effects();
400 }
401
402 void
403 fs_reg::init()
404 {
405 memset(this, 0, sizeof(*this));
406 stride = 1;
407 }
408
409 /** Generic unset register constructor. */
410 fs_reg::fs_reg()
411 {
412 init();
413 this->file = BAD_FILE;
414 }
415
416 fs_reg::fs_reg(struct ::brw_reg reg) :
417 backend_reg(reg)
418 {
419 this->offset = 0;
420 this->stride = 1;
421 if (this->file == IMM &&
422 (this->type != BRW_REGISTER_TYPE_V &&
423 this->type != BRW_REGISTER_TYPE_UV &&
424 this->type != BRW_REGISTER_TYPE_VF)) {
425 this->stride = 0;
426 }
427 }
428
429 bool
430 fs_reg::equals(const fs_reg &r) const
431 {
432 return (this->backend_reg::equals(r) &&
433 stride == r.stride);
434 }
435
436 bool
437 fs_reg::is_contiguous() const
438 {
439 return stride == 1;
440 }
441
442 unsigned
443 fs_reg::component_size(unsigned width) const
444 {
445 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
446 hstride == 0 ? 0 :
447 1 << (hstride - 1));
448 return MAX2(width * stride, 1) * type_sz(type);
449 }
450
451 extern "C" int
452 type_size_scalar(const struct glsl_type *type)
453 {
454 unsigned int size, i;
455
456 switch (type->base_type) {
457 case GLSL_TYPE_UINT:
458 case GLSL_TYPE_INT:
459 case GLSL_TYPE_FLOAT:
460 case GLSL_TYPE_BOOL:
461 return type->components();
462 case GLSL_TYPE_DOUBLE:
463 case GLSL_TYPE_UINT64:
464 case GLSL_TYPE_INT64:
465 return type->components() * 2;
466 case GLSL_TYPE_ARRAY:
467 return type_size_scalar(type->fields.array) * type->length;
468 case GLSL_TYPE_STRUCT:
469 size = 0;
470 for (i = 0; i < type->length; i++) {
471 size += type_size_scalar(type->fields.structure[i].type);
472 }
473 return size;
474 case GLSL_TYPE_SAMPLER:
475 /* Samplers take up no register space, since they're baked in at
476 * link time.
477 */
478 return 0;
479 case GLSL_TYPE_ATOMIC_UINT:
480 return 0;
481 case GLSL_TYPE_SUBROUTINE:
482 return 1;
483 case GLSL_TYPE_IMAGE:
484 return BRW_IMAGE_PARAM_SIZE;
485 case GLSL_TYPE_VOID:
486 case GLSL_TYPE_ERROR:
487 case GLSL_TYPE_INTERFACE:
488 case GLSL_TYPE_FUNCTION:
489 unreachable("not reached");
490 }
491
492 return 0;
493 }
494
495 /**
496 * Create a MOV to read the timestamp register.
497 *
498 * The caller is responsible for emitting the MOV. The return value is
499 * the destination of the MOV, with extra parameters set.
500 */
501 fs_reg
502 fs_visitor::get_timestamp(const fs_builder &bld)
503 {
504 assert(devinfo->gen >= 7);
505
506 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
507 BRW_ARF_TIMESTAMP,
508 0),
509 BRW_REGISTER_TYPE_UD));
510
511 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
512
513 /* We want to read the 3 fields we care about even if it's not enabled in
514 * the dispatch.
515 */
516 bld.group(4, 0).exec_all().MOV(dst, ts);
517
518 return dst;
519 }
520
521 void
522 fs_visitor::emit_shader_time_begin()
523 {
524 /* We want only the low 32 bits of the timestamp. Since it's running
525 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
526 * which is plenty of time for our purposes. It is identical across the
527 * EUs, but since it's tracking GPU core speed it will increment at a
528 * varying rate as render P-states change.
529 */
530 shader_start_time = component(
531 get_timestamp(bld.annotate("shader time start")), 0);
532 }
533
534 void
535 fs_visitor::emit_shader_time_end()
536 {
537 /* Insert our code just before the final SEND with EOT. */
538 exec_node *end = this->instructions.get_tail();
539 assert(end && ((fs_inst *) end)->eot);
540 const fs_builder ibld = bld.annotate("shader time end")
541 .exec_all().at(NULL, end);
542 const fs_reg timestamp = get_timestamp(ibld);
543
544 /* We only use the low 32 bits of the timestamp - see
545 * emit_shader_time_begin()).
546 *
547 * We could also check if render P-states have changed (or anything
548 * else that might disrupt timing) by setting smear to 2 and checking if
549 * that field is != 0.
550 */
551 const fs_reg shader_end_time = component(timestamp, 0);
552
553 /* Check that there weren't any timestamp reset events (assuming these
554 * were the only two timestamp reads that happened).
555 */
556 const fs_reg reset = component(timestamp, 2);
557 set_condmod(BRW_CONDITIONAL_Z,
558 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
559 ibld.IF(BRW_PREDICATE_NORMAL);
560
561 fs_reg start = shader_start_time;
562 start.negate = true;
563 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
564 BRW_REGISTER_TYPE_UD),
565 0);
566 const fs_builder cbld = ibld.group(1, 0);
567 cbld.group(1, 0).ADD(diff, start, shader_end_time);
568
569 /* If there were no instructions between the two timestamp gets, the diff
570 * is 2 cycles. Remove that overhead, so I can forget about that when
571 * trying to determine the time taken for single instructions.
572 */
573 cbld.ADD(diff, diff, brw_imm_ud(-2u));
574 SHADER_TIME_ADD(cbld, 0, diff);
575 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
576 ibld.emit(BRW_OPCODE_ELSE);
577 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
578 ibld.emit(BRW_OPCODE_ENDIF);
579 }
580
581 void
582 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
583 int shader_time_subindex,
584 fs_reg value)
585 {
586 int index = shader_time_index * 3 + shader_time_subindex;
587 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
588
589 fs_reg payload;
590 if (dispatch_width == 8)
591 payload = vgrf(glsl_type::uvec2_type);
592 else
593 payload = vgrf(glsl_type::uint_type);
594
595 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
596 }
597
598 void
599 fs_visitor::vfail(const char *format, va_list va)
600 {
601 char *msg;
602
603 if (failed)
604 return;
605
606 failed = true;
607
608 msg = ralloc_vasprintf(mem_ctx, format, va);
609 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
610
611 this->fail_msg = msg;
612
613 if (debug_enabled) {
614 fprintf(stderr, "%s", msg);
615 }
616 }
617
618 void
619 fs_visitor::fail(const char *format, ...)
620 {
621 va_list va;
622
623 va_start(va, format);
624 vfail(format, va);
625 va_end(va);
626 }
627
628 /**
629 * Mark this program as impossible to compile with dispatch width greater
630 * than n.
631 *
632 * During the SIMD8 compile (which happens first), we can detect and flag
633 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
634 * SIMD16+ compile altogether.
635 *
636 * During a compile of dispatch width greater than n (if one happens anyway),
637 * this just calls fail().
638 */
639 void
640 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
641 {
642 if (dispatch_width > n) {
643 fail("%s", msg);
644 } else {
645 max_dispatch_width = n;
646 compiler->shader_perf_log(log_data,
647 "Shader dispatch width limited to SIMD%d: %s",
648 n, msg);
649 }
650 }
651
652 /**
653 * Returns true if the instruction has a flag that means it won't
654 * update an entire destination register.
655 *
656 * For example, dead code elimination and live variable analysis want to know
657 * when a write to a variable screens off any preceding values that were in
658 * it.
659 */
660 bool
661 fs_inst::is_partial_write() const
662 {
663 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
664 (this->exec_size * type_sz(this->dst.type)) < 32 ||
665 !this->dst.is_contiguous() ||
666 this->dst.offset % REG_SIZE != 0);
667 }
668
669 unsigned
670 fs_inst::components_read(unsigned i) const
671 {
672 /* Return zero if the source is not present. */
673 if (src[i].file == BAD_FILE)
674 return 0;
675
676 switch (opcode) {
677 case FS_OPCODE_LINTERP:
678 if (i == 0)
679 return 2;
680 else
681 return 1;
682
683 case FS_OPCODE_PIXEL_X:
684 case FS_OPCODE_PIXEL_Y:
685 assert(i == 0);
686 return 2;
687
688 case FS_OPCODE_FB_WRITE_LOGICAL:
689 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
690 /* First/second FB write color. */
691 if (i < 2)
692 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
693 else
694 return 1;
695
696 case SHADER_OPCODE_TEX_LOGICAL:
697 case SHADER_OPCODE_TXD_LOGICAL:
698 case SHADER_OPCODE_TXF_LOGICAL:
699 case SHADER_OPCODE_TXL_LOGICAL:
700 case SHADER_OPCODE_TXS_LOGICAL:
701 case FS_OPCODE_TXB_LOGICAL:
702 case SHADER_OPCODE_TXF_CMS_LOGICAL:
703 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
704 case SHADER_OPCODE_TXF_UMS_LOGICAL:
705 case SHADER_OPCODE_TXF_MCS_LOGICAL:
706 case SHADER_OPCODE_LOD_LOGICAL:
707 case SHADER_OPCODE_TG4_LOGICAL:
708 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
709 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
710 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
711 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
712 /* Texture coordinates. */
713 if (i == TEX_LOGICAL_SRC_COORDINATE)
714 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
715 /* Texture derivatives. */
716 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
717 opcode == SHADER_OPCODE_TXD_LOGICAL)
718 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
719 /* Texture offset. */
720 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
721 return 2;
722 /* MCS */
723 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
724 return 2;
725 else
726 return 1;
727
728 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
729 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
730 assert(src[3].file == IMM);
731 /* Surface coordinates. */
732 if (i == 0)
733 return src[3].ud;
734 /* Surface operation source (ignored for reads). */
735 else if (i == 1)
736 return 0;
737 else
738 return 1;
739
740 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
741 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
742 assert(src[3].file == IMM &&
743 src[4].file == IMM);
744 /* Surface coordinates. */
745 if (i == 0)
746 return src[3].ud;
747 /* Surface operation source. */
748 else if (i == 1)
749 return src[4].ud;
750 else
751 return 1;
752
753 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
754 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
755 assert(src[3].file == IMM &&
756 src[4].file == IMM);
757 const unsigned op = src[4].ud;
758 /* Surface coordinates. */
759 if (i == 0)
760 return src[3].ud;
761 /* Surface operation source. */
762 else if (i == 1 && op == BRW_AOP_CMPWR)
763 return 2;
764 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
765 op == BRW_AOP_PREDEC))
766 return 0;
767 else
768 return 1;
769 }
770
771 default:
772 return 1;
773 }
774 }
775
776 unsigned
777 fs_inst::size_read(int arg) const
778 {
779 switch (opcode) {
780 case FS_OPCODE_FB_WRITE:
781 case FS_OPCODE_FB_READ:
782 case SHADER_OPCODE_URB_WRITE_SIMD8:
783 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
784 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
785 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
786 case SHADER_OPCODE_URB_READ_SIMD8:
787 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
788 case SHADER_OPCODE_UNTYPED_ATOMIC:
789 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
790 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
791 case SHADER_OPCODE_TYPED_ATOMIC:
792 case SHADER_OPCODE_TYPED_SURFACE_READ:
793 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
794 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
795 if (arg == 0)
796 return mlen * REG_SIZE;
797 break;
798
799 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
800 /* The payload is actually stored in src1 */
801 if (arg == 1)
802 return mlen * REG_SIZE;
803 break;
804
805 case FS_OPCODE_LINTERP:
806 if (arg == 1)
807 return 16;
808 break;
809
810 case SHADER_OPCODE_LOAD_PAYLOAD:
811 if (arg < this->header_size)
812 return REG_SIZE;
813 break;
814
815 case CS_OPCODE_CS_TERMINATE:
816 case SHADER_OPCODE_BARRIER:
817 return REG_SIZE;
818
819 case SHADER_OPCODE_MOV_INDIRECT:
820 if (arg == 0) {
821 assert(src[2].file == IMM);
822 return src[2].ud;
823 }
824 break;
825
826 default:
827 if (is_tex() && arg == 0 && src[0].file == VGRF)
828 return mlen * REG_SIZE;
829 break;
830 }
831
832 switch (src[arg].file) {
833 case UNIFORM:
834 case IMM:
835 return components_read(arg) * type_sz(src[arg].type);
836 case BAD_FILE:
837 case ARF:
838 case FIXED_GRF:
839 case VGRF:
840 case ATTR:
841 return components_read(arg) * src[arg].component_size(exec_size);
842 case MRF:
843 unreachable("MRF registers are not allowed as sources");
844 }
845 return 0;
846 }
847
848 namespace {
849 /* Return the subset of flag registers that an instruction could
850 * potentially read or write based on the execution controls and flag
851 * subregister number of the instruction.
852 */
853 unsigned
854 flag_mask(const fs_inst *inst)
855 {
856 const unsigned start = inst->flag_subreg * 16 + inst->group;
857 const unsigned end = start + inst->exec_size;
858 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
859 }
860 }
861
862 unsigned
863 fs_inst::flags_read(const gen_device_info *devinfo) const
864 {
865 /* XXX - This doesn't consider explicit uses of the flag register as source
866 * region.
867 */
868 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
869 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
870 /* The vertical predication modes combine corresponding bits from
871 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
872 */
873 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
874 return flag_mask(this) << shift | flag_mask(this);
875 } else if (predicate) {
876 return flag_mask(this);
877 } else {
878 return 0;
879 }
880 }
881
882 unsigned
883 fs_inst::flags_written() const
884 {
885 /* XXX - This doesn't consider explicit uses of the flag register as
886 * destination region.
887 */
888 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
889 opcode != BRW_OPCODE_IF &&
890 opcode != BRW_OPCODE_WHILE)) ||
891 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
892 return flag_mask(this);
893 } else {
894 return 0;
895 }
896 }
897
898 /**
899 * Returns how many MRFs an FS opcode will write over.
900 *
901 * Note that this is not the 0 or 1 implied writes in an actual gen
902 * instruction -- the FS opcodes often generate MOVs in addition.
903 */
904 int
905 fs_visitor::implied_mrf_writes(fs_inst *inst)
906 {
907 if (inst->mlen == 0)
908 return 0;
909
910 if (inst->base_mrf == -1)
911 return 0;
912
913 switch (inst->opcode) {
914 case SHADER_OPCODE_RCP:
915 case SHADER_OPCODE_RSQ:
916 case SHADER_OPCODE_SQRT:
917 case SHADER_OPCODE_EXP2:
918 case SHADER_OPCODE_LOG2:
919 case SHADER_OPCODE_SIN:
920 case SHADER_OPCODE_COS:
921 return 1 * dispatch_width / 8;
922 case SHADER_OPCODE_POW:
923 case SHADER_OPCODE_INT_QUOTIENT:
924 case SHADER_OPCODE_INT_REMAINDER:
925 return 2 * dispatch_width / 8;
926 case SHADER_OPCODE_TEX:
927 case FS_OPCODE_TXB:
928 case SHADER_OPCODE_TXD:
929 case SHADER_OPCODE_TXF:
930 case SHADER_OPCODE_TXF_CMS:
931 case SHADER_OPCODE_TXF_MCS:
932 case SHADER_OPCODE_TG4:
933 case SHADER_OPCODE_TG4_OFFSET:
934 case SHADER_OPCODE_TXL:
935 case SHADER_OPCODE_TXS:
936 case SHADER_OPCODE_LOD:
937 case SHADER_OPCODE_SAMPLEINFO:
938 return 1;
939 case FS_OPCODE_FB_WRITE:
940 return 2;
941 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
942 case SHADER_OPCODE_GEN4_SCRATCH_READ:
943 return 1;
944 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
945 return inst->mlen;
946 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
947 return inst->mlen;
948 default:
949 unreachable("not reached");
950 }
951 }
952
953 fs_reg
954 fs_visitor::vgrf(const glsl_type *const type)
955 {
956 int reg_width = dispatch_width / 8;
957 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
958 brw_type_for_base_type(type));
959 }
960
961 fs_reg::fs_reg(enum brw_reg_file file, int nr)
962 {
963 init();
964 this->file = file;
965 this->nr = nr;
966 this->type = BRW_REGISTER_TYPE_F;
967 this->stride = (file == UNIFORM ? 0 : 1);
968 }
969
970 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
971 {
972 init();
973 this->file = file;
974 this->nr = nr;
975 this->type = type;
976 this->stride = (file == UNIFORM ? 0 : 1);
977 }
978
979 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
980 * This brings in those uniform definitions
981 */
982 void
983 fs_visitor::import_uniforms(fs_visitor *v)
984 {
985 this->push_constant_loc = v->push_constant_loc;
986 this->pull_constant_loc = v->pull_constant_loc;
987 this->uniforms = v->uniforms;
988 }
989
990 void
991 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
992 {
993 assert(stage == MESA_SHADER_FRAGMENT);
994
995 /* gl_FragCoord.x */
996 bld.MOV(wpos, this->pixel_x);
997 wpos = offset(wpos, bld, 1);
998
999 /* gl_FragCoord.y */
1000 bld.MOV(wpos, this->pixel_y);
1001 wpos = offset(wpos, bld, 1);
1002
1003 /* gl_FragCoord.z */
1004 if (devinfo->gen >= 6) {
1005 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1006 } else {
1007 bld.emit(FS_OPCODE_LINTERP, wpos,
1008 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1009 interp_reg(VARYING_SLOT_POS, 2));
1010 }
1011 wpos = offset(wpos, bld, 1);
1012
1013 /* gl_FragCoord.w: Already set up in emit_interpolation */
1014 bld.MOV(wpos, this->wpos_w);
1015 }
1016
1017 enum brw_barycentric_mode
1018 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1019 {
1020 /* Barycentric modes don't make sense for flat inputs. */
1021 assert(mode != INTERP_MODE_FLAT);
1022
1023 unsigned bary;
1024 switch (op) {
1025 case nir_intrinsic_load_barycentric_pixel:
1026 case nir_intrinsic_load_barycentric_at_offset:
1027 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1028 break;
1029 case nir_intrinsic_load_barycentric_centroid:
1030 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1031 break;
1032 case nir_intrinsic_load_barycentric_sample:
1033 case nir_intrinsic_load_barycentric_at_sample:
1034 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1035 break;
1036 default:
1037 unreachable("invalid intrinsic");
1038 }
1039
1040 if (mode == INTERP_MODE_NOPERSPECTIVE)
1041 bary += 3;
1042
1043 return (enum brw_barycentric_mode) bary;
1044 }
1045
1046 /**
1047 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1048 */
1049 static enum brw_barycentric_mode
1050 centroid_to_pixel(enum brw_barycentric_mode bary)
1051 {
1052 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1053 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1054 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1055 }
1056
1057 fs_reg *
1058 fs_visitor::emit_frontfacing_interpolation()
1059 {
1060 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1061
1062 if (devinfo->gen >= 6) {
1063 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1064 * a boolean result from this (~0/true or 0/false).
1065 *
1066 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1067 * this task in only one instruction:
1068 * - a negation source modifier will flip the bit; and
1069 * - a W -> D type conversion will sign extend the bit into the high
1070 * word of the destination.
1071 *
1072 * An ASR 15 fills the low word of the destination.
1073 */
1074 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1075 g0.negate = true;
1076
1077 bld.ASR(*reg, g0, brw_imm_d(15));
1078 } else {
1079 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1080 * a boolean result from this (1/true or 0/false).
1081 *
1082 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1083 * the negation source modifier to flip it. Unfortunately the SHR
1084 * instruction only operates on UD (or D with an abs source modifier)
1085 * sources without negation.
1086 *
1087 * Instead, use ASR (which will give ~0/true or 0/false).
1088 */
1089 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1090 g1_6.negate = true;
1091
1092 bld.ASR(*reg, g1_6, brw_imm_d(31));
1093 }
1094
1095 return reg;
1096 }
1097
1098 void
1099 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1100 {
1101 assert(stage == MESA_SHADER_FRAGMENT);
1102 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1103 assert(dst.type == BRW_REGISTER_TYPE_F);
1104
1105 if (wm_prog_data->persample_dispatch) {
1106 /* Convert int_sample_pos to floating point */
1107 bld.MOV(dst, int_sample_pos);
1108 /* Scale to the range [0, 1] */
1109 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1110 }
1111 else {
1112 /* From ARB_sample_shading specification:
1113 * "When rendering to a non-multisample buffer, or if multisample
1114 * rasterization is disabled, gl_SamplePosition will always be
1115 * (0.5, 0.5).
1116 */
1117 bld.MOV(dst, brw_imm_f(0.5f));
1118 }
1119 }
1120
1121 fs_reg *
1122 fs_visitor::emit_samplepos_setup()
1123 {
1124 assert(devinfo->gen >= 6);
1125
1126 const fs_builder abld = bld.annotate("compute sample position");
1127 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1128 fs_reg pos = *reg;
1129 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1130 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1131
1132 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1133 * mode will be enabled.
1134 *
1135 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1136 * R31.1:0 Position Offset X/Y for Slot[3:0]
1137 * R31.3:2 Position Offset X/Y for Slot[7:4]
1138 * .....
1139 *
1140 * The X, Y sample positions come in as bytes in thread payload. So, read
1141 * the positions using vstride=16, width=8, hstride=2.
1142 */
1143 struct brw_reg sample_pos_reg =
1144 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1145 BRW_REGISTER_TYPE_B), 16, 8, 2);
1146
1147 if (dispatch_width == 8) {
1148 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1149 } else {
1150 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1151 abld.half(1).MOV(half(int_sample_x, 1),
1152 fs_reg(suboffset(sample_pos_reg, 16)));
1153 }
1154 /* Compute gl_SamplePosition.x */
1155 compute_sample_position(pos, int_sample_x);
1156 pos = offset(pos, abld, 1);
1157 if (dispatch_width == 8) {
1158 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1159 } else {
1160 abld.half(0).MOV(half(int_sample_y, 0),
1161 fs_reg(suboffset(sample_pos_reg, 1)));
1162 abld.half(1).MOV(half(int_sample_y, 1),
1163 fs_reg(suboffset(sample_pos_reg, 17)));
1164 }
1165 /* Compute gl_SamplePosition.y */
1166 compute_sample_position(pos, int_sample_y);
1167 return reg;
1168 }
1169
1170 fs_reg *
1171 fs_visitor::emit_sampleid_setup()
1172 {
1173 assert(stage == MESA_SHADER_FRAGMENT);
1174 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1175 assert(devinfo->gen >= 6);
1176
1177 const fs_builder abld = bld.annotate("compute sample id");
1178 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1179
1180 if (!key->multisample_fbo) {
1181 /* As per GL_ARB_sample_shading specification:
1182 * "When rendering to a non-multisample buffer, or if multisample
1183 * rasterization is disabled, gl_SampleID will always be zero."
1184 */
1185 abld.MOV(*reg, brw_imm_d(0));
1186 } else if (devinfo->gen >= 8) {
1187 /* Sample ID comes in as 4-bit numbers in g1.0:
1188 *
1189 * 15:12 Slot 3 SampleID (only used in SIMD16)
1190 * 11:8 Slot 2 SampleID (only used in SIMD16)
1191 * 7:4 Slot 1 SampleID
1192 * 3:0 Slot 0 SampleID
1193 *
1194 * Each slot corresponds to four channels, so we want to replicate each
1195 * half-byte value to 4 channels in a row:
1196 *
1197 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1198 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1199 *
1200 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1201 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1202 *
1203 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1204 * channels to read the first byte (7:0), and the second group of 8
1205 * channels to read the second byte (15:8). Then, we shift right by
1206 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1207 * values into place. Finally, we AND with 0xf to keep the low nibble.
1208 *
1209 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1210 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1211 *
1212 * TODO: These payload bits exist on Gen7 too, but they appear to always
1213 * be zero, so this code fails to work. We should find out why.
1214 */
1215 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1216
1217 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1218 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1219 brw_imm_v(0x44440000));
1220 abld.AND(*reg, tmp, brw_imm_w(0xf));
1221 } else {
1222 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1223 BRW_REGISTER_TYPE_D), 0);
1224 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1225
1226 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1227 * 8x multisampling, subspan 0 will represent sample N (where N
1228 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1229 * 7. We can find the value of N by looking at R0.0 bits 7:6
1230 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1231 * (since samples are always delivered in pairs). That is, we
1232 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1233 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1234 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1235 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1236 * populating a temporary variable with the sequence (0, 1, 2, 3),
1237 * and then reading from it using vstride=1, width=4, hstride=0.
1238 * These computations hold good for 4x multisampling as well.
1239 *
1240 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1241 * the first four slots are sample 0 of subspan 0; the next four
1242 * are sample 1 of subspan 0; the third group is sample 0 of
1243 * subspan 1, and finally sample 1 of subspan 1.
1244 */
1245
1246 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1247 * accomodate 16x MSAA.
1248 */
1249 abld.exec_all().group(1, 0)
1250 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1251 brw_imm_ud(0xc0));
1252 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1253
1254 /* This works for both SIMD8 and SIMD16 */
1255 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1256
1257 /* This special instruction takes care of setting vstride=1,
1258 * width=4, hstride=0 of t2 during an ADD instruction.
1259 */
1260 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1261 }
1262
1263 return reg;
1264 }
1265
1266 fs_reg *
1267 fs_visitor::emit_samplemaskin_setup()
1268 {
1269 assert(stage == MESA_SHADER_FRAGMENT);
1270 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1271 assert(devinfo->gen >= 6);
1272
1273 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1274
1275 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1276 BRW_REGISTER_TYPE_D));
1277
1278 if (wm_prog_data->persample_dispatch) {
1279 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1280 * and a mask representing which sample is being processed by the
1281 * current shader invocation.
1282 *
1283 * From the OES_sample_variables specification:
1284 * "When per-sample shading is active due to the use of a fragment input
1285 * qualified by "sample" or due to the use of the gl_SampleID or
1286 * gl_SamplePosition variables, only the bit for the current sample is
1287 * set in gl_SampleMaskIn."
1288 */
1289 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1290
1291 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1292 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1293
1294 fs_reg one = vgrf(glsl_type::int_type);
1295 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1296 abld.MOV(one, brw_imm_d(1));
1297 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1298 abld.AND(*reg, enabled_mask, coverage_mask);
1299 } else {
1300 /* In per-pixel mode, the coverage mask is sufficient. */
1301 *reg = coverage_mask;
1302 }
1303 return reg;
1304 }
1305
1306 fs_reg
1307 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1308 {
1309 if (!src.abs && !src.negate)
1310 return src;
1311
1312 fs_reg temp = bld.vgrf(src.type);
1313 bld.MOV(temp, src);
1314
1315 return temp;
1316 }
1317
1318 void
1319 fs_visitor::emit_discard_jump()
1320 {
1321 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1322
1323 /* For performance, after a discard, jump to the end of the
1324 * shader if all relevant channels have been discarded.
1325 */
1326 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1327 discard_jump->flag_subreg = 1;
1328
1329 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1330 discard_jump->predicate_inverse = true;
1331 }
1332
1333 void
1334 fs_visitor::emit_gs_thread_end()
1335 {
1336 assert(stage == MESA_SHADER_GEOMETRY);
1337
1338 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1339
1340 if (gs_compile->control_data_header_size_bits > 0) {
1341 emit_gs_control_data_bits(this->final_gs_vertex_count);
1342 }
1343
1344 const fs_builder abld = bld.annotate("thread end");
1345 fs_inst *inst;
1346
1347 if (gs_prog_data->static_vertex_count != -1) {
1348 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1349 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1350 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1351 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1352 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1353 prev->eot = true;
1354
1355 /* Delete now dead instructions. */
1356 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1357 if (dead == prev)
1358 break;
1359 dead->remove();
1360 }
1361 return;
1362 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1363 break;
1364 }
1365 }
1366 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1367 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1368 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1369 inst->mlen = 1;
1370 } else {
1371 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1372 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1373 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1374 sources[1] = this->final_gs_vertex_count;
1375 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1376 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1377 inst->mlen = 2;
1378 }
1379 inst->eot = true;
1380 inst->offset = 0;
1381 }
1382
1383 void
1384 fs_visitor::assign_curb_setup()
1385 {
1386 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1387
1388 unsigned ubo_push_length = 0;
1389 for (int i = 0; i < 4; i++) {
1390 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1391 }
1392
1393 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1394
1395 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1396 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1397 for (unsigned int i = 0; i < inst->sources; i++) {
1398 if (inst->src[i].file == UNIFORM) {
1399 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1400 int constant_nr;
1401 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1402 constant_nr = push_constant_loc[uniform_nr];
1403 } else {
1404 /* Section 5.11 of the OpenGL 4.1 spec says:
1405 * "Out-of-bounds reads return undefined values, which include
1406 * values from other variables of the active program or zero."
1407 * Just return the first push constant.
1408 */
1409 constant_nr = 0;
1410 }
1411
1412 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1413 constant_nr / 8,
1414 constant_nr % 8);
1415 brw_reg.abs = inst->src[i].abs;
1416 brw_reg.negate = inst->src[i].negate;
1417
1418 assert(inst->src[i].stride == 0);
1419 inst->src[i] = byte_offset(
1420 retype(brw_reg, inst->src[i].type),
1421 inst->src[i].offset % 4);
1422 }
1423 }
1424 }
1425
1426 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1427 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1428 }
1429
1430 void
1431 fs_visitor::calculate_urb_setup()
1432 {
1433 assert(stage == MESA_SHADER_FRAGMENT);
1434 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1435 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1436
1437 memset(prog_data->urb_setup, -1,
1438 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1439
1440 int urb_next = 0;
1441 /* Figure out where each of the incoming setup attributes lands. */
1442 if (devinfo->gen >= 6) {
1443 if (_mesa_bitcount_64(nir->info.inputs_read &
1444 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1445 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1446 * first 16 varying inputs, so we can put them wherever we want.
1447 * Just put them in order.
1448 *
1449 * This is useful because it means that (a) inputs not used by the
1450 * fragment shader won't take up valuable register space, and (b) we
1451 * won't have to recompile the fragment shader if it gets paired with
1452 * a different vertex (or geometry) shader.
1453 */
1454 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1455 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1456 BITFIELD64_BIT(i)) {
1457 prog_data->urb_setup[i] = urb_next++;
1458 }
1459 }
1460 } else {
1461 bool include_vue_header =
1462 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1463
1464 /* We have enough input varyings that the SF/SBE pipeline stage can't
1465 * arbitrarily rearrange them to suit our whim; we have to put them
1466 * in an order that matches the output of the previous pipeline stage
1467 * (geometry or vertex shader).
1468 */
1469 struct brw_vue_map prev_stage_vue_map;
1470 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1471 key->input_slots_valid,
1472 nir->info.separate_shader);
1473 int first_slot =
1474 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1475
1476 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1477 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1478 slot++) {
1479 int varying = prev_stage_vue_map.slot_to_varying[slot];
1480 if (varying != BRW_VARYING_SLOT_PAD &&
1481 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1482 BITFIELD64_BIT(varying))) {
1483 prog_data->urb_setup[varying] = slot - first_slot;
1484 }
1485 }
1486 urb_next = prev_stage_vue_map.num_slots - first_slot;
1487 }
1488 } else {
1489 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1490 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1491 /* Point size is packed into the header, not as a general attribute */
1492 if (i == VARYING_SLOT_PSIZ)
1493 continue;
1494
1495 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1496 /* The back color slot is skipped when the front color is
1497 * also written to. In addition, some slots can be
1498 * written in the vertex shader and not read in the
1499 * fragment shader. So the register number must always be
1500 * incremented, mapped or not.
1501 */
1502 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1503 prog_data->urb_setup[i] = urb_next;
1504 urb_next++;
1505 }
1506 }
1507
1508 /*
1509 * It's a FS only attribute, and we did interpolation for this attribute
1510 * in SF thread. So, count it here, too.
1511 *
1512 * See compile_sf_prog() for more info.
1513 */
1514 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1515 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1516 }
1517
1518 prog_data->num_varying_inputs = urb_next;
1519 }
1520
1521 void
1522 fs_visitor::assign_urb_setup()
1523 {
1524 assert(stage == MESA_SHADER_FRAGMENT);
1525 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1526
1527 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1528
1529 /* Offset all the urb_setup[] index by the actual position of the
1530 * setup regs, now that the location of the constants has been chosen.
1531 */
1532 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1533 if (inst->opcode == FS_OPCODE_LINTERP) {
1534 assert(inst->src[1].file == FIXED_GRF);
1535 inst->src[1].nr += urb_start;
1536 }
1537
1538 if (inst->opcode == FS_OPCODE_CINTERP) {
1539 assert(inst->src[0].file == FIXED_GRF);
1540 inst->src[0].nr += urb_start;
1541 }
1542 }
1543
1544 /* Each attribute is 4 setup channels, each of which is half a reg. */
1545 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1546 }
1547
1548 void
1549 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1550 {
1551 for (int i = 0; i < inst->sources; i++) {
1552 if (inst->src[i].file == ATTR) {
1553 int grf = payload.num_regs +
1554 prog_data->curb_read_length +
1555 inst->src[i].nr +
1556 inst->src[i].offset / REG_SIZE;
1557
1558 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1559 *
1560 * VertStride must be used to cross GRF register boundaries. This
1561 * rule implies that elements within a 'Width' cannot cross GRF
1562 * boundaries.
1563 *
1564 * So, for registers that are large enough, we have to split the exec
1565 * size in two and trust the compression state to sort it out.
1566 */
1567 unsigned total_size = inst->exec_size *
1568 inst->src[i].stride *
1569 type_sz(inst->src[i].type);
1570
1571 assert(total_size <= 2 * REG_SIZE);
1572 const unsigned exec_size =
1573 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1574
1575 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1576 struct brw_reg reg =
1577 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1578 inst->src[i].offset % REG_SIZE),
1579 exec_size * inst->src[i].stride,
1580 width, inst->src[i].stride);
1581 reg.abs = inst->src[i].abs;
1582 reg.negate = inst->src[i].negate;
1583
1584 inst->src[i] = reg;
1585 }
1586 }
1587 }
1588
1589 void
1590 fs_visitor::assign_vs_urb_setup()
1591 {
1592 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1593
1594 assert(stage == MESA_SHADER_VERTEX);
1595
1596 /* Each attribute is 4 regs. */
1597 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1598
1599 assert(vs_prog_data->base.urb_read_length <= 15);
1600
1601 /* Rewrite all ATTR file references to the hw grf that they land in. */
1602 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1603 convert_attr_sources_to_hw_regs(inst);
1604 }
1605 }
1606
1607 void
1608 fs_visitor::assign_tcs_single_patch_urb_setup()
1609 {
1610 assert(stage == MESA_SHADER_TESS_CTRL);
1611
1612 /* Rewrite all ATTR file references to HW_REGs. */
1613 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1614 convert_attr_sources_to_hw_regs(inst);
1615 }
1616 }
1617
1618 void
1619 fs_visitor::assign_tes_urb_setup()
1620 {
1621 assert(stage == MESA_SHADER_TESS_EVAL);
1622
1623 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1624
1625 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1626
1627 /* Rewrite all ATTR file references to HW_REGs. */
1628 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1629 convert_attr_sources_to_hw_regs(inst);
1630 }
1631 }
1632
1633 void
1634 fs_visitor::assign_gs_urb_setup()
1635 {
1636 assert(stage == MESA_SHADER_GEOMETRY);
1637
1638 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1639
1640 first_non_payload_grf +=
1641 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1642
1643 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1644 /* Rewrite all ATTR file references to GRFs. */
1645 convert_attr_sources_to_hw_regs(inst);
1646 }
1647 }
1648
1649
1650 /**
1651 * Split large virtual GRFs into separate components if we can.
1652 *
1653 * This is mostly duplicated with what brw_fs_vector_splitting does,
1654 * but that's really conservative because it's afraid of doing
1655 * splitting that doesn't result in real progress after the rest of
1656 * the optimization phases, which would cause infinite looping in
1657 * optimization. We can do it once here, safely. This also has the
1658 * opportunity to split interpolated values, or maybe even uniforms,
1659 * which we don't have at the IR level.
1660 *
1661 * We want to split, because virtual GRFs are what we register
1662 * allocate and spill (due to contiguousness requirements for some
1663 * instructions), and they're what we naturally generate in the
1664 * codegen process, but most virtual GRFs don't actually need to be
1665 * contiguous sets of GRFs. If we split, we'll end up with reduced
1666 * live intervals and better dead code elimination and coalescing.
1667 */
1668 void
1669 fs_visitor::split_virtual_grfs()
1670 {
1671 /* Compact the register file so we eliminate dead vgrfs. This
1672 * only defines split points for live registers, so if we have
1673 * too large dead registers they will hit assertions later.
1674 */
1675 compact_virtual_grfs();
1676
1677 int num_vars = this->alloc.count;
1678
1679 /* Count the total number of registers */
1680 int reg_count = 0;
1681 int vgrf_to_reg[num_vars];
1682 for (int i = 0; i < num_vars; i++) {
1683 vgrf_to_reg[i] = reg_count;
1684 reg_count += alloc.sizes[i];
1685 }
1686
1687 /* An array of "split points". For each register slot, this indicates
1688 * if this slot can be separated from the previous slot. Every time an
1689 * instruction uses multiple elements of a register (as a source or
1690 * destination), we mark the used slots as inseparable. Then we go
1691 * through and split the registers into the smallest pieces we can.
1692 */
1693 bool split_points[reg_count];
1694 memset(split_points, 0, sizeof(split_points));
1695
1696 /* Mark all used registers as fully splittable */
1697 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1698 if (inst->dst.file == VGRF) {
1699 int reg = vgrf_to_reg[inst->dst.nr];
1700 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1701 split_points[reg + j] = true;
1702 }
1703
1704 for (int i = 0; i < inst->sources; i++) {
1705 if (inst->src[i].file == VGRF) {
1706 int reg = vgrf_to_reg[inst->src[i].nr];
1707 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1708 split_points[reg + j] = true;
1709 }
1710 }
1711 }
1712
1713 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1714 if (inst->dst.file == VGRF) {
1715 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1716 for (unsigned j = 1; j < regs_written(inst); j++)
1717 split_points[reg + j] = false;
1718 }
1719 for (int i = 0; i < inst->sources; i++) {
1720 if (inst->src[i].file == VGRF) {
1721 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1722 for (unsigned j = 1; j < regs_read(inst, i); j++)
1723 split_points[reg + j] = false;
1724 }
1725 }
1726 }
1727
1728 int new_virtual_grf[reg_count];
1729 int new_reg_offset[reg_count];
1730
1731 int reg = 0;
1732 for (int i = 0; i < num_vars; i++) {
1733 /* The first one should always be 0 as a quick sanity check. */
1734 assert(split_points[reg] == false);
1735
1736 /* j = 0 case */
1737 new_reg_offset[reg] = 0;
1738 reg++;
1739 int offset = 1;
1740
1741 /* j > 0 case */
1742 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1743 /* If this is a split point, reset the offset to 0 and allocate a
1744 * new virtual GRF for the previous offset many registers
1745 */
1746 if (split_points[reg]) {
1747 assert(offset <= MAX_VGRF_SIZE);
1748 int grf = alloc.allocate(offset);
1749 for (int k = reg - offset; k < reg; k++)
1750 new_virtual_grf[k] = grf;
1751 offset = 0;
1752 }
1753 new_reg_offset[reg] = offset;
1754 offset++;
1755 reg++;
1756 }
1757
1758 /* The last one gets the original register number */
1759 assert(offset <= MAX_VGRF_SIZE);
1760 alloc.sizes[i] = offset;
1761 for (int k = reg - offset; k < reg; k++)
1762 new_virtual_grf[k] = i;
1763 }
1764 assert(reg == reg_count);
1765
1766 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1767 if (inst->dst.file == VGRF) {
1768 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1769 inst->dst.nr = new_virtual_grf[reg];
1770 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1771 inst->dst.offset % REG_SIZE;
1772 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1773 }
1774 for (int i = 0; i < inst->sources; i++) {
1775 if (inst->src[i].file == VGRF) {
1776 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1777 inst->src[i].nr = new_virtual_grf[reg];
1778 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1779 inst->src[i].offset % REG_SIZE;
1780 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1781 }
1782 }
1783 }
1784 invalidate_live_intervals();
1785 }
1786
1787 /**
1788 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1789 *
1790 * During code generation, we create tons of temporary variables, many of
1791 * which get immediately killed and are never used again. Yet, in later
1792 * optimization and analysis passes, such as compute_live_intervals, we need
1793 * to loop over all the virtual GRFs. Compacting them can save a lot of
1794 * overhead.
1795 */
1796 bool
1797 fs_visitor::compact_virtual_grfs()
1798 {
1799 bool progress = false;
1800 int remap_table[this->alloc.count];
1801 memset(remap_table, -1, sizeof(remap_table));
1802
1803 /* Mark which virtual GRFs are used. */
1804 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1805 if (inst->dst.file == VGRF)
1806 remap_table[inst->dst.nr] = 0;
1807
1808 for (int i = 0; i < inst->sources; i++) {
1809 if (inst->src[i].file == VGRF)
1810 remap_table[inst->src[i].nr] = 0;
1811 }
1812 }
1813
1814 /* Compact the GRF arrays. */
1815 int new_index = 0;
1816 for (unsigned i = 0; i < this->alloc.count; i++) {
1817 if (remap_table[i] == -1) {
1818 /* We just found an unused register. This means that we are
1819 * actually going to compact something.
1820 */
1821 progress = true;
1822 } else {
1823 remap_table[i] = new_index;
1824 alloc.sizes[new_index] = alloc.sizes[i];
1825 invalidate_live_intervals();
1826 ++new_index;
1827 }
1828 }
1829
1830 this->alloc.count = new_index;
1831
1832 /* Patch all the instructions to use the newly renumbered registers */
1833 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1834 if (inst->dst.file == VGRF)
1835 inst->dst.nr = remap_table[inst->dst.nr];
1836
1837 for (int i = 0; i < inst->sources; i++) {
1838 if (inst->src[i].file == VGRF)
1839 inst->src[i].nr = remap_table[inst->src[i].nr];
1840 }
1841 }
1842
1843 /* Patch all the references to delta_xy, since they're used in register
1844 * allocation. If they're unused, switch them to BAD_FILE so we don't
1845 * think some random VGRF is delta_xy.
1846 */
1847 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1848 if (delta_xy[i].file == VGRF) {
1849 if (remap_table[delta_xy[i].nr] != -1) {
1850 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1851 } else {
1852 delta_xy[i].file = BAD_FILE;
1853 }
1854 }
1855 }
1856
1857 return progress;
1858 }
1859
1860 static void
1861 set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1862 unsigned *max_chunk_bitsize,
1863 bool contiguous, unsigned bitsize,
1864 const unsigned target_bitsize,
1865 int *push_constant_loc, int *pull_constant_loc,
1866 unsigned *num_push_constants,
1867 unsigned *num_pull_constants,
1868 const unsigned max_push_components,
1869 const unsigned max_chunk_size,
1870 struct brw_stage_prog_data *stage_prog_data)
1871 {
1872 /* This is the first live uniform in the chunk */
1873 if (*chunk_start < 0)
1874 *chunk_start = uniform;
1875
1876 /* Keep track of the maximum bit size access in contiguous uniforms */
1877 *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1878
1879 /* If this element does not need to be contiguous with the next, we
1880 * split at this point and everything between chunk_start and u forms a
1881 * single chunk.
1882 */
1883 if (!contiguous) {
1884 /* If bitsize doesn't match the target one, skip it */
1885 if (*max_chunk_bitsize != target_bitsize) {
1886 /* FIXME: right now we only support 32 and 64-bit accesses */
1887 assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1888 *max_chunk_bitsize = 0;
1889 *chunk_start = -1;
1890 return;
1891 }
1892
1893 unsigned chunk_size = uniform - *chunk_start + 1;
1894
1895 /* Decide whether we should push or pull this parameter. In the
1896 * Vulkan driver, push constants are explicitly exposed via the API
1897 * so we push everything. In GL, we only push small arrays.
1898 */
1899 if (stage_prog_data->pull_param == NULL ||
1900 (*num_push_constants + chunk_size <= max_push_components &&
1901 chunk_size <= max_chunk_size)) {
1902 assert(*num_push_constants + chunk_size <= max_push_components);
1903 for (unsigned j = *chunk_start; j <= uniform; j++)
1904 push_constant_loc[j] = (*num_push_constants)++;
1905 } else {
1906 for (unsigned j = *chunk_start; j <= uniform; j++)
1907 pull_constant_loc[j] = (*num_pull_constants)++;
1908 }
1909
1910 *max_chunk_bitsize = 0;
1911 *chunk_start = -1;
1912 }
1913 }
1914
1915 /**
1916 * Assign UNIFORM file registers to either push constants or pull constants.
1917 *
1918 * We allow a fragment shader to have more than the specified minimum
1919 * maximum number of fragment shader uniform components (64). If
1920 * there are too many of these, they'd fill up all of register space.
1921 * So, this will push some of them out to the pull constant buffer and
1922 * update the program to load them.
1923 */
1924 void
1925 fs_visitor::assign_constant_locations()
1926 {
1927 /* Only the first compile gets to decide on locations. */
1928 if (dispatch_width != min_dispatch_width)
1929 return;
1930
1931 bool is_live[uniforms];
1932 memset(is_live, 0, sizeof(is_live));
1933 unsigned bitsize_access[uniforms];
1934 memset(bitsize_access, 0, sizeof(bitsize_access));
1935
1936 /* For each uniform slot, a value of true indicates that the given slot and
1937 * the next slot must remain contiguous. This is used to keep us from
1938 * splitting arrays apart.
1939 */
1940 bool contiguous[uniforms];
1941 memset(contiguous, 0, sizeof(contiguous));
1942
1943 int thread_local_id_index =
1944 (stage == MESA_SHADER_COMPUTE) ?
1945 brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1946
1947 /* First, we walk through the instructions and do two things:
1948 *
1949 * 1) Figure out which uniforms are live.
1950 *
1951 * 2) Mark any indirectly used ranges of registers as contiguous.
1952 *
1953 * Note that we don't move constant-indexed accesses to arrays. No
1954 * testing has been done of the performance impact of this choice.
1955 */
1956 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1957 for (int i = 0 ; i < inst->sources; i++) {
1958 if (inst->src[i].file != UNIFORM)
1959 continue;
1960
1961 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1962
1963 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1964 assert(inst->src[2].ud % 4 == 0);
1965 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1966 assert(last < uniforms);
1967
1968 for (unsigned j = constant_nr; j < last; j++) {
1969 is_live[j] = true;
1970 contiguous[j] = true;
1971 bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
1972 }
1973 is_live[last] = true;
1974 bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
1975 } else {
1976 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1977 int regs_read = inst->components_read(i) *
1978 type_sz(inst->src[i].type) / 4;
1979 for (int j = 0; j < regs_read; j++) {
1980 is_live[constant_nr + j] = true;
1981 bitsize_access[constant_nr + j] =
1982 MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
1983 }
1984 }
1985 }
1986 }
1987 }
1988
1989 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
1990 thread_local_id_index = -1;
1991
1992 /* Only allow 16 registers (128 uniform components) as push constants.
1993 *
1994 * Just demote the end of the list. We could probably do better
1995 * here, demoting things that are rarely used in the program first.
1996 *
1997 * If changing this value, note the limitation about total_regs in
1998 * brw_curbe.c.
1999 */
2000 unsigned int max_push_components = 16 * 8;
2001 if (thread_local_id_index >= 0)
2002 max_push_components--; /* Save a slot for the thread ID */
2003
2004 /* We push small arrays, but no bigger than 16 floats. This is big enough
2005 * for a vec4 but hopefully not large enough to push out other stuff. We
2006 * should probably use a better heuristic at some point.
2007 */
2008 const unsigned int max_chunk_size = 16;
2009
2010 unsigned int num_push_constants = 0;
2011 unsigned int num_pull_constants = 0;
2012
2013 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2014 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2015
2016 /* Default to -1 meaning no location */
2017 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2018 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2019
2020 int chunk_start = -1;
2021 unsigned max_chunk_bitsize = 0;
2022
2023 /* First push 64-bit uniforms to ensure they are properly aligned */
2024 const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2025 for (unsigned u = 0; u < uniforms; u++) {
2026 if (!is_live[u])
2027 continue;
2028
2029 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2030 contiguous[u], bitsize_access[u],
2031 uniform_64_bit_size,
2032 push_constant_loc, pull_constant_loc,
2033 &num_push_constants, &num_pull_constants,
2034 max_push_components, max_chunk_size,
2035 stage_prog_data);
2036
2037 }
2038
2039 /* Then push the rest of uniforms */
2040 const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2041 for (unsigned u = 0; u < uniforms; u++) {
2042 if (!is_live[u])
2043 continue;
2044
2045 /* Skip thread_local_id_index to put it in the last push register. */
2046 if (thread_local_id_index == (int)u)
2047 continue;
2048
2049 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2050 contiguous[u], bitsize_access[u],
2051 uniform_32_bit_size,
2052 push_constant_loc, pull_constant_loc,
2053 &num_push_constants, &num_pull_constants,
2054 max_push_components, max_chunk_size,
2055 stage_prog_data);
2056 }
2057
2058 /* Add the CS local thread ID uniform at the end of the push constants */
2059 if (thread_local_id_index >= 0)
2060 push_constant_loc[thread_local_id_index] = num_push_constants++;
2061
2062 /* As the uniforms are going to be reordered, take the data from a temporary
2063 * copy of the original param[].
2064 */
2065 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2066 stage_prog_data->nr_params);
2067 memcpy(param, stage_prog_data->param,
2068 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2069 stage_prog_data->nr_params = num_push_constants;
2070 stage_prog_data->nr_pull_params = num_pull_constants;
2071
2072 /* Up until now, the param[] array has been indexed by reg + offset
2073 * of UNIFORM registers. Move pull constants into pull_param[] and
2074 * condense param[] to only contain the uniforms we chose to push.
2075 *
2076 * NOTE: Because we are condensing the params[] array, we know that
2077 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2078 * having to make a copy.
2079 */
2080 int new_thread_local_id_index = -1;
2081 for (unsigned int i = 0; i < uniforms; i++) {
2082 const gl_constant_value *value = param[i];
2083
2084 if (pull_constant_loc[i] != -1) {
2085 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2086 } else if (push_constant_loc[i] != -1) {
2087 stage_prog_data->param[push_constant_loc[i]] = value;
2088 if (thread_local_id_index == (int)i)
2089 new_thread_local_id_index = push_constant_loc[i];
2090 }
2091 }
2092 ralloc_free(param);
2093
2094 if (stage == MESA_SHADER_COMPUTE)
2095 brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2096 new_thread_local_id_index;
2097 }
2098
2099 /**
2100 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2101 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2102 */
2103 void
2104 fs_visitor::lower_constant_loads()
2105 {
2106 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2107
2108 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2109 /* Set up the annotation tracking for new generated instructions. */
2110 const fs_builder ibld(this, block, inst);
2111
2112 for (int i = 0; i < inst->sources; i++) {
2113 if (inst->src[i].file != UNIFORM)
2114 continue;
2115
2116 /* We'll handle this case later */
2117 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2118 continue;
2119
2120 unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
2121 if (location >= uniforms)
2122 continue; /* Out of bounds access */
2123
2124 int pull_index = pull_constant_loc[location];
2125
2126 if (pull_index == -1)
2127 continue;
2128
2129 assert(inst->src[i].stride == 0);
2130
2131 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2132 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2133 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2134 const unsigned base = pull_index * 4;
2135
2136 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2137 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2138
2139 /* Rewrite the instruction to use the temporary VGRF. */
2140 inst->src[i].file = VGRF;
2141 inst->src[i].nr = dst.nr;
2142 inst->src[i].offset = (base & (block_sz - 1)) +
2143 inst->src[i].offset % 4;
2144
2145 brw_mark_surface_used(prog_data, index);
2146 }
2147
2148 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2149 inst->src[0].file == UNIFORM) {
2150
2151 unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
2152 if (location >= uniforms)
2153 continue; /* Out of bounds access */
2154
2155 int pull_index = pull_constant_loc[location];
2156
2157 if (pull_index == -1)
2158 continue;
2159
2160 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2161 brw_imm_ud(index),
2162 inst->src[1],
2163 pull_index * 4);
2164 inst->remove(block);
2165
2166 brw_mark_surface_used(prog_data, index);
2167 }
2168 }
2169 invalidate_live_intervals();
2170 }
2171
2172 bool
2173 fs_visitor::opt_algebraic()
2174 {
2175 bool progress = false;
2176
2177 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2178 switch (inst->opcode) {
2179 case BRW_OPCODE_MOV:
2180 if (inst->src[0].file != IMM)
2181 break;
2182
2183 if (inst->saturate) {
2184 if (inst->dst.type != inst->src[0].type)
2185 assert(!"unimplemented: saturate mixed types");
2186
2187 if (brw_saturate_immediate(inst->dst.type,
2188 &inst->src[0].as_brw_reg())) {
2189 inst->saturate = false;
2190 progress = true;
2191 }
2192 }
2193 break;
2194
2195 case BRW_OPCODE_MUL:
2196 if (inst->src[1].file != IMM)
2197 continue;
2198
2199 /* a * 1.0 = a */
2200 if (inst->src[1].is_one()) {
2201 inst->opcode = BRW_OPCODE_MOV;
2202 inst->src[1] = reg_undef;
2203 progress = true;
2204 break;
2205 }
2206
2207 /* a * -1.0 = -a */
2208 if (inst->src[1].is_negative_one()) {
2209 inst->opcode = BRW_OPCODE_MOV;
2210 inst->src[0].negate = !inst->src[0].negate;
2211 inst->src[1] = reg_undef;
2212 progress = true;
2213 break;
2214 }
2215
2216 /* a * 0.0 = 0.0 */
2217 if (inst->src[1].is_zero()) {
2218 inst->opcode = BRW_OPCODE_MOV;
2219 inst->src[0] = inst->src[1];
2220 inst->src[1] = reg_undef;
2221 progress = true;
2222 break;
2223 }
2224
2225 if (inst->src[0].file == IMM) {
2226 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2227 inst->opcode = BRW_OPCODE_MOV;
2228 inst->src[0].f *= inst->src[1].f;
2229 inst->src[1] = reg_undef;
2230 progress = true;
2231 break;
2232 }
2233 break;
2234 case BRW_OPCODE_ADD:
2235 if (inst->src[1].file != IMM)
2236 continue;
2237
2238 /* a + 0.0 = a */
2239 if (inst->src[1].is_zero()) {
2240 inst->opcode = BRW_OPCODE_MOV;
2241 inst->src[1] = reg_undef;
2242 progress = true;
2243 break;
2244 }
2245
2246 if (inst->src[0].file == IMM) {
2247 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2248 inst->opcode = BRW_OPCODE_MOV;
2249 inst->src[0].f += inst->src[1].f;
2250 inst->src[1] = reg_undef;
2251 progress = true;
2252 break;
2253 }
2254 break;
2255 case BRW_OPCODE_OR:
2256 if (inst->src[0].equals(inst->src[1])) {
2257 inst->opcode = BRW_OPCODE_MOV;
2258 inst->src[1] = reg_undef;
2259 progress = true;
2260 break;
2261 }
2262 break;
2263 case BRW_OPCODE_LRP:
2264 if (inst->src[1].equals(inst->src[2])) {
2265 inst->opcode = BRW_OPCODE_MOV;
2266 inst->src[0] = inst->src[1];
2267 inst->src[1] = reg_undef;
2268 inst->src[2] = reg_undef;
2269 progress = true;
2270 break;
2271 }
2272 break;
2273 case BRW_OPCODE_CMP:
2274 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2275 inst->src[0].abs &&
2276 inst->src[0].negate &&
2277 inst->src[1].is_zero()) {
2278 inst->src[0].abs = false;
2279 inst->src[0].negate = false;
2280 inst->conditional_mod = BRW_CONDITIONAL_Z;
2281 progress = true;
2282 break;
2283 }
2284 break;
2285 case BRW_OPCODE_SEL:
2286 if (inst->src[0].equals(inst->src[1])) {
2287 inst->opcode = BRW_OPCODE_MOV;
2288 inst->src[1] = reg_undef;
2289 inst->predicate = BRW_PREDICATE_NONE;
2290 inst->predicate_inverse = false;
2291 progress = true;
2292 } else if (inst->saturate && inst->src[1].file == IMM) {
2293 switch (inst->conditional_mod) {
2294 case BRW_CONDITIONAL_LE:
2295 case BRW_CONDITIONAL_L:
2296 switch (inst->src[1].type) {
2297 case BRW_REGISTER_TYPE_F:
2298 if (inst->src[1].f >= 1.0f) {
2299 inst->opcode = BRW_OPCODE_MOV;
2300 inst->src[1] = reg_undef;
2301 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2302 progress = true;
2303 }
2304 break;
2305 default:
2306 break;
2307 }
2308 break;
2309 case BRW_CONDITIONAL_GE:
2310 case BRW_CONDITIONAL_G:
2311 switch (inst->src[1].type) {
2312 case BRW_REGISTER_TYPE_F:
2313 if (inst->src[1].f <= 0.0f) {
2314 inst->opcode = BRW_OPCODE_MOV;
2315 inst->src[1] = reg_undef;
2316 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2317 progress = true;
2318 }
2319 break;
2320 default:
2321 break;
2322 }
2323 default:
2324 break;
2325 }
2326 }
2327 break;
2328 case BRW_OPCODE_MAD:
2329 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2330 inst->opcode = BRW_OPCODE_MOV;
2331 inst->src[1] = reg_undef;
2332 inst->src[2] = reg_undef;
2333 progress = true;
2334 } else if (inst->src[0].is_zero()) {
2335 inst->opcode = BRW_OPCODE_MUL;
2336 inst->src[0] = inst->src[2];
2337 inst->src[2] = reg_undef;
2338 progress = true;
2339 } else if (inst->src[1].is_one()) {
2340 inst->opcode = BRW_OPCODE_ADD;
2341 inst->src[1] = inst->src[2];
2342 inst->src[2] = reg_undef;
2343 progress = true;
2344 } else if (inst->src[2].is_one()) {
2345 inst->opcode = BRW_OPCODE_ADD;
2346 inst->src[2] = reg_undef;
2347 progress = true;
2348 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2349 inst->opcode = BRW_OPCODE_ADD;
2350 inst->src[1].f *= inst->src[2].f;
2351 inst->src[2] = reg_undef;
2352 progress = true;
2353 }
2354 break;
2355 case SHADER_OPCODE_BROADCAST:
2356 if (is_uniform(inst->src[0])) {
2357 inst->opcode = BRW_OPCODE_MOV;
2358 inst->sources = 1;
2359 inst->force_writemask_all = true;
2360 progress = true;
2361 } else if (inst->src[1].file == IMM) {
2362 inst->opcode = BRW_OPCODE_MOV;
2363 inst->src[0] = component(inst->src[0],
2364 inst->src[1].ud);
2365 inst->sources = 1;
2366 inst->force_writemask_all = true;
2367 progress = true;
2368 }
2369 break;
2370
2371 default:
2372 break;
2373 }
2374
2375 /* Swap if src[0] is immediate. */
2376 if (progress && inst->is_commutative()) {
2377 if (inst->src[0].file == IMM) {
2378 fs_reg tmp = inst->src[1];
2379 inst->src[1] = inst->src[0];
2380 inst->src[0] = tmp;
2381 }
2382 }
2383 }
2384 return progress;
2385 }
2386
2387 /**
2388 * Optimize sample messages that have constant zero values for the trailing
2389 * texture coordinates. We can just reduce the message length for these
2390 * instructions instead of reserving a register for it. Trailing parameters
2391 * that aren't sent default to zero anyway. This will cause the dead code
2392 * eliminator to remove the MOV instruction that would otherwise be emitted to
2393 * set up the zero value.
2394 */
2395 bool
2396 fs_visitor::opt_zero_samples()
2397 {
2398 /* Gen4 infers the texturing opcode based on the message length so we can't
2399 * change it.
2400 */
2401 if (devinfo->gen < 5)
2402 return false;
2403
2404 bool progress = false;
2405
2406 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2407 if (!inst->is_tex())
2408 continue;
2409
2410 fs_inst *load_payload = (fs_inst *) inst->prev;
2411
2412 if (load_payload->is_head_sentinel() ||
2413 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2414 continue;
2415
2416 /* We don't want to remove the message header or the first parameter.
2417 * Removing the first parameter is not allowed, see the Haswell PRM
2418 * volume 7, page 149:
2419 *
2420 * "Parameter 0 is required except for the sampleinfo message, which
2421 * has no parameter 0"
2422 */
2423 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2424 load_payload->src[(inst->mlen - inst->header_size) /
2425 (inst->exec_size / 8) +
2426 inst->header_size - 1].is_zero()) {
2427 inst->mlen -= inst->exec_size / 8;
2428 progress = true;
2429 }
2430 }
2431
2432 if (progress)
2433 invalidate_live_intervals();
2434
2435 return progress;
2436 }
2437
2438 /**
2439 * Optimize sample messages which are followed by the final RT write.
2440 *
2441 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2442 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2443 * final texturing results copied to the framebuffer write payload and modify
2444 * them to write to the framebuffer directly.
2445 */
2446 bool
2447 fs_visitor::opt_sampler_eot()
2448 {
2449 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2450
2451 if (stage != MESA_SHADER_FRAGMENT)
2452 return false;
2453
2454 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2455 return false;
2456
2457 /* FINISHME: It should be possible to implement this optimization when there
2458 * are multiple drawbuffers.
2459 */
2460 if (key->nr_color_regions != 1)
2461 return false;
2462
2463 /* Requires emitting a bunch of saturating MOV instructions during logical
2464 * send lowering to clamp the color payload, which the sampler unit isn't
2465 * going to do for us.
2466 */
2467 if (key->clamp_fragment_color)
2468 return false;
2469
2470 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2471 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2472 fs_inst *fb_write = (fs_inst *)block->end();
2473 assert(fb_write->eot);
2474 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2475
2476 /* There wasn't one; nothing to do. */
2477 if (unlikely(fb_write->prev->is_head_sentinel()))
2478 return false;
2479
2480 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2481
2482 /* 3D Sampler » Messages » Message Format
2483 *
2484 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2485 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2486 */
2487 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2488 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2489 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2490 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2491 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2492 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2493 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2494 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2495 return false;
2496
2497 /* XXX - This shouldn't be necessary. */
2498 if (tex_inst->prev->is_head_sentinel())
2499 return false;
2500
2501 /* Check that the FB write sources are fully initialized by the single
2502 * texturing instruction.
2503 */
2504 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2505 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2506 if (!fb_write->src[i].equals(tex_inst->dst) ||
2507 fb_write->size_read(i) != tex_inst->size_written)
2508 return false;
2509 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2510 if (fb_write->src[i].file != BAD_FILE)
2511 return false;
2512 }
2513 }
2514
2515 assert(!tex_inst->eot); /* We can't get here twice */
2516 assert((tex_inst->offset & (0xff << 24)) == 0);
2517
2518 const fs_builder ibld(this, block, tex_inst);
2519
2520 tex_inst->offset |= fb_write->target << 24;
2521 tex_inst->eot = true;
2522 tex_inst->dst = ibld.null_reg_ud();
2523 tex_inst->size_written = 0;
2524 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2525
2526 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2527 * flag and submit a header together with the sampler message as required
2528 * by the hardware.
2529 */
2530 invalidate_live_intervals();
2531 return true;
2532 }
2533
2534 bool
2535 fs_visitor::opt_register_renaming()
2536 {
2537 bool progress = false;
2538 int depth = 0;
2539
2540 int remap[alloc.count];
2541 memset(remap, -1, sizeof(int) * alloc.count);
2542
2543 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2544 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2545 depth++;
2546 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2547 inst->opcode == BRW_OPCODE_WHILE) {
2548 depth--;
2549 }
2550
2551 /* Rewrite instruction sources. */
2552 for (int i = 0; i < inst->sources; i++) {
2553 if (inst->src[i].file == VGRF &&
2554 remap[inst->src[i].nr] != -1 &&
2555 remap[inst->src[i].nr] != inst->src[i].nr) {
2556 inst->src[i].nr = remap[inst->src[i].nr];
2557 progress = true;
2558 }
2559 }
2560
2561 const int dst = inst->dst.nr;
2562
2563 if (depth == 0 &&
2564 inst->dst.file == VGRF &&
2565 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2566 !inst->is_partial_write()) {
2567 if (remap[dst] == -1) {
2568 remap[dst] = dst;
2569 } else {
2570 remap[dst] = alloc.allocate(regs_written(inst));
2571 inst->dst.nr = remap[dst];
2572 progress = true;
2573 }
2574 } else if (inst->dst.file == VGRF &&
2575 remap[dst] != -1 &&
2576 remap[dst] != dst) {
2577 inst->dst.nr = remap[dst];
2578 progress = true;
2579 }
2580 }
2581
2582 if (progress) {
2583 invalidate_live_intervals();
2584
2585 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2586 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2587 delta_xy[i].nr = remap[delta_xy[i].nr];
2588 }
2589 }
2590 }
2591
2592 return progress;
2593 }
2594
2595 /**
2596 * Remove redundant or useless discard jumps.
2597 *
2598 * For example, we can eliminate jumps in the following sequence:
2599 *
2600 * discard-jump (redundant with the next jump)
2601 * discard-jump (useless; jumps to the next instruction)
2602 * placeholder-halt
2603 */
2604 bool
2605 fs_visitor::opt_redundant_discard_jumps()
2606 {
2607 bool progress = false;
2608
2609 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2610
2611 fs_inst *placeholder_halt = NULL;
2612 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2613 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2614 placeholder_halt = inst;
2615 break;
2616 }
2617 }
2618
2619 if (!placeholder_halt)
2620 return false;
2621
2622 /* Delete any HALTs immediately before the placeholder halt. */
2623 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2624 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2625 prev = (fs_inst *) placeholder_halt->prev) {
2626 prev->remove(last_bblock);
2627 progress = true;
2628 }
2629
2630 if (progress)
2631 invalidate_live_intervals();
2632
2633 return progress;
2634 }
2635
2636 /**
2637 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2638 * from \p r.offset which overlaps the region starting at \p s.offset and
2639 * spanning \p ds bytes.
2640 */
2641 static inline unsigned
2642 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2643 {
2644 const int rel_offset = reg_offset(s) - reg_offset(r);
2645 const int shift = rel_offset / REG_SIZE;
2646 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2647 assert(reg_space(r) == reg_space(s) &&
2648 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2649 return ((1 << n) - 1) << shift;
2650 }
2651
2652 bool
2653 fs_visitor::compute_to_mrf()
2654 {
2655 bool progress = false;
2656 int next_ip = 0;
2657
2658 /* No MRFs on Gen >= 7. */
2659 if (devinfo->gen >= 7)
2660 return false;
2661
2662 calculate_live_intervals();
2663
2664 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2665 int ip = next_ip;
2666 next_ip++;
2667
2668 if (inst->opcode != BRW_OPCODE_MOV ||
2669 inst->is_partial_write() ||
2670 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2671 inst->dst.type != inst->src[0].type ||
2672 inst->src[0].abs || inst->src[0].negate ||
2673 !inst->src[0].is_contiguous() ||
2674 inst->src[0].offset % REG_SIZE != 0)
2675 continue;
2676
2677 /* Can't compute-to-MRF this GRF if someone else was going to
2678 * read it later.
2679 */
2680 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2681 continue;
2682
2683 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2684 * things that computed the value of all GRFs of the source region. The
2685 * regs_left bitset keeps track of the registers we haven't yet found a
2686 * generating instruction for.
2687 */
2688 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2689
2690 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2691 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2692 inst->src[0], inst->size_read(0))) {
2693 /* Found the last thing to write our reg we want to turn
2694 * into a compute-to-MRF.
2695 */
2696
2697 /* If this one instruction didn't populate all the
2698 * channels, bail. We might be able to rewrite everything
2699 * that writes that reg, but it would require smarter
2700 * tracking.
2701 */
2702 if (scan_inst->is_partial_write())
2703 break;
2704
2705 /* Handling things not fully contained in the source of the copy
2706 * would need us to understand coalescing out more than one MOV at
2707 * a time.
2708 */
2709 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2710 inst->src[0], inst->size_read(0)))
2711 break;
2712
2713 /* SEND instructions can't have MRF as a destination. */
2714 if (scan_inst->mlen)
2715 break;
2716
2717 if (devinfo->gen == 6) {
2718 /* gen6 math instructions must have the destination be
2719 * GRF, so no compute-to-MRF for them.
2720 */
2721 if (scan_inst->is_math()) {
2722 break;
2723 }
2724 }
2725
2726 /* Clear the bits for any registers this instruction overwrites. */
2727 regs_left &= ~mask_relative_to(
2728 inst->src[0], scan_inst->dst, scan_inst->size_written);
2729 if (!regs_left)
2730 break;
2731 }
2732
2733 /* We don't handle control flow here. Most computation of
2734 * values that end up in MRFs are shortly before the MRF
2735 * write anyway.
2736 */
2737 if (block->start() == scan_inst)
2738 break;
2739
2740 /* You can't read from an MRF, so if someone else reads our
2741 * MRF's source GRF that we wanted to rewrite, that stops us.
2742 */
2743 bool interfered = false;
2744 for (int i = 0; i < scan_inst->sources; i++) {
2745 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2746 inst->src[0], inst->size_read(0))) {
2747 interfered = true;
2748 }
2749 }
2750 if (interfered)
2751 break;
2752
2753 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2754 inst->dst, inst->size_written)) {
2755 /* If somebody else writes our MRF here, we can't
2756 * compute-to-MRF before that.
2757 */
2758 break;
2759 }
2760
2761 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2762 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2763 inst->dst, inst->size_written)) {
2764 /* Found a SEND instruction, which means that there are
2765 * live values in MRFs from base_mrf to base_mrf +
2766 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2767 * above it.
2768 */
2769 break;
2770 }
2771 }
2772
2773 if (regs_left)
2774 continue;
2775
2776 /* Found all generating instructions of our MRF's source value, so it
2777 * should be safe to rewrite them to point to the MRF directly.
2778 */
2779 regs_left = (1 << regs_read(inst, 0)) - 1;
2780
2781 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2782 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2783 inst->src[0], inst->size_read(0))) {
2784 /* Clear the bits for any registers this instruction overwrites. */
2785 regs_left &= ~mask_relative_to(
2786 inst->src[0], scan_inst->dst, scan_inst->size_written);
2787
2788 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2789 reg_offset(inst->src[0]);
2790
2791 if (inst->dst.nr & BRW_MRF_COMPR4) {
2792 /* Apply the same address transformation done by the hardware
2793 * for COMPR4 MRF writes.
2794 */
2795 assert(rel_offset < 2 * REG_SIZE);
2796 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2797
2798 /* Clear the COMPR4 bit if the generating instruction is not
2799 * compressed.
2800 */
2801 if (scan_inst->size_written < 2 * REG_SIZE)
2802 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2803
2804 } else {
2805 /* Calculate the MRF number the result of this instruction is
2806 * ultimately written to.
2807 */
2808 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2809 }
2810
2811 scan_inst->dst.file = MRF;
2812 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2813 scan_inst->saturate |= inst->saturate;
2814 if (!regs_left)
2815 break;
2816 }
2817 }
2818
2819 assert(!regs_left);
2820 inst->remove(block);
2821 progress = true;
2822 }
2823
2824 if (progress)
2825 invalidate_live_intervals();
2826
2827 return progress;
2828 }
2829
2830 /**
2831 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2832 * flow. We could probably do better here with some form of divergence
2833 * analysis.
2834 */
2835 bool
2836 fs_visitor::eliminate_find_live_channel()
2837 {
2838 bool progress = false;
2839 unsigned depth = 0;
2840
2841 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2842 /* The optimization below assumes that channel zero is live on thread
2843 * dispatch, which may not be the case if the fixed function dispatches
2844 * threads sparsely.
2845 */
2846 return false;
2847 }
2848
2849 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2850 switch (inst->opcode) {
2851 case BRW_OPCODE_IF:
2852 case BRW_OPCODE_DO:
2853 depth++;
2854 break;
2855
2856 case BRW_OPCODE_ENDIF:
2857 case BRW_OPCODE_WHILE:
2858 depth--;
2859 break;
2860
2861 case FS_OPCODE_DISCARD_JUMP:
2862 /* This can potentially make control flow non-uniform until the end
2863 * of the program.
2864 */
2865 return progress;
2866
2867 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2868 if (depth == 0) {
2869 inst->opcode = BRW_OPCODE_MOV;
2870 inst->src[0] = brw_imm_ud(0u);
2871 inst->sources = 1;
2872 inst->force_writemask_all = true;
2873 progress = true;
2874 }
2875 break;
2876
2877 default:
2878 break;
2879 }
2880 }
2881
2882 return progress;
2883 }
2884
2885 /**
2886 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2887 * instructions to FS_OPCODE_REP_FB_WRITE.
2888 */
2889 void
2890 fs_visitor::emit_repclear_shader()
2891 {
2892 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2893 int base_mrf = 0;
2894 int color_mrf = base_mrf + 2;
2895 fs_inst *mov;
2896
2897 if (uniforms > 0) {
2898 mov = bld.exec_all().group(4, 0)
2899 .MOV(brw_message_reg(color_mrf),
2900 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2901 } else {
2902 struct brw_reg reg =
2903 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2904 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2905 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2906
2907 mov = bld.exec_all().group(4, 0)
2908 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2909 }
2910
2911 fs_inst *write;
2912 if (key->nr_color_regions == 1) {
2913 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2914 write->saturate = key->clamp_fragment_color;
2915 write->base_mrf = color_mrf;
2916 write->target = 0;
2917 write->header_size = 0;
2918 write->mlen = 1;
2919 } else {
2920 assume(key->nr_color_regions > 0);
2921 for (int i = 0; i < key->nr_color_regions; ++i) {
2922 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2923 write->saturate = key->clamp_fragment_color;
2924 write->base_mrf = base_mrf;
2925 write->target = i;
2926 write->header_size = 2;
2927 write->mlen = 3;
2928 }
2929 }
2930 write->eot = true;
2931
2932 calculate_cfg();
2933
2934 assign_constant_locations();
2935 assign_curb_setup();
2936
2937 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2938 if (uniforms > 0) {
2939 assert(mov->src[0].file == FIXED_GRF);
2940 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2941 }
2942 }
2943
2944 /**
2945 * Walks through basic blocks, looking for repeated MRF writes and
2946 * removing the later ones.
2947 */
2948 bool
2949 fs_visitor::remove_duplicate_mrf_writes()
2950 {
2951 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2952 bool progress = false;
2953
2954 /* Need to update the MRF tracking for compressed instructions. */
2955 if (dispatch_width >= 16)
2956 return false;
2957
2958 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2959
2960 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2961 if (inst->is_control_flow()) {
2962 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2963 }
2964
2965 if (inst->opcode == BRW_OPCODE_MOV &&
2966 inst->dst.file == MRF) {
2967 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2968 if (prev_inst && inst->equals(prev_inst)) {
2969 inst->remove(block);
2970 progress = true;
2971 continue;
2972 }
2973 }
2974
2975 /* Clear out the last-write records for MRFs that were overwritten. */
2976 if (inst->dst.file == MRF) {
2977 last_mrf_move[inst->dst.nr] = NULL;
2978 }
2979
2980 if (inst->mlen > 0 && inst->base_mrf != -1) {
2981 /* Found a SEND instruction, which will include two or fewer
2982 * implied MRF writes. We could do better here.
2983 */
2984 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2985 last_mrf_move[inst->base_mrf + i] = NULL;
2986 }
2987 }
2988
2989 /* Clear out any MRF move records whose sources got overwritten. */
2990 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2991 if (last_mrf_move[i] &&
2992 regions_overlap(inst->dst, inst->size_written,
2993 last_mrf_move[i]->src[0],
2994 last_mrf_move[i]->size_read(0))) {
2995 last_mrf_move[i] = NULL;
2996 }
2997 }
2998
2999 if (inst->opcode == BRW_OPCODE_MOV &&
3000 inst->dst.file == MRF &&
3001 inst->src[0].file != ARF &&
3002 !inst->is_partial_write()) {
3003 last_mrf_move[inst->dst.nr] = inst;
3004 }
3005 }
3006
3007 if (progress)
3008 invalidate_live_intervals();
3009
3010 return progress;
3011 }
3012
3013 static void
3014 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3015 {
3016 /* Clear the flag for registers that actually got read (as expected). */
3017 for (int i = 0; i < inst->sources; i++) {
3018 int grf;
3019 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3020 grf = inst->src[i].nr;
3021 } else {
3022 continue;
3023 }
3024
3025 if (grf >= first_grf &&
3026 grf < first_grf + grf_len) {
3027 deps[grf - first_grf] = false;
3028 if (inst->exec_size == 16)
3029 deps[grf - first_grf + 1] = false;
3030 }
3031 }
3032 }
3033
3034 /**
3035 * Implements this workaround for the original 965:
3036 *
3037 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3038 * check for post destination dependencies on this instruction, software
3039 * must ensure that there is no destination hazard for the case of ‘write
3040 * followed by a posted write’ shown in the following example.
3041 *
3042 * 1. mov r3 0
3043 * 2. send r3.xy <rest of send instruction>
3044 * 3. mov r2 r3
3045 *
3046 * Due to no post-destination dependency check on the ‘send’, the above
3047 * code sequence could have two instructions (1 and 2) in flight at the
3048 * same time that both consider ‘r3’ as the target of their final writes.
3049 */
3050 void
3051 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3052 fs_inst *inst)
3053 {
3054 int write_len = regs_written(inst);
3055 int first_write_grf = inst->dst.nr;
3056 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3057 assert(write_len < (int)sizeof(needs_dep) - 1);
3058
3059 memset(needs_dep, false, sizeof(needs_dep));
3060 memset(needs_dep, true, write_len);
3061
3062 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3063
3064 /* Walk backwards looking for writes to registers we're writing which
3065 * aren't read since being written. If we hit the start of the program,
3066 * we assume that there are no outstanding dependencies on entry to the
3067 * program.
3068 */
3069 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3070 /* If we hit control flow, assume that there *are* outstanding
3071 * dependencies, and force their cleanup before our instruction.
3072 */
3073 if (block->start() == scan_inst && block->num != 0) {
3074 for (int i = 0; i < write_len; i++) {
3075 if (needs_dep[i])
3076 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3077 first_write_grf + i);
3078 }
3079 return;
3080 }
3081
3082 /* We insert our reads as late as possible on the assumption that any
3083 * instruction but a MOV that might have left us an outstanding
3084 * dependency has more latency than a MOV.
3085 */
3086 if (scan_inst->dst.file == VGRF) {
3087 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3088 int reg = scan_inst->dst.nr + i;
3089
3090 if (reg >= first_write_grf &&
3091 reg < first_write_grf + write_len &&
3092 needs_dep[reg - first_write_grf]) {
3093 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3094 needs_dep[reg - first_write_grf] = false;
3095 if (scan_inst->exec_size == 16)
3096 needs_dep[reg - first_write_grf + 1] = false;
3097 }
3098 }
3099 }
3100
3101 /* Clear the flag for registers that actually got read (as expected). */
3102 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3103
3104 /* Continue the loop only if we haven't resolved all the dependencies */
3105 int i;
3106 for (i = 0; i < write_len; i++) {
3107 if (needs_dep[i])
3108 break;
3109 }
3110 if (i == write_len)
3111 return;
3112 }
3113 }
3114
3115 /**
3116 * Implements this workaround for the original 965:
3117 *
3118 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3119 * used as a destination register until after it has been sourced by an
3120 * instruction with a different destination register.
3121 */
3122 void
3123 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3124 {
3125 int write_len = regs_written(inst);
3126 int first_write_grf = inst->dst.nr;
3127 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3128 assert(write_len < (int)sizeof(needs_dep) - 1);
3129
3130 memset(needs_dep, false, sizeof(needs_dep));
3131 memset(needs_dep, true, write_len);
3132 /* Walk forwards looking for writes to registers we're writing which aren't
3133 * read before being written.
3134 */
3135 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3136 /* If we hit control flow, force resolve all remaining dependencies. */
3137 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3138 for (int i = 0; i < write_len; i++) {
3139 if (needs_dep[i])
3140 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3141 first_write_grf + i);
3142 }
3143 return;
3144 }
3145
3146 /* Clear the flag for registers that actually got read (as expected). */
3147 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3148
3149 /* We insert our reads as late as possible since they're reading the
3150 * result of a SEND, which has massive latency.
3151 */
3152 if (scan_inst->dst.file == VGRF &&
3153 scan_inst->dst.nr >= first_write_grf &&
3154 scan_inst->dst.nr < first_write_grf + write_len &&
3155 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3156 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3157 scan_inst->dst.nr);
3158 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3159 }
3160
3161 /* Continue the loop only if we haven't resolved all the dependencies */
3162 int i;
3163 for (i = 0; i < write_len; i++) {
3164 if (needs_dep[i])
3165 break;
3166 }
3167 if (i == write_len)
3168 return;
3169 }
3170 }
3171
3172 void
3173 fs_visitor::insert_gen4_send_dependency_workarounds()
3174 {
3175 if (devinfo->gen != 4 || devinfo->is_g4x)
3176 return;
3177
3178 bool progress = false;
3179
3180 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3181 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3182 insert_gen4_pre_send_dependency_workarounds(block, inst);
3183 insert_gen4_post_send_dependency_workarounds(block, inst);
3184 progress = true;
3185 }
3186 }
3187
3188 if (progress)
3189 invalidate_live_intervals();
3190 }
3191
3192 /**
3193 * Turns the generic expression-style uniform pull constant load instruction
3194 * into a hardware-specific series of instructions for loading a pull
3195 * constant.
3196 *
3197 * The expression style allows the CSE pass before this to optimize out
3198 * repeated loads from the same offset, and gives the pre-register-allocation
3199 * scheduling full flexibility, while the conversion to native instructions
3200 * allows the post-register-allocation scheduler the best information
3201 * possible.
3202 *
3203 * Note that execution masking for setting up pull constant loads is special:
3204 * the channels that need to be written are unrelated to the current execution
3205 * mask, since a later instruction will use one of the result channels as a
3206 * source operand for all 8 or 16 of its channels.
3207 */
3208 void
3209 fs_visitor::lower_uniform_pull_constant_loads()
3210 {
3211 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3212 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3213 continue;
3214
3215 if (devinfo->gen >= 7) {
3216 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3217 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3218
3219 ubld.group(8, 0).MOV(payload,
3220 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3221 ubld.group(1, 0).MOV(component(payload, 2),
3222 brw_imm_ud(inst->src[1].ud / 16));
3223
3224 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3225 inst->src[1] = payload;
3226 inst->header_size = 1;
3227 inst->mlen = 1;
3228
3229 invalidate_live_intervals();
3230 } else {
3231 /* Before register allocation, we didn't tell the scheduler about the
3232 * MRF we use. We know it's safe to use this MRF because nothing
3233 * else does except for register spill/unspill, which generates and
3234 * uses its MRF within a single IR instruction.
3235 */
3236 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3237 inst->mlen = 1;
3238 }
3239 }
3240 }
3241
3242 bool
3243 fs_visitor::lower_load_payload()
3244 {
3245 bool progress = false;
3246
3247 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3248 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3249 continue;
3250
3251 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3252 assert(inst->saturate == false);
3253 fs_reg dst = inst->dst;
3254
3255 /* Get rid of COMPR4. We'll add it back in if we need it */
3256 if (dst.file == MRF)
3257 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3258
3259 const fs_builder ibld(this, block, inst);
3260 const fs_builder hbld = ibld.exec_all().group(8, 0);
3261
3262 for (uint8_t i = 0; i < inst->header_size; i++) {
3263 if (inst->src[i].file != BAD_FILE) {
3264 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3265 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3266 hbld.MOV(mov_dst, mov_src);
3267 }
3268 dst = offset(dst, hbld, 1);
3269 }
3270
3271 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3272 inst->exec_size > 8) {
3273 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3274 * a straightforward copy. Instead, the result of the
3275 * LOAD_PAYLOAD is treated as interleaved and the first four
3276 * non-header sources are unpacked as:
3277 *
3278 * m + 0: r0
3279 * m + 1: g0
3280 * m + 2: b0
3281 * m + 3: a0
3282 * m + 4: r1
3283 * m + 5: g1
3284 * m + 6: b1
3285 * m + 7: a1
3286 *
3287 * This is used for gen <= 5 fb writes.
3288 */
3289 assert(inst->exec_size == 16);
3290 assert(inst->header_size + 4 <= inst->sources);
3291 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3292 if (inst->src[i].file != BAD_FILE) {
3293 if (devinfo->has_compr4) {
3294 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3295 compr4_dst.nr |= BRW_MRF_COMPR4;
3296 ibld.MOV(compr4_dst, inst->src[i]);
3297 } else {
3298 /* Platform doesn't have COMPR4. We have to fake it */
3299 fs_reg mov_dst = retype(dst, inst->src[i].type);
3300 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3301 mov_dst.nr += 4;
3302 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3303 }
3304 }
3305
3306 dst.nr++;
3307 }
3308
3309 /* The loop above only ever incremented us through the first set
3310 * of 4 registers. However, thanks to the magic of COMPR4, we
3311 * actually wrote to the first 8 registers, so we need to take
3312 * that into account now.
3313 */
3314 dst.nr += 4;
3315
3316 /* The COMPR4 code took care of the first 4 sources. We'll let
3317 * the regular path handle any remaining sources. Yes, we are
3318 * modifying the instruction but we're about to delete it so
3319 * this really doesn't hurt anything.
3320 */
3321 inst->header_size += 4;
3322 }
3323
3324 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3325 if (inst->src[i].file != BAD_FILE)
3326 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3327 dst = offset(dst, ibld, 1);
3328 }
3329
3330 inst->remove(block);
3331 progress = true;
3332 }
3333
3334 if (progress)
3335 invalidate_live_intervals();
3336
3337 return progress;
3338 }
3339
3340 bool
3341 fs_visitor::lower_integer_multiplication()
3342 {
3343 bool progress = false;
3344
3345 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3346 const fs_builder ibld(this, block, inst);
3347
3348 if (inst->opcode == BRW_OPCODE_MUL) {
3349 if (inst->dst.is_accumulator() ||
3350 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3351 inst->dst.type != BRW_REGISTER_TYPE_UD))
3352 continue;
3353
3354 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3355 * operation directly, but CHV/BXT cannot.
3356 */
3357 if (devinfo->gen >= 8 &&
3358 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3359 continue;
3360
3361 if (inst->src[1].file == IMM &&
3362 inst->src[1].ud < (1 << 16)) {
3363 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3364 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3365 * src1 are used.
3366 *
3367 * If multiplying by an immediate value that fits in 16-bits, do a
3368 * single MUL instruction with that value in the proper location.
3369 */
3370 if (devinfo->gen < 7) {
3371 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3372 inst->dst.type);
3373 ibld.MOV(imm, inst->src[1]);
3374 ibld.MUL(inst->dst, imm, inst->src[0]);
3375 } else {
3376 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3377 ibld.MUL(inst->dst, inst->src[0],
3378 ud ? brw_imm_uw(inst->src[1].ud)
3379 : brw_imm_w(inst->src[1].d));
3380 }
3381 } else {
3382 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3383 * do 32-bit integer multiplication in one instruction, but instead
3384 * must do a sequence (which actually calculates a 64-bit result):
3385 *
3386 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3387 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3388 * mov(8) g2<1>D acc0<8,8,1>D
3389 *
3390 * But on Gen > 6, the ability to use second accumulator register
3391 * (acc1) for non-float data types was removed, preventing a simple
3392 * implementation in SIMD16. A 16-channel result can be calculated by
3393 * executing the three instructions twice in SIMD8, once with quarter
3394 * control of 1Q for the first eight channels and again with 2Q for
3395 * the second eight channels.
3396 *
3397 * Which accumulator register is implicitly accessed (by AccWrEnable
3398 * for instance) is determined by the quarter control. Unfortunately
3399 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3400 * implicit accumulator access by an instruction with 2Q will access
3401 * acc1 regardless of whether the data type is usable in acc1.
3402 *
3403 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3404 * integer data types.
3405 *
3406 * Since we only want the low 32-bits of the result, we can do two
3407 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3408 * adjust the high result and add them (like the mach is doing):
3409 *
3410 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3411 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3412 * shl(8) g9<1>D g8<8,8,1>D 16D
3413 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3414 *
3415 * We avoid the shl instruction by realizing that we only want to add
3416 * the low 16-bits of the "high" result to the high 16-bits of the
3417 * "low" result and using proper regioning on the add:
3418 *
3419 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3420 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3421 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3422 *
3423 * Since it does not use the (single) accumulator register, we can
3424 * schedule multi-component multiplications much better.
3425 */
3426
3427 fs_reg orig_dst = inst->dst;
3428 if (orig_dst.is_null() || orig_dst.file == MRF) {
3429 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3430 inst->dst.type);
3431 }
3432 fs_reg low = inst->dst;
3433 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3434 inst->dst.type);
3435
3436 if (devinfo->gen >= 7) {
3437 if (inst->src[1].file == IMM) {
3438 ibld.MUL(low, inst->src[0],
3439 brw_imm_uw(inst->src[1].ud & 0xffff));
3440 ibld.MUL(high, inst->src[0],
3441 brw_imm_uw(inst->src[1].ud >> 16));
3442 } else {
3443 ibld.MUL(low, inst->src[0],
3444 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3445 ibld.MUL(high, inst->src[0],
3446 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3447 }
3448 } else {
3449 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3450 inst->src[1]);
3451 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3452 inst->src[1]);
3453 }
3454
3455 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3456 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3457 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3458
3459 if (inst->conditional_mod || orig_dst.file == MRF) {
3460 set_condmod(inst->conditional_mod,
3461 ibld.MOV(orig_dst, inst->dst));
3462 }
3463 }
3464
3465 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3466 /* Should have been lowered to 8-wide. */
3467 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3468 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3469 inst->dst.type);
3470 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3471 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3472
3473 if (devinfo->gen >= 8) {
3474 /* Until Gen8, integer multiplies read 32-bits from one source,
3475 * and 16-bits from the other, and relying on the MACH instruction
3476 * to generate the high bits of the result.
3477 *
3478 * On Gen8, the multiply instruction does a full 32x32-bit
3479 * multiply, but in order to do a 64-bit multiply we can simulate
3480 * the previous behavior and then use a MACH instruction.
3481 *
3482 * FINISHME: Don't use source modifiers on src1.
3483 */
3484 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3485 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3486 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3487 mul->src[1].stride *= 2;
3488
3489 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3490 inst->group > 0) {
3491 /* Among other things the quarter control bits influence which
3492 * accumulator register is used by the hardware for instructions
3493 * that access the accumulator implicitly (e.g. MACH). A
3494 * second-half instruction would normally map to acc1, which
3495 * doesn't exist on Gen7 and up (the hardware does emulate it for
3496 * floating-point instructions *only* by taking advantage of the
3497 * extra precision of acc0 not normally used for floating point
3498 * arithmetic).
3499 *
3500 * HSW and up are careful enough not to try to access an
3501 * accumulator register that doesn't exist, but on earlier Gen7
3502 * hardware we need to make sure that the quarter control bits are
3503 * zero to avoid non-deterministic behaviour and emit an extra MOV
3504 * to get the result masked correctly according to the current
3505 * channel enables.
3506 */
3507 mach->group = 0;
3508 mach->force_writemask_all = true;
3509 mach->dst = ibld.vgrf(inst->dst.type);
3510 ibld.MOV(inst->dst, mach->dst);
3511 }
3512 } else {
3513 continue;
3514 }
3515
3516 inst->remove(block);
3517 progress = true;
3518 }
3519
3520 if (progress)
3521 invalidate_live_intervals();
3522
3523 return progress;
3524 }
3525
3526 bool
3527 fs_visitor::lower_minmax()
3528 {
3529 assert(devinfo->gen < 6);
3530
3531 bool progress = false;
3532
3533 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3534 const fs_builder ibld(this, block, inst);
3535
3536 if (inst->opcode == BRW_OPCODE_SEL &&
3537 inst->predicate == BRW_PREDICATE_NONE) {
3538 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3539 * the original SEL.L/GE instruction
3540 */
3541 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3542 inst->conditional_mod);
3543 inst->predicate = BRW_PREDICATE_NORMAL;
3544 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3545
3546 progress = true;
3547 }
3548 }
3549
3550 if (progress)
3551 invalidate_live_intervals();
3552
3553 return progress;
3554 }
3555
3556 static void
3557 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3558 fs_reg *dst, fs_reg color, unsigned components)
3559 {
3560 if (key->clamp_fragment_color) {
3561 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3562 assert(color.type == BRW_REGISTER_TYPE_F);
3563
3564 for (unsigned i = 0; i < components; i++)
3565 set_saturate(true,
3566 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3567
3568 color = tmp;
3569 }
3570
3571 for (unsigned i = 0; i < components; i++)
3572 dst[i] = offset(color, bld, i);
3573 }
3574
3575 static void
3576 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3577 const struct brw_wm_prog_data *prog_data,
3578 const brw_wm_prog_key *key,
3579 const fs_visitor::thread_payload &payload)
3580 {
3581 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3582 const gen_device_info *devinfo = bld.shader->devinfo;
3583 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3584 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3585 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3586 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3587 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3588 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3589 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3590 const unsigned components =
3591 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3592
3593 /* We can potentially have a message length of up to 15, so we have to set
3594 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3595 */
3596 fs_reg sources[15];
3597 int header_size = 2, payload_header_size;
3598 unsigned length = 0;
3599
3600 /* From the Sandy Bridge PRM, volume 4, page 198:
3601 *
3602 * "Dispatched Pixel Enables. One bit per pixel indicating
3603 * which pixels were originally enabled when the thread was
3604 * dispatched. This field is only required for the end-of-
3605 * thread message and on all dual-source messages."
3606 */
3607 if (devinfo->gen >= 6 &&
3608 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3609 color1.file == BAD_FILE &&
3610 key->nr_color_regions == 1) {
3611 header_size = 0;
3612 }
3613
3614 if (header_size != 0) {
3615 assert(header_size == 2);
3616 /* Allocate 2 registers for a header */
3617 length += 2;
3618 }
3619
3620 if (payload.aa_dest_stencil_reg) {
3621 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3622 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3623 .MOV(sources[length],
3624 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3625 length++;
3626 }
3627
3628 if (sample_mask.file != BAD_FILE) {
3629 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3630 BRW_REGISTER_TYPE_UD);
3631
3632 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3633 * relevant. Since it's unsigned single words one vgrf is always
3634 * 16-wide, but only the lower or higher 8 channels will be used by the
3635 * hardware when doing a SIMD8 write depending on whether we have
3636 * selected the subspans for the first or second half respectively.
3637 */
3638 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3639 sample_mask.type = BRW_REGISTER_TYPE_UW;
3640 sample_mask.stride *= 2;
3641
3642 bld.exec_all().annotate("FB write oMask")
3643 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3644 inst->group),
3645 sample_mask);
3646 length++;
3647 }
3648
3649 payload_header_size = length;
3650
3651 if (src0_alpha.file != BAD_FILE) {
3652 /* FIXME: This is being passed at the wrong location in the payload and
3653 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3654 * It's supposed to be immediately before oMask but there seems to be no
3655 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3656 * requires header sources to form a contiguous segment at the beginning
3657 * of the message and src0_alpha has per-channel semantics.
3658 */
3659 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3660 length++;
3661 } else if (key->replicate_alpha && inst->target != 0) {
3662 /* Handle the case when fragment shader doesn't write to draw buffer
3663 * zero. No need to call setup_color_payload() for src0_alpha because
3664 * alpha value will be undefined.
3665 */
3666 length++;
3667 }
3668
3669 setup_color_payload(bld, key, &sources[length], color0, components);
3670 length += 4;
3671
3672 if (color1.file != BAD_FILE) {
3673 setup_color_payload(bld, key, &sources[length], color1, components);
3674 length += 4;
3675 }
3676
3677 if (src_depth.file != BAD_FILE) {
3678 sources[length] = src_depth;
3679 length++;
3680 }
3681
3682 if (dst_depth.file != BAD_FILE) {
3683 sources[length] = dst_depth;
3684 length++;
3685 }
3686
3687 if (src_stencil.file != BAD_FILE) {
3688 assert(devinfo->gen >= 9);
3689 assert(bld.dispatch_width() != 16);
3690
3691 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3692 * available on gen9+. As such it's impossible to have both enabled at the
3693 * same time and therefore length cannot overrun the array.
3694 */
3695 assert(length < 15);
3696
3697 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3698 bld.exec_all().annotate("FB write OS")
3699 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3700 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3701 length++;
3702 }
3703
3704 fs_inst *load;
3705 if (devinfo->gen >= 7) {
3706 /* Send from the GRF */
3707 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3708 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3709 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3710 load->dst = payload;
3711
3712 inst->src[0] = payload;
3713 inst->resize_sources(1);
3714 } else {
3715 /* Send from the MRF */
3716 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3717 sources, length, payload_header_size);
3718
3719 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3720 * will do this for us if we just give it a COMPR4 destination.
3721 */
3722 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3723 load->dst.nr |= BRW_MRF_COMPR4;
3724
3725 inst->resize_sources(0);
3726 inst->base_mrf = 1;
3727 }
3728
3729 inst->opcode = FS_OPCODE_FB_WRITE;
3730 inst->mlen = regs_written(load);
3731 inst->header_size = header_size;
3732 }
3733
3734 static void
3735 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3736 {
3737 const fs_builder &ubld = bld.exec_all();
3738 const unsigned length = 2;
3739 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3740
3741 ubld.group(16, 0)
3742 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3743
3744 inst->resize_sources(1);
3745 inst->src[0] = header;
3746 inst->opcode = FS_OPCODE_FB_READ;
3747 inst->mlen = length;
3748 inst->header_size = length;
3749 }
3750
3751 static void
3752 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3753 const fs_reg &coordinate,
3754 const fs_reg &shadow_c,
3755 const fs_reg &lod, const fs_reg &lod2,
3756 const fs_reg &surface,
3757 const fs_reg &sampler,
3758 unsigned coord_components,
3759 unsigned grad_components)
3760 {
3761 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3762 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3763 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3764 fs_reg msg_end = msg_begin;
3765
3766 /* g0 header. */
3767 msg_end = offset(msg_end, bld.group(8, 0), 1);
3768
3769 for (unsigned i = 0; i < coord_components; i++)
3770 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3771 offset(coordinate, bld, i));
3772
3773 msg_end = offset(msg_end, bld, coord_components);
3774
3775 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3776 * require all three components to be present and zero if they are unused.
3777 */
3778 if (coord_components > 0 &&
3779 (has_lod || shadow_c.file != BAD_FILE ||
3780 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3781 for (unsigned i = coord_components; i < 3; i++)
3782 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3783
3784 msg_end = offset(msg_end, bld, 3 - coord_components);
3785 }
3786
3787 if (op == SHADER_OPCODE_TXD) {
3788 /* TXD unsupported in SIMD16 mode. */
3789 assert(bld.dispatch_width() == 8);
3790
3791 /* the slots for u and v are always present, but r is optional */
3792 if (coord_components < 2)
3793 msg_end = offset(msg_end, bld, 2 - coord_components);
3794
3795 /* P = u, v, r
3796 * dPdx = dudx, dvdx, drdx
3797 * dPdy = dudy, dvdy, drdy
3798 *
3799 * 1-arg: Does not exist.
3800 *
3801 * 2-arg: dudx dvdx dudy dvdy
3802 * dPdx.x dPdx.y dPdy.x dPdy.y
3803 * m4 m5 m6 m7
3804 *
3805 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3806 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3807 * m5 m6 m7 m8 m9 m10
3808 */
3809 for (unsigned i = 0; i < grad_components; i++)
3810 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3811
3812 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3813
3814 for (unsigned i = 0; i < grad_components; i++)
3815 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3816
3817 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3818 }
3819
3820 if (has_lod) {
3821 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3822 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3823 */
3824 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3825 bld.dispatch_width() == 16);
3826
3827 const brw_reg_type type =
3828 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3829 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3830 bld.MOV(retype(msg_end, type), lod);
3831 msg_end = offset(msg_end, bld, 1);
3832 }
3833
3834 if (shadow_c.file != BAD_FILE) {
3835 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3836 /* There's no plain shadow compare message, so we use shadow
3837 * compare with a bias of 0.0.
3838 */
3839 bld.MOV(msg_end, brw_imm_f(0.0f));
3840 msg_end = offset(msg_end, bld, 1);
3841 }
3842
3843 bld.MOV(msg_end, shadow_c);
3844 msg_end = offset(msg_end, bld, 1);
3845 }
3846
3847 inst->opcode = op;
3848 inst->src[0] = reg_undef;
3849 inst->src[1] = surface;
3850 inst->src[2] = sampler;
3851 inst->resize_sources(3);
3852 inst->base_mrf = msg_begin.nr;
3853 inst->mlen = msg_end.nr - msg_begin.nr;
3854 inst->header_size = 1;
3855 }
3856
3857 static void
3858 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3859 const fs_reg &coordinate,
3860 const fs_reg &shadow_c,
3861 const fs_reg &lod, const fs_reg &lod2,
3862 const fs_reg &sample_index,
3863 const fs_reg &surface,
3864 const fs_reg &sampler,
3865 unsigned coord_components,
3866 unsigned grad_components)
3867 {
3868 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3869 fs_reg msg_coords = message;
3870 unsigned header_size = 0;
3871
3872 if (inst->offset != 0) {
3873 /* The offsets set up by the visitor are in the m1 header, so we can't
3874 * go headerless.
3875 */
3876 header_size = 1;
3877 message.nr--;
3878 }
3879
3880 for (unsigned i = 0; i < coord_components; i++)
3881 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3882 offset(coordinate, bld, i));
3883
3884 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3885 fs_reg msg_lod = offset(msg_coords, bld, 4);
3886
3887 if (shadow_c.file != BAD_FILE) {
3888 fs_reg msg_shadow = msg_lod;
3889 bld.MOV(msg_shadow, shadow_c);
3890 msg_lod = offset(msg_shadow, bld, 1);
3891 msg_end = msg_lod;
3892 }
3893
3894 switch (op) {
3895 case SHADER_OPCODE_TXL:
3896 case FS_OPCODE_TXB:
3897 bld.MOV(msg_lod, lod);
3898 msg_end = offset(msg_lod, bld, 1);
3899 break;
3900 case SHADER_OPCODE_TXD:
3901 /**
3902 * P = u, v, r
3903 * dPdx = dudx, dvdx, drdx
3904 * dPdy = dudy, dvdy, drdy
3905 *
3906 * Load up these values:
3907 * - dudx dudy dvdx dvdy drdx drdy
3908 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3909 */
3910 msg_end = msg_lod;
3911 for (unsigned i = 0; i < grad_components; i++) {
3912 bld.MOV(msg_end, offset(lod, bld, i));
3913 msg_end = offset(msg_end, bld, 1);
3914
3915 bld.MOV(msg_end, offset(lod2, bld, i));
3916 msg_end = offset(msg_end, bld, 1);
3917 }
3918 break;
3919 case SHADER_OPCODE_TXS:
3920 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3921 bld.MOV(msg_lod, lod);
3922 msg_end = offset(msg_lod, bld, 1);
3923 break;
3924 case SHADER_OPCODE_TXF:
3925 msg_lod = offset(msg_coords, bld, 3);
3926 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3927 msg_end = offset(msg_lod, bld, 1);
3928 break;
3929 case SHADER_OPCODE_TXF_CMS:
3930 msg_lod = offset(msg_coords, bld, 3);
3931 /* lod */
3932 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3933 /* sample index */
3934 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3935 msg_end = offset(msg_lod, bld, 2);
3936 break;
3937 default:
3938 break;
3939 }
3940
3941 inst->opcode = op;
3942 inst->src[0] = reg_undef;
3943 inst->src[1] = surface;
3944 inst->src[2] = sampler;
3945 inst->resize_sources(3);
3946 inst->base_mrf = message.nr;
3947 inst->mlen = msg_end.nr - message.nr;
3948 inst->header_size = header_size;
3949
3950 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3951 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3952 }
3953
3954 static bool
3955 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
3956 {
3957 if (devinfo->gen < 8 && !devinfo->is_haswell)
3958 return false;
3959
3960 return sampler.file != IMM || sampler.ud >= 16;
3961 }
3962
3963 static void
3964 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3965 const fs_reg &coordinate,
3966 const fs_reg &shadow_c,
3967 fs_reg lod, const fs_reg &lod2,
3968 const fs_reg &sample_index,
3969 const fs_reg &mcs,
3970 const fs_reg &surface,
3971 const fs_reg &sampler,
3972 const fs_reg &tg4_offset,
3973 unsigned coord_components,
3974 unsigned grad_components)
3975 {
3976 const gen_device_info *devinfo = bld.shader->devinfo;
3977 unsigned reg_width = bld.dispatch_width() / 8;
3978 unsigned header_size = 0, length = 0;
3979 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3980 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3981 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3982
3983 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3984 inst->offset != 0 || inst->eot ||
3985 op == SHADER_OPCODE_SAMPLEINFO ||
3986 is_high_sampler(devinfo, sampler)) {
3987 /* For general texture offsets (no txf workaround), we need a header to
3988 * put them in. Note that we're only reserving space for it in the
3989 * message payload as it will be initialized implicitly by the
3990 * generator.
3991 *
3992 * TG4 needs to place its channel select in the header, for interaction
3993 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3994 * larger sampler numbers we need to offset the Sampler State Pointer in
3995 * the header.
3996 */
3997 header_size = 1;
3998 sources[0] = fs_reg();
3999 length++;
4000
4001 /* If we're requesting fewer than four channels worth of response,
4002 * and we have an explicit header, we need to set up the sampler
4003 * writemask. It's reversed from normal: 1 means "don't write".
4004 */
4005 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4006 assert(regs_written(inst) % reg_width == 0);
4007 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4008 inst->offset |= mask << 12;
4009 }
4010 }
4011
4012 if (shadow_c.file != BAD_FILE) {
4013 bld.MOV(sources[length], shadow_c);
4014 length++;
4015 }
4016
4017 bool coordinate_done = false;
4018
4019 /* Set up the LOD info */
4020 switch (op) {
4021 case FS_OPCODE_TXB:
4022 case SHADER_OPCODE_TXL:
4023 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4024 op = SHADER_OPCODE_TXL_LZ;
4025 break;
4026 }
4027 bld.MOV(sources[length], lod);
4028 length++;
4029 break;
4030 case SHADER_OPCODE_TXD:
4031 /* TXD should have been lowered in SIMD16 mode. */
4032 assert(bld.dispatch_width() == 8);
4033
4034 /* Load dPdx and the coordinate together:
4035 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4036 */
4037 for (unsigned i = 0; i < coord_components; i++) {
4038 bld.MOV(sources[length++], offset(coordinate, bld, i));
4039
4040 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4041 * only derivatives for (u, v, r).
4042 */
4043 if (i < grad_components) {
4044 bld.MOV(sources[length++], offset(lod, bld, i));
4045 bld.MOV(sources[length++], offset(lod2, bld, i));
4046 }
4047 }
4048
4049 coordinate_done = true;
4050 break;
4051 case SHADER_OPCODE_TXS:
4052 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4053 length++;
4054 break;
4055 case SHADER_OPCODE_TXF:
4056 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4057 * On Gen9 they are u, v, lod, r
4058 */
4059 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4060
4061 if (devinfo->gen >= 9) {
4062 if (coord_components >= 2) {
4063 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4064 offset(coordinate, bld, 1));
4065 } else {
4066 sources[length] = brw_imm_d(0);
4067 }
4068 length++;
4069 }
4070
4071 if (devinfo->gen >= 9 && lod.is_zero()) {
4072 op = SHADER_OPCODE_TXF_LZ;
4073 } else {
4074 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4075 length++;
4076 }
4077
4078 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4079 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4080 offset(coordinate, bld, i));
4081
4082 coordinate_done = true;
4083 break;
4084
4085 case SHADER_OPCODE_TXF_CMS:
4086 case SHADER_OPCODE_TXF_CMS_W:
4087 case SHADER_OPCODE_TXF_UMS:
4088 case SHADER_OPCODE_TXF_MCS:
4089 if (op == SHADER_OPCODE_TXF_UMS ||
4090 op == SHADER_OPCODE_TXF_CMS ||
4091 op == SHADER_OPCODE_TXF_CMS_W) {
4092 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4093 length++;
4094 }
4095
4096 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4097 /* Data from the multisample control surface. */
4098 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4099 length++;
4100
4101 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4102 * the MCS data.
4103 */
4104 if (op == SHADER_OPCODE_TXF_CMS_W) {
4105 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4106 mcs.file == IMM ?
4107 mcs :
4108 offset(mcs, bld, 1));
4109 length++;
4110 }
4111 }
4112
4113 /* There is no offsetting for this message; just copy in the integer
4114 * texture coordinates.
4115 */
4116 for (unsigned i = 0; i < coord_components; i++)
4117 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4118 offset(coordinate, bld, i));
4119
4120 coordinate_done = true;
4121 break;
4122 case SHADER_OPCODE_TG4_OFFSET:
4123 /* More crazy intermixing */
4124 for (unsigned i = 0; i < 2; i++) /* u, v */
4125 bld.MOV(sources[length++], offset(coordinate, bld, i));
4126
4127 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4128 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4129 offset(tg4_offset, bld, i));
4130
4131 if (coord_components == 3) /* r if present */
4132 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4133
4134 coordinate_done = true;
4135 break;
4136 default:
4137 break;
4138 }
4139
4140 /* Set up the coordinate (except for cases where it was done above) */
4141 if (!coordinate_done) {
4142 for (unsigned i = 0; i < coord_components; i++)
4143 bld.MOV(sources[length++], offset(coordinate, bld, i));
4144 }
4145
4146 int mlen;
4147 if (reg_width == 2)
4148 mlen = length * reg_width - header_size;
4149 else
4150 mlen = length * reg_width;
4151
4152 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4153 BRW_REGISTER_TYPE_F);
4154 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4155
4156 /* Generate the SEND. */
4157 inst->opcode = op;
4158 inst->src[0] = src_payload;
4159 inst->src[1] = surface;
4160 inst->src[2] = sampler;
4161 inst->resize_sources(3);
4162 inst->mlen = mlen;
4163 inst->header_size = header_size;
4164
4165 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4166 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4167 }
4168
4169 static void
4170 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4171 {
4172 const gen_device_info *devinfo = bld.shader->devinfo;
4173 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4174 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4175 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4176 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4177 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4178 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4179 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4180 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4181 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4182 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4183 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4184 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4185 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4186
4187 if (devinfo->gen >= 7) {
4188 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4189 shadow_c, lod, lod2, sample_index,
4190 mcs, surface, sampler, tg4_offset,
4191 coord_components, grad_components);
4192 } else if (devinfo->gen >= 5) {
4193 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4194 shadow_c, lod, lod2, sample_index,
4195 surface, sampler,
4196 coord_components, grad_components);
4197 } else {
4198 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4199 shadow_c, lod, lod2,
4200 surface, sampler,
4201 coord_components, grad_components);
4202 }
4203 }
4204
4205 /**
4206 * Initialize the header present in some typed and untyped surface
4207 * messages.
4208 */
4209 static fs_reg
4210 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4211 {
4212 fs_builder ubld = bld.exec_all().group(8, 0);
4213 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4214 ubld.MOV(dst, brw_imm_d(0));
4215 ubld.MOV(component(dst, 7), sample_mask);
4216 return dst;
4217 }
4218
4219 static void
4220 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4221 const fs_reg &sample_mask)
4222 {
4223 /* Get the logical send arguments. */
4224 const fs_reg &addr = inst->src[0];
4225 const fs_reg &src = inst->src[1];
4226 const fs_reg &surface = inst->src[2];
4227 const UNUSED fs_reg &dims = inst->src[3];
4228 const fs_reg &arg = inst->src[4];
4229
4230 /* Calculate the total number of components of the payload. */
4231 const unsigned addr_sz = inst->components_read(0);
4232 const unsigned src_sz = inst->components_read(1);
4233 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4234 const unsigned sz = header_sz + addr_sz + src_sz;
4235
4236 /* Allocate space for the payload. */
4237 fs_reg *const components = new fs_reg[sz];
4238 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4239 unsigned n = 0;
4240
4241 /* Construct the payload. */
4242 if (header_sz)
4243 components[n++] = emit_surface_header(bld, sample_mask);
4244
4245 for (unsigned i = 0; i < addr_sz; i++)
4246 components[n++] = offset(addr, bld, i);
4247
4248 for (unsigned i = 0; i < src_sz; i++)
4249 components[n++] = offset(src, bld, i);
4250
4251 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4252
4253 /* Update the original instruction. */
4254 inst->opcode = op;
4255 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4256 inst->header_size = header_sz;
4257
4258 inst->src[0] = payload;
4259 inst->src[1] = surface;
4260 inst->src[2] = arg;
4261 inst->resize_sources(3);
4262
4263 delete[] components;
4264 }
4265
4266 static void
4267 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4268 {
4269 const gen_device_info *devinfo = bld.shader->devinfo;
4270
4271 if (devinfo->gen >= 7) {
4272 /* We are switching the instruction from an ALU-like instruction to a
4273 * send-from-grf instruction. Since sends can't handle strides or
4274 * source modifiers, we have to make a copy of the offset source.
4275 */
4276 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4277 bld.MOV(tmp, inst->src[1]);
4278 inst->src[1] = tmp;
4279
4280 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4281
4282 } else {
4283 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4284 BRW_REGISTER_TYPE_UD);
4285
4286 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4287
4288 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4289 inst->resize_sources(1);
4290 inst->base_mrf = payload.nr;
4291 inst->header_size = 1;
4292 inst->mlen = 1 + inst->exec_size / 8;
4293 }
4294 }
4295
4296 static void
4297 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4298 {
4299 assert(bld.shader->devinfo->gen < 6);
4300
4301 inst->base_mrf = 2;
4302 inst->mlen = inst->sources * inst->exec_size / 8;
4303
4304 if (inst->sources > 1) {
4305 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4306 * "Message Payload":
4307 *
4308 * "Operand0[7]. For the INT DIV functions, this operand is the
4309 * denominator."
4310 * ...
4311 * "Operand1[7]. For the INT DIV functions, this operand is the
4312 * numerator."
4313 */
4314 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4315 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4316 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4317
4318 inst->resize_sources(1);
4319 inst->src[0] = src0;
4320
4321 assert(inst->exec_size == 8);
4322 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4323 }
4324 }
4325
4326 bool
4327 fs_visitor::lower_logical_sends()
4328 {
4329 bool progress = false;
4330
4331 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4332 const fs_builder ibld(this, block, inst);
4333
4334 switch (inst->opcode) {
4335 case FS_OPCODE_FB_WRITE_LOGICAL:
4336 assert(stage == MESA_SHADER_FRAGMENT);
4337 lower_fb_write_logical_send(ibld, inst,
4338 brw_wm_prog_data(prog_data),
4339 (const brw_wm_prog_key *)key,
4340 payload);
4341 break;
4342
4343 case FS_OPCODE_FB_READ_LOGICAL:
4344 lower_fb_read_logical_send(ibld, inst);
4345 break;
4346
4347 case SHADER_OPCODE_TEX_LOGICAL:
4348 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4349 break;
4350
4351 case SHADER_OPCODE_TXD_LOGICAL:
4352 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4353 break;
4354
4355 case SHADER_OPCODE_TXF_LOGICAL:
4356 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4357 break;
4358
4359 case SHADER_OPCODE_TXL_LOGICAL:
4360 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4361 break;
4362
4363 case SHADER_OPCODE_TXS_LOGICAL:
4364 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4365 break;
4366
4367 case FS_OPCODE_TXB_LOGICAL:
4368 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4369 break;
4370
4371 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4372 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4373 break;
4374
4375 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4376 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4377 break;
4378
4379 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4380 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4381 break;
4382
4383 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4384 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4385 break;
4386
4387 case SHADER_OPCODE_LOD_LOGICAL:
4388 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4389 break;
4390
4391 case SHADER_OPCODE_TG4_LOGICAL:
4392 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4393 break;
4394
4395 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4396 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4397 break;
4398
4399 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4400 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4401 break;
4402
4403 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4404 lower_surface_logical_send(ibld, inst,
4405 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4406 fs_reg());
4407 break;
4408
4409 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4410 lower_surface_logical_send(ibld, inst,
4411 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4412 ibld.sample_mask_reg());
4413 break;
4414
4415 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4416 lower_surface_logical_send(ibld, inst,
4417 SHADER_OPCODE_UNTYPED_ATOMIC,
4418 ibld.sample_mask_reg());
4419 break;
4420
4421 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4422 lower_surface_logical_send(ibld, inst,
4423 SHADER_OPCODE_TYPED_SURFACE_READ,
4424 brw_imm_d(0xffff));
4425 break;
4426
4427 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4428 lower_surface_logical_send(ibld, inst,
4429 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4430 ibld.sample_mask_reg());
4431 break;
4432
4433 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4434 lower_surface_logical_send(ibld, inst,
4435 SHADER_OPCODE_TYPED_ATOMIC,
4436 ibld.sample_mask_reg());
4437 break;
4438
4439 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4440 lower_varying_pull_constant_logical_send(ibld, inst);
4441 break;
4442
4443 case SHADER_OPCODE_RCP:
4444 case SHADER_OPCODE_RSQ:
4445 case SHADER_OPCODE_SQRT:
4446 case SHADER_OPCODE_EXP2:
4447 case SHADER_OPCODE_LOG2:
4448 case SHADER_OPCODE_SIN:
4449 case SHADER_OPCODE_COS:
4450 case SHADER_OPCODE_POW:
4451 case SHADER_OPCODE_INT_QUOTIENT:
4452 case SHADER_OPCODE_INT_REMAINDER:
4453 /* The math opcodes are overloaded for the send-like and
4454 * expression-like instructions which seems kind of icky. Gen6+ has
4455 * a native (but rather quirky) MATH instruction so we don't need to
4456 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4457 * logical instructions (which we can easily recognize because they
4458 * have mlen = 0) into send-like virtual instructions.
4459 */
4460 if (devinfo->gen < 6 && inst->mlen == 0) {
4461 lower_math_logical_send(ibld, inst);
4462 break;
4463
4464 } else {
4465 continue;
4466 }
4467
4468 default:
4469 continue;
4470 }
4471
4472 progress = true;
4473 }
4474
4475 if (progress)
4476 invalidate_live_intervals();
4477
4478 return progress;
4479 }
4480
4481 /**
4482 * Get the closest allowed SIMD width for instruction \p inst accounting for
4483 * some common regioning and execution control restrictions that apply to FPU
4484 * instructions. These restrictions don't necessarily have any relevance to
4485 * instructions not executed by the FPU pipeline like extended math, control
4486 * flow or send message instructions.
4487 *
4488 * For virtual opcodes it's really up to the instruction -- In some cases
4489 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4490 * instructions) it may simplify virtual instruction lowering if we can
4491 * enforce FPU-like regioning restrictions already on the virtual instruction,
4492 * in other cases (e.g. virtual send-like instructions) this may be
4493 * excessively restrictive.
4494 */
4495 static unsigned
4496 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4497 const fs_inst *inst)
4498 {
4499 /* Maximum execution size representable in the instruction controls. */
4500 unsigned max_width = MIN2(32, inst->exec_size);
4501
4502 /* According to the PRMs:
4503 * "A. In Direct Addressing mode, a source cannot span more than 2
4504 * adjacent GRF registers.
4505 * B. A destination cannot span more than 2 adjacent GRF registers."
4506 *
4507 * Look for the source or destination with the largest register region
4508 * which is the one that is going to limit the overall execution size of
4509 * the instruction due to this rule.
4510 */
4511 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4512
4513 for (unsigned i = 0; i < inst->sources; i++)
4514 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4515
4516 /* Calculate the maximum execution size of the instruction based on the
4517 * factor by which it goes over the hardware limit of 2 GRFs.
4518 */
4519 if (reg_count > 2)
4520 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4521
4522 /* According to the IVB PRMs:
4523 * "When destination spans two registers, the source MUST span two
4524 * registers. The exception to the above rule:
4525 *
4526 * - When source is scalar, the source registers are not incremented.
4527 * - When source is packed integer Word and destination is packed
4528 * integer DWord, the source register is not incremented but the
4529 * source sub register is incremented."
4530 *
4531 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4532 * restrictions. The code below intentionally doesn't check whether the
4533 * destination type is integer because empirically the hardware doesn't
4534 * seem to care what the actual type is as long as it's dword-aligned.
4535 */
4536 if (devinfo->gen < 8) {
4537 for (unsigned i = 0; i < inst->sources; i++) {
4538 /* IVB implements DF scalars as <0;2,1> regions. */
4539 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4540 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4541 const bool is_packed_word_exception =
4542 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4543 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4544
4545 if (inst->size_written > REG_SIZE &&
4546 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4547 !is_scalar_exception && !is_packed_word_exception) {
4548 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4549 max_width = MIN2(max_width, inst->exec_size / reg_count);
4550 }
4551 }
4552 }
4553
4554 /* From the IVB PRMs:
4555 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4556 * are applied for both halves of the SIMD32 instruction. If different
4557 * execution mask channels are required, split the instruction into two
4558 * SIMD16 instructions."
4559 *
4560 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4561 * 32-wide control flow support in hardware and will behave similarly.
4562 */
4563 if (devinfo->gen < 8 && !inst->force_writemask_all)
4564 max_width = MIN2(max_width, 16);
4565
4566 /* From the IVB PRMs (applies to HSW too):
4567 * "Instructions with condition modifiers must not use SIMD32."
4568 *
4569 * From the BDW PRMs (applies to later hardware too):
4570 * "Ternary instruction with condition modifiers must not use SIMD32."
4571 */
4572 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4573 max_width = MIN2(max_width, 16);
4574
4575 /* From the IVB PRMs (applies to other devices that don't have the
4576 * gen_device_info::supports_simd16_3src flag set):
4577 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4578 * SIMD8 is not allowed for DF operations."
4579 */
4580 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4581 max_width = MIN2(max_width, inst->exec_size / reg_count);
4582
4583 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4584 * the 8-bit quarter of the execution mask signals specified in the
4585 * instruction control fields) for the second compressed half of any
4586 * single-precision instruction (for double-precision instructions
4587 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4588 * the EU will apply the wrong execution controls for the second
4589 * sequential GRF write if the number of channels per GRF is not exactly
4590 * eight in single-precision mode (or four in double-float mode).
4591 *
4592 * In this situation we calculate the maximum size of the split
4593 * instructions so they only ever write to a single register.
4594 */
4595 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4596 !inst->force_writemask_all) {
4597 const unsigned channels_per_grf = inst->exec_size /
4598 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4599 const unsigned exec_type_size = get_exec_type_size(inst);
4600 assert(exec_type_size);
4601
4602 /* The hardware shifts exactly 8 channels per compressed half of the
4603 * instruction in single-precision mode and exactly 4 in double-precision.
4604 */
4605 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4606 max_width = MIN2(max_width, channels_per_grf);
4607
4608 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4609 * because HW applies the same channel enable signals to both halves of
4610 * the compressed instruction which will be just wrong under
4611 * non-uniform control flow.
4612 */
4613 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4614 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4615 max_width = MIN2(max_width, 4);
4616 }
4617
4618 /* Only power-of-two execution sizes are representable in the instruction
4619 * control fields.
4620 */
4621 return 1 << _mesa_logbase2(max_width);
4622 }
4623
4624 /**
4625 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4626 * various payload size restrictions that apply to sampler message
4627 * instructions.
4628 *
4629 * This is only intended to provide a maximum theoretical bound for the
4630 * execution size of the message based on the number of argument components
4631 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4632 * variant of the message can be used, though some messages may have
4633 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4634 * the message length to determine the exact SIMD width and argument count,
4635 * which makes a number of sampler message combinations impossible to
4636 * represent).
4637 */
4638 static unsigned
4639 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4640 const fs_inst *inst)
4641 {
4642 /* Calculate the number of coordinate components that have to be present
4643 * assuming that additional arguments follow the texel coordinates in the
4644 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4645 * need to pad to four or three components depending on the message,
4646 * pre-ILK we need to pad to at most three components.
4647 */
4648 const unsigned req_coord_components =
4649 (devinfo->gen >= 7 ||
4650 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4651 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4652 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4653 3;
4654
4655 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4656 * variant of the TXL or TXF message.
4657 */
4658 const bool implicit_lod = devinfo->gen >= 9 &&
4659 (inst->opcode == SHADER_OPCODE_TXL ||
4660 inst->opcode == SHADER_OPCODE_TXF) &&
4661 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4662
4663 /* Calculate the total number of argument components that need to be passed
4664 * to the sampler unit.
4665 */
4666 const unsigned num_payload_components =
4667 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4668 req_coord_components) +
4669 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4670 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4671 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4672 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4673 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4674 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4675 inst->components_read(TEX_LOGICAL_SRC_MCS);
4676
4677 /* SIMD16 messages with more than five arguments exceed the maximum message
4678 * size supported by the sampler, regardless of whether a header is
4679 * provided or not.
4680 */
4681 return MIN2(inst->exec_size,
4682 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4683 }
4684
4685 /**
4686 * Get the closest native SIMD width supported by the hardware for instruction
4687 * \p inst. The instruction will be left untouched by
4688 * fs_visitor::lower_simd_width() if the returned value is equal to the
4689 * original execution size.
4690 */
4691 static unsigned
4692 get_lowered_simd_width(const struct gen_device_info *devinfo,
4693 const fs_inst *inst)
4694 {
4695 switch (inst->opcode) {
4696 case BRW_OPCODE_MOV:
4697 case BRW_OPCODE_SEL:
4698 case BRW_OPCODE_NOT:
4699 case BRW_OPCODE_AND:
4700 case BRW_OPCODE_OR:
4701 case BRW_OPCODE_XOR:
4702 case BRW_OPCODE_SHR:
4703 case BRW_OPCODE_SHL:
4704 case BRW_OPCODE_ASR:
4705 case BRW_OPCODE_CMPN:
4706 case BRW_OPCODE_CSEL:
4707 case BRW_OPCODE_F32TO16:
4708 case BRW_OPCODE_F16TO32:
4709 case BRW_OPCODE_BFREV:
4710 case BRW_OPCODE_BFE:
4711 case BRW_OPCODE_ADD:
4712 case BRW_OPCODE_MUL:
4713 case BRW_OPCODE_AVG:
4714 case BRW_OPCODE_FRC:
4715 case BRW_OPCODE_RNDU:
4716 case BRW_OPCODE_RNDD:
4717 case BRW_OPCODE_RNDE:
4718 case BRW_OPCODE_RNDZ:
4719 case BRW_OPCODE_LZD:
4720 case BRW_OPCODE_FBH:
4721 case BRW_OPCODE_FBL:
4722 case BRW_OPCODE_CBIT:
4723 case BRW_OPCODE_SAD2:
4724 case BRW_OPCODE_MAD:
4725 case BRW_OPCODE_LRP:
4726 case FS_OPCODE_PACK:
4727 return get_fpu_lowered_simd_width(devinfo, inst);
4728
4729 case BRW_OPCODE_CMP: {
4730 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4731 * when the destination is a GRF the dependency-clear bit on the flag
4732 * register is cleared early.
4733 *
4734 * Suggested workarounds are to disable coissuing CMP instructions
4735 * or to split CMP(16) instructions into two CMP(8) instructions.
4736 *
4737 * We choose to split into CMP(8) instructions since disabling
4738 * coissuing would affect CMP instructions not otherwise affected by
4739 * the errata.
4740 */
4741 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4742 !inst->dst.is_null() ? 8 : ~0);
4743 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4744 }
4745 case BRW_OPCODE_BFI1:
4746 case BRW_OPCODE_BFI2:
4747 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4748 * should
4749 * "Force BFI instructions to be executed always in SIMD8."
4750 */
4751 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4752 get_fpu_lowered_simd_width(devinfo, inst));
4753
4754 case BRW_OPCODE_IF:
4755 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4756 return inst->exec_size;
4757
4758 case SHADER_OPCODE_RCP:
4759 case SHADER_OPCODE_RSQ:
4760 case SHADER_OPCODE_SQRT:
4761 case SHADER_OPCODE_EXP2:
4762 case SHADER_OPCODE_LOG2:
4763 case SHADER_OPCODE_SIN:
4764 case SHADER_OPCODE_COS:
4765 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4766 * Gen6.
4767 */
4768 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4769 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4770 MIN2(8, inst->exec_size));
4771
4772 case SHADER_OPCODE_POW:
4773 /* SIMD16 is only allowed on Gen7+. */
4774 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4775 MIN2(8, inst->exec_size));
4776
4777 case SHADER_OPCODE_INT_QUOTIENT:
4778 case SHADER_OPCODE_INT_REMAINDER:
4779 /* Integer division is limited to SIMD8 on all generations. */
4780 return MIN2(8, inst->exec_size);
4781
4782 case FS_OPCODE_LINTERP:
4783 case FS_OPCODE_GET_BUFFER_SIZE:
4784 case FS_OPCODE_DDX_COARSE:
4785 case FS_OPCODE_DDX_FINE:
4786 case FS_OPCODE_DDY_COARSE:
4787 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4788 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4789 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4790 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4791 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4792 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4793 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4794 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4795 return MIN2(16, inst->exec_size);
4796
4797 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4798 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4799 * message used to implement varying pull constant loads, so expand it
4800 * to SIMD16. An alternative with longer message payload length but
4801 * shorter return payload would be to use the SIMD8 sampler message that
4802 * takes (header, u, v, r) as parameters instead of (header, u).
4803 */
4804 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4805
4806 case FS_OPCODE_DDY_FINE:
4807 /* The implementation of this virtual opcode may require emitting
4808 * compressed Align16 instructions, which are severely limited on some
4809 * generations.
4810 *
4811 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4812 * Region Restrictions):
4813 *
4814 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4815 * and SIMD8 is not allowed for DF operations."
4816 *
4817 * In this context, "DW operations" means "operations acting on 32-bit
4818 * values", so it includes operations on floats.
4819 *
4820 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4821 * (Instruction Compression -> Rules and Restrictions):
4822 *
4823 * "A compressed instruction must be in Align1 access mode. Align16
4824 * mode instructions cannot be compressed."
4825 *
4826 * Similar text exists in the g45 PRM.
4827 *
4828 * Empirically, compressed align16 instructions using odd register
4829 * numbers don't appear to work on Sandybridge either.
4830 */
4831 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4832 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4833 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4834
4835 case SHADER_OPCODE_MULH:
4836 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4837 * is 8-wide on Gen7+.
4838 */
4839 return (devinfo->gen >= 7 ? 8 :
4840 get_fpu_lowered_simd_width(devinfo, inst));
4841
4842 case FS_OPCODE_FB_WRITE_LOGICAL:
4843 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4844 * here.
4845 */
4846 assert(devinfo->gen != 6 ||
4847 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4848 inst->exec_size == 8);
4849 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4850 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4851 8 : MIN2(16, inst->exec_size));
4852
4853 case FS_OPCODE_FB_READ_LOGICAL:
4854 return MIN2(16, inst->exec_size);
4855
4856 case SHADER_OPCODE_TEX_LOGICAL:
4857 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4858 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4859 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4860 case SHADER_OPCODE_LOD_LOGICAL:
4861 case SHADER_OPCODE_TG4_LOGICAL:
4862 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4863 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4864 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4865 return get_sampler_lowered_simd_width(devinfo, inst);
4866
4867 case SHADER_OPCODE_TXD_LOGICAL:
4868 /* TXD is unsupported in SIMD16 mode. */
4869 return 8;
4870
4871 case SHADER_OPCODE_TXL_LOGICAL:
4872 case FS_OPCODE_TXB_LOGICAL:
4873 /* Only one execution size is representable pre-ILK depending on whether
4874 * the shadow reference argument is present.
4875 */
4876 if (devinfo->gen == 4)
4877 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4878 else
4879 return get_sampler_lowered_simd_width(devinfo, inst);
4880
4881 case SHADER_OPCODE_TXF_LOGICAL:
4882 case SHADER_OPCODE_TXS_LOGICAL:
4883 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4884 * messages. Use SIMD16 instead.
4885 */
4886 if (devinfo->gen == 4)
4887 return 16;
4888 else
4889 return get_sampler_lowered_simd_width(devinfo, inst);
4890
4891 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4892 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4893 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4894 return 8;
4895
4896 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4897 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4898 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4899 return MIN2(16, inst->exec_size);
4900
4901 case SHADER_OPCODE_URB_READ_SIMD8:
4902 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4903 case SHADER_OPCODE_URB_WRITE_SIMD8:
4904 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4905 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4906 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4907 return MIN2(8, inst->exec_size);
4908
4909 case SHADER_OPCODE_MOV_INDIRECT: {
4910 /* From IVB and HSW PRMs:
4911 *
4912 * "2.When the destination requires two registers and the sources are
4913 * indirect, the sources must use 1x1 regioning mode.
4914 *
4915 * In case of DF instructions in HSW/IVB, the exec_size is limited by
4916 * the EU decompression logic not handling VxH indirect addressing
4917 * correctly.
4918 */
4919 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
4920 /* Prior to Broadwell, we only have 8 address subregisters. */
4921 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4922 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
4923 inst->exec_size);
4924 }
4925
4926 case SHADER_OPCODE_LOAD_PAYLOAD: {
4927 const unsigned reg_count =
4928 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4929
4930 if (reg_count > 2) {
4931 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4932 * can be easily lowered (which excludes headers and heterogeneous
4933 * types).
4934 */
4935 assert(!inst->header_size);
4936 for (unsigned i = 0; i < inst->sources; i++)
4937 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4938 inst->src[i].file == BAD_FILE);
4939
4940 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4941 } else {
4942 return inst->exec_size;
4943 }
4944 }
4945 default:
4946 return inst->exec_size;
4947 }
4948 }
4949
4950 /**
4951 * Return true if splitting out the group of channels of instruction \p inst
4952 * given by lbld.group() requires allocating a temporary for the i-th source
4953 * of the lowered instruction.
4954 */
4955 static inline bool
4956 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4957 {
4958 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4959 (inst->components_read(i) == 1 &&
4960 lbld.dispatch_width() <= inst->exec_size));
4961 }
4962
4963 /**
4964 * Extract the data that would be consumed by the channel group given by
4965 * lbld.group() from the i-th source region of instruction \p inst and return
4966 * it as result in packed form. If any copy instructions are required they
4967 * will be emitted before the given \p inst in \p block.
4968 */
4969 static fs_reg
4970 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
4971 unsigned i)
4972 {
4973 /* Specified channel group from the source region. */
4974 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
4975
4976 if (needs_src_copy(lbld, inst, i)) {
4977 /* Builder of the right width to perform the copy avoiding uninitialized
4978 * data if the lowered execution size is greater than the original
4979 * execution size of the instruction.
4980 */
4981 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
4982 inst->exec_size), 0);
4983 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
4984
4985 for (unsigned k = 0; k < inst->components_read(i); ++k)
4986 cbld.at(block, inst)
4987 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
4988
4989 return tmp;
4990
4991 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
4992 /* The source is invariant for all dispatch_width-wide groups of the
4993 * original region.
4994 */
4995 return inst->src[i];
4996
4997 } else {
4998 /* We can just point the lowered instruction at the right channel group
4999 * from the original region.
5000 */
5001 return src;
5002 }
5003 }
5004
5005 /**
5006 * Return true if splitting out the group of channels of instruction \p inst
5007 * given by lbld.group() requires allocating a temporary for the destination
5008 * of the lowered instruction and copying the data back to the original
5009 * destination region.
5010 */
5011 static inline bool
5012 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5013 {
5014 /* If the instruction writes more than one component we'll have to shuffle
5015 * the results of multiple lowered instructions in order to make sure that
5016 * they end up arranged correctly in the original destination region.
5017 */
5018 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5019 return true;
5020
5021 /* If the lowered execution size is larger than the original the result of
5022 * the instruction won't fit in the original destination, so we'll have to
5023 * allocate a temporary in any case.
5024 */
5025 if (lbld.dispatch_width() > inst->exec_size)
5026 return true;
5027
5028 for (unsigned i = 0; i < inst->sources; i++) {
5029 /* If we already made a copy of the source for other reasons there won't
5030 * be any overlap with the destination.
5031 */
5032 if (needs_src_copy(lbld, inst, i))
5033 continue;
5034
5035 /* In order to keep the logic simple we emit a copy whenever the
5036 * destination region doesn't exactly match an overlapping source, which
5037 * may point at the source and destination not being aligned group by
5038 * group which could cause one of the lowered instructions to overwrite
5039 * the data read from the same source by other lowered instructions.
5040 */
5041 if (regions_overlap(inst->dst, inst->size_written,
5042 inst->src[i], inst->size_read(i)) &&
5043 !inst->dst.equals(inst->src[i]))
5044 return true;
5045 }
5046
5047 return false;
5048 }
5049
5050 /**
5051 * Insert data from a packed temporary into the channel group given by
5052 * lbld.group() of the destination region of instruction \p inst and return
5053 * the temporary as result. If any copy instructions are required they will
5054 * be emitted around the given \p inst in \p block.
5055 */
5056 static fs_reg
5057 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5058 {
5059 /* Builder of the right width to perform the copy avoiding uninitialized
5060 * data if the lowered execution size is greater than the original
5061 * execution size of the instruction.
5062 */
5063 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5064 inst->exec_size), 0);
5065
5066 /* Specified channel group from the destination region. */
5067 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5068 const unsigned dst_size = inst->size_written /
5069 inst->dst.component_size(inst->exec_size);
5070
5071 if (needs_dst_copy(lbld, inst)) {
5072 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5073
5074 if (inst->predicate) {
5075 /* Handle predication by copying the original contents of
5076 * the destination into the temporary before emitting the
5077 * lowered instruction.
5078 */
5079 for (unsigned k = 0; k < dst_size; ++k)
5080 cbld.at(block, inst)
5081 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5082 }
5083
5084 for (unsigned k = 0; k < dst_size; ++k)
5085 cbld.at(block, inst->next)
5086 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5087
5088 return tmp;
5089
5090 } else {
5091 /* No need to allocate a temporary for the lowered instruction, just
5092 * take the right group of channels from the original region.
5093 */
5094 return dst;
5095 }
5096 }
5097
5098 bool
5099 fs_visitor::lower_simd_width()
5100 {
5101 bool progress = false;
5102
5103 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5104 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5105
5106 if (lower_width != inst->exec_size) {
5107 /* Builder matching the original instruction. We may also need to
5108 * emit an instruction of width larger than the original, set the
5109 * execution size of the builder to the highest of both for now so
5110 * we're sure that both cases can be handled.
5111 */
5112 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5113 const fs_builder ibld = bld.at(block, inst)
5114 .exec_all(inst->force_writemask_all)
5115 .group(max_width, inst->group / max_width);
5116
5117 /* Split the copies in chunks of the execution width of either the
5118 * original or the lowered instruction, whichever is lower.
5119 */
5120 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5121 const unsigned dst_size = inst->size_written /
5122 inst->dst.component_size(inst->exec_size);
5123
5124 assert(!inst->writes_accumulator && !inst->mlen);
5125
5126 for (unsigned i = 0; i < n; i++) {
5127 /* Emit a copy of the original instruction with the lowered width.
5128 * If the EOT flag was set throw it away except for the last
5129 * instruction to avoid killing the thread prematurely.
5130 */
5131 fs_inst split_inst = *inst;
5132 split_inst.exec_size = lower_width;
5133 split_inst.eot = inst->eot && i == n - 1;
5134
5135 /* Select the correct channel enables for the i-th group, then
5136 * transform the sources and destination and emit the lowered
5137 * instruction.
5138 */
5139 const fs_builder lbld = ibld.group(lower_width, i);
5140
5141 for (unsigned j = 0; j < inst->sources; j++)
5142 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5143
5144 split_inst.dst = emit_zip(lbld, block, inst);
5145 split_inst.size_written =
5146 split_inst.dst.component_size(lower_width) * dst_size;
5147
5148 lbld.emit(split_inst);
5149 }
5150
5151 inst->remove(block);
5152 progress = true;
5153 }
5154 }
5155
5156 if (progress)
5157 invalidate_live_intervals();
5158
5159 return progress;
5160 }
5161
5162 void
5163 fs_visitor::dump_instructions()
5164 {
5165 dump_instructions(NULL);
5166 }
5167
5168 void
5169 fs_visitor::dump_instructions(const char *name)
5170 {
5171 FILE *file = stderr;
5172 if (name && geteuid() != 0) {
5173 file = fopen(name, "w");
5174 if (!file)
5175 file = stderr;
5176 }
5177
5178 if (cfg) {
5179 calculate_register_pressure();
5180 int ip = 0, max_pressure = 0;
5181 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5182 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5183 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5184 dump_instruction(inst, file);
5185 ip++;
5186 }
5187 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5188 } else {
5189 int ip = 0;
5190 foreach_in_list(backend_instruction, inst, &instructions) {
5191 fprintf(file, "%4d: ", ip++);
5192 dump_instruction(inst, file);
5193 }
5194 }
5195
5196 if (file != stderr) {
5197 fclose(file);
5198 }
5199 }
5200
5201 void
5202 fs_visitor::dump_instruction(backend_instruction *be_inst)
5203 {
5204 dump_instruction(be_inst, stderr);
5205 }
5206
5207 void
5208 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5209 {
5210 fs_inst *inst = (fs_inst *)be_inst;
5211
5212 if (inst->predicate) {
5213 fprintf(file, "(%cf0.%d) ",
5214 inst->predicate_inverse ? '-' : '+',
5215 inst->flag_subreg);
5216 }
5217
5218 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5219 if (inst->saturate)
5220 fprintf(file, ".sat");
5221 if (inst->conditional_mod) {
5222 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5223 if (!inst->predicate &&
5224 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5225 inst->opcode != BRW_OPCODE_IF &&
5226 inst->opcode != BRW_OPCODE_WHILE))) {
5227 fprintf(file, ".f0.%d", inst->flag_subreg);
5228 }
5229 }
5230 fprintf(file, "(%d) ", inst->exec_size);
5231
5232 if (inst->mlen) {
5233 fprintf(file, "(mlen: %d) ", inst->mlen);
5234 }
5235
5236 if (inst->eot) {
5237 fprintf(file, "(EOT) ");
5238 }
5239
5240 switch (inst->dst.file) {
5241 case VGRF:
5242 fprintf(file, "vgrf%d", inst->dst.nr);
5243 break;
5244 case FIXED_GRF:
5245 fprintf(file, "g%d", inst->dst.nr);
5246 break;
5247 case MRF:
5248 fprintf(file, "m%d", inst->dst.nr);
5249 break;
5250 case BAD_FILE:
5251 fprintf(file, "(null)");
5252 break;
5253 case UNIFORM:
5254 fprintf(file, "***u%d***", inst->dst.nr);
5255 break;
5256 case ATTR:
5257 fprintf(file, "***attr%d***", inst->dst.nr);
5258 break;
5259 case ARF:
5260 switch (inst->dst.nr) {
5261 case BRW_ARF_NULL:
5262 fprintf(file, "null");
5263 break;
5264 case BRW_ARF_ADDRESS:
5265 fprintf(file, "a0.%d", inst->dst.subnr);
5266 break;
5267 case BRW_ARF_ACCUMULATOR:
5268 fprintf(file, "acc%d", inst->dst.subnr);
5269 break;
5270 case BRW_ARF_FLAG:
5271 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5272 break;
5273 default:
5274 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5275 break;
5276 }
5277 break;
5278 case IMM:
5279 unreachable("not reached");
5280 }
5281
5282 if (inst->dst.offset ||
5283 (inst->dst.file == VGRF &&
5284 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5285 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5286 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5287 inst->dst.offset % reg_size);
5288 }
5289
5290 if (inst->dst.stride != 1)
5291 fprintf(file, "<%u>", inst->dst.stride);
5292 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5293
5294 for (int i = 0; i < inst->sources; i++) {
5295 if (inst->src[i].negate)
5296 fprintf(file, "-");
5297 if (inst->src[i].abs)
5298 fprintf(file, "|");
5299 switch (inst->src[i].file) {
5300 case VGRF:
5301 fprintf(file, "vgrf%d", inst->src[i].nr);
5302 break;
5303 case FIXED_GRF:
5304 fprintf(file, "g%d", inst->src[i].nr);
5305 break;
5306 case MRF:
5307 fprintf(file, "***m%d***", inst->src[i].nr);
5308 break;
5309 case ATTR:
5310 fprintf(file, "attr%d", inst->src[i].nr);
5311 break;
5312 case UNIFORM:
5313 fprintf(file, "u%d", inst->src[i].nr);
5314 break;
5315 case BAD_FILE:
5316 fprintf(file, "(null)");
5317 break;
5318 case IMM:
5319 switch (inst->src[i].type) {
5320 case BRW_REGISTER_TYPE_F:
5321 fprintf(file, "%-gf", inst->src[i].f);
5322 break;
5323 case BRW_REGISTER_TYPE_DF:
5324 fprintf(file, "%fdf", inst->src[i].df);
5325 break;
5326 case BRW_REGISTER_TYPE_W:
5327 case BRW_REGISTER_TYPE_D:
5328 fprintf(file, "%dd", inst->src[i].d);
5329 break;
5330 case BRW_REGISTER_TYPE_UW:
5331 case BRW_REGISTER_TYPE_UD:
5332 fprintf(file, "%uu", inst->src[i].ud);
5333 break;
5334 case BRW_REGISTER_TYPE_VF:
5335 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5336 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5337 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5338 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5339 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5340 break;
5341 default:
5342 fprintf(file, "???");
5343 break;
5344 }
5345 break;
5346 case ARF:
5347 switch (inst->src[i].nr) {
5348 case BRW_ARF_NULL:
5349 fprintf(file, "null");
5350 break;
5351 case BRW_ARF_ADDRESS:
5352 fprintf(file, "a0.%d", inst->src[i].subnr);
5353 break;
5354 case BRW_ARF_ACCUMULATOR:
5355 fprintf(file, "acc%d", inst->src[i].subnr);
5356 break;
5357 case BRW_ARF_FLAG:
5358 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5359 break;
5360 default:
5361 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5362 break;
5363 }
5364 break;
5365 }
5366
5367 if (inst->src[i].offset ||
5368 (inst->src[i].file == VGRF &&
5369 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5370 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5371 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5372 inst->src[i].offset % reg_size);
5373 }
5374
5375 if (inst->src[i].abs)
5376 fprintf(file, "|");
5377
5378 if (inst->src[i].file != IMM) {
5379 unsigned stride;
5380 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5381 unsigned hstride = inst->src[i].hstride;
5382 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5383 } else {
5384 stride = inst->src[i].stride;
5385 }
5386 if (stride != 1)
5387 fprintf(file, "<%u>", stride);
5388
5389 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5390 }
5391
5392 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5393 fprintf(file, ", ");
5394 }
5395
5396 fprintf(file, " ");
5397
5398 if (inst->force_writemask_all)
5399 fprintf(file, "NoMask ");
5400
5401 if (inst->exec_size != dispatch_width)
5402 fprintf(file, "group%d ", inst->group);
5403
5404 fprintf(file, "\n");
5405 }
5406
5407 /**
5408 * Possibly returns an instruction that set up @param reg.
5409 *
5410 * Sometimes we want to take the result of some expression/variable
5411 * dereference tree and rewrite the instruction generating the result
5412 * of the tree. When processing the tree, we know that the
5413 * instructions generated are all writing temporaries that are dead
5414 * outside of this tree. So, if we have some instructions that write
5415 * a temporary, we're free to point that temp write somewhere else.
5416 *
5417 * Note that this doesn't guarantee that the instruction generated
5418 * only reg -- it might be the size=4 destination of a texture instruction.
5419 */
5420 fs_inst *
5421 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5422 fs_inst *end,
5423 const fs_reg &reg)
5424 {
5425 if (end == start ||
5426 end->is_partial_write() ||
5427 !reg.equals(end->dst)) {
5428 return NULL;
5429 } else {
5430 return end;
5431 }
5432 }
5433
5434 void
5435 fs_visitor::setup_fs_payload_gen6()
5436 {
5437 assert(stage == MESA_SHADER_FRAGMENT);
5438 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5439
5440 assert(devinfo->gen >= 6);
5441
5442 /* R0-1: masks, pixel X/Y coordinates. */
5443 payload.num_regs = 2;
5444 /* R2: only for 32-pixel dispatch.*/
5445
5446 /* R3-26: barycentric interpolation coordinates. These appear in the
5447 * same order that they appear in the brw_barycentric_mode
5448 * enum. Each set of coordinates occupies 2 registers if dispatch width
5449 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5450 * appear if they were enabled using the "Barycentric Interpolation
5451 * Mode" bits in WM_STATE.
5452 */
5453 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5454 if (prog_data->barycentric_interp_modes & (1 << i)) {
5455 payload.barycentric_coord_reg[i] = payload.num_regs;
5456 payload.num_regs += 2;
5457 if (dispatch_width == 16) {
5458 payload.num_regs += 2;
5459 }
5460 }
5461 }
5462
5463 /* R27: interpolated depth if uses source depth */
5464 prog_data->uses_src_depth =
5465 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5466 if (prog_data->uses_src_depth) {
5467 payload.source_depth_reg = payload.num_regs;
5468 payload.num_regs++;
5469 if (dispatch_width == 16) {
5470 /* R28: interpolated depth if not SIMD8. */
5471 payload.num_regs++;
5472 }
5473 }
5474
5475 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5476 prog_data->uses_src_w =
5477 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5478 if (prog_data->uses_src_w) {
5479 payload.source_w_reg = payload.num_regs;
5480 payload.num_regs++;
5481 if (dispatch_width == 16) {
5482 /* R30: interpolated W if not SIMD8. */
5483 payload.num_regs++;
5484 }
5485 }
5486
5487 /* R31: MSAA position offsets. */
5488 if (prog_data->persample_dispatch &&
5489 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5490 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5491 *
5492 * "MSDISPMODE_PERSAMPLE is required in order to select
5493 * POSOFFSET_SAMPLE"
5494 *
5495 * So we can only really get sample positions if we are doing real
5496 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5497 * persample dispatch, we hard-code it to 0.5.
5498 */
5499 prog_data->uses_pos_offset = true;
5500 payload.sample_pos_reg = payload.num_regs;
5501 payload.num_regs++;
5502 }
5503
5504 /* R32: MSAA input coverage mask */
5505 prog_data->uses_sample_mask =
5506 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5507 if (prog_data->uses_sample_mask) {
5508 assert(devinfo->gen >= 7);
5509 payload.sample_mask_in_reg = payload.num_regs;
5510 payload.num_regs++;
5511 if (dispatch_width == 16) {
5512 /* R33: input coverage mask if not SIMD8. */
5513 payload.num_regs++;
5514 }
5515 }
5516
5517 /* R34-: bary for 32-pixel. */
5518 /* R58-59: interp W for 32-pixel. */
5519
5520 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5521 source_depth_to_render_target = true;
5522 }
5523 }
5524
5525 void
5526 fs_visitor::setup_vs_payload()
5527 {
5528 /* R0: thread header, R1: urb handles */
5529 payload.num_regs = 2;
5530 }
5531
5532 void
5533 fs_visitor::setup_gs_payload()
5534 {
5535 assert(stage == MESA_SHADER_GEOMETRY);
5536
5537 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5538 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5539
5540 /* R0: thread header, R1: output URB handles */
5541 payload.num_regs = 2;
5542
5543 if (gs_prog_data->include_primitive_id) {
5544 /* R2: Primitive ID 0..7 */
5545 payload.num_regs++;
5546 }
5547
5548 /* Use a maximum of 24 registers for push-model inputs. */
5549 const unsigned max_push_components = 24;
5550
5551 /* If pushing our inputs would take too many registers, reduce the URB read
5552 * length (which is in HWords, or 8 registers), and resort to pulling.
5553 *
5554 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5555 * have to multiply by VerticesIn to obtain the total storage requirement.
5556 */
5557 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5558 max_push_components || gs_prog_data->invocations > 1) {
5559 gs_prog_data->base.include_vue_handles = true;
5560
5561 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5562 payload.num_regs += nir->info.gs.vertices_in;
5563
5564 vue_prog_data->urb_read_length =
5565 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5566 }
5567 }
5568
5569 void
5570 fs_visitor::setup_cs_payload()
5571 {
5572 assert(devinfo->gen >= 7);
5573 payload.num_regs = 1;
5574 }
5575
5576 void
5577 fs_visitor::calculate_register_pressure()
5578 {
5579 invalidate_live_intervals();
5580 calculate_live_intervals();
5581
5582 unsigned num_instructions = 0;
5583 foreach_block(block, cfg)
5584 num_instructions += block->instructions.length();
5585
5586 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5587
5588 for (unsigned reg = 0; reg < alloc.count; reg++) {
5589 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5590 regs_live_at_ip[ip] += alloc.sizes[reg];
5591 }
5592 }
5593
5594 /**
5595 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5596 *
5597 * The needs_unlit_centroid_workaround ends up producing one of these per
5598 * channel of centroid input, so it's good to clean them up.
5599 *
5600 * An assumption here is that nothing ever modifies the dispatched pixels
5601 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5602 * dictates that anyway.
5603 */
5604 bool
5605 fs_visitor::opt_drop_redundant_mov_to_flags()
5606 {
5607 bool flag_mov_found[2] = {false};
5608 bool progress = false;
5609
5610 /* Instructions removed by this pass can only be added if this were true */
5611 if (!devinfo->needs_unlit_centroid_workaround)
5612 return false;
5613
5614 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5615 if (inst->is_control_flow()) {
5616 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5617 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5618 if (!flag_mov_found[inst->flag_subreg]) {
5619 flag_mov_found[inst->flag_subreg] = true;
5620 } else {
5621 inst->remove(block);
5622 progress = true;
5623 }
5624 } else if (inst->flags_written()) {
5625 flag_mov_found[inst->flag_subreg] = false;
5626 }
5627 }
5628
5629 return progress;
5630 }
5631
5632 void
5633 fs_visitor::optimize()
5634 {
5635 /* Start by validating the shader we currently have. */
5636 validate();
5637
5638 /* bld is the common builder object pointing at the end of the program we
5639 * used to translate it into i965 IR. For the optimization and lowering
5640 * passes coming next, any code added after the end of the program without
5641 * having explicitly called fs_builder::at() clearly points at a mistake.
5642 * Ideally optimization passes wouldn't be part of the visitor so they
5643 * wouldn't have access to bld at all, but they do, so just in case some
5644 * pass forgets to ask for a location explicitly set it to NULL here to
5645 * make it trip. The dispatch width is initialized to a bogus value to
5646 * make sure that optimizations set the execution controls explicitly to
5647 * match the code they are manipulating instead of relying on the defaults.
5648 */
5649 bld = fs_builder(this, 64);
5650
5651 assign_constant_locations();
5652 lower_constant_loads();
5653
5654 validate();
5655
5656 split_virtual_grfs();
5657 validate();
5658
5659 #define OPT(pass, args...) ({ \
5660 pass_num++; \
5661 bool this_progress = pass(args); \
5662 \
5663 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5664 char filename[64]; \
5665 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5666 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5667 \
5668 backend_shader::dump_instructions(filename); \
5669 } \
5670 \
5671 validate(); \
5672 \
5673 progress = progress || this_progress; \
5674 this_progress; \
5675 })
5676
5677 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5678 char filename[64];
5679 snprintf(filename, 64, "%s%d-%s-00-00-start",
5680 stage_abbrev, dispatch_width, nir->info.name);
5681
5682 backend_shader::dump_instructions(filename);
5683 }
5684
5685 bool progress = false;
5686 int iteration = 0;
5687 int pass_num = 0;
5688
5689 OPT(opt_drop_redundant_mov_to_flags);
5690
5691 do {
5692 progress = false;
5693 pass_num = 0;
5694 iteration++;
5695
5696 OPT(remove_duplicate_mrf_writes);
5697
5698 OPT(opt_algebraic);
5699 OPT(opt_cse);
5700 OPT(opt_copy_propagation);
5701 OPT(opt_predicated_break, this);
5702 OPT(opt_cmod_propagation);
5703 OPT(dead_code_eliminate);
5704 OPT(opt_peephole_sel);
5705 OPT(dead_control_flow_eliminate, this);
5706 OPT(opt_register_renaming);
5707 OPT(opt_saturate_propagation);
5708 OPT(register_coalesce);
5709 OPT(compute_to_mrf);
5710 OPT(eliminate_find_live_channel);
5711
5712 OPT(compact_virtual_grfs);
5713 } while (progress);
5714
5715 progress = false;
5716 pass_num = 0;
5717
5718 if (OPT(lower_pack)) {
5719 OPT(register_coalesce);
5720 OPT(dead_code_eliminate);
5721 }
5722
5723 OPT(lower_simd_width);
5724
5725 /* After SIMD lowering just in case we had to unroll the EOT send. */
5726 OPT(opt_sampler_eot);
5727
5728 OPT(lower_logical_sends);
5729
5730 if (progress) {
5731 OPT(opt_copy_propagation);
5732 /* Only run after logical send lowering because it's easier to implement
5733 * in terms of physical sends.
5734 */
5735 if (OPT(opt_zero_samples))
5736 OPT(opt_copy_propagation);
5737 /* Run after logical send lowering to give it a chance to CSE the
5738 * LOAD_PAYLOAD instructions created to construct the payloads of
5739 * e.g. texturing messages in cases where it wasn't possible to CSE the
5740 * whole logical instruction.
5741 */
5742 OPT(opt_cse);
5743 OPT(register_coalesce);
5744 OPT(compute_to_mrf);
5745 OPT(dead_code_eliminate);
5746 OPT(remove_duplicate_mrf_writes);
5747 OPT(opt_peephole_sel);
5748 }
5749
5750 OPT(opt_redundant_discard_jumps);
5751
5752 if (OPT(lower_load_payload)) {
5753 split_virtual_grfs();
5754 OPT(register_coalesce);
5755 OPT(compute_to_mrf);
5756 OPT(dead_code_eliminate);
5757 }
5758
5759 OPT(opt_combine_constants);
5760 OPT(lower_integer_multiplication);
5761
5762 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5763 OPT(opt_cmod_propagation);
5764 OPT(opt_cse);
5765 OPT(opt_copy_propagation);
5766 OPT(dead_code_eliminate);
5767 }
5768
5769 if (OPT(lower_conversions)) {
5770 OPT(opt_copy_propagation);
5771 OPT(dead_code_eliminate);
5772 OPT(lower_simd_width);
5773 }
5774
5775 lower_uniform_pull_constant_loads();
5776
5777 validate();
5778 }
5779
5780 /**
5781 * Three source instruction must have a GRF/MRF destination register.
5782 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5783 */
5784 void
5785 fs_visitor::fixup_3src_null_dest()
5786 {
5787 bool progress = false;
5788
5789 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5790 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5791 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5792 inst->dst.type);
5793 progress = true;
5794 }
5795 }
5796
5797 if (progress)
5798 invalidate_live_intervals();
5799 }
5800
5801 void
5802 fs_visitor::allocate_registers(bool allow_spilling)
5803 {
5804 bool allocated_without_spills;
5805
5806 static const enum instruction_scheduler_mode pre_modes[] = {
5807 SCHEDULE_PRE,
5808 SCHEDULE_PRE_NON_LIFO,
5809 SCHEDULE_PRE_LIFO,
5810 };
5811
5812 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5813
5814 /* Try each scheduling heuristic to see if it can successfully register
5815 * allocate without spilling. They should be ordered by decreasing
5816 * performance but increasing likelihood of allocating.
5817 */
5818 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5819 schedule_instructions(pre_modes[i]);
5820
5821 if (0) {
5822 assign_regs_trivial();
5823 allocated_without_spills = true;
5824 } else {
5825 allocated_without_spills = assign_regs(false, spill_all);
5826 }
5827 if (allocated_without_spills)
5828 break;
5829 }
5830
5831 if (!allocated_without_spills) {
5832 if (!allow_spilling)
5833 fail("Failure to register allocate and spilling is not allowed.");
5834
5835 /* We assume that any spilling is worse than just dropping back to
5836 * SIMD8. There's probably actually some intermediate point where
5837 * SIMD16 with a couple of spills is still better.
5838 */
5839 if (dispatch_width > min_dispatch_width) {
5840 fail("Failure to register allocate. Reduce number of "
5841 "live scalar values to avoid this.");
5842 } else {
5843 compiler->shader_perf_log(log_data,
5844 "%s shader triggered register spilling. "
5845 "Try reducing the number of live scalar "
5846 "values to improve performance.\n",
5847 stage_name);
5848 }
5849
5850 /* Since we're out of heuristics, just go spill registers until we
5851 * get an allocation.
5852 */
5853 while (!assign_regs(true, spill_all)) {
5854 if (failed)
5855 break;
5856 }
5857 }
5858
5859 /* This must come after all optimization and register allocation, since
5860 * it inserts dead code that happens to have side effects, and it does
5861 * so based on the actual physical registers in use.
5862 */
5863 insert_gen4_send_dependency_workarounds();
5864
5865 if (failed)
5866 return;
5867
5868 schedule_instructions(SCHEDULE_POST);
5869
5870 if (last_scratch > 0) {
5871 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5872
5873 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5874
5875 if (stage == MESA_SHADER_COMPUTE) {
5876 if (devinfo->is_haswell) {
5877 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5878 * field documentation, Haswell supports a minimum of 2kB of
5879 * scratch space for compute shaders, unlike every other stage
5880 * and platform.
5881 */
5882 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5883 } else if (devinfo->gen <= 7) {
5884 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5885 * field documentation, platforms prior to Haswell measure scratch
5886 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5887 */
5888 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5889 max_scratch_size = 12 * 1024;
5890 }
5891 }
5892
5893 /* We currently only support up to 2MB of scratch space. If we
5894 * need to support more eventually, the documentation suggests
5895 * that we could allocate a larger buffer, and partition it out
5896 * ourselves. We'd just have to undo the hardware's address
5897 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5898 * and then add FFTID * (Larger Per Thread Scratch Space).
5899 *
5900 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5901 * Thread Group Tracking > Local Memory/Scratch Space.
5902 */
5903 assert(prog_data->total_scratch < max_scratch_size);
5904 }
5905 }
5906
5907 bool
5908 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5909 {
5910 assert(stage == MESA_SHADER_VERTEX);
5911
5912 setup_vs_payload();
5913
5914 if (shader_time_index >= 0)
5915 emit_shader_time_begin();
5916
5917 emit_nir_code();
5918
5919 if (failed)
5920 return false;
5921
5922 compute_clip_distance(clip_planes);
5923
5924 emit_urb_writes();
5925
5926 if (shader_time_index >= 0)
5927 emit_shader_time_end();
5928
5929 calculate_cfg();
5930
5931 optimize();
5932
5933 assign_curb_setup();
5934 assign_vs_urb_setup();
5935
5936 fixup_3src_null_dest();
5937 allocate_registers(true);
5938
5939 return !failed;
5940 }
5941
5942 bool
5943 fs_visitor::run_tcs_single_patch()
5944 {
5945 assert(stage == MESA_SHADER_TESS_CTRL);
5946
5947 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
5948
5949 /* r1-r4 contain the ICP handles. */
5950 payload.num_regs = 5;
5951
5952 if (shader_time_index >= 0)
5953 emit_shader_time_begin();
5954
5955 /* Initialize gl_InvocationID */
5956 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5957 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5958 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5959 bld.MOV(channels_ud, channels_uw);
5960
5961 if (tcs_prog_data->instances == 1) {
5962 invocation_id = channels_ud;
5963 } else {
5964 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
5965
5966 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
5967 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
5968 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5969 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
5970 brw_imm_ud(INTEL_MASK(23, 17)));
5971 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
5972
5973 bld.ADD(invocation_id, instance_times_8, channels_ud);
5974 }
5975
5976 /* Fix the disptach mask */
5977 if (nir->info.tess.tcs_vertices_out % 8) {
5978 bld.CMP(bld.null_reg_ud(), invocation_id,
5979 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
5980 bld.IF(BRW_PREDICATE_NORMAL);
5981 }
5982
5983 emit_nir_code();
5984
5985 if (nir->info.tess.tcs_vertices_out % 8) {
5986 bld.emit(BRW_OPCODE_ENDIF);
5987 }
5988
5989 /* Emit EOT write; set TR DS Cache bit */
5990 fs_reg srcs[3] = {
5991 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
5992 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
5993 fs_reg(brw_imm_ud(0)),
5994 };
5995 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
5996 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
5997
5998 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
5999 bld.null_reg_ud(), payload);
6000 inst->mlen = 3;
6001 inst->eot = true;
6002
6003 if (shader_time_index >= 0)
6004 emit_shader_time_end();
6005
6006 if (failed)
6007 return false;
6008
6009 calculate_cfg();
6010
6011 optimize();
6012
6013 assign_curb_setup();
6014 assign_tcs_single_patch_urb_setup();
6015
6016 fixup_3src_null_dest();
6017 allocate_registers(true);
6018
6019 return !failed;
6020 }
6021
6022 bool
6023 fs_visitor::run_tes()
6024 {
6025 assert(stage == MESA_SHADER_TESS_EVAL);
6026
6027 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6028 payload.num_regs = 5;
6029
6030 if (shader_time_index >= 0)
6031 emit_shader_time_begin();
6032
6033 emit_nir_code();
6034
6035 if (failed)
6036 return false;
6037
6038 emit_urb_writes();
6039
6040 if (shader_time_index >= 0)
6041 emit_shader_time_end();
6042
6043 calculate_cfg();
6044
6045 optimize();
6046
6047 assign_curb_setup();
6048 assign_tes_urb_setup();
6049
6050 fixup_3src_null_dest();
6051 allocate_registers(true);
6052
6053 return !failed;
6054 }
6055
6056 bool
6057 fs_visitor::run_gs()
6058 {
6059 assert(stage == MESA_SHADER_GEOMETRY);
6060
6061 setup_gs_payload();
6062
6063 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6064
6065 if (gs_compile->control_data_header_size_bits > 0) {
6066 /* Create a VGRF to store accumulated control data bits. */
6067 this->control_data_bits = vgrf(glsl_type::uint_type);
6068
6069 /* If we're outputting more than 32 control data bits, then EmitVertex()
6070 * will set control_data_bits to 0 after emitting the first vertex.
6071 * Otherwise, we need to initialize it to 0 here.
6072 */
6073 if (gs_compile->control_data_header_size_bits <= 32) {
6074 const fs_builder abld = bld.annotate("initialize control data bits");
6075 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6076 }
6077 }
6078
6079 if (shader_time_index >= 0)
6080 emit_shader_time_begin();
6081
6082 emit_nir_code();
6083
6084 emit_gs_thread_end();
6085
6086 if (shader_time_index >= 0)
6087 emit_shader_time_end();
6088
6089 if (failed)
6090 return false;
6091
6092 calculate_cfg();
6093
6094 optimize();
6095
6096 assign_curb_setup();
6097 assign_gs_urb_setup();
6098
6099 fixup_3src_null_dest();
6100 allocate_registers(true);
6101
6102 return !failed;
6103 }
6104
6105 bool
6106 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6107 {
6108 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6109 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6110
6111 assert(stage == MESA_SHADER_FRAGMENT);
6112
6113 if (devinfo->gen >= 6)
6114 setup_fs_payload_gen6();
6115 else
6116 setup_fs_payload_gen4();
6117
6118 if (0) {
6119 emit_dummy_fs();
6120 } else if (do_rep_send) {
6121 assert(dispatch_width == 16);
6122 emit_repclear_shader();
6123 } else {
6124 if (shader_time_index >= 0)
6125 emit_shader_time_begin();
6126
6127 calculate_urb_setup();
6128 if (nir->info.inputs_read > 0 ||
6129 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6130 if (devinfo->gen < 6)
6131 emit_interpolation_setup_gen4();
6132 else
6133 emit_interpolation_setup_gen6();
6134 }
6135
6136 /* We handle discards by keeping track of the still-live pixels in f0.1.
6137 * Initialize it with the dispatched pixels.
6138 */
6139 if (wm_prog_data->uses_kill) {
6140 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6141 discard_init->flag_subreg = 1;
6142 }
6143
6144 /* Generate FS IR for main(). (the visitor only descends into
6145 * functions called "main").
6146 */
6147 emit_nir_code();
6148
6149 if (failed)
6150 return false;
6151
6152 if (wm_prog_data->uses_kill)
6153 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6154
6155 if (wm_key->alpha_test_func)
6156 emit_alpha_test();
6157
6158 emit_fb_writes();
6159
6160 if (shader_time_index >= 0)
6161 emit_shader_time_end();
6162
6163 calculate_cfg();
6164
6165 optimize();
6166
6167 assign_curb_setup();
6168 assign_urb_setup();
6169
6170 fixup_3src_null_dest();
6171 allocate_registers(allow_spilling);
6172
6173 if (failed)
6174 return false;
6175 }
6176
6177 return !failed;
6178 }
6179
6180 bool
6181 fs_visitor::run_cs()
6182 {
6183 assert(stage == MESA_SHADER_COMPUTE);
6184
6185 setup_cs_payload();
6186
6187 if (shader_time_index >= 0)
6188 emit_shader_time_begin();
6189
6190 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6191 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6192 const fs_builder abld = bld.exec_all().group(1, 0);
6193 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6194 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6195 }
6196
6197 emit_nir_code();
6198
6199 if (failed)
6200 return false;
6201
6202 emit_cs_terminate();
6203
6204 if (shader_time_index >= 0)
6205 emit_shader_time_end();
6206
6207 calculate_cfg();
6208
6209 optimize();
6210
6211 assign_curb_setup();
6212
6213 fixup_3src_null_dest();
6214 allocate_registers(true);
6215
6216 if (failed)
6217 return false;
6218
6219 return !failed;
6220 }
6221
6222 /**
6223 * Return a bitfield where bit n is set if barycentric interpolation mode n
6224 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6225 *
6226 * We examine the load_barycentric intrinsics rather than looking at input
6227 * variables so that we catch interpolateAtCentroid() messages too, which
6228 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6229 */
6230 static unsigned
6231 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6232 const nir_shader *shader)
6233 {
6234 unsigned barycentric_interp_modes = 0;
6235
6236 nir_foreach_function(f, shader) {
6237 if (!f->impl)
6238 continue;
6239
6240 nir_foreach_block(block, f->impl) {
6241 nir_foreach_instr(instr, block) {
6242 if (instr->type != nir_instr_type_intrinsic)
6243 continue;
6244
6245 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6246 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6247 continue;
6248
6249 /* Ignore WPOS; it doesn't require interpolation. */
6250 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6251 continue;
6252
6253 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6254 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6255 nir_intrinsic_interp_mode(intrin);
6256 nir_intrinsic_op bary_op = intrin->intrinsic;
6257 enum brw_barycentric_mode bary =
6258 brw_barycentric_mode(interp, bary_op);
6259
6260 barycentric_interp_modes |= 1 << bary;
6261
6262 if (devinfo->needs_unlit_centroid_workaround &&
6263 bary_op == nir_intrinsic_load_barycentric_centroid)
6264 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6265 }
6266 }
6267 }
6268
6269 return barycentric_interp_modes;
6270 }
6271
6272 static void
6273 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6274 const nir_shader *shader)
6275 {
6276 prog_data->flat_inputs = 0;
6277
6278 nir_foreach_variable(var, &shader->inputs) {
6279 int input_index = prog_data->urb_setup[var->data.location];
6280
6281 if (input_index < 0)
6282 continue;
6283
6284 /* flat shading */
6285 if (var->data.interpolation == INTERP_MODE_FLAT)
6286 prog_data->flat_inputs |= (1 << input_index);
6287 }
6288 }
6289
6290 static uint8_t
6291 computed_depth_mode(const nir_shader *shader)
6292 {
6293 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6294 switch (shader->info.fs.depth_layout) {
6295 case FRAG_DEPTH_LAYOUT_NONE:
6296 case FRAG_DEPTH_LAYOUT_ANY:
6297 return BRW_PSCDEPTH_ON;
6298 case FRAG_DEPTH_LAYOUT_GREATER:
6299 return BRW_PSCDEPTH_ON_GE;
6300 case FRAG_DEPTH_LAYOUT_LESS:
6301 return BRW_PSCDEPTH_ON_LE;
6302 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6303 return BRW_PSCDEPTH_OFF;
6304 }
6305 }
6306 return BRW_PSCDEPTH_OFF;
6307 }
6308
6309 /**
6310 * Move load_interpolated_input with simple (payload-based) barycentric modes
6311 * to the top of the program so we don't emit multiple PLNs for the same input.
6312 *
6313 * This works around CSE not being able to handle non-dominating cases
6314 * such as:
6315 *
6316 * if (...) {
6317 * interpolate input
6318 * } else {
6319 * interpolate the same exact input
6320 * }
6321 *
6322 * This should be replaced by global value numbering someday.
6323 */
6324 static bool
6325 move_interpolation_to_top(nir_shader *nir)
6326 {
6327 bool progress = false;
6328
6329 nir_foreach_function(f, nir) {
6330 if (!f->impl)
6331 continue;
6332
6333 nir_block *top = nir_start_block(f->impl);
6334 exec_node *cursor_node = NULL;
6335
6336 nir_foreach_block(block, f->impl) {
6337 if (block == top)
6338 continue;
6339
6340 nir_foreach_instr_safe(instr, block) {
6341 if (instr->type != nir_instr_type_intrinsic)
6342 continue;
6343
6344 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6345 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6346 continue;
6347 nir_intrinsic_instr *bary_intrinsic =
6348 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6349 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6350
6351 /* Leave interpolateAtSample/Offset() where they are. */
6352 if (op == nir_intrinsic_load_barycentric_at_sample ||
6353 op == nir_intrinsic_load_barycentric_at_offset)
6354 continue;
6355
6356 nir_instr *move[3] = {
6357 &bary_intrinsic->instr,
6358 intrin->src[1].ssa->parent_instr,
6359 instr
6360 };
6361
6362 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6363 if (move[i]->block != top) {
6364 move[i]->block = top;
6365 exec_node_remove(&move[i]->node);
6366 if (cursor_node) {
6367 exec_node_insert_after(cursor_node, &move[i]->node);
6368 } else {
6369 exec_list_push_head(&top->instr_list, &move[i]->node);
6370 }
6371 cursor_node = &move[i]->node;
6372 progress = true;
6373 }
6374 }
6375 }
6376 }
6377 nir_metadata_preserve(f->impl, (nir_metadata)
6378 ((unsigned) nir_metadata_block_index |
6379 (unsigned) nir_metadata_dominance));
6380 }
6381
6382 return progress;
6383 }
6384
6385 /**
6386 * Demote per-sample barycentric intrinsics to centroid.
6387 *
6388 * Useful when rendering to a non-multisampled buffer.
6389 */
6390 static bool
6391 demote_sample_qualifiers(nir_shader *nir)
6392 {
6393 bool progress = true;
6394
6395 nir_foreach_function(f, nir) {
6396 if (!f->impl)
6397 continue;
6398
6399 nir_builder b;
6400 nir_builder_init(&b, f->impl);
6401
6402 nir_foreach_block(block, f->impl) {
6403 nir_foreach_instr_safe(instr, block) {
6404 if (instr->type != nir_instr_type_intrinsic)
6405 continue;
6406
6407 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6408 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6409 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6410 continue;
6411
6412 b.cursor = nir_before_instr(instr);
6413 nir_ssa_def *centroid =
6414 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6415 nir_intrinsic_interp_mode(intrin));
6416 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6417 nir_src_for_ssa(centroid));
6418 nir_instr_remove(instr);
6419 progress = true;
6420 }
6421 }
6422
6423 nir_metadata_preserve(f->impl, (nir_metadata)
6424 ((unsigned) nir_metadata_block_index |
6425 (unsigned) nir_metadata_dominance));
6426 }
6427
6428 return progress;
6429 }
6430
6431 /**
6432 * Pre-gen6, the register file of the EUs was shared between threads,
6433 * and each thread used some subset allocated on a 16-register block
6434 * granularity. The unit states wanted these block counts.
6435 */
6436 static inline int
6437 brw_register_blocks(int reg_count)
6438 {
6439 return ALIGN(reg_count, 16) / 16 - 1;
6440 }
6441
6442 const unsigned *
6443 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6444 void *mem_ctx,
6445 const struct brw_wm_prog_key *key,
6446 struct brw_wm_prog_data *prog_data,
6447 const nir_shader *src_shader,
6448 struct gl_program *prog,
6449 int shader_time_index8, int shader_time_index16,
6450 bool allow_spilling,
6451 bool use_rep_send, struct brw_vue_map *vue_map,
6452 unsigned *final_assembly_size,
6453 char **error_str)
6454 {
6455 const struct gen_device_info *devinfo = compiler->devinfo;
6456
6457 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6458 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6459 brw_nir_lower_fs_inputs(shader, devinfo, key);
6460 brw_nir_lower_fs_outputs(shader);
6461
6462 if (devinfo->gen < 6) {
6463 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6464 }
6465
6466 if (!key->multisample_fbo)
6467 NIR_PASS_V(shader, demote_sample_qualifiers);
6468 NIR_PASS_V(shader, move_interpolation_to_top);
6469 shader = brw_postprocess_nir(shader, compiler, true);
6470
6471 /* key->alpha_test_func means simulating alpha testing via discards,
6472 * so the shader definitely kills pixels.
6473 */
6474 prog_data->uses_kill = shader->info.fs.uses_discard ||
6475 key->alpha_test_func;
6476 prog_data->uses_omask = key->multisample_fbo &&
6477 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6478 prog_data->computed_depth_mode = computed_depth_mode(shader);
6479 prog_data->computed_stencil =
6480 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6481
6482 prog_data->persample_dispatch =
6483 key->multisample_fbo &&
6484 (key->persample_interp ||
6485 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6486 SYSTEM_BIT_SAMPLE_POS)) ||
6487 shader->info.fs.uses_sample_qualifier ||
6488 shader->info.outputs_read);
6489
6490 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6491 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6492 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6493
6494 prog_data->barycentric_interp_modes =
6495 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6496
6497 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6498 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6499 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6500
6501 fs_visitor v8(compiler, log_data, mem_ctx, key,
6502 &prog_data->base, prog, shader, 8,
6503 shader_time_index8);
6504 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6505 if (error_str)
6506 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6507
6508 return NULL;
6509 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6510 simd8_cfg = v8.cfg;
6511 simd8_grf_start = v8.payload.num_regs;
6512 simd8_grf_used = v8.grf_used;
6513 }
6514
6515 if (v8.max_dispatch_width >= 16 &&
6516 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6517 /* Try a SIMD16 compile */
6518 fs_visitor v16(compiler, log_data, mem_ctx, key,
6519 &prog_data->base, prog, shader, 16,
6520 shader_time_index16);
6521 v16.import_uniforms(&v8);
6522 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6523 compiler->shader_perf_log(log_data,
6524 "SIMD16 shader failed to compile: %s",
6525 v16.fail_msg);
6526 } else {
6527 simd16_cfg = v16.cfg;
6528 simd16_grf_start = v16.payload.num_regs;
6529 simd16_grf_used = v16.grf_used;
6530 }
6531 }
6532
6533 /* When the caller requests a repclear shader, they want SIMD16-only */
6534 if (use_rep_send)
6535 simd8_cfg = NULL;
6536
6537 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6538 * at the top to select the shader. We've never implemented that.
6539 * Instead, we just give them exactly one shader and we pick the widest one
6540 * available.
6541 */
6542 if (compiler->devinfo->gen < 5 && simd16_cfg)
6543 simd8_cfg = NULL;
6544
6545 if (prog_data->persample_dispatch) {
6546 /* Starting with SandyBridge (where we first get MSAA), the different
6547 * pixel dispatch combinations are grouped into classifications A
6548 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6549 * generations, the only configurations supporting persample dispatch
6550 * are are this in which only one dispatch width is enabled.
6551 *
6552 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6553 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6554 */
6555 if (compiler->devinfo->gen == 6 &&
6556 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6557 simd16_cfg = NULL;
6558 } else if (simd16_cfg) {
6559 simd8_cfg = NULL;
6560 }
6561 }
6562
6563 /* We have to compute the flat inputs after the visitor is finished running
6564 * because it relies on prog_data->urb_setup which is computed in
6565 * fs_visitor::calculate_urb_setup().
6566 */
6567 brw_compute_flat_inputs(prog_data, shader);
6568
6569 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6570 v8.promoted_constants, v8.runtime_check_aads_emit,
6571 MESA_SHADER_FRAGMENT);
6572
6573 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6574 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6575 shader->info.label ?
6576 shader->info.label : "unnamed",
6577 shader->info.name));
6578 }
6579
6580 if (simd8_cfg) {
6581 prog_data->dispatch_8 = true;
6582 g.generate_code(simd8_cfg, 8);
6583 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6584 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6585
6586 if (simd16_cfg) {
6587 prog_data->dispatch_16 = true;
6588 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6589 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6590 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6591 }
6592 } else if (simd16_cfg) {
6593 prog_data->dispatch_16 = true;
6594 g.generate_code(simd16_cfg, 16);
6595 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6596 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6597 }
6598
6599 return g.get_assembly(final_assembly_size);
6600 }
6601
6602 fs_reg *
6603 fs_visitor::emit_cs_work_group_id_setup()
6604 {
6605 assert(stage == MESA_SHADER_COMPUTE);
6606
6607 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6608
6609 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6610 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6611 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6612
6613 bld.MOV(*reg, r0_1);
6614 bld.MOV(offset(*reg, bld, 1), r0_6);
6615 bld.MOV(offset(*reg, bld, 2), r0_7);
6616
6617 return reg;
6618 }
6619
6620 static void
6621 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6622 {
6623 block->dwords = dwords;
6624 block->regs = DIV_ROUND_UP(dwords, 8);
6625 block->size = block->regs * 32;
6626 }
6627
6628 static void
6629 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6630 struct brw_cs_prog_data *cs_prog_data)
6631 {
6632 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6633 bool fill_thread_id =
6634 cs_prog_data->thread_local_id_index >= 0 &&
6635 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6636 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6637
6638 /* The thread ID should be stored in the last param dword */
6639 assert(prog_data->nr_params > 0 || !fill_thread_id);
6640 assert(!fill_thread_id ||
6641 cs_prog_data->thread_local_id_index ==
6642 (int)prog_data->nr_params - 1);
6643
6644 unsigned cross_thread_dwords, per_thread_dwords;
6645 if (!cross_thread_supported) {
6646 cross_thread_dwords = 0u;
6647 per_thread_dwords = prog_data->nr_params;
6648 } else if (fill_thread_id) {
6649 /* Fill all but the last register with cross-thread payload */
6650 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6651 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6652 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6653 } else {
6654 /* Fill all data using cross-thread payload */
6655 cross_thread_dwords = prog_data->nr_params;
6656 per_thread_dwords = 0u;
6657 }
6658
6659 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6660 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6661
6662 unsigned total_dwords =
6663 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6664 cs_prog_data->push.cross_thread.size) / 4;
6665 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6666
6667 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6668 cs_prog_data->push.per_thread.size == 0);
6669 assert(cs_prog_data->push.cross_thread.dwords +
6670 cs_prog_data->push.per_thread.dwords ==
6671 prog_data->nr_params);
6672 }
6673
6674 static void
6675 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6676 {
6677 cs_prog_data->simd_size = size;
6678 unsigned group_size = cs_prog_data->local_size[0] *
6679 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6680 cs_prog_data->threads = (group_size + size - 1) / size;
6681 }
6682
6683 const unsigned *
6684 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6685 void *mem_ctx,
6686 const struct brw_cs_prog_key *key,
6687 struct brw_cs_prog_data *prog_data,
6688 const nir_shader *src_shader,
6689 int shader_time_index,
6690 unsigned *final_assembly_size,
6691 char **error_str)
6692 {
6693 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6694 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6695 brw_nir_lower_cs_shared(shader);
6696 prog_data->base.total_shared += shader->num_shared;
6697
6698 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6699 * the thread_local_id_index.
6700 */
6701 assert(prog_data->thread_local_id_index >= 0);
6702 shader->num_uniforms =
6703 MAX2(shader->num_uniforms,
6704 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6705
6706 brw_nir_lower_intrinsics(shader, &prog_data->base);
6707 shader = brw_postprocess_nir(shader, compiler, true);
6708
6709 prog_data->local_size[0] = shader->info.cs.local_size[0];
6710 prog_data->local_size[1] = shader->info.cs.local_size[1];
6711 prog_data->local_size[2] = shader->info.cs.local_size[2];
6712 unsigned local_workgroup_size =
6713 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6714 shader->info.cs.local_size[2];
6715
6716 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6717 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6718
6719 cfg_t *cfg = NULL;
6720 const char *fail_msg = NULL;
6721
6722 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6723 */
6724 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6725 NULL, /* Never used in core profile */
6726 shader, 8, shader_time_index);
6727 if (simd_required <= 8) {
6728 if (!v8.run_cs()) {
6729 fail_msg = v8.fail_msg;
6730 } else {
6731 cfg = v8.cfg;
6732 cs_set_simd_size(prog_data, 8);
6733 cs_fill_push_const_info(compiler->devinfo, prog_data);
6734 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6735 }
6736 }
6737
6738 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6739 NULL, /* Never used in core profile */
6740 shader, 16, shader_time_index);
6741 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6742 !fail_msg && v8.max_dispatch_width >= 16 &&
6743 simd_required <= 16) {
6744 /* Try a SIMD16 compile */
6745 if (simd_required <= 8)
6746 v16.import_uniforms(&v8);
6747 if (!v16.run_cs()) {
6748 compiler->shader_perf_log(log_data,
6749 "SIMD16 shader failed to compile: %s",
6750 v16.fail_msg);
6751 if (!cfg) {
6752 fail_msg =
6753 "Couldn't generate SIMD16 program and not "
6754 "enough threads for SIMD8";
6755 }
6756 } else {
6757 cfg = v16.cfg;
6758 cs_set_simd_size(prog_data, 16);
6759 cs_fill_push_const_info(compiler->devinfo, prog_data);
6760 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6761 }
6762 }
6763
6764 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6765 NULL, /* Never used in core profile */
6766 shader, 32, shader_time_index);
6767 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6768 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6769 /* Try a SIMD32 compile */
6770 if (simd_required <= 8)
6771 v32.import_uniforms(&v8);
6772 else if (simd_required <= 16)
6773 v32.import_uniforms(&v16);
6774
6775 if (!v32.run_cs()) {
6776 compiler->shader_perf_log(log_data,
6777 "SIMD32 shader failed to compile: %s",
6778 v16.fail_msg);
6779 if (!cfg) {
6780 fail_msg =
6781 "Couldn't generate SIMD32 program and not "
6782 "enough threads for SIMD16";
6783 }
6784 } else {
6785 cfg = v32.cfg;
6786 cs_set_simd_size(prog_data, 32);
6787 cs_fill_push_const_info(compiler->devinfo, prog_data);
6788 }
6789 }
6790
6791 if (unlikely(cfg == NULL)) {
6792 assert(fail_msg);
6793 if (error_str)
6794 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6795
6796 return NULL;
6797 }
6798
6799 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6800 v8.promoted_constants, v8.runtime_check_aads_emit,
6801 MESA_SHADER_COMPUTE);
6802 if (INTEL_DEBUG & DEBUG_CS) {
6803 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6804 shader->info.label ? shader->info.label :
6805 "unnamed",
6806 shader->info.name);
6807 g.enable_debug(name);
6808 }
6809
6810 g.generate_code(cfg, prog_data->simd_size);
6811
6812 return g.get_assembly(final_assembly_size);
6813 }
6814
6815 /**
6816 * Test the dispatch mask packing assumptions of
6817 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6818 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6819 * executed with an unexpected dispatch mask.
6820 */
6821 static UNUSED void
6822 brw_fs_test_dispatch_packing(const fs_builder &bld)
6823 {
6824 const gl_shader_stage stage = bld.shader->stage;
6825
6826 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6827 bld.shader->stage_prog_data)) {
6828 const fs_builder ubld = bld.exec_all().group(1, 0);
6829 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6830 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6831 brw_dmask_reg());
6832
6833 ubld.ADD(tmp, mask, brw_imm_ud(1));
6834 ubld.AND(tmp, mask, tmp);
6835
6836 /* This will loop forever if the dispatch mask doesn't have the expected
6837 * form '2^n-1', in which case tmp will be non-zero.
6838 */
6839 bld.emit(BRW_OPCODE_DO);
6840 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6841 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6842 }
6843 }