intel: Rewrite the world of push/pull params
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 if (type_sz(dst.type) == 8) {
195 shuffle_32bit_load_result_to_64bit_data(
196 bld, retype(vec4_result, dst.type), vec4_result, 2);
197 }
198
199 vec4_result.type = dst.type;
200 bld.MOV(dst, offset(vec4_result, bld,
201 (const_offset & 0xf) / type_sz(vec4_result.type)));
202 }
203
204 /**
205 * A helper for MOV generation for fixing up broken hardware SEND dependency
206 * handling.
207 */
208 void
209 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
210 {
211 /* The caller always wants uncompressed to emit the minimal extra
212 * dependencies, and to avoid having to deal with aligning its regs to 2.
213 */
214 const fs_builder ubld = bld.annotate("send dependency resolve")
215 .half(0);
216
217 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
218 }
219
220 bool
221 fs_inst::equals(fs_inst *inst) const
222 {
223 return (opcode == inst->opcode &&
224 dst.equals(inst->dst) &&
225 src[0].equals(inst->src[0]) &&
226 src[1].equals(inst->src[1]) &&
227 src[2].equals(inst->src[2]) &&
228 saturate == inst->saturate &&
229 predicate == inst->predicate &&
230 conditional_mod == inst->conditional_mod &&
231 mlen == inst->mlen &&
232 base_mrf == inst->base_mrf &&
233 target == inst->target &&
234 eot == inst->eot &&
235 header_size == inst->header_size &&
236 shadow_compare == inst->shadow_compare &&
237 exec_size == inst->exec_size &&
238 offset == inst->offset);
239 }
240
241 bool
242 fs_inst::is_send_from_grf() const
243 {
244 switch (opcode) {
245 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
246 case SHADER_OPCODE_SHADER_TIME_ADD:
247 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
248 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
249 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
250 case SHADER_OPCODE_UNTYPED_ATOMIC:
251 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
252 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
253 case SHADER_OPCODE_TYPED_ATOMIC:
254 case SHADER_OPCODE_TYPED_SURFACE_READ:
255 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
256 case SHADER_OPCODE_URB_WRITE_SIMD8:
257 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
258 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
260 case SHADER_OPCODE_URB_READ_SIMD8:
261 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
262 return true;
263 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
264 return src[1].file == VGRF;
265 case FS_OPCODE_FB_WRITE:
266 case FS_OPCODE_FB_READ:
267 return src[0].file == VGRF;
268 default:
269 if (is_tex())
270 return src[0].file == VGRF;
271
272 return false;
273 }
274 }
275
276 /**
277 * Returns true if this instruction's sources and destinations cannot
278 * safely be the same register.
279 *
280 * In most cases, a register can be written over safely by the same
281 * instruction that is its last use. For a single instruction, the
282 * sources are dereferenced before writing of the destination starts
283 * (naturally).
284 *
285 * However, there are a few cases where this can be problematic:
286 *
287 * - Virtual opcodes that translate to multiple instructions in the
288 * code generator: if src == dst and one instruction writes the
289 * destination before a later instruction reads the source, then
290 * src will have been clobbered.
291 *
292 * - SIMD16 compressed instructions with certain regioning (see below).
293 *
294 * The register allocator uses this information to set up conflicts between
295 * GRF sources and the destination.
296 */
297 bool
298 fs_inst::has_source_and_destination_hazard() const
299 {
300 switch (opcode) {
301 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
302 /* Multiple partial writes to the destination */
303 return true;
304 default:
305 /* The SIMD16 compressed instruction
306 *
307 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
308 *
309 * is actually decoded in hardware as:
310 *
311 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
312 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
313 *
314 * Which is safe. However, if we have uniform accesses
315 * happening, we get into trouble:
316 *
317 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
318 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
319 *
320 * Now our destination for the first instruction overwrote the
321 * second instruction's src0, and we get garbage for those 8
322 * pixels. There's a similar issue for the pre-gen6
323 * pixel_x/pixel_y, which are registers of 16-bit values and thus
324 * would get stomped by the first decode as well.
325 */
326 if (exec_size == 16) {
327 for (int i = 0; i < sources; i++) {
328 if (src[i].file == VGRF && (src[i].stride == 0 ||
329 src[i].type == BRW_REGISTER_TYPE_UW ||
330 src[i].type == BRW_REGISTER_TYPE_W ||
331 src[i].type == BRW_REGISTER_TYPE_UB ||
332 src[i].type == BRW_REGISTER_TYPE_B)) {
333 return true;
334 }
335 }
336 }
337 return false;
338 }
339 }
340
341 bool
342 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
343 {
344 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
345 return false;
346
347 fs_reg reg = this->src[0];
348 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
349 return false;
350
351 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
352 return false;
353
354 for (int i = 0; i < this->sources; i++) {
355 reg.type = this->src[i].type;
356 if (!this->src[i].equals(reg))
357 return false;
358
359 if (i < this->header_size) {
360 reg.offset += REG_SIZE;
361 } else {
362 reg = horiz_offset(reg, this->exec_size);
363 }
364 }
365
366 return true;
367 }
368
369 bool
370 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
371 {
372 if (devinfo->gen == 6 && is_math())
373 return false;
374
375 if (is_send_from_grf())
376 return false;
377
378 if (!backend_instruction::can_do_source_mods())
379 return false;
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_change_types() const
386 {
387 return dst.type == src[0].type &&
388 !src[0].abs && !src[0].negate && !saturate &&
389 (opcode == BRW_OPCODE_MOV ||
390 (opcode == BRW_OPCODE_SEL &&
391 dst.type == src[1].type &&
392 predicate != BRW_PREDICATE_NONE &&
393 !src[1].abs && !src[1].negate));
394 }
395
396 bool
397 fs_inst::has_side_effects() const
398 {
399 return this->eot || backend_instruction::has_side_effects();
400 }
401
402 void
403 fs_reg::init()
404 {
405 memset(this, 0, sizeof(*this));
406 type = BRW_REGISTER_TYPE_UD;
407 stride = 1;
408 }
409
410 /** Generic unset register constructor. */
411 fs_reg::fs_reg()
412 {
413 init();
414 this->file = BAD_FILE;
415 }
416
417 fs_reg::fs_reg(struct ::brw_reg reg) :
418 backend_reg(reg)
419 {
420 this->offset = 0;
421 this->stride = 1;
422 if (this->file == IMM &&
423 (this->type != BRW_REGISTER_TYPE_V &&
424 this->type != BRW_REGISTER_TYPE_UV &&
425 this->type != BRW_REGISTER_TYPE_VF)) {
426 this->stride = 0;
427 }
428 }
429
430 bool
431 fs_reg::equals(const fs_reg &r) const
432 {
433 return (this->backend_reg::equals(r) &&
434 stride == r.stride);
435 }
436
437 bool
438 fs_reg::is_contiguous() const
439 {
440 return stride == 1;
441 }
442
443 unsigned
444 fs_reg::component_size(unsigned width) const
445 {
446 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
447 hstride == 0 ? 0 :
448 1 << (hstride - 1));
449 return MAX2(width * stride, 1) * type_sz(type);
450 }
451
452 extern "C" int
453 type_size_scalar(const struct glsl_type *type)
454 {
455 unsigned int size, i;
456
457 switch (type->base_type) {
458 case GLSL_TYPE_UINT:
459 case GLSL_TYPE_INT:
460 case GLSL_TYPE_FLOAT:
461 case GLSL_TYPE_BOOL:
462 return type->components();
463 case GLSL_TYPE_DOUBLE:
464 case GLSL_TYPE_UINT64:
465 case GLSL_TYPE_INT64:
466 return type->components() * 2;
467 case GLSL_TYPE_ARRAY:
468 return type_size_scalar(type->fields.array) * type->length;
469 case GLSL_TYPE_STRUCT:
470 size = 0;
471 for (i = 0; i < type->length; i++) {
472 size += type_size_scalar(type->fields.structure[i].type);
473 }
474 return size;
475 case GLSL_TYPE_SAMPLER:
476 /* Samplers take up no register space, since they're baked in at
477 * link time.
478 */
479 return 0;
480 case GLSL_TYPE_ATOMIC_UINT:
481 return 0;
482 case GLSL_TYPE_SUBROUTINE:
483 return 1;
484 case GLSL_TYPE_IMAGE:
485 return BRW_IMAGE_PARAM_SIZE;
486 case GLSL_TYPE_VOID:
487 case GLSL_TYPE_ERROR:
488 case GLSL_TYPE_INTERFACE:
489 case GLSL_TYPE_FUNCTION:
490 unreachable("not reached");
491 }
492
493 return 0;
494 }
495
496 /**
497 * Create a MOV to read the timestamp register.
498 *
499 * The caller is responsible for emitting the MOV. The return value is
500 * the destination of the MOV, with extra parameters set.
501 */
502 fs_reg
503 fs_visitor::get_timestamp(const fs_builder &bld)
504 {
505 assert(devinfo->gen >= 7);
506
507 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
508 BRW_ARF_TIMESTAMP,
509 0),
510 BRW_REGISTER_TYPE_UD));
511
512 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
513
514 /* We want to read the 3 fields we care about even if it's not enabled in
515 * the dispatch.
516 */
517 bld.group(4, 0).exec_all().MOV(dst, ts);
518
519 return dst;
520 }
521
522 void
523 fs_visitor::emit_shader_time_begin()
524 {
525 /* We want only the low 32 bits of the timestamp. Since it's running
526 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
527 * which is plenty of time for our purposes. It is identical across the
528 * EUs, but since it's tracking GPU core speed it will increment at a
529 * varying rate as render P-states change.
530 */
531 shader_start_time = component(
532 get_timestamp(bld.annotate("shader time start")), 0);
533 }
534
535 void
536 fs_visitor::emit_shader_time_end()
537 {
538 /* Insert our code just before the final SEND with EOT. */
539 exec_node *end = this->instructions.get_tail();
540 assert(end && ((fs_inst *) end)->eot);
541 const fs_builder ibld = bld.annotate("shader time end")
542 .exec_all().at(NULL, end);
543 const fs_reg timestamp = get_timestamp(ibld);
544
545 /* We only use the low 32 bits of the timestamp - see
546 * emit_shader_time_begin()).
547 *
548 * We could also check if render P-states have changed (or anything
549 * else that might disrupt timing) by setting smear to 2 and checking if
550 * that field is != 0.
551 */
552 const fs_reg shader_end_time = component(timestamp, 0);
553
554 /* Check that there weren't any timestamp reset events (assuming these
555 * were the only two timestamp reads that happened).
556 */
557 const fs_reg reset = component(timestamp, 2);
558 set_condmod(BRW_CONDITIONAL_Z,
559 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
560 ibld.IF(BRW_PREDICATE_NORMAL);
561
562 fs_reg start = shader_start_time;
563 start.negate = true;
564 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
565 BRW_REGISTER_TYPE_UD),
566 0);
567 const fs_builder cbld = ibld.group(1, 0);
568 cbld.group(1, 0).ADD(diff, start, shader_end_time);
569
570 /* If there were no instructions between the two timestamp gets, the diff
571 * is 2 cycles. Remove that overhead, so I can forget about that when
572 * trying to determine the time taken for single instructions.
573 */
574 cbld.ADD(diff, diff, brw_imm_ud(-2u));
575 SHADER_TIME_ADD(cbld, 0, diff);
576 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
577 ibld.emit(BRW_OPCODE_ELSE);
578 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
579 ibld.emit(BRW_OPCODE_ENDIF);
580 }
581
582 void
583 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
584 int shader_time_subindex,
585 fs_reg value)
586 {
587 int index = shader_time_index * 3 + shader_time_subindex;
588 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
589
590 fs_reg payload;
591 if (dispatch_width == 8)
592 payload = vgrf(glsl_type::uvec2_type);
593 else
594 payload = vgrf(glsl_type::uint_type);
595
596 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
597 }
598
599 void
600 fs_visitor::vfail(const char *format, va_list va)
601 {
602 char *msg;
603
604 if (failed)
605 return;
606
607 failed = true;
608
609 msg = ralloc_vasprintf(mem_ctx, format, va);
610 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
611
612 this->fail_msg = msg;
613
614 if (debug_enabled) {
615 fprintf(stderr, "%s", msg);
616 }
617 }
618
619 void
620 fs_visitor::fail(const char *format, ...)
621 {
622 va_list va;
623
624 va_start(va, format);
625 vfail(format, va);
626 va_end(va);
627 }
628
629 /**
630 * Mark this program as impossible to compile with dispatch width greater
631 * than n.
632 *
633 * During the SIMD8 compile (which happens first), we can detect and flag
634 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
635 * SIMD16+ compile altogether.
636 *
637 * During a compile of dispatch width greater than n (if one happens anyway),
638 * this just calls fail().
639 */
640 void
641 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
642 {
643 if (dispatch_width > n) {
644 fail("%s", msg);
645 } else {
646 max_dispatch_width = n;
647 compiler->shader_perf_log(log_data,
648 "Shader dispatch width limited to SIMD%d: %s",
649 n, msg);
650 }
651 }
652
653 /**
654 * Returns true if the instruction has a flag that means it won't
655 * update an entire destination register.
656 *
657 * For example, dead code elimination and live variable analysis want to know
658 * when a write to a variable screens off any preceding values that were in
659 * it.
660 */
661 bool
662 fs_inst::is_partial_write() const
663 {
664 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
665 (this->exec_size * type_sz(this->dst.type)) < 32 ||
666 !this->dst.is_contiguous() ||
667 this->dst.offset % REG_SIZE != 0);
668 }
669
670 unsigned
671 fs_inst::components_read(unsigned i) const
672 {
673 /* Return zero if the source is not present. */
674 if (src[i].file == BAD_FILE)
675 return 0;
676
677 switch (opcode) {
678 case FS_OPCODE_LINTERP:
679 if (i == 0)
680 return 2;
681 else
682 return 1;
683
684 case FS_OPCODE_PIXEL_X:
685 case FS_OPCODE_PIXEL_Y:
686 assert(i == 0);
687 return 2;
688
689 case FS_OPCODE_FB_WRITE_LOGICAL:
690 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
691 /* First/second FB write color. */
692 if (i < 2)
693 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
694 else
695 return 1;
696
697 case SHADER_OPCODE_TEX_LOGICAL:
698 case SHADER_OPCODE_TXD_LOGICAL:
699 case SHADER_OPCODE_TXF_LOGICAL:
700 case SHADER_OPCODE_TXL_LOGICAL:
701 case SHADER_OPCODE_TXS_LOGICAL:
702 case FS_OPCODE_TXB_LOGICAL:
703 case SHADER_OPCODE_TXF_CMS_LOGICAL:
704 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
705 case SHADER_OPCODE_TXF_UMS_LOGICAL:
706 case SHADER_OPCODE_TXF_MCS_LOGICAL:
707 case SHADER_OPCODE_LOD_LOGICAL:
708 case SHADER_OPCODE_TG4_LOGICAL:
709 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
710 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
711 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
712 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
713 /* Texture coordinates. */
714 if (i == TEX_LOGICAL_SRC_COORDINATE)
715 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
716 /* Texture derivatives. */
717 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
718 opcode == SHADER_OPCODE_TXD_LOGICAL)
719 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
720 /* Texture offset. */
721 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
722 return 2;
723 /* MCS */
724 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
725 return 2;
726 else
727 return 1;
728
729 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
730 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
731 assert(src[3].file == IMM);
732 /* Surface coordinates. */
733 if (i == 0)
734 return src[3].ud;
735 /* Surface operation source (ignored for reads). */
736 else if (i == 1)
737 return 0;
738 else
739 return 1;
740
741 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
742 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
743 assert(src[3].file == IMM &&
744 src[4].file == IMM);
745 /* Surface coordinates. */
746 if (i == 0)
747 return src[3].ud;
748 /* Surface operation source. */
749 else if (i == 1)
750 return src[4].ud;
751 else
752 return 1;
753
754 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
755 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
756 assert(src[3].file == IMM &&
757 src[4].file == IMM);
758 const unsigned op = src[4].ud;
759 /* Surface coordinates. */
760 if (i == 0)
761 return src[3].ud;
762 /* Surface operation source. */
763 else if (i == 1 && op == BRW_AOP_CMPWR)
764 return 2;
765 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
766 op == BRW_AOP_PREDEC))
767 return 0;
768 else
769 return 1;
770 }
771
772 default:
773 return 1;
774 }
775 }
776
777 unsigned
778 fs_inst::size_read(int arg) const
779 {
780 switch (opcode) {
781 case FS_OPCODE_FB_WRITE:
782 case FS_OPCODE_FB_READ:
783 case SHADER_OPCODE_URB_WRITE_SIMD8:
784 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
785 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
786 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
787 case SHADER_OPCODE_URB_READ_SIMD8:
788 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
789 case SHADER_OPCODE_UNTYPED_ATOMIC:
790 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
791 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
792 case SHADER_OPCODE_TYPED_ATOMIC:
793 case SHADER_OPCODE_TYPED_SURFACE_READ:
794 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
795 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
796 if (arg == 0)
797 return mlen * REG_SIZE;
798 break;
799
800 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
801 /* The payload is actually stored in src1 */
802 if (arg == 1)
803 return mlen * REG_SIZE;
804 break;
805
806 case FS_OPCODE_LINTERP:
807 if (arg == 1)
808 return 16;
809 break;
810
811 case SHADER_OPCODE_LOAD_PAYLOAD:
812 if (arg < this->header_size)
813 return REG_SIZE;
814 break;
815
816 case CS_OPCODE_CS_TERMINATE:
817 case SHADER_OPCODE_BARRIER:
818 return REG_SIZE;
819
820 case SHADER_OPCODE_MOV_INDIRECT:
821 if (arg == 0) {
822 assert(src[2].file == IMM);
823 return src[2].ud;
824 }
825 break;
826
827 default:
828 if (is_tex() && arg == 0 && src[0].file == VGRF)
829 return mlen * REG_SIZE;
830 break;
831 }
832
833 switch (src[arg].file) {
834 case UNIFORM:
835 case IMM:
836 return components_read(arg) * type_sz(src[arg].type);
837 case BAD_FILE:
838 case ARF:
839 case FIXED_GRF:
840 case VGRF:
841 case ATTR:
842 return components_read(arg) * src[arg].component_size(exec_size);
843 case MRF:
844 unreachable("MRF registers are not allowed as sources");
845 }
846 return 0;
847 }
848
849 namespace {
850 /* Return the subset of flag registers that an instruction could
851 * potentially read or write based on the execution controls and flag
852 * subregister number of the instruction.
853 */
854 unsigned
855 flag_mask(const fs_inst *inst)
856 {
857 const unsigned start = inst->flag_subreg * 16 + inst->group;
858 const unsigned end = start + inst->exec_size;
859 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
860 }
861
862 unsigned
863 bit_mask(unsigned n)
864 {
865 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
866 }
867
868 unsigned
869 flag_mask(const fs_reg &r, unsigned sz)
870 {
871 if (r.file == ARF) {
872 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
873 const unsigned end = start + sz;
874 return bit_mask(end) & ~bit_mask(start);
875 } else {
876 return 0;
877 }
878 }
879 }
880
881 unsigned
882 fs_inst::flags_read(const gen_device_info *devinfo) const
883 {
884 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
885 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
886 /* The vertical predication modes combine corresponding bits from
887 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
888 */
889 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
890 return flag_mask(this) << shift | flag_mask(this);
891 } else if (predicate) {
892 return flag_mask(this);
893 } else {
894 unsigned mask = 0;
895 for (int i = 0; i < sources; i++) {
896 mask |= flag_mask(src[i], size_read(i));
897 }
898 return mask;
899 }
900 }
901
902 unsigned
903 fs_inst::flags_written() const
904 {
905 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
906 opcode != BRW_OPCODE_IF &&
907 opcode != BRW_OPCODE_WHILE)) ||
908 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
909 return flag_mask(this);
910 } else {
911 return flag_mask(dst, size_written);
912 }
913 }
914
915 /**
916 * Returns how many MRFs an FS opcode will write over.
917 *
918 * Note that this is not the 0 or 1 implied writes in an actual gen
919 * instruction -- the FS opcodes often generate MOVs in addition.
920 */
921 int
922 fs_visitor::implied_mrf_writes(fs_inst *inst)
923 {
924 if (inst->mlen == 0)
925 return 0;
926
927 if (inst->base_mrf == -1)
928 return 0;
929
930 switch (inst->opcode) {
931 case SHADER_OPCODE_RCP:
932 case SHADER_OPCODE_RSQ:
933 case SHADER_OPCODE_SQRT:
934 case SHADER_OPCODE_EXP2:
935 case SHADER_OPCODE_LOG2:
936 case SHADER_OPCODE_SIN:
937 case SHADER_OPCODE_COS:
938 return 1 * dispatch_width / 8;
939 case SHADER_OPCODE_POW:
940 case SHADER_OPCODE_INT_QUOTIENT:
941 case SHADER_OPCODE_INT_REMAINDER:
942 return 2 * dispatch_width / 8;
943 case SHADER_OPCODE_TEX:
944 case FS_OPCODE_TXB:
945 case SHADER_OPCODE_TXD:
946 case SHADER_OPCODE_TXF:
947 case SHADER_OPCODE_TXF_CMS:
948 case SHADER_OPCODE_TXF_MCS:
949 case SHADER_OPCODE_TG4:
950 case SHADER_OPCODE_TG4_OFFSET:
951 case SHADER_OPCODE_TXL:
952 case SHADER_OPCODE_TXS:
953 case SHADER_OPCODE_LOD:
954 case SHADER_OPCODE_SAMPLEINFO:
955 return 1;
956 case FS_OPCODE_FB_WRITE:
957 return 2;
958 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
959 case SHADER_OPCODE_GEN4_SCRATCH_READ:
960 return 1;
961 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
962 return inst->mlen;
963 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
964 return inst->mlen;
965 default:
966 unreachable("not reached");
967 }
968 }
969
970 fs_reg
971 fs_visitor::vgrf(const glsl_type *const type)
972 {
973 int reg_width = dispatch_width / 8;
974 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
975 brw_type_for_base_type(type));
976 }
977
978 fs_reg::fs_reg(enum brw_reg_file file, int nr)
979 {
980 init();
981 this->file = file;
982 this->nr = nr;
983 this->type = BRW_REGISTER_TYPE_F;
984 this->stride = (file == UNIFORM ? 0 : 1);
985 }
986
987 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
988 {
989 init();
990 this->file = file;
991 this->nr = nr;
992 this->type = type;
993 this->stride = (file == UNIFORM ? 0 : 1);
994 }
995
996 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
997 * This brings in those uniform definitions
998 */
999 void
1000 fs_visitor::import_uniforms(fs_visitor *v)
1001 {
1002 this->push_constant_loc = v->push_constant_loc;
1003 this->pull_constant_loc = v->pull_constant_loc;
1004 this->uniforms = v->uniforms;
1005 }
1006
1007 void
1008 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1009 {
1010 assert(stage == MESA_SHADER_FRAGMENT);
1011
1012 /* gl_FragCoord.x */
1013 bld.MOV(wpos, this->pixel_x);
1014 wpos = offset(wpos, bld, 1);
1015
1016 /* gl_FragCoord.y */
1017 bld.MOV(wpos, this->pixel_y);
1018 wpos = offset(wpos, bld, 1);
1019
1020 /* gl_FragCoord.z */
1021 if (devinfo->gen >= 6) {
1022 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1023 } else {
1024 bld.emit(FS_OPCODE_LINTERP, wpos,
1025 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1026 interp_reg(VARYING_SLOT_POS, 2));
1027 }
1028 wpos = offset(wpos, bld, 1);
1029
1030 /* gl_FragCoord.w: Already set up in emit_interpolation */
1031 bld.MOV(wpos, this->wpos_w);
1032 }
1033
1034 enum brw_barycentric_mode
1035 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1036 {
1037 /* Barycentric modes don't make sense for flat inputs. */
1038 assert(mode != INTERP_MODE_FLAT);
1039
1040 unsigned bary;
1041 switch (op) {
1042 case nir_intrinsic_load_barycentric_pixel:
1043 case nir_intrinsic_load_barycentric_at_offset:
1044 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1045 break;
1046 case nir_intrinsic_load_barycentric_centroid:
1047 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1048 break;
1049 case nir_intrinsic_load_barycentric_sample:
1050 case nir_intrinsic_load_barycentric_at_sample:
1051 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1052 break;
1053 default:
1054 unreachable("invalid intrinsic");
1055 }
1056
1057 if (mode == INTERP_MODE_NOPERSPECTIVE)
1058 bary += 3;
1059
1060 return (enum brw_barycentric_mode) bary;
1061 }
1062
1063 /**
1064 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1065 */
1066 static enum brw_barycentric_mode
1067 centroid_to_pixel(enum brw_barycentric_mode bary)
1068 {
1069 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1070 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1071 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1072 }
1073
1074 fs_reg *
1075 fs_visitor::emit_frontfacing_interpolation()
1076 {
1077 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1078
1079 if (devinfo->gen >= 6) {
1080 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1081 * a boolean result from this (~0/true or 0/false).
1082 *
1083 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1084 * this task in only one instruction:
1085 * - a negation source modifier will flip the bit; and
1086 * - a W -> D type conversion will sign extend the bit into the high
1087 * word of the destination.
1088 *
1089 * An ASR 15 fills the low word of the destination.
1090 */
1091 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1092 g0.negate = true;
1093
1094 bld.ASR(*reg, g0, brw_imm_d(15));
1095 } else {
1096 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1097 * a boolean result from this (1/true or 0/false).
1098 *
1099 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1100 * the negation source modifier to flip it. Unfortunately the SHR
1101 * instruction only operates on UD (or D with an abs source modifier)
1102 * sources without negation.
1103 *
1104 * Instead, use ASR (which will give ~0/true or 0/false).
1105 */
1106 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1107 g1_6.negate = true;
1108
1109 bld.ASR(*reg, g1_6, brw_imm_d(31));
1110 }
1111
1112 return reg;
1113 }
1114
1115 void
1116 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1117 {
1118 assert(stage == MESA_SHADER_FRAGMENT);
1119 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1120 assert(dst.type == BRW_REGISTER_TYPE_F);
1121
1122 if (wm_prog_data->persample_dispatch) {
1123 /* Convert int_sample_pos to floating point */
1124 bld.MOV(dst, int_sample_pos);
1125 /* Scale to the range [0, 1] */
1126 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1127 }
1128 else {
1129 /* From ARB_sample_shading specification:
1130 * "When rendering to a non-multisample buffer, or if multisample
1131 * rasterization is disabled, gl_SamplePosition will always be
1132 * (0.5, 0.5).
1133 */
1134 bld.MOV(dst, brw_imm_f(0.5f));
1135 }
1136 }
1137
1138 fs_reg *
1139 fs_visitor::emit_samplepos_setup()
1140 {
1141 assert(devinfo->gen >= 6);
1142
1143 const fs_builder abld = bld.annotate("compute sample position");
1144 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1145 fs_reg pos = *reg;
1146 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1147 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1148
1149 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1150 * mode will be enabled.
1151 *
1152 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1153 * R31.1:0 Position Offset X/Y for Slot[3:0]
1154 * R31.3:2 Position Offset X/Y for Slot[7:4]
1155 * .....
1156 *
1157 * The X, Y sample positions come in as bytes in thread payload. So, read
1158 * the positions using vstride=16, width=8, hstride=2.
1159 */
1160 struct brw_reg sample_pos_reg =
1161 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1162 BRW_REGISTER_TYPE_B), 16, 8, 2);
1163
1164 if (dispatch_width == 8) {
1165 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1166 } else {
1167 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1168 abld.half(1).MOV(half(int_sample_x, 1),
1169 fs_reg(suboffset(sample_pos_reg, 16)));
1170 }
1171 /* Compute gl_SamplePosition.x */
1172 compute_sample_position(pos, int_sample_x);
1173 pos = offset(pos, abld, 1);
1174 if (dispatch_width == 8) {
1175 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1176 } else {
1177 abld.half(0).MOV(half(int_sample_y, 0),
1178 fs_reg(suboffset(sample_pos_reg, 1)));
1179 abld.half(1).MOV(half(int_sample_y, 1),
1180 fs_reg(suboffset(sample_pos_reg, 17)));
1181 }
1182 /* Compute gl_SamplePosition.y */
1183 compute_sample_position(pos, int_sample_y);
1184 return reg;
1185 }
1186
1187 fs_reg *
1188 fs_visitor::emit_sampleid_setup()
1189 {
1190 assert(stage == MESA_SHADER_FRAGMENT);
1191 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1192 assert(devinfo->gen >= 6);
1193
1194 const fs_builder abld = bld.annotate("compute sample id");
1195 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1196
1197 if (!key->multisample_fbo) {
1198 /* As per GL_ARB_sample_shading specification:
1199 * "When rendering to a non-multisample buffer, or if multisample
1200 * rasterization is disabled, gl_SampleID will always be zero."
1201 */
1202 abld.MOV(*reg, brw_imm_d(0));
1203 } else if (devinfo->gen >= 8) {
1204 /* Sample ID comes in as 4-bit numbers in g1.0:
1205 *
1206 * 15:12 Slot 3 SampleID (only used in SIMD16)
1207 * 11:8 Slot 2 SampleID (only used in SIMD16)
1208 * 7:4 Slot 1 SampleID
1209 * 3:0 Slot 0 SampleID
1210 *
1211 * Each slot corresponds to four channels, so we want to replicate each
1212 * half-byte value to 4 channels in a row:
1213 *
1214 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1215 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1216 *
1217 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1218 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1219 *
1220 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1221 * channels to read the first byte (7:0), and the second group of 8
1222 * channels to read the second byte (15:8). Then, we shift right by
1223 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1224 * values into place. Finally, we AND with 0xf to keep the low nibble.
1225 *
1226 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1227 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1228 *
1229 * TODO: These payload bits exist on Gen7 too, but they appear to always
1230 * be zero, so this code fails to work. We should find out why.
1231 */
1232 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1233
1234 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1235 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1236 brw_imm_v(0x44440000));
1237 abld.AND(*reg, tmp, brw_imm_w(0xf));
1238 } else {
1239 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1240 BRW_REGISTER_TYPE_D), 0);
1241 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1242
1243 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1244 * 8x multisampling, subspan 0 will represent sample N (where N
1245 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1246 * 7. We can find the value of N by looking at R0.0 bits 7:6
1247 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1248 * (since samples are always delivered in pairs). That is, we
1249 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1250 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1251 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1252 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1253 * populating a temporary variable with the sequence (0, 1, 2, 3),
1254 * and then reading from it using vstride=1, width=4, hstride=0.
1255 * These computations hold good for 4x multisampling as well.
1256 *
1257 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1258 * the first four slots are sample 0 of subspan 0; the next four
1259 * are sample 1 of subspan 0; the third group is sample 0 of
1260 * subspan 1, and finally sample 1 of subspan 1.
1261 */
1262
1263 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1264 * accomodate 16x MSAA.
1265 */
1266 abld.exec_all().group(1, 0)
1267 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1268 brw_imm_ud(0xc0));
1269 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1270
1271 /* This works for both SIMD8 and SIMD16 */
1272 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1273
1274 /* This special instruction takes care of setting vstride=1,
1275 * width=4, hstride=0 of t2 during an ADD instruction.
1276 */
1277 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1278 }
1279
1280 return reg;
1281 }
1282
1283 fs_reg *
1284 fs_visitor::emit_samplemaskin_setup()
1285 {
1286 assert(stage == MESA_SHADER_FRAGMENT);
1287 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1288 assert(devinfo->gen >= 6);
1289
1290 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1291
1292 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1293 BRW_REGISTER_TYPE_D));
1294
1295 if (wm_prog_data->persample_dispatch) {
1296 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1297 * and a mask representing which sample is being processed by the
1298 * current shader invocation.
1299 *
1300 * From the OES_sample_variables specification:
1301 * "When per-sample shading is active due to the use of a fragment input
1302 * qualified by "sample" or due to the use of the gl_SampleID or
1303 * gl_SamplePosition variables, only the bit for the current sample is
1304 * set in gl_SampleMaskIn."
1305 */
1306 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1307
1308 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1309 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1310
1311 fs_reg one = vgrf(glsl_type::int_type);
1312 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1313 abld.MOV(one, brw_imm_d(1));
1314 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1315 abld.AND(*reg, enabled_mask, coverage_mask);
1316 } else {
1317 /* In per-pixel mode, the coverage mask is sufficient. */
1318 *reg = coverage_mask;
1319 }
1320 return reg;
1321 }
1322
1323 fs_reg
1324 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1325 {
1326 if (!src.abs && !src.negate)
1327 return src;
1328
1329 fs_reg temp = bld.vgrf(src.type);
1330 bld.MOV(temp, src);
1331
1332 return temp;
1333 }
1334
1335 void
1336 fs_visitor::emit_discard_jump()
1337 {
1338 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1339
1340 /* For performance, after a discard, jump to the end of the
1341 * shader if all relevant channels have been discarded.
1342 */
1343 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1344 discard_jump->flag_subreg = 1;
1345
1346 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1347 discard_jump->predicate_inverse = true;
1348 }
1349
1350 void
1351 fs_visitor::emit_gs_thread_end()
1352 {
1353 assert(stage == MESA_SHADER_GEOMETRY);
1354
1355 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1356
1357 if (gs_compile->control_data_header_size_bits > 0) {
1358 emit_gs_control_data_bits(this->final_gs_vertex_count);
1359 }
1360
1361 const fs_builder abld = bld.annotate("thread end");
1362 fs_inst *inst;
1363
1364 if (gs_prog_data->static_vertex_count != -1) {
1365 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1366 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1367 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1368 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1369 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1370 prev->eot = true;
1371
1372 /* Delete now dead instructions. */
1373 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1374 if (dead == prev)
1375 break;
1376 dead->remove();
1377 }
1378 return;
1379 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1380 break;
1381 }
1382 }
1383 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1384 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1385 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1386 inst->mlen = 1;
1387 } else {
1388 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1389 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1390 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1391 sources[1] = this->final_gs_vertex_count;
1392 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1393 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1394 inst->mlen = 2;
1395 }
1396 inst->eot = true;
1397 inst->offset = 0;
1398 }
1399
1400 void
1401 fs_visitor::assign_curb_setup()
1402 {
1403 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1404
1405 unsigned ubo_push_length = 0;
1406 unsigned ubo_push_start[4];
1407 for (int i = 0; i < 4; i++) {
1408 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1409 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1410 }
1411
1412 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1413
1414 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1415 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1416 for (unsigned int i = 0; i < inst->sources; i++) {
1417 if (inst->src[i].file == UNIFORM) {
1418 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1419 int constant_nr;
1420 if (inst->src[i].nr >= UBO_START) {
1421 /* constant_nr is in 32-bit units, the rest are in bytes */
1422 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1423 inst->src[i].offset / 4;
1424 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1425 constant_nr = push_constant_loc[uniform_nr];
1426 } else {
1427 /* Section 5.11 of the OpenGL 4.1 spec says:
1428 * "Out-of-bounds reads return undefined values, which include
1429 * values from other variables of the active program or zero."
1430 * Just return the first push constant.
1431 */
1432 constant_nr = 0;
1433 }
1434
1435 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1436 constant_nr / 8,
1437 constant_nr % 8);
1438 brw_reg.abs = inst->src[i].abs;
1439 brw_reg.negate = inst->src[i].negate;
1440
1441 assert(inst->src[i].stride == 0);
1442 inst->src[i] = byte_offset(
1443 retype(brw_reg, inst->src[i].type),
1444 inst->src[i].offset % 4);
1445 }
1446 }
1447 }
1448
1449 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1450 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1451 }
1452
1453 void
1454 fs_visitor::calculate_urb_setup()
1455 {
1456 assert(stage == MESA_SHADER_FRAGMENT);
1457 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1458 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1459
1460 memset(prog_data->urb_setup, -1,
1461 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1462
1463 int urb_next = 0;
1464 /* Figure out where each of the incoming setup attributes lands. */
1465 if (devinfo->gen >= 6) {
1466 if (_mesa_bitcount_64(nir->info.inputs_read &
1467 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1468 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1469 * first 16 varying inputs, so we can put them wherever we want.
1470 * Just put them in order.
1471 *
1472 * This is useful because it means that (a) inputs not used by the
1473 * fragment shader won't take up valuable register space, and (b) we
1474 * won't have to recompile the fragment shader if it gets paired with
1475 * a different vertex (or geometry) shader.
1476 */
1477 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1478 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1479 BITFIELD64_BIT(i)) {
1480 prog_data->urb_setup[i] = urb_next++;
1481 }
1482 }
1483 } else {
1484 /* We have enough input varyings that the SF/SBE pipeline stage can't
1485 * arbitrarily rearrange them to suit our whim; we have to put them
1486 * in an order that matches the output of the previous pipeline stage
1487 * (geometry or vertex shader).
1488 */
1489 struct brw_vue_map prev_stage_vue_map;
1490 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1491 key->input_slots_valid,
1492 nir->info.separate_shader);
1493
1494 int first_slot =
1495 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1496 &prev_stage_vue_map);
1497
1498 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1499 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1500 slot++) {
1501 int varying = prev_stage_vue_map.slot_to_varying[slot];
1502 if (varying != BRW_VARYING_SLOT_PAD &&
1503 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1504 BITFIELD64_BIT(varying))) {
1505 prog_data->urb_setup[varying] = slot - first_slot;
1506 }
1507 }
1508 urb_next = prev_stage_vue_map.num_slots - first_slot;
1509 }
1510 } else {
1511 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1512 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1513 /* Point size is packed into the header, not as a general attribute */
1514 if (i == VARYING_SLOT_PSIZ)
1515 continue;
1516
1517 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1518 /* The back color slot is skipped when the front color is
1519 * also written to. In addition, some slots can be
1520 * written in the vertex shader and not read in the
1521 * fragment shader. So the register number must always be
1522 * incremented, mapped or not.
1523 */
1524 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1525 prog_data->urb_setup[i] = urb_next;
1526 urb_next++;
1527 }
1528 }
1529
1530 /*
1531 * It's a FS only attribute, and we did interpolation for this attribute
1532 * in SF thread. So, count it here, too.
1533 *
1534 * See compile_sf_prog() for more info.
1535 */
1536 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1537 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1538 }
1539
1540 prog_data->num_varying_inputs = urb_next;
1541 }
1542
1543 void
1544 fs_visitor::assign_urb_setup()
1545 {
1546 assert(stage == MESA_SHADER_FRAGMENT);
1547 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1548
1549 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1550
1551 /* Offset all the urb_setup[] index by the actual position of the
1552 * setup regs, now that the location of the constants has been chosen.
1553 */
1554 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1555 if (inst->opcode == FS_OPCODE_LINTERP) {
1556 assert(inst->src[1].file == FIXED_GRF);
1557 inst->src[1].nr += urb_start;
1558 }
1559
1560 if (inst->opcode == FS_OPCODE_CINTERP) {
1561 assert(inst->src[0].file == FIXED_GRF);
1562 inst->src[0].nr += urb_start;
1563 }
1564 }
1565
1566 /* Each attribute is 4 setup channels, each of which is half a reg. */
1567 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1568 }
1569
1570 void
1571 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1572 {
1573 for (int i = 0; i < inst->sources; i++) {
1574 if (inst->src[i].file == ATTR) {
1575 int grf = payload.num_regs +
1576 prog_data->curb_read_length +
1577 inst->src[i].nr +
1578 inst->src[i].offset / REG_SIZE;
1579
1580 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1581 *
1582 * VertStride must be used to cross GRF register boundaries. This
1583 * rule implies that elements within a 'Width' cannot cross GRF
1584 * boundaries.
1585 *
1586 * So, for registers that are large enough, we have to split the exec
1587 * size in two and trust the compression state to sort it out.
1588 */
1589 unsigned total_size = inst->exec_size *
1590 inst->src[i].stride *
1591 type_sz(inst->src[i].type);
1592
1593 assert(total_size <= 2 * REG_SIZE);
1594 const unsigned exec_size =
1595 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1596
1597 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1598 struct brw_reg reg =
1599 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1600 inst->src[i].offset % REG_SIZE),
1601 exec_size * inst->src[i].stride,
1602 width, inst->src[i].stride);
1603 reg.abs = inst->src[i].abs;
1604 reg.negate = inst->src[i].negate;
1605
1606 inst->src[i] = reg;
1607 }
1608 }
1609 }
1610
1611 void
1612 fs_visitor::assign_vs_urb_setup()
1613 {
1614 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1615
1616 assert(stage == MESA_SHADER_VERTEX);
1617
1618 /* Each attribute is 4 regs. */
1619 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1620
1621 assert(vs_prog_data->base.urb_read_length <= 15);
1622
1623 /* Rewrite all ATTR file references to the hw grf that they land in. */
1624 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1625 convert_attr_sources_to_hw_regs(inst);
1626 }
1627 }
1628
1629 void
1630 fs_visitor::assign_tcs_single_patch_urb_setup()
1631 {
1632 assert(stage == MESA_SHADER_TESS_CTRL);
1633
1634 /* Rewrite all ATTR file references to HW_REGs. */
1635 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1636 convert_attr_sources_to_hw_regs(inst);
1637 }
1638 }
1639
1640 void
1641 fs_visitor::assign_tes_urb_setup()
1642 {
1643 assert(stage == MESA_SHADER_TESS_EVAL);
1644
1645 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1646
1647 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1648
1649 /* Rewrite all ATTR file references to HW_REGs. */
1650 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1651 convert_attr_sources_to_hw_regs(inst);
1652 }
1653 }
1654
1655 void
1656 fs_visitor::assign_gs_urb_setup()
1657 {
1658 assert(stage == MESA_SHADER_GEOMETRY);
1659
1660 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1661
1662 first_non_payload_grf +=
1663 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1664
1665 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1666 /* Rewrite all ATTR file references to GRFs. */
1667 convert_attr_sources_to_hw_regs(inst);
1668 }
1669 }
1670
1671
1672 /**
1673 * Split large virtual GRFs into separate components if we can.
1674 *
1675 * This is mostly duplicated with what brw_fs_vector_splitting does,
1676 * but that's really conservative because it's afraid of doing
1677 * splitting that doesn't result in real progress after the rest of
1678 * the optimization phases, which would cause infinite looping in
1679 * optimization. We can do it once here, safely. This also has the
1680 * opportunity to split interpolated values, or maybe even uniforms,
1681 * which we don't have at the IR level.
1682 *
1683 * We want to split, because virtual GRFs are what we register
1684 * allocate and spill (due to contiguousness requirements for some
1685 * instructions), and they're what we naturally generate in the
1686 * codegen process, but most virtual GRFs don't actually need to be
1687 * contiguous sets of GRFs. If we split, we'll end up with reduced
1688 * live intervals and better dead code elimination and coalescing.
1689 */
1690 void
1691 fs_visitor::split_virtual_grfs()
1692 {
1693 /* Compact the register file so we eliminate dead vgrfs. This
1694 * only defines split points for live registers, so if we have
1695 * too large dead registers they will hit assertions later.
1696 */
1697 compact_virtual_grfs();
1698
1699 int num_vars = this->alloc.count;
1700
1701 /* Count the total number of registers */
1702 int reg_count = 0;
1703 int vgrf_to_reg[num_vars];
1704 for (int i = 0; i < num_vars; i++) {
1705 vgrf_to_reg[i] = reg_count;
1706 reg_count += alloc.sizes[i];
1707 }
1708
1709 /* An array of "split points". For each register slot, this indicates
1710 * if this slot can be separated from the previous slot. Every time an
1711 * instruction uses multiple elements of a register (as a source or
1712 * destination), we mark the used slots as inseparable. Then we go
1713 * through and split the registers into the smallest pieces we can.
1714 */
1715 bool split_points[reg_count];
1716 memset(split_points, 0, sizeof(split_points));
1717
1718 /* Mark all used registers as fully splittable */
1719 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1720 if (inst->dst.file == VGRF) {
1721 int reg = vgrf_to_reg[inst->dst.nr];
1722 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1723 split_points[reg + j] = true;
1724 }
1725
1726 for (int i = 0; i < inst->sources; i++) {
1727 if (inst->src[i].file == VGRF) {
1728 int reg = vgrf_to_reg[inst->src[i].nr];
1729 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1730 split_points[reg + j] = true;
1731 }
1732 }
1733 }
1734
1735 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1736 if (inst->dst.file == VGRF) {
1737 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1738 for (unsigned j = 1; j < regs_written(inst); j++)
1739 split_points[reg + j] = false;
1740 }
1741 for (int i = 0; i < inst->sources; i++) {
1742 if (inst->src[i].file == VGRF) {
1743 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1744 for (unsigned j = 1; j < regs_read(inst, i); j++)
1745 split_points[reg + j] = false;
1746 }
1747 }
1748 }
1749
1750 int new_virtual_grf[reg_count];
1751 int new_reg_offset[reg_count];
1752
1753 int reg = 0;
1754 for (int i = 0; i < num_vars; i++) {
1755 /* The first one should always be 0 as a quick sanity check. */
1756 assert(split_points[reg] == false);
1757
1758 /* j = 0 case */
1759 new_reg_offset[reg] = 0;
1760 reg++;
1761 int offset = 1;
1762
1763 /* j > 0 case */
1764 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1765 /* If this is a split point, reset the offset to 0 and allocate a
1766 * new virtual GRF for the previous offset many registers
1767 */
1768 if (split_points[reg]) {
1769 assert(offset <= MAX_VGRF_SIZE);
1770 int grf = alloc.allocate(offset);
1771 for (int k = reg - offset; k < reg; k++)
1772 new_virtual_grf[k] = grf;
1773 offset = 0;
1774 }
1775 new_reg_offset[reg] = offset;
1776 offset++;
1777 reg++;
1778 }
1779
1780 /* The last one gets the original register number */
1781 assert(offset <= MAX_VGRF_SIZE);
1782 alloc.sizes[i] = offset;
1783 for (int k = reg - offset; k < reg; k++)
1784 new_virtual_grf[k] = i;
1785 }
1786 assert(reg == reg_count);
1787
1788 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1789 if (inst->dst.file == VGRF) {
1790 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1791 inst->dst.nr = new_virtual_grf[reg];
1792 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1793 inst->dst.offset % REG_SIZE;
1794 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1795 }
1796 for (int i = 0; i < inst->sources; i++) {
1797 if (inst->src[i].file == VGRF) {
1798 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1799 inst->src[i].nr = new_virtual_grf[reg];
1800 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1801 inst->src[i].offset % REG_SIZE;
1802 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1803 }
1804 }
1805 }
1806 invalidate_live_intervals();
1807 }
1808
1809 /**
1810 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1811 *
1812 * During code generation, we create tons of temporary variables, many of
1813 * which get immediately killed and are never used again. Yet, in later
1814 * optimization and analysis passes, such as compute_live_intervals, we need
1815 * to loop over all the virtual GRFs. Compacting them can save a lot of
1816 * overhead.
1817 */
1818 bool
1819 fs_visitor::compact_virtual_grfs()
1820 {
1821 bool progress = false;
1822 int remap_table[this->alloc.count];
1823 memset(remap_table, -1, sizeof(remap_table));
1824
1825 /* Mark which virtual GRFs are used. */
1826 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1827 if (inst->dst.file == VGRF)
1828 remap_table[inst->dst.nr] = 0;
1829
1830 for (int i = 0; i < inst->sources; i++) {
1831 if (inst->src[i].file == VGRF)
1832 remap_table[inst->src[i].nr] = 0;
1833 }
1834 }
1835
1836 /* Compact the GRF arrays. */
1837 int new_index = 0;
1838 for (unsigned i = 0; i < this->alloc.count; i++) {
1839 if (remap_table[i] == -1) {
1840 /* We just found an unused register. This means that we are
1841 * actually going to compact something.
1842 */
1843 progress = true;
1844 } else {
1845 remap_table[i] = new_index;
1846 alloc.sizes[new_index] = alloc.sizes[i];
1847 invalidate_live_intervals();
1848 ++new_index;
1849 }
1850 }
1851
1852 this->alloc.count = new_index;
1853
1854 /* Patch all the instructions to use the newly renumbered registers */
1855 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1856 if (inst->dst.file == VGRF)
1857 inst->dst.nr = remap_table[inst->dst.nr];
1858
1859 for (int i = 0; i < inst->sources; i++) {
1860 if (inst->src[i].file == VGRF)
1861 inst->src[i].nr = remap_table[inst->src[i].nr];
1862 }
1863 }
1864
1865 /* Patch all the references to delta_xy, since they're used in register
1866 * allocation. If they're unused, switch them to BAD_FILE so we don't
1867 * think some random VGRF is delta_xy.
1868 */
1869 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1870 if (delta_xy[i].file == VGRF) {
1871 if (remap_table[delta_xy[i].nr] != -1) {
1872 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1873 } else {
1874 delta_xy[i].file = BAD_FILE;
1875 }
1876 }
1877 }
1878
1879 return progress;
1880 }
1881
1882 static void
1883 set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1884 unsigned *max_chunk_bitsize,
1885 bool contiguous, unsigned bitsize,
1886 const unsigned target_bitsize,
1887 int *push_constant_loc, int *pull_constant_loc,
1888 unsigned *num_push_constants,
1889 unsigned *num_pull_constants,
1890 const unsigned max_push_components,
1891 const unsigned max_chunk_size,
1892 struct brw_stage_prog_data *stage_prog_data)
1893 {
1894 /* This is the first live uniform in the chunk */
1895 if (*chunk_start < 0)
1896 *chunk_start = uniform;
1897
1898 /* Keep track of the maximum bit size access in contiguous uniforms */
1899 *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1900
1901 /* If this element does not need to be contiguous with the next, we
1902 * split at this point and everything between chunk_start and u forms a
1903 * single chunk.
1904 */
1905 if (!contiguous) {
1906 /* If bitsize doesn't match the target one, skip it */
1907 if (*max_chunk_bitsize != target_bitsize) {
1908 /* FIXME: right now we only support 32 and 64-bit accesses */
1909 assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1910 *max_chunk_bitsize = 0;
1911 *chunk_start = -1;
1912 return;
1913 }
1914
1915 unsigned chunk_size = uniform - *chunk_start + 1;
1916
1917 /* Decide whether we should push or pull this parameter. In the
1918 * Vulkan driver, push constants are explicitly exposed via the API
1919 * so we push everything. In GL, we only push small arrays.
1920 */
1921 if (stage_prog_data->pull_param == NULL ||
1922 (*num_push_constants + chunk_size <= max_push_components &&
1923 chunk_size <= max_chunk_size)) {
1924 assert(*num_push_constants + chunk_size <= max_push_components);
1925 for (unsigned j = *chunk_start; j <= uniform; j++)
1926 push_constant_loc[j] = (*num_push_constants)++;
1927 } else {
1928 for (unsigned j = *chunk_start; j <= uniform; j++)
1929 pull_constant_loc[j] = (*num_pull_constants)++;
1930 }
1931
1932 *max_chunk_bitsize = 0;
1933 *chunk_start = -1;
1934 }
1935 }
1936
1937 /**
1938 * Assign UNIFORM file registers to either push constants or pull constants.
1939 *
1940 * We allow a fragment shader to have more than the specified minimum
1941 * maximum number of fragment shader uniform components (64). If
1942 * there are too many of these, they'd fill up all of register space.
1943 * So, this will push some of them out to the pull constant buffer and
1944 * update the program to load them.
1945 */
1946 void
1947 fs_visitor::assign_constant_locations()
1948 {
1949 /* Only the first compile gets to decide on locations. */
1950 if (dispatch_width != min_dispatch_width)
1951 return;
1952
1953 bool is_live[uniforms];
1954 memset(is_live, 0, sizeof(is_live));
1955 unsigned bitsize_access[uniforms];
1956 memset(bitsize_access, 0, sizeof(bitsize_access));
1957
1958 /* For each uniform slot, a value of true indicates that the given slot and
1959 * the next slot must remain contiguous. This is used to keep us from
1960 * splitting arrays apart.
1961 */
1962 bool contiguous[uniforms];
1963 memset(contiguous, 0, sizeof(contiguous));
1964
1965 int thread_local_id_index =
1966 (stage == MESA_SHADER_COMPUTE) ?
1967 brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1968
1969 /* First, we walk through the instructions and do two things:
1970 *
1971 * 1) Figure out which uniforms are live.
1972 *
1973 * 2) Mark any indirectly used ranges of registers as contiguous.
1974 *
1975 * Note that we don't move constant-indexed accesses to arrays. No
1976 * testing has been done of the performance impact of this choice.
1977 */
1978 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1979 for (int i = 0 ; i < inst->sources; i++) {
1980 if (inst->src[i].file != UNIFORM)
1981 continue;
1982
1983 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1984
1985 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1986 assert(inst->src[2].ud % 4 == 0);
1987 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1988 assert(last < uniforms);
1989
1990 for (unsigned j = constant_nr; j < last; j++) {
1991 is_live[j] = true;
1992 contiguous[j] = true;
1993 bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
1994 }
1995 is_live[last] = true;
1996 bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
1997 } else {
1998 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1999 int regs_read = inst->components_read(i) *
2000 type_sz(inst->src[i].type) / 4;
2001 for (int j = 0; j < regs_read; j++) {
2002 is_live[constant_nr + j] = true;
2003 bitsize_access[constant_nr + j] =
2004 MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
2005 }
2006 }
2007 }
2008 }
2009 }
2010
2011 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
2012 thread_local_id_index = -1;
2013
2014 /* Only allow 16 registers (128 uniform components) as push constants.
2015 *
2016 * Just demote the end of the list. We could probably do better
2017 * here, demoting things that are rarely used in the program first.
2018 *
2019 * If changing this value, note the limitation about total_regs in
2020 * brw_curbe.c.
2021 */
2022 unsigned int max_push_components = 16 * 8;
2023 if (thread_local_id_index >= 0)
2024 max_push_components--; /* Save a slot for the thread ID */
2025
2026 /* We push small arrays, but no bigger than 16 floats. This is big enough
2027 * for a vec4 but hopefully not large enough to push out other stuff. We
2028 * should probably use a better heuristic at some point.
2029 */
2030 const unsigned int max_chunk_size = 16;
2031
2032 unsigned int num_push_constants = 0;
2033 unsigned int num_pull_constants = 0;
2034
2035 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2036 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2037
2038 /* Default to -1 meaning no location */
2039 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2040 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2041
2042 int chunk_start = -1;
2043 unsigned max_chunk_bitsize = 0;
2044
2045 /* First push 64-bit uniforms to ensure they are properly aligned */
2046 const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2047 for (unsigned u = 0; u < uniforms; u++) {
2048 if (!is_live[u])
2049 continue;
2050
2051 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2052 contiguous[u], bitsize_access[u],
2053 uniform_64_bit_size,
2054 push_constant_loc, pull_constant_loc,
2055 &num_push_constants, &num_pull_constants,
2056 max_push_components, max_chunk_size,
2057 stage_prog_data);
2058
2059 }
2060
2061 /* Then push the rest of uniforms */
2062 const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2063 for (unsigned u = 0; u < uniforms; u++) {
2064 if (!is_live[u])
2065 continue;
2066
2067 /* Skip thread_local_id_index to put it in the last push register. */
2068 if (thread_local_id_index == (int)u)
2069 continue;
2070
2071 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2072 contiguous[u], bitsize_access[u],
2073 uniform_32_bit_size,
2074 push_constant_loc, pull_constant_loc,
2075 &num_push_constants, &num_pull_constants,
2076 max_push_components, max_chunk_size,
2077 stage_prog_data);
2078 }
2079
2080 /* Add the CS local thread ID uniform at the end of the push constants */
2081 if (thread_local_id_index >= 0)
2082 push_constant_loc[thread_local_id_index] = num_push_constants++;
2083
2084 /* As the uniforms are going to be reordered, take the data from a temporary
2085 * copy of the original param[].
2086 */
2087 uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params);
2088 memcpy(param, stage_prog_data->param,
2089 sizeof(uint32_t) * stage_prog_data->nr_params);
2090 stage_prog_data->nr_params = num_push_constants;
2091 stage_prog_data->nr_pull_params = num_pull_constants;
2092
2093 /* Now that we know how many regular uniforms we'll push, reduce the
2094 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2095 */
2096 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2097 for (int i = 0; i < 4; i++) {
2098 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2099
2100 if (push_length + range->length > 64)
2101 range->length = 64 - push_length;
2102
2103 push_length += range->length;
2104 }
2105 assert(push_length <= 64);
2106
2107 /* Up until now, the param[] array has been indexed by reg + offset
2108 * of UNIFORM registers. Move pull constants into pull_param[] and
2109 * condense param[] to only contain the uniforms we chose to push.
2110 *
2111 * NOTE: Because we are condensing the params[] array, we know that
2112 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2113 * having to make a copy.
2114 */
2115 int new_thread_local_id_index = -1;
2116 for (unsigned int i = 0; i < uniforms; i++) {
2117 uint32_t value = param[i];
2118 if (pull_constant_loc[i] != -1) {
2119 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2120 } else if (push_constant_loc[i] != -1) {
2121 stage_prog_data->param[push_constant_loc[i]] = value;
2122 if (thread_local_id_index == (int)i)
2123 new_thread_local_id_index = push_constant_loc[i];
2124 }
2125 }
2126 ralloc_free(param);
2127
2128 if (stage == MESA_SHADER_COMPUTE)
2129 brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2130 new_thread_local_id_index;
2131 }
2132
2133 bool
2134 fs_visitor::get_pull_locs(const fs_reg &src,
2135 unsigned *out_surf_index,
2136 unsigned *out_pull_index)
2137 {
2138 assert(src.file == UNIFORM);
2139
2140 if (src.nr >= UBO_START) {
2141 const struct brw_ubo_range *range =
2142 &prog_data->ubo_ranges[src.nr - UBO_START];
2143
2144 /* If this access is in our (reduced) range, use the push data. */
2145 if (src.offset / 32 < range->length)
2146 return false;
2147
2148 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2149 *out_pull_index = (32 * range->start + src.offset) / 4;
2150 return true;
2151 }
2152
2153 const unsigned location = src.nr + src.offset / 4;
2154
2155 if (location < uniforms && pull_constant_loc[location] != -1) {
2156 /* A regular uniform push constant */
2157 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2158 *out_pull_index = pull_constant_loc[location];
2159 return true;
2160 }
2161
2162 return false;
2163 }
2164
2165 /**
2166 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2167 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2168 */
2169 void
2170 fs_visitor::lower_constant_loads()
2171 {
2172 unsigned index, pull_index;
2173
2174 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2175 /* Set up the annotation tracking for new generated instructions. */
2176 const fs_builder ibld(this, block, inst);
2177
2178 for (int i = 0; i < inst->sources; i++) {
2179 if (inst->src[i].file != UNIFORM)
2180 continue;
2181
2182 /* We'll handle this case later */
2183 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2184 continue;
2185
2186 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2187 continue;
2188
2189 assert(inst->src[i].stride == 0);
2190
2191 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2192 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2193 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2194 const unsigned base = pull_index * 4;
2195
2196 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2197 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2198
2199 /* Rewrite the instruction to use the temporary VGRF. */
2200 inst->src[i].file = VGRF;
2201 inst->src[i].nr = dst.nr;
2202 inst->src[i].offset = (base & (block_sz - 1)) +
2203 inst->src[i].offset % 4;
2204
2205 brw_mark_surface_used(prog_data, index);
2206 }
2207
2208 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2209 inst->src[0].file == UNIFORM) {
2210
2211 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2212 continue;
2213
2214 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2215 brw_imm_ud(index),
2216 inst->src[1],
2217 pull_index * 4);
2218 inst->remove(block);
2219
2220 brw_mark_surface_used(prog_data, index);
2221 }
2222 }
2223 invalidate_live_intervals();
2224 }
2225
2226 bool
2227 fs_visitor::opt_algebraic()
2228 {
2229 bool progress = false;
2230
2231 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2232 switch (inst->opcode) {
2233 case BRW_OPCODE_MOV:
2234 if (inst->src[0].file != IMM)
2235 break;
2236
2237 if (inst->saturate) {
2238 if (inst->dst.type != inst->src[0].type)
2239 assert(!"unimplemented: saturate mixed types");
2240
2241 if (brw_saturate_immediate(inst->dst.type,
2242 &inst->src[0].as_brw_reg())) {
2243 inst->saturate = false;
2244 progress = true;
2245 }
2246 }
2247 break;
2248
2249 case BRW_OPCODE_MUL:
2250 if (inst->src[1].file != IMM)
2251 continue;
2252
2253 /* a * 1.0 = a */
2254 if (inst->src[1].is_one()) {
2255 inst->opcode = BRW_OPCODE_MOV;
2256 inst->src[1] = reg_undef;
2257 progress = true;
2258 break;
2259 }
2260
2261 /* a * -1.0 = -a */
2262 if (inst->src[1].is_negative_one()) {
2263 inst->opcode = BRW_OPCODE_MOV;
2264 inst->src[0].negate = !inst->src[0].negate;
2265 inst->src[1] = reg_undef;
2266 progress = true;
2267 break;
2268 }
2269
2270 /* a * 0.0 = 0.0 */
2271 if (inst->src[1].is_zero()) {
2272 inst->opcode = BRW_OPCODE_MOV;
2273 inst->src[0] = inst->src[1];
2274 inst->src[1] = reg_undef;
2275 progress = true;
2276 break;
2277 }
2278
2279 if (inst->src[0].file == IMM) {
2280 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2281 inst->opcode = BRW_OPCODE_MOV;
2282 inst->src[0].f *= inst->src[1].f;
2283 inst->src[1] = reg_undef;
2284 progress = true;
2285 break;
2286 }
2287 break;
2288 case BRW_OPCODE_ADD:
2289 if (inst->src[1].file != IMM)
2290 continue;
2291
2292 /* a + 0.0 = a */
2293 if (inst->src[1].is_zero()) {
2294 inst->opcode = BRW_OPCODE_MOV;
2295 inst->src[1] = reg_undef;
2296 progress = true;
2297 break;
2298 }
2299
2300 if (inst->src[0].file == IMM) {
2301 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2302 inst->opcode = BRW_OPCODE_MOV;
2303 inst->src[0].f += inst->src[1].f;
2304 inst->src[1] = reg_undef;
2305 progress = true;
2306 break;
2307 }
2308 break;
2309 case BRW_OPCODE_OR:
2310 if (inst->src[0].equals(inst->src[1])) {
2311 inst->opcode = BRW_OPCODE_MOV;
2312 inst->src[1] = reg_undef;
2313 progress = true;
2314 break;
2315 }
2316 break;
2317 case BRW_OPCODE_LRP:
2318 if (inst->src[1].equals(inst->src[2])) {
2319 inst->opcode = BRW_OPCODE_MOV;
2320 inst->src[0] = inst->src[1];
2321 inst->src[1] = reg_undef;
2322 inst->src[2] = reg_undef;
2323 progress = true;
2324 break;
2325 }
2326 break;
2327 case BRW_OPCODE_CMP:
2328 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2329 inst->src[0].abs &&
2330 inst->src[0].negate &&
2331 inst->src[1].is_zero()) {
2332 inst->src[0].abs = false;
2333 inst->src[0].negate = false;
2334 inst->conditional_mod = BRW_CONDITIONAL_Z;
2335 progress = true;
2336 break;
2337 }
2338 break;
2339 case BRW_OPCODE_SEL:
2340 if (inst->src[0].equals(inst->src[1])) {
2341 inst->opcode = BRW_OPCODE_MOV;
2342 inst->src[1] = reg_undef;
2343 inst->predicate = BRW_PREDICATE_NONE;
2344 inst->predicate_inverse = false;
2345 progress = true;
2346 } else if (inst->saturate && inst->src[1].file == IMM) {
2347 switch (inst->conditional_mod) {
2348 case BRW_CONDITIONAL_LE:
2349 case BRW_CONDITIONAL_L:
2350 switch (inst->src[1].type) {
2351 case BRW_REGISTER_TYPE_F:
2352 if (inst->src[1].f >= 1.0f) {
2353 inst->opcode = BRW_OPCODE_MOV;
2354 inst->src[1] = reg_undef;
2355 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2356 progress = true;
2357 }
2358 break;
2359 default:
2360 break;
2361 }
2362 break;
2363 case BRW_CONDITIONAL_GE:
2364 case BRW_CONDITIONAL_G:
2365 switch (inst->src[1].type) {
2366 case BRW_REGISTER_TYPE_F:
2367 if (inst->src[1].f <= 0.0f) {
2368 inst->opcode = BRW_OPCODE_MOV;
2369 inst->src[1] = reg_undef;
2370 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2371 progress = true;
2372 }
2373 break;
2374 default:
2375 break;
2376 }
2377 default:
2378 break;
2379 }
2380 }
2381 break;
2382 case BRW_OPCODE_MAD:
2383 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2384 inst->opcode = BRW_OPCODE_MOV;
2385 inst->src[1] = reg_undef;
2386 inst->src[2] = reg_undef;
2387 progress = true;
2388 } else if (inst->src[0].is_zero()) {
2389 inst->opcode = BRW_OPCODE_MUL;
2390 inst->src[0] = inst->src[2];
2391 inst->src[2] = reg_undef;
2392 progress = true;
2393 } else if (inst->src[1].is_one()) {
2394 inst->opcode = BRW_OPCODE_ADD;
2395 inst->src[1] = inst->src[2];
2396 inst->src[2] = reg_undef;
2397 progress = true;
2398 } else if (inst->src[2].is_one()) {
2399 inst->opcode = BRW_OPCODE_ADD;
2400 inst->src[2] = reg_undef;
2401 progress = true;
2402 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2403 inst->opcode = BRW_OPCODE_ADD;
2404 inst->src[1].f *= inst->src[2].f;
2405 inst->src[2] = reg_undef;
2406 progress = true;
2407 }
2408 break;
2409 case SHADER_OPCODE_BROADCAST:
2410 if (is_uniform(inst->src[0])) {
2411 inst->opcode = BRW_OPCODE_MOV;
2412 inst->sources = 1;
2413 inst->force_writemask_all = true;
2414 progress = true;
2415 } else if (inst->src[1].file == IMM) {
2416 inst->opcode = BRW_OPCODE_MOV;
2417 inst->src[0] = component(inst->src[0],
2418 inst->src[1].ud);
2419 inst->sources = 1;
2420 inst->force_writemask_all = true;
2421 progress = true;
2422 }
2423 break;
2424
2425 default:
2426 break;
2427 }
2428
2429 /* Swap if src[0] is immediate. */
2430 if (progress && inst->is_commutative()) {
2431 if (inst->src[0].file == IMM) {
2432 fs_reg tmp = inst->src[1];
2433 inst->src[1] = inst->src[0];
2434 inst->src[0] = tmp;
2435 }
2436 }
2437 }
2438 return progress;
2439 }
2440
2441 /**
2442 * Optimize sample messages that have constant zero values for the trailing
2443 * texture coordinates. We can just reduce the message length for these
2444 * instructions instead of reserving a register for it. Trailing parameters
2445 * that aren't sent default to zero anyway. This will cause the dead code
2446 * eliminator to remove the MOV instruction that would otherwise be emitted to
2447 * set up the zero value.
2448 */
2449 bool
2450 fs_visitor::opt_zero_samples()
2451 {
2452 /* Gen4 infers the texturing opcode based on the message length so we can't
2453 * change it.
2454 */
2455 if (devinfo->gen < 5)
2456 return false;
2457
2458 bool progress = false;
2459
2460 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2461 if (!inst->is_tex())
2462 continue;
2463
2464 fs_inst *load_payload = (fs_inst *) inst->prev;
2465
2466 if (load_payload->is_head_sentinel() ||
2467 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2468 continue;
2469
2470 /* We don't want to remove the message header or the first parameter.
2471 * Removing the first parameter is not allowed, see the Haswell PRM
2472 * volume 7, page 149:
2473 *
2474 * "Parameter 0 is required except for the sampleinfo message, which
2475 * has no parameter 0"
2476 */
2477 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2478 load_payload->src[(inst->mlen - inst->header_size) /
2479 (inst->exec_size / 8) +
2480 inst->header_size - 1].is_zero()) {
2481 inst->mlen -= inst->exec_size / 8;
2482 progress = true;
2483 }
2484 }
2485
2486 if (progress)
2487 invalidate_live_intervals();
2488
2489 return progress;
2490 }
2491
2492 /**
2493 * Optimize sample messages which are followed by the final RT write.
2494 *
2495 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2496 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2497 * final texturing results copied to the framebuffer write payload and modify
2498 * them to write to the framebuffer directly.
2499 */
2500 bool
2501 fs_visitor::opt_sampler_eot()
2502 {
2503 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2504
2505 if (stage != MESA_SHADER_FRAGMENT)
2506 return false;
2507
2508 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2509 return false;
2510
2511 /* FINISHME: It should be possible to implement this optimization when there
2512 * are multiple drawbuffers.
2513 */
2514 if (key->nr_color_regions != 1)
2515 return false;
2516
2517 /* Requires emitting a bunch of saturating MOV instructions during logical
2518 * send lowering to clamp the color payload, which the sampler unit isn't
2519 * going to do for us.
2520 */
2521 if (key->clamp_fragment_color)
2522 return false;
2523
2524 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2525 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2526 fs_inst *fb_write = (fs_inst *)block->end();
2527 assert(fb_write->eot);
2528 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2529
2530 /* There wasn't one; nothing to do. */
2531 if (unlikely(fb_write->prev->is_head_sentinel()))
2532 return false;
2533
2534 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2535
2536 /* 3D Sampler » Messages » Message Format
2537 *
2538 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2539 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2540 */
2541 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2542 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2543 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2544 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2545 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2546 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2547 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2548 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2549 return false;
2550
2551 /* XXX - This shouldn't be necessary. */
2552 if (tex_inst->prev->is_head_sentinel())
2553 return false;
2554
2555 /* Check that the FB write sources are fully initialized by the single
2556 * texturing instruction.
2557 */
2558 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2559 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2560 if (!fb_write->src[i].equals(tex_inst->dst) ||
2561 fb_write->size_read(i) != tex_inst->size_written)
2562 return false;
2563 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2564 if (fb_write->src[i].file != BAD_FILE)
2565 return false;
2566 }
2567 }
2568
2569 assert(!tex_inst->eot); /* We can't get here twice */
2570 assert((tex_inst->offset & (0xff << 24)) == 0);
2571
2572 const fs_builder ibld(this, block, tex_inst);
2573
2574 tex_inst->offset |= fb_write->target << 24;
2575 tex_inst->eot = true;
2576 tex_inst->dst = ibld.null_reg_ud();
2577 tex_inst->size_written = 0;
2578 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2579
2580 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2581 * flag and submit a header together with the sampler message as required
2582 * by the hardware.
2583 */
2584 invalidate_live_intervals();
2585 return true;
2586 }
2587
2588 bool
2589 fs_visitor::opt_register_renaming()
2590 {
2591 bool progress = false;
2592 int depth = 0;
2593
2594 int remap[alloc.count];
2595 memset(remap, -1, sizeof(int) * alloc.count);
2596
2597 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2598 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2599 depth++;
2600 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2601 inst->opcode == BRW_OPCODE_WHILE) {
2602 depth--;
2603 }
2604
2605 /* Rewrite instruction sources. */
2606 for (int i = 0; i < inst->sources; i++) {
2607 if (inst->src[i].file == VGRF &&
2608 remap[inst->src[i].nr] != -1 &&
2609 remap[inst->src[i].nr] != inst->src[i].nr) {
2610 inst->src[i].nr = remap[inst->src[i].nr];
2611 progress = true;
2612 }
2613 }
2614
2615 const int dst = inst->dst.nr;
2616
2617 if (depth == 0 &&
2618 inst->dst.file == VGRF &&
2619 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2620 !inst->is_partial_write()) {
2621 if (remap[dst] == -1) {
2622 remap[dst] = dst;
2623 } else {
2624 remap[dst] = alloc.allocate(regs_written(inst));
2625 inst->dst.nr = remap[dst];
2626 progress = true;
2627 }
2628 } else if (inst->dst.file == VGRF &&
2629 remap[dst] != -1 &&
2630 remap[dst] != dst) {
2631 inst->dst.nr = remap[dst];
2632 progress = true;
2633 }
2634 }
2635
2636 if (progress) {
2637 invalidate_live_intervals();
2638
2639 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2640 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2641 delta_xy[i].nr = remap[delta_xy[i].nr];
2642 }
2643 }
2644 }
2645
2646 return progress;
2647 }
2648
2649 /**
2650 * Remove redundant or useless discard jumps.
2651 *
2652 * For example, we can eliminate jumps in the following sequence:
2653 *
2654 * discard-jump (redundant with the next jump)
2655 * discard-jump (useless; jumps to the next instruction)
2656 * placeholder-halt
2657 */
2658 bool
2659 fs_visitor::opt_redundant_discard_jumps()
2660 {
2661 bool progress = false;
2662
2663 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2664
2665 fs_inst *placeholder_halt = NULL;
2666 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2667 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2668 placeholder_halt = inst;
2669 break;
2670 }
2671 }
2672
2673 if (!placeholder_halt)
2674 return false;
2675
2676 /* Delete any HALTs immediately before the placeholder halt. */
2677 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2678 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2679 prev = (fs_inst *) placeholder_halt->prev) {
2680 prev->remove(last_bblock);
2681 progress = true;
2682 }
2683
2684 if (progress)
2685 invalidate_live_intervals();
2686
2687 return progress;
2688 }
2689
2690 /**
2691 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2692 * from \p r.offset which overlaps the region starting at \p s.offset and
2693 * spanning \p ds bytes.
2694 */
2695 static inline unsigned
2696 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2697 {
2698 const int rel_offset = reg_offset(s) - reg_offset(r);
2699 const int shift = rel_offset / REG_SIZE;
2700 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2701 assert(reg_space(r) == reg_space(s) &&
2702 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2703 return ((1 << n) - 1) << shift;
2704 }
2705
2706 bool
2707 fs_visitor::compute_to_mrf()
2708 {
2709 bool progress = false;
2710 int next_ip = 0;
2711
2712 /* No MRFs on Gen >= 7. */
2713 if (devinfo->gen >= 7)
2714 return false;
2715
2716 calculate_live_intervals();
2717
2718 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2719 int ip = next_ip;
2720 next_ip++;
2721
2722 if (inst->opcode != BRW_OPCODE_MOV ||
2723 inst->is_partial_write() ||
2724 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2725 inst->dst.type != inst->src[0].type ||
2726 inst->src[0].abs || inst->src[0].negate ||
2727 !inst->src[0].is_contiguous() ||
2728 inst->src[0].offset % REG_SIZE != 0)
2729 continue;
2730
2731 /* Can't compute-to-MRF this GRF if someone else was going to
2732 * read it later.
2733 */
2734 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2735 continue;
2736
2737 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2738 * things that computed the value of all GRFs of the source region. The
2739 * regs_left bitset keeps track of the registers we haven't yet found a
2740 * generating instruction for.
2741 */
2742 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2743
2744 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2745 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2746 inst->src[0], inst->size_read(0))) {
2747 /* Found the last thing to write our reg we want to turn
2748 * into a compute-to-MRF.
2749 */
2750
2751 /* If this one instruction didn't populate all the
2752 * channels, bail. We might be able to rewrite everything
2753 * that writes that reg, but it would require smarter
2754 * tracking.
2755 */
2756 if (scan_inst->is_partial_write())
2757 break;
2758
2759 /* Handling things not fully contained in the source of the copy
2760 * would need us to understand coalescing out more than one MOV at
2761 * a time.
2762 */
2763 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2764 inst->src[0], inst->size_read(0)))
2765 break;
2766
2767 /* SEND instructions can't have MRF as a destination. */
2768 if (scan_inst->mlen)
2769 break;
2770
2771 if (devinfo->gen == 6) {
2772 /* gen6 math instructions must have the destination be
2773 * GRF, so no compute-to-MRF for them.
2774 */
2775 if (scan_inst->is_math()) {
2776 break;
2777 }
2778 }
2779
2780 /* Clear the bits for any registers this instruction overwrites. */
2781 regs_left &= ~mask_relative_to(
2782 inst->src[0], scan_inst->dst, scan_inst->size_written);
2783 if (!regs_left)
2784 break;
2785 }
2786
2787 /* We don't handle control flow here. Most computation of
2788 * values that end up in MRFs are shortly before the MRF
2789 * write anyway.
2790 */
2791 if (block->start() == scan_inst)
2792 break;
2793
2794 /* You can't read from an MRF, so if someone else reads our
2795 * MRF's source GRF that we wanted to rewrite, that stops us.
2796 */
2797 bool interfered = false;
2798 for (int i = 0; i < scan_inst->sources; i++) {
2799 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2800 inst->src[0], inst->size_read(0))) {
2801 interfered = true;
2802 }
2803 }
2804 if (interfered)
2805 break;
2806
2807 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2808 inst->dst, inst->size_written)) {
2809 /* If somebody else writes our MRF here, we can't
2810 * compute-to-MRF before that.
2811 */
2812 break;
2813 }
2814
2815 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2816 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2817 inst->dst, inst->size_written)) {
2818 /* Found a SEND instruction, which means that there are
2819 * live values in MRFs from base_mrf to base_mrf +
2820 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2821 * above it.
2822 */
2823 break;
2824 }
2825 }
2826
2827 if (regs_left)
2828 continue;
2829
2830 /* Found all generating instructions of our MRF's source value, so it
2831 * should be safe to rewrite them to point to the MRF directly.
2832 */
2833 regs_left = (1 << regs_read(inst, 0)) - 1;
2834
2835 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2836 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2837 inst->src[0], inst->size_read(0))) {
2838 /* Clear the bits for any registers this instruction overwrites. */
2839 regs_left &= ~mask_relative_to(
2840 inst->src[0], scan_inst->dst, scan_inst->size_written);
2841
2842 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2843 reg_offset(inst->src[0]);
2844
2845 if (inst->dst.nr & BRW_MRF_COMPR4) {
2846 /* Apply the same address transformation done by the hardware
2847 * for COMPR4 MRF writes.
2848 */
2849 assert(rel_offset < 2 * REG_SIZE);
2850 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2851
2852 /* Clear the COMPR4 bit if the generating instruction is not
2853 * compressed.
2854 */
2855 if (scan_inst->size_written < 2 * REG_SIZE)
2856 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2857
2858 } else {
2859 /* Calculate the MRF number the result of this instruction is
2860 * ultimately written to.
2861 */
2862 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2863 }
2864
2865 scan_inst->dst.file = MRF;
2866 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2867 scan_inst->saturate |= inst->saturate;
2868 if (!regs_left)
2869 break;
2870 }
2871 }
2872
2873 assert(!regs_left);
2874 inst->remove(block);
2875 progress = true;
2876 }
2877
2878 if (progress)
2879 invalidate_live_intervals();
2880
2881 return progress;
2882 }
2883
2884 /**
2885 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2886 * flow. We could probably do better here with some form of divergence
2887 * analysis.
2888 */
2889 bool
2890 fs_visitor::eliminate_find_live_channel()
2891 {
2892 bool progress = false;
2893 unsigned depth = 0;
2894
2895 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2896 /* The optimization below assumes that channel zero is live on thread
2897 * dispatch, which may not be the case if the fixed function dispatches
2898 * threads sparsely.
2899 */
2900 return false;
2901 }
2902
2903 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2904 switch (inst->opcode) {
2905 case BRW_OPCODE_IF:
2906 case BRW_OPCODE_DO:
2907 depth++;
2908 break;
2909
2910 case BRW_OPCODE_ENDIF:
2911 case BRW_OPCODE_WHILE:
2912 depth--;
2913 break;
2914
2915 case FS_OPCODE_DISCARD_JUMP:
2916 /* This can potentially make control flow non-uniform until the end
2917 * of the program.
2918 */
2919 return progress;
2920
2921 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2922 if (depth == 0) {
2923 inst->opcode = BRW_OPCODE_MOV;
2924 inst->src[0] = brw_imm_ud(0u);
2925 inst->sources = 1;
2926 inst->force_writemask_all = true;
2927 progress = true;
2928 }
2929 break;
2930
2931 default:
2932 break;
2933 }
2934 }
2935
2936 return progress;
2937 }
2938
2939 /**
2940 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2941 * instructions to FS_OPCODE_REP_FB_WRITE.
2942 */
2943 void
2944 fs_visitor::emit_repclear_shader()
2945 {
2946 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2947 int base_mrf = 0;
2948 int color_mrf = base_mrf + 2;
2949 fs_inst *mov;
2950
2951 if (uniforms > 0) {
2952 mov = bld.exec_all().group(4, 0)
2953 .MOV(brw_message_reg(color_mrf),
2954 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2955 } else {
2956 struct brw_reg reg =
2957 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2958 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2959 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2960
2961 mov = bld.exec_all().group(4, 0)
2962 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2963 }
2964
2965 fs_inst *write;
2966 if (key->nr_color_regions == 1) {
2967 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2968 write->saturate = key->clamp_fragment_color;
2969 write->base_mrf = color_mrf;
2970 write->target = 0;
2971 write->header_size = 0;
2972 write->mlen = 1;
2973 } else {
2974 assume(key->nr_color_regions > 0);
2975 for (int i = 0; i < key->nr_color_regions; ++i) {
2976 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2977 write->saturate = key->clamp_fragment_color;
2978 write->base_mrf = base_mrf;
2979 write->target = i;
2980 write->header_size = 2;
2981 write->mlen = 3;
2982 }
2983 }
2984 write->eot = true;
2985
2986 calculate_cfg();
2987
2988 assign_constant_locations();
2989 assign_curb_setup();
2990
2991 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2992 if (uniforms > 0) {
2993 assert(mov->src[0].file == FIXED_GRF);
2994 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2995 }
2996 }
2997
2998 /**
2999 * Walks through basic blocks, looking for repeated MRF writes and
3000 * removing the later ones.
3001 */
3002 bool
3003 fs_visitor::remove_duplicate_mrf_writes()
3004 {
3005 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3006 bool progress = false;
3007
3008 /* Need to update the MRF tracking for compressed instructions. */
3009 if (dispatch_width >= 16)
3010 return false;
3011
3012 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3013
3014 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3015 if (inst->is_control_flow()) {
3016 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3017 }
3018
3019 if (inst->opcode == BRW_OPCODE_MOV &&
3020 inst->dst.file == MRF) {
3021 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3022 if (prev_inst && inst->equals(prev_inst)) {
3023 inst->remove(block);
3024 progress = true;
3025 continue;
3026 }
3027 }
3028
3029 /* Clear out the last-write records for MRFs that were overwritten. */
3030 if (inst->dst.file == MRF) {
3031 last_mrf_move[inst->dst.nr] = NULL;
3032 }
3033
3034 if (inst->mlen > 0 && inst->base_mrf != -1) {
3035 /* Found a SEND instruction, which will include two or fewer
3036 * implied MRF writes. We could do better here.
3037 */
3038 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3039 last_mrf_move[inst->base_mrf + i] = NULL;
3040 }
3041 }
3042
3043 /* Clear out any MRF move records whose sources got overwritten. */
3044 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3045 if (last_mrf_move[i] &&
3046 regions_overlap(inst->dst, inst->size_written,
3047 last_mrf_move[i]->src[0],
3048 last_mrf_move[i]->size_read(0))) {
3049 last_mrf_move[i] = NULL;
3050 }
3051 }
3052
3053 if (inst->opcode == BRW_OPCODE_MOV &&
3054 inst->dst.file == MRF &&
3055 inst->src[0].file != ARF &&
3056 !inst->is_partial_write()) {
3057 last_mrf_move[inst->dst.nr] = inst;
3058 }
3059 }
3060
3061 if (progress)
3062 invalidate_live_intervals();
3063
3064 return progress;
3065 }
3066
3067 static void
3068 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3069 {
3070 /* Clear the flag for registers that actually got read (as expected). */
3071 for (int i = 0; i < inst->sources; i++) {
3072 int grf;
3073 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3074 grf = inst->src[i].nr;
3075 } else {
3076 continue;
3077 }
3078
3079 if (grf >= first_grf &&
3080 grf < first_grf + grf_len) {
3081 deps[grf - first_grf] = false;
3082 if (inst->exec_size == 16)
3083 deps[grf - first_grf + 1] = false;
3084 }
3085 }
3086 }
3087
3088 /**
3089 * Implements this workaround for the original 965:
3090 *
3091 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3092 * check for post destination dependencies on this instruction, software
3093 * must ensure that there is no destination hazard for the case of ‘write
3094 * followed by a posted write’ shown in the following example.
3095 *
3096 * 1. mov r3 0
3097 * 2. send r3.xy <rest of send instruction>
3098 * 3. mov r2 r3
3099 *
3100 * Due to no post-destination dependency check on the ‘send’, the above
3101 * code sequence could have two instructions (1 and 2) in flight at the
3102 * same time that both consider ‘r3’ as the target of their final writes.
3103 */
3104 void
3105 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3106 fs_inst *inst)
3107 {
3108 int write_len = regs_written(inst);
3109 int first_write_grf = inst->dst.nr;
3110 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3111 assert(write_len < (int)sizeof(needs_dep) - 1);
3112
3113 memset(needs_dep, false, sizeof(needs_dep));
3114 memset(needs_dep, true, write_len);
3115
3116 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3117
3118 /* Walk backwards looking for writes to registers we're writing which
3119 * aren't read since being written. If we hit the start of the program,
3120 * we assume that there are no outstanding dependencies on entry to the
3121 * program.
3122 */
3123 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3124 /* If we hit control flow, assume that there *are* outstanding
3125 * dependencies, and force their cleanup before our instruction.
3126 */
3127 if (block->start() == scan_inst && block->num != 0) {
3128 for (int i = 0; i < write_len; i++) {
3129 if (needs_dep[i])
3130 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3131 first_write_grf + i);
3132 }
3133 return;
3134 }
3135
3136 /* We insert our reads as late as possible on the assumption that any
3137 * instruction but a MOV that might have left us an outstanding
3138 * dependency has more latency than a MOV.
3139 */
3140 if (scan_inst->dst.file == VGRF) {
3141 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3142 int reg = scan_inst->dst.nr + i;
3143
3144 if (reg >= first_write_grf &&
3145 reg < first_write_grf + write_len &&
3146 needs_dep[reg - first_write_grf]) {
3147 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3148 needs_dep[reg - first_write_grf] = false;
3149 if (scan_inst->exec_size == 16)
3150 needs_dep[reg - first_write_grf + 1] = false;
3151 }
3152 }
3153 }
3154
3155 /* Clear the flag for registers that actually got read (as expected). */
3156 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3157
3158 /* Continue the loop only if we haven't resolved all the dependencies */
3159 int i;
3160 for (i = 0; i < write_len; i++) {
3161 if (needs_dep[i])
3162 break;
3163 }
3164 if (i == write_len)
3165 return;
3166 }
3167 }
3168
3169 /**
3170 * Implements this workaround for the original 965:
3171 *
3172 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3173 * used as a destination register until after it has been sourced by an
3174 * instruction with a different destination register.
3175 */
3176 void
3177 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3178 {
3179 int write_len = regs_written(inst);
3180 int first_write_grf = inst->dst.nr;
3181 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3182 assert(write_len < (int)sizeof(needs_dep) - 1);
3183
3184 memset(needs_dep, false, sizeof(needs_dep));
3185 memset(needs_dep, true, write_len);
3186 /* Walk forwards looking for writes to registers we're writing which aren't
3187 * read before being written.
3188 */
3189 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3190 /* If we hit control flow, force resolve all remaining dependencies. */
3191 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3192 for (int i = 0; i < write_len; i++) {
3193 if (needs_dep[i])
3194 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3195 first_write_grf + i);
3196 }
3197 return;
3198 }
3199
3200 /* Clear the flag for registers that actually got read (as expected). */
3201 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3202
3203 /* We insert our reads as late as possible since they're reading the
3204 * result of a SEND, which has massive latency.
3205 */
3206 if (scan_inst->dst.file == VGRF &&
3207 scan_inst->dst.nr >= first_write_grf &&
3208 scan_inst->dst.nr < first_write_grf + write_len &&
3209 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3210 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3211 scan_inst->dst.nr);
3212 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3213 }
3214
3215 /* Continue the loop only if we haven't resolved all the dependencies */
3216 int i;
3217 for (i = 0; i < write_len; i++) {
3218 if (needs_dep[i])
3219 break;
3220 }
3221 if (i == write_len)
3222 return;
3223 }
3224 }
3225
3226 void
3227 fs_visitor::insert_gen4_send_dependency_workarounds()
3228 {
3229 if (devinfo->gen != 4 || devinfo->is_g4x)
3230 return;
3231
3232 bool progress = false;
3233
3234 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3235 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3236 insert_gen4_pre_send_dependency_workarounds(block, inst);
3237 insert_gen4_post_send_dependency_workarounds(block, inst);
3238 progress = true;
3239 }
3240 }
3241
3242 if (progress)
3243 invalidate_live_intervals();
3244 }
3245
3246 /**
3247 * Turns the generic expression-style uniform pull constant load instruction
3248 * into a hardware-specific series of instructions for loading a pull
3249 * constant.
3250 *
3251 * The expression style allows the CSE pass before this to optimize out
3252 * repeated loads from the same offset, and gives the pre-register-allocation
3253 * scheduling full flexibility, while the conversion to native instructions
3254 * allows the post-register-allocation scheduler the best information
3255 * possible.
3256 *
3257 * Note that execution masking for setting up pull constant loads is special:
3258 * the channels that need to be written are unrelated to the current execution
3259 * mask, since a later instruction will use one of the result channels as a
3260 * source operand for all 8 or 16 of its channels.
3261 */
3262 void
3263 fs_visitor::lower_uniform_pull_constant_loads()
3264 {
3265 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3266 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3267 continue;
3268
3269 if (devinfo->gen >= 7) {
3270 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3271 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3272
3273 ubld.group(8, 0).MOV(payload,
3274 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3275 ubld.group(1, 0).MOV(component(payload, 2),
3276 brw_imm_ud(inst->src[1].ud / 16));
3277
3278 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3279 inst->src[1] = payload;
3280 inst->header_size = 1;
3281 inst->mlen = 1;
3282
3283 invalidate_live_intervals();
3284 } else {
3285 /* Before register allocation, we didn't tell the scheduler about the
3286 * MRF we use. We know it's safe to use this MRF because nothing
3287 * else does except for register spill/unspill, which generates and
3288 * uses its MRF within a single IR instruction.
3289 */
3290 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3291 inst->mlen = 1;
3292 }
3293 }
3294 }
3295
3296 bool
3297 fs_visitor::lower_load_payload()
3298 {
3299 bool progress = false;
3300
3301 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3302 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3303 continue;
3304
3305 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3306 assert(inst->saturate == false);
3307 fs_reg dst = inst->dst;
3308
3309 /* Get rid of COMPR4. We'll add it back in if we need it */
3310 if (dst.file == MRF)
3311 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3312
3313 const fs_builder ibld(this, block, inst);
3314 const fs_builder hbld = ibld.exec_all().group(8, 0);
3315
3316 for (uint8_t i = 0; i < inst->header_size; i++) {
3317 if (inst->src[i].file != BAD_FILE) {
3318 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3319 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3320 hbld.MOV(mov_dst, mov_src);
3321 }
3322 dst = offset(dst, hbld, 1);
3323 }
3324
3325 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3326 inst->exec_size > 8) {
3327 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3328 * a straightforward copy. Instead, the result of the
3329 * LOAD_PAYLOAD is treated as interleaved and the first four
3330 * non-header sources are unpacked as:
3331 *
3332 * m + 0: r0
3333 * m + 1: g0
3334 * m + 2: b0
3335 * m + 3: a0
3336 * m + 4: r1
3337 * m + 5: g1
3338 * m + 6: b1
3339 * m + 7: a1
3340 *
3341 * This is used for gen <= 5 fb writes.
3342 */
3343 assert(inst->exec_size == 16);
3344 assert(inst->header_size + 4 <= inst->sources);
3345 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3346 if (inst->src[i].file != BAD_FILE) {
3347 if (devinfo->has_compr4) {
3348 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3349 compr4_dst.nr |= BRW_MRF_COMPR4;
3350 ibld.MOV(compr4_dst, inst->src[i]);
3351 } else {
3352 /* Platform doesn't have COMPR4. We have to fake it */
3353 fs_reg mov_dst = retype(dst, inst->src[i].type);
3354 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3355 mov_dst.nr += 4;
3356 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3357 }
3358 }
3359
3360 dst.nr++;
3361 }
3362
3363 /* The loop above only ever incremented us through the first set
3364 * of 4 registers. However, thanks to the magic of COMPR4, we
3365 * actually wrote to the first 8 registers, so we need to take
3366 * that into account now.
3367 */
3368 dst.nr += 4;
3369
3370 /* The COMPR4 code took care of the first 4 sources. We'll let
3371 * the regular path handle any remaining sources. Yes, we are
3372 * modifying the instruction but we're about to delete it so
3373 * this really doesn't hurt anything.
3374 */
3375 inst->header_size += 4;
3376 }
3377
3378 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3379 if (inst->src[i].file != BAD_FILE)
3380 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3381 dst = offset(dst, ibld, 1);
3382 }
3383
3384 inst->remove(block);
3385 progress = true;
3386 }
3387
3388 if (progress)
3389 invalidate_live_intervals();
3390
3391 return progress;
3392 }
3393
3394 bool
3395 fs_visitor::lower_integer_multiplication()
3396 {
3397 bool progress = false;
3398
3399 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3400 const fs_builder ibld(this, block, inst);
3401
3402 if (inst->opcode == BRW_OPCODE_MUL) {
3403 if (inst->dst.is_accumulator() ||
3404 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3405 inst->dst.type != BRW_REGISTER_TYPE_UD))
3406 continue;
3407
3408 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3409 * operation directly, but CHV/BXT cannot.
3410 */
3411 if (devinfo->gen >= 8 &&
3412 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3413 continue;
3414
3415 if (inst->src[1].file == IMM &&
3416 inst->src[1].ud < (1 << 16)) {
3417 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3418 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3419 * src1 are used.
3420 *
3421 * If multiplying by an immediate value that fits in 16-bits, do a
3422 * single MUL instruction with that value in the proper location.
3423 */
3424 if (devinfo->gen < 7) {
3425 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3426 inst->dst.type);
3427 ibld.MOV(imm, inst->src[1]);
3428 ibld.MUL(inst->dst, imm, inst->src[0]);
3429 } else {
3430 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3431 ibld.MUL(inst->dst, inst->src[0],
3432 ud ? brw_imm_uw(inst->src[1].ud)
3433 : brw_imm_w(inst->src[1].d));
3434 }
3435 } else {
3436 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3437 * do 32-bit integer multiplication in one instruction, but instead
3438 * must do a sequence (which actually calculates a 64-bit result):
3439 *
3440 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3441 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3442 * mov(8) g2<1>D acc0<8,8,1>D
3443 *
3444 * But on Gen > 6, the ability to use second accumulator register
3445 * (acc1) for non-float data types was removed, preventing a simple
3446 * implementation in SIMD16. A 16-channel result can be calculated by
3447 * executing the three instructions twice in SIMD8, once with quarter
3448 * control of 1Q for the first eight channels and again with 2Q for
3449 * the second eight channels.
3450 *
3451 * Which accumulator register is implicitly accessed (by AccWrEnable
3452 * for instance) is determined by the quarter control. Unfortunately
3453 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3454 * implicit accumulator access by an instruction with 2Q will access
3455 * acc1 regardless of whether the data type is usable in acc1.
3456 *
3457 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3458 * integer data types.
3459 *
3460 * Since we only want the low 32-bits of the result, we can do two
3461 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3462 * adjust the high result and add them (like the mach is doing):
3463 *
3464 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3465 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3466 * shl(8) g9<1>D g8<8,8,1>D 16D
3467 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3468 *
3469 * We avoid the shl instruction by realizing that we only want to add
3470 * the low 16-bits of the "high" result to the high 16-bits of the
3471 * "low" result and using proper regioning on the add:
3472 *
3473 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3474 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3475 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3476 *
3477 * Since it does not use the (single) accumulator register, we can
3478 * schedule multi-component multiplications much better.
3479 */
3480
3481 fs_reg orig_dst = inst->dst;
3482 if (orig_dst.is_null() || orig_dst.file == MRF) {
3483 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3484 inst->dst.type);
3485 }
3486 fs_reg low = inst->dst;
3487 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3488 inst->dst.type);
3489
3490 if (devinfo->gen >= 7) {
3491 if (inst->src[1].file == IMM) {
3492 ibld.MUL(low, inst->src[0],
3493 brw_imm_uw(inst->src[1].ud & 0xffff));
3494 ibld.MUL(high, inst->src[0],
3495 brw_imm_uw(inst->src[1].ud >> 16));
3496 } else {
3497 ibld.MUL(low, inst->src[0],
3498 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3499 ibld.MUL(high, inst->src[0],
3500 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3501 }
3502 } else {
3503 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3504 inst->src[1]);
3505 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3506 inst->src[1]);
3507 }
3508
3509 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3510 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3511 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3512
3513 if (inst->conditional_mod || orig_dst.file == MRF) {
3514 set_condmod(inst->conditional_mod,
3515 ibld.MOV(orig_dst, inst->dst));
3516 }
3517 }
3518
3519 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3520 /* Should have been lowered to 8-wide. */
3521 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3522 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3523 inst->dst.type);
3524 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3525 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3526
3527 if (devinfo->gen >= 8) {
3528 /* Until Gen8, integer multiplies read 32-bits from one source,
3529 * and 16-bits from the other, and relying on the MACH instruction
3530 * to generate the high bits of the result.
3531 *
3532 * On Gen8, the multiply instruction does a full 32x32-bit
3533 * multiply, but in order to do a 64-bit multiply we can simulate
3534 * the previous behavior and then use a MACH instruction.
3535 *
3536 * FINISHME: Don't use source modifiers on src1.
3537 */
3538 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3539 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3540 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3541 mul->src[1].stride *= 2;
3542
3543 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3544 inst->group > 0) {
3545 /* Among other things the quarter control bits influence which
3546 * accumulator register is used by the hardware for instructions
3547 * that access the accumulator implicitly (e.g. MACH). A
3548 * second-half instruction would normally map to acc1, which
3549 * doesn't exist on Gen7 and up (the hardware does emulate it for
3550 * floating-point instructions *only* by taking advantage of the
3551 * extra precision of acc0 not normally used for floating point
3552 * arithmetic).
3553 *
3554 * HSW and up are careful enough not to try to access an
3555 * accumulator register that doesn't exist, but on earlier Gen7
3556 * hardware we need to make sure that the quarter control bits are
3557 * zero to avoid non-deterministic behaviour and emit an extra MOV
3558 * to get the result masked correctly according to the current
3559 * channel enables.
3560 */
3561 mach->group = 0;
3562 mach->force_writemask_all = true;
3563 mach->dst = ibld.vgrf(inst->dst.type);
3564 ibld.MOV(inst->dst, mach->dst);
3565 }
3566 } else {
3567 continue;
3568 }
3569
3570 inst->remove(block);
3571 progress = true;
3572 }
3573
3574 if (progress)
3575 invalidate_live_intervals();
3576
3577 return progress;
3578 }
3579
3580 bool
3581 fs_visitor::lower_minmax()
3582 {
3583 assert(devinfo->gen < 6);
3584
3585 bool progress = false;
3586
3587 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3588 const fs_builder ibld(this, block, inst);
3589
3590 if (inst->opcode == BRW_OPCODE_SEL &&
3591 inst->predicate == BRW_PREDICATE_NONE) {
3592 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3593 * the original SEL.L/GE instruction
3594 */
3595 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3596 inst->conditional_mod);
3597 inst->predicate = BRW_PREDICATE_NORMAL;
3598 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3599
3600 progress = true;
3601 }
3602 }
3603
3604 if (progress)
3605 invalidate_live_intervals();
3606
3607 return progress;
3608 }
3609
3610 static void
3611 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3612 fs_reg *dst, fs_reg color, unsigned components)
3613 {
3614 if (key->clamp_fragment_color) {
3615 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3616 assert(color.type == BRW_REGISTER_TYPE_F);
3617
3618 for (unsigned i = 0; i < components; i++)
3619 set_saturate(true,
3620 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3621
3622 color = tmp;
3623 }
3624
3625 for (unsigned i = 0; i < components; i++)
3626 dst[i] = offset(color, bld, i);
3627 }
3628
3629 static void
3630 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3631 const struct brw_wm_prog_data *prog_data,
3632 const brw_wm_prog_key *key,
3633 const fs_visitor::thread_payload &payload)
3634 {
3635 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3636 const gen_device_info *devinfo = bld.shader->devinfo;
3637 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3638 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3639 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3640 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3641 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3642 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3643 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3644 const unsigned components =
3645 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3646
3647 /* We can potentially have a message length of up to 15, so we have to set
3648 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3649 */
3650 fs_reg sources[15];
3651 int header_size = 2, payload_header_size;
3652 unsigned length = 0;
3653
3654 /* From the Sandy Bridge PRM, volume 4, page 198:
3655 *
3656 * "Dispatched Pixel Enables. One bit per pixel indicating
3657 * which pixels were originally enabled when the thread was
3658 * dispatched. This field is only required for the end-of-
3659 * thread message and on all dual-source messages."
3660 */
3661 if (devinfo->gen >= 6 &&
3662 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3663 color1.file == BAD_FILE &&
3664 key->nr_color_regions == 1) {
3665 header_size = 0;
3666 }
3667
3668 if (header_size != 0) {
3669 assert(header_size == 2);
3670 /* Allocate 2 registers for a header */
3671 length += 2;
3672 }
3673
3674 if (payload.aa_dest_stencil_reg) {
3675 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3676 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3677 .MOV(sources[length],
3678 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3679 length++;
3680 }
3681
3682 if (sample_mask.file != BAD_FILE) {
3683 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3684 BRW_REGISTER_TYPE_UD);
3685
3686 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3687 * relevant. Since it's unsigned single words one vgrf is always
3688 * 16-wide, but only the lower or higher 8 channels will be used by the
3689 * hardware when doing a SIMD8 write depending on whether we have
3690 * selected the subspans for the first or second half respectively.
3691 */
3692 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3693 sample_mask.type = BRW_REGISTER_TYPE_UW;
3694 sample_mask.stride *= 2;
3695
3696 bld.exec_all().annotate("FB write oMask")
3697 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3698 inst->group),
3699 sample_mask);
3700 length++;
3701 }
3702
3703 payload_header_size = length;
3704
3705 if (src0_alpha.file != BAD_FILE) {
3706 /* FIXME: This is being passed at the wrong location in the payload and
3707 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3708 * It's supposed to be immediately before oMask but there seems to be no
3709 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3710 * requires header sources to form a contiguous segment at the beginning
3711 * of the message and src0_alpha has per-channel semantics.
3712 */
3713 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3714 length++;
3715 } else if (key->replicate_alpha && inst->target != 0) {
3716 /* Handle the case when fragment shader doesn't write to draw buffer
3717 * zero. No need to call setup_color_payload() for src0_alpha because
3718 * alpha value will be undefined.
3719 */
3720 length++;
3721 }
3722
3723 setup_color_payload(bld, key, &sources[length], color0, components);
3724 length += 4;
3725
3726 if (color1.file != BAD_FILE) {
3727 setup_color_payload(bld, key, &sources[length], color1, components);
3728 length += 4;
3729 }
3730
3731 if (src_depth.file != BAD_FILE) {
3732 sources[length] = src_depth;
3733 length++;
3734 }
3735
3736 if (dst_depth.file != BAD_FILE) {
3737 sources[length] = dst_depth;
3738 length++;
3739 }
3740
3741 if (src_stencil.file != BAD_FILE) {
3742 assert(devinfo->gen >= 9);
3743 assert(bld.dispatch_width() != 16);
3744
3745 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3746 * available on gen9+. As such it's impossible to have both enabled at the
3747 * same time and therefore length cannot overrun the array.
3748 */
3749 assert(length < 15);
3750
3751 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3752 bld.exec_all().annotate("FB write OS")
3753 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3754 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3755 length++;
3756 }
3757
3758 fs_inst *load;
3759 if (devinfo->gen >= 7) {
3760 /* Send from the GRF */
3761 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3762 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3763 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3764 load->dst = payload;
3765
3766 inst->src[0] = payload;
3767 inst->resize_sources(1);
3768 } else {
3769 /* Send from the MRF */
3770 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3771 sources, length, payload_header_size);
3772
3773 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3774 * will do this for us if we just give it a COMPR4 destination.
3775 */
3776 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3777 load->dst.nr |= BRW_MRF_COMPR4;
3778
3779 inst->resize_sources(0);
3780 inst->base_mrf = 1;
3781 }
3782
3783 inst->opcode = FS_OPCODE_FB_WRITE;
3784 inst->mlen = regs_written(load);
3785 inst->header_size = header_size;
3786 }
3787
3788 static void
3789 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3790 {
3791 const fs_builder &ubld = bld.exec_all();
3792 const unsigned length = 2;
3793 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3794
3795 ubld.group(16, 0)
3796 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3797
3798 inst->resize_sources(1);
3799 inst->src[0] = header;
3800 inst->opcode = FS_OPCODE_FB_READ;
3801 inst->mlen = length;
3802 inst->header_size = length;
3803 }
3804
3805 static void
3806 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3807 const fs_reg &coordinate,
3808 const fs_reg &shadow_c,
3809 const fs_reg &lod, const fs_reg &lod2,
3810 const fs_reg &surface,
3811 const fs_reg &sampler,
3812 unsigned coord_components,
3813 unsigned grad_components)
3814 {
3815 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3816 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3817 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3818 fs_reg msg_end = msg_begin;
3819
3820 /* g0 header. */
3821 msg_end = offset(msg_end, bld.group(8, 0), 1);
3822
3823 for (unsigned i = 0; i < coord_components; i++)
3824 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3825 offset(coordinate, bld, i));
3826
3827 msg_end = offset(msg_end, bld, coord_components);
3828
3829 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3830 * require all three components to be present and zero if they are unused.
3831 */
3832 if (coord_components > 0 &&
3833 (has_lod || shadow_c.file != BAD_FILE ||
3834 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3835 for (unsigned i = coord_components; i < 3; i++)
3836 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3837
3838 msg_end = offset(msg_end, bld, 3 - coord_components);
3839 }
3840
3841 if (op == SHADER_OPCODE_TXD) {
3842 /* TXD unsupported in SIMD16 mode. */
3843 assert(bld.dispatch_width() == 8);
3844
3845 /* the slots for u and v are always present, but r is optional */
3846 if (coord_components < 2)
3847 msg_end = offset(msg_end, bld, 2 - coord_components);
3848
3849 /* P = u, v, r
3850 * dPdx = dudx, dvdx, drdx
3851 * dPdy = dudy, dvdy, drdy
3852 *
3853 * 1-arg: Does not exist.
3854 *
3855 * 2-arg: dudx dvdx dudy dvdy
3856 * dPdx.x dPdx.y dPdy.x dPdy.y
3857 * m4 m5 m6 m7
3858 *
3859 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3860 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3861 * m5 m6 m7 m8 m9 m10
3862 */
3863 for (unsigned i = 0; i < grad_components; i++)
3864 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3865
3866 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3867
3868 for (unsigned i = 0; i < grad_components; i++)
3869 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3870
3871 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3872 }
3873
3874 if (has_lod) {
3875 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3876 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3877 */
3878 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3879 bld.dispatch_width() == 16);
3880
3881 const brw_reg_type type =
3882 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3883 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3884 bld.MOV(retype(msg_end, type), lod);
3885 msg_end = offset(msg_end, bld, 1);
3886 }
3887
3888 if (shadow_c.file != BAD_FILE) {
3889 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3890 /* There's no plain shadow compare message, so we use shadow
3891 * compare with a bias of 0.0.
3892 */
3893 bld.MOV(msg_end, brw_imm_f(0.0f));
3894 msg_end = offset(msg_end, bld, 1);
3895 }
3896
3897 bld.MOV(msg_end, shadow_c);
3898 msg_end = offset(msg_end, bld, 1);
3899 }
3900
3901 inst->opcode = op;
3902 inst->src[0] = reg_undef;
3903 inst->src[1] = surface;
3904 inst->src[2] = sampler;
3905 inst->resize_sources(3);
3906 inst->base_mrf = msg_begin.nr;
3907 inst->mlen = msg_end.nr - msg_begin.nr;
3908 inst->header_size = 1;
3909 }
3910
3911 static void
3912 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3913 const fs_reg &coordinate,
3914 const fs_reg &shadow_c,
3915 const fs_reg &lod, const fs_reg &lod2,
3916 const fs_reg &sample_index,
3917 const fs_reg &surface,
3918 const fs_reg &sampler,
3919 unsigned coord_components,
3920 unsigned grad_components)
3921 {
3922 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3923 fs_reg msg_coords = message;
3924 unsigned header_size = 0;
3925
3926 if (inst->offset != 0) {
3927 /* The offsets set up by the visitor are in the m1 header, so we can't
3928 * go headerless.
3929 */
3930 header_size = 1;
3931 message.nr--;
3932 }
3933
3934 for (unsigned i = 0; i < coord_components; i++)
3935 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3936 offset(coordinate, bld, i));
3937
3938 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3939 fs_reg msg_lod = offset(msg_coords, bld, 4);
3940
3941 if (shadow_c.file != BAD_FILE) {
3942 fs_reg msg_shadow = msg_lod;
3943 bld.MOV(msg_shadow, shadow_c);
3944 msg_lod = offset(msg_shadow, bld, 1);
3945 msg_end = msg_lod;
3946 }
3947
3948 switch (op) {
3949 case SHADER_OPCODE_TXL:
3950 case FS_OPCODE_TXB:
3951 bld.MOV(msg_lod, lod);
3952 msg_end = offset(msg_lod, bld, 1);
3953 break;
3954 case SHADER_OPCODE_TXD:
3955 /**
3956 * P = u, v, r
3957 * dPdx = dudx, dvdx, drdx
3958 * dPdy = dudy, dvdy, drdy
3959 *
3960 * Load up these values:
3961 * - dudx dudy dvdx dvdy drdx drdy
3962 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3963 */
3964 msg_end = msg_lod;
3965 for (unsigned i = 0; i < grad_components; i++) {
3966 bld.MOV(msg_end, offset(lod, bld, i));
3967 msg_end = offset(msg_end, bld, 1);
3968
3969 bld.MOV(msg_end, offset(lod2, bld, i));
3970 msg_end = offset(msg_end, bld, 1);
3971 }
3972 break;
3973 case SHADER_OPCODE_TXS:
3974 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3975 bld.MOV(msg_lod, lod);
3976 msg_end = offset(msg_lod, bld, 1);
3977 break;
3978 case SHADER_OPCODE_TXF:
3979 msg_lod = offset(msg_coords, bld, 3);
3980 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3981 msg_end = offset(msg_lod, bld, 1);
3982 break;
3983 case SHADER_OPCODE_TXF_CMS:
3984 msg_lod = offset(msg_coords, bld, 3);
3985 /* lod */
3986 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3987 /* sample index */
3988 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3989 msg_end = offset(msg_lod, bld, 2);
3990 break;
3991 default:
3992 break;
3993 }
3994
3995 inst->opcode = op;
3996 inst->src[0] = reg_undef;
3997 inst->src[1] = surface;
3998 inst->src[2] = sampler;
3999 inst->resize_sources(3);
4000 inst->base_mrf = message.nr;
4001 inst->mlen = msg_end.nr - message.nr;
4002 inst->header_size = header_size;
4003
4004 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4005 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4006 }
4007
4008 static bool
4009 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4010 {
4011 if (devinfo->gen < 8 && !devinfo->is_haswell)
4012 return false;
4013
4014 return sampler.file != IMM || sampler.ud >= 16;
4015 }
4016
4017 static void
4018 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4019 const fs_reg &coordinate,
4020 const fs_reg &shadow_c,
4021 fs_reg lod, const fs_reg &lod2,
4022 const fs_reg &sample_index,
4023 const fs_reg &mcs,
4024 const fs_reg &surface,
4025 const fs_reg &sampler,
4026 const fs_reg &tg4_offset,
4027 unsigned coord_components,
4028 unsigned grad_components)
4029 {
4030 const gen_device_info *devinfo = bld.shader->devinfo;
4031 unsigned reg_width = bld.dispatch_width() / 8;
4032 unsigned header_size = 0, length = 0;
4033 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4034 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4035 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4036
4037 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4038 inst->offset != 0 || inst->eot ||
4039 op == SHADER_OPCODE_SAMPLEINFO ||
4040 is_high_sampler(devinfo, sampler)) {
4041 /* For general texture offsets (no txf workaround), we need a header to
4042 * put them in. Note that we're only reserving space for it in the
4043 * message payload as it will be initialized implicitly by the
4044 * generator.
4045 *
4046 * TG4 needs to place its channel select in the header, for interaction
4047 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4048 * larger sampler numbers we need to offset the Sampler State Pointer in
4049 * the header.
4050 */
4051 header_size = 1;
4052 sources[0] = fs_reg();
4053 length++;
4054
4055 /* If we're requesting fewer than four channels worth of response,
4056 * and we have an explicit header, we need to set up the sampler
4057 * writemask. It's reversed from normal: 1 means "don't write".
4058 */
4059 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4060 assert(regs_written(inst) % reg_width == 0);
4061 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4062 inst->offset |= mask << 12;
4063 }
4064 }
4065
4066 if (shadow_c.file != BAD_FILE) {
4067 bld.MOV(sources[length], shadow_c);
4068 length++;
4069 }
4070
4071 bool coordinate_done = false;
4072
4073 /* Set up the LOD info */
4074 switch (op) {
4075 case FS_OPCODE_TXB:
4076 case SHADER_OPCODE_TXL:
4077 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4078 op = SHADER_OPCODE_TXL_LZ;
4079 break;
4080 }
4081 bld.MOV(sources[length], lod);
4082 length++;
4083 break;
4084 case SHADER_OPCODE_TXD:
4085 /* TXD should have been lowered in SIMD16 mode. */
4086 assert(bld.dispatch_width() == 8);
4087
4088 /* Load dPdx and the coordinate together:
4089 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4090 */
4091 for (unsigned i = 0; i < coord_components; i++) {
4092 bld.MOV(sources[length++], offset(coordinate, bld, i));
4093
4094 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4095 * only derivatives for (u, v, r).
4096 */
4097 if (i < grad_components) {
4098 bld.MOV(sources[length++], offset(lod, bld, i));
4099 bld.MOV(sources[length++], offset(lod2, bld, i));
4100 }
4101 }
4102
4103 coordinate_done = true;
4104 break;
4105 case SHADER_OPCODE_TXS:
4106 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4107 length++;
4108 break;
4109 case SHADER_OPCODE_TXF:
4110 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4111 * On Gen9 they are u, v, lod, r
4112 */
4113 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4114
4115 if (devinfo->gen >= 9) {
4116 if (coord_components >= 2) {
4117 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4118 offset(coordinate, bld, 1));
4119 } else {
4120 sources[length] = brw_imm_d(0);
4121 }
4122 length++;
4123 }
4124
4125 if (devinfo->gen >= 9 && lod.is_zero()) {
4126 op = SHADER_OPCODE_TXF_LZ;
4127 } else {
4128 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4129 length++;
4130 }
4131
4132 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4133 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4134 offset(coordinate, bld, i));
4135
4136 coordinate_done = true;
4137 break;
4138
4139 case SHADER_OPCODE_TXF_CMS:
4140 case SHADER_OPCODE_TXF_CMS_W:
4141 case SHADER_OPCODE_TXF_UMS:
4142 case SHADER_OPCODE_TXF_MCS:
4143 if (op == SHADER_OPCODE_TXF_UMS ||
4144 op == SHADER_OPCODE_TXF_CMS ||
4145 op == SHADER_OPCODE_TXF_CMS_W) {
4146 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4147 length++;
4148 }
4149
4150 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4151 /* Data from the multisample control surface. */
4152 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4153 length++;
4154
4155 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4156 * the MCS data.
4157 */
4158 if (op == SHADER_OPCODE_TXF_CMS_W) {
4159 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4160 mcs.file == IMM ?
4161 mcs :
4162 offset(mcs, bld, 1));
4163 length++;
4164 }
4165 }
4166
4167 /* There is no offsetting for this message; just copy in the integer
4168 * texture coordinates.
4169 */
4170 for (unsigned i = 0; i < coord_components; i++)
4171 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4172 offset(coordinate, bld, i));
4173
4174 coordinate_done = true;
4175 break;
4176 case SHADER_OPCODE_TG4_OFFSET:
4177 /* More crazy intermixing */
4178 for (unsigned i = 0; i < 2; i++) /* u, v */
4179 bld.MOV(sources[length++], offset(coordinate, bld, i));
4180
4181 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4182 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4183 offset(tg4_offset, bld, i));
4184
4185 if (coord_components == 3) /* r if present */
4186 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4187
4188 coordinate_done = true;
4189 break;
4190 default:
4191 break;
4192 }
4193
4194 /* Set up the coordinate (except for cases where it was done above) */
4195 if (!coordinate_done) {
4196 for (unsigned i = 0; i < coord_components; i++)
4197 bld.MOV(sources[length++], offset(coordinate, bld, i));
4198 }
4199
4200 int mlen;
4201 if (reg_width == 2)
4202 mlen = length * reg_width - header_size;
4203 else
4204 mlen = length * reg_width;
4205
4206 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4207 BRW_REGISTER_TYPE_F);
4208 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4209
4210 /* Generate the SEND. */
4211 inst->opcode = op;
4212 inst->src[0] = src_payload;
4213 inst->src[1] = surface;
4214 inst->src[2] = sampler;
4215 inst->resize_sources(3);
4216 inst->mlen = mlen;
4217 inst->header_size = header_size;
4218
4219 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4220 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4221 }
4222
4223 static void
4224 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4225 {
4226 const gen_device_info *devinfo = bld.shader->devinfo;
4227 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4228 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4229 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4230 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4231 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4232 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4233 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4234 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4235 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4236 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4237 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4238 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4239 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4240
4241 if (devinfo->gen >= 7) {
4242 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4243 shadow_c, lod, lod2, sample_index,
4244 mcs, surface, sampler, tg4_offset,
4245 coord_components, grad_components);
4246 } else if (devinfo->gen >= 5) {
4247 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4248 shadow_c, lod, lod2, sample_index,
4249 surface, sampler,
4250 coord_components, grad_components);
4251 } else {
4252 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4253 shadow_c, lod, lod2,
4254 surface, sampler,
4255 coord_components, grad_components);
4256 }
4257 }
4258
4259 /**
4260 * Initialize the header present in some typed and untyped surface
4261 * messages.
4262 */
4263 static fs_reg
4264 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4265 {
4266 fs_builder ubld = bld.exec_all().group(8, 0);
4267 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4268 ubld.MOV(dst, brw_imm_d(0));
4269 ubld.MOV(component(dst, 7), sample_mask);
4270 return dst;
4271 }
4272
4273 static void
4274 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4275 const fs_reg &sample_mask)
4276 {
4277 /* Get the logical send arguments. */
4278 const fs_reg &addr = inst->src[0];
4279 const fs_reg &src = inst->src[1];
4280 const fs_reg &surface = inst->src[2];
4281 const UNUSED fs_reg &dims = inst->src[3];
4282 const fs_reg &arg = inst->src[4];
4283
4284 /* Calculate the total number of components of the payload. */
4285 const unsigned addr_sz = inst->components_read(0);
4286 const unsigned src_sz = inst->components_read(1);
4287 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4288 const unsigned sz = header_sz + addr_sz + src_sz;
4289
4290 /* Allocate space for the payload. */
4291 fs_reg *const components = new fs_reg[sz];
4292 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4293 unsigned n = 0;
4294
4295 /* Construct the payload. */
4296 if (header_sz)
4297 components[n++] = emit_surface_header(bld, sample_mask);
4298
4299 for (unsigned i = 0; i < addr_sz; i++)
4300 components[n++] = offset(addr, bld, i);
4301
4302 for (unsigned i = 0; i < src_sz; i++)
4303 components[n++] = offset(src, bld, i);
4304
4305 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4306
4307 /* Update the original instruction. */
4308 inst->opcode = op;
4309 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4310 inst->header_size = header_sz;
4311
4312 inst->src[0] = payload;
4313 inst->src[1] = surface;
4314 inst->src[2] = arg;
4315 inst->resize_sources(3);
4316
4317 delete[] components;
4318 }
4319
4320 static void
4321 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4322 {
4323 const gen_device_info *devinfo = bld.shader->devinfo;
4324
4325 if (devinfo->gen >= 7) {
4326 /* We are switching the instruction from an ALU-like instruction to a
4327 * send-from-grf instruction. Since sends can't handle strides or
4328 * source modifiers, we have to make a copy of the offset source.
4329 */
4330 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4331 bld.MOV(tmp, inst->src[1]);
4332 inst->src[1] = tmp;
4333
4334 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4335
4336 } else {
4337 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4338 BRW_REGISTER_TYPE_UD);
4339
4340 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4341
4342 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4343 inst->resize_sources(1);
4344 inst->base_mrf = payload.nr;
4345 inst->header_size = 1;
4346 inst->mlen = 1 + inst->exec_size / 8;
4347 }
4348 }
4349
4350 static void
4351 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4352 {
4353 assert(bld.shader->devinfo->gen < 6);
4354
4355 inst->base_mrf = 2;
4356 inst->mlen = inst->sources * inst->exec_size / 8;
4357
4358 if (inst->sources > 1) {
4359 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4360 * "Message Payload":
4361 *
4362 * "Operand0[7]. For the INT DIV functions, this operand is the
4363 * denominator."
4364 * ...
4365 * "Operand1[7]. For the INT DIV functions, this operand is the
4366 * numerator."
4367 */
4368 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4369 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4370 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4371
4372 inst->resize_sources(1);
4373 inst->src[0] = src0;
4374
4375 assert(inst->exec_size == 8);
4376 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4377 }
4378 }
4379
4380 bool
4381 fs_visitor::lower_logical_sends()
4382 {
4383 bool progress = false;
4384
4385 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4386 const fs_builder ibld(this, block, inst);
4387
4388 switch (inst->opcode) {
4389 case FS_OPCODE_FB_WRITE_LOGICAL:
4390 assert(stage == MESA_SHADER_FRAGMENT);
4391 lower_fb_write_logical_send(ibld, inst,
4392 brw_wm_prog_data(prog_data),
4393 (const brw_wm_prog_key *)key,
4394 payload);
4395 break;
4396
4397 case FS_OPCODE_FB_READ_LOGICAL:
4398 lower_fb_read_logical_send(ibld, inst);
4399 break;
4400
4401 case SHADER_OPCODE_TEX_LOGICAL:
4402 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4403 break;
4404
4405 case SHADER_OPCODE_TXD_LOGICAL:
4406 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4407 break;
4408
4409 case SHADER_OPCODE_TXF_LOGICAL:
4410 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4411 break;
4412
4413 case SHADER_OPCODE_TXL_LOGICAL:
4414 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4415 break;
4416
4417 case SHADER_OPCODE_TXS_LOGICAL:
4418 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4419 break;
4420
4421 case FS_OPCODE_TXB_LOGICAL:
4422 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4423 break;
4424
4425 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4426 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4427 break;
4428
4429 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4430 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4431 break;
4432
4433 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4434 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4435 break;
4436
4437 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4438 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4439 break;
4440
4441 case SHADER_OPCODE_LOD_LOGICAL:
4442 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4443 break;
4444
4445 case SHADER_OPCODE_TG4_LOGICAL:
4446 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4447 break;
4448
4449 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4450 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4451 break;
4452
4453 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4454 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4455 break;
4456
4457 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4458 lower_surface_logical_send(ibld, inst,
4459 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4460 fs_reg());
4461 break;
4462
4463 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4464 lower_surface_logical_send(ibld, inst,
4465 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4466 ibld.sample_mask_reg());
4467 break;
4468
4469 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4470 lower_surface_logical_send(ibld, inst,
4471 SHADER_OPCODE_UNTYPED_ATOMIC,
4472 ibld.sample_mask_reg());
4473 break;
4474
4475 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4476 lower_surface_logical_send(ibld, inst,
4477 SHADER_OPCODE_TYPED_SURFACE_READ,
4478 brw_imm_d(0xffff));
4479 break;
4480
4481 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4482 lower_surface_logical_send(ibld, inst,
4483 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4484 ibld.sample_mask_reg());
4485 break;
4486
4487 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4488 lower_surface_logical_send(ibld, inst,
4489 SHADER_OPCODE_TYPED_ATOMIC,
4490 ibld.sample_mask_reg());
4491 break;
4492
4493 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4494 lower_varying_pull_constant_logical_send(ibld, inst);
4495 break;
4496
4497 case SHADER_OPCODE_RCP:
4498 case SHADER_OPCODE_RSQ:
4499 case SHADER_OPCODE_SQRT:
4500 case SHADER_OPCODE_EXP2:
4501 case SHADER_OPCODE_LOG2:
4502 case SHADER_OPCODE_SIN:
4503 case SHADER_OPCODE_COS:
4504 case SHADER_OPCODE_POW:
4505 case SHADER_OPCODE_INT_QUOTIENT:
4506 case SHADER_OPCODE_INT_REMAINDER:
4507 /* The math opcodes are overloaded for the send-like and
4508 * expression-like instructions which seems kind of icky. Gen6+ has
4509 * a native (but rather quirky) MATH instruction so we don't need to
4510 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4511 * logical instructions (which we can easily recognize because they
4512 * have mlen = 0) into send-like virtual instructions.
4513 */
4514 if (devinfo->gen < 6 && inst->mlen == 0) {
4515 lower_math_logical_send(ibld, inst);
4516 break;
4517
4518 } else {
4519 continue;
4520 }
4521
4522 default:
4523 continue;
4524 }
4525
4526 progress = true;
4527 }
4528
4529 if (progress)
4530 invalidate_live_intervals();
4531
4532 return progress;
4533 }
4534
4535 /**
4536 * Get the closest allowed SIMD width for instruction \p inst accounting for
4537 * some common regioning and execution control restrictions that apply to FPU
4538 * instructions. These restrictions don't necessarily have any relevance to
4539 * instructions not executed by the FPU pipeline like extended math, control
4540 * flow or send message instructions.
4541 *
4542 * For virtual opcodes it's really up to the instruction -- In some cases
4543 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4544 * instructions) it may simplify virtual instruction lowering if we can
4545 * enforce FPU-like regioning restrictions already on the virtual instruction,
4546 * in other cases (e.g. virtual send-like instructions) this may be
4547 * excessively restrictive.
4548 */
4549 static unsigned
4550 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4551 const fs_inst *inst)
4552 {
4553 /* Maximum execution size representable in the instruction controls. */
4554 unsigned max_width = MIN2(32, inst->exec_size);
4555
4556 /* According to the PRMs:
4557 * "A. In Direct Addressing mode, a source cannot span more than 2
4558 * adjacent GRF registers.
4559 * B. A destination cannot span more than 2 adjacent GRF registers."
4560 *
4561 * Look for the source or destination with the largest register region
4562 * which is the one that is going to limit the overall execution size of
4563 * the instruction due to this rule.
4564 */
4565 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4566
4567 for (unsigned i = 0; i < inst->sources; i++)
4568 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4569
4570 /* Calculate the maximum execution size of the instruction based on the
4571 * factor by which it goes over the hardware limit of 2 GRFs.
4572 */
4573 if (reg_count > 2)
4574 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4575
4576 /* According to the IVB PRMs:
4577 * "When destination spans two registers, the source MUST span two
4578 * registers. The exception to the above rule:
4579 *
4580 * - When source is scalar, the source registers are not incremented.
4581 * - When source is packed integer Word and destination is packed
4582 * integer DWord, the source register is not incremented but the
4583 * source sub register is incremented."
4584 *
4585 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4586 * restrictions. The code below intentionally doesn't check whether the
4587 * destination type is integer because empirically the hardware doesn't
4588 * seem to care what the actual type is as long as it's dword-aligned.
4589 */
4590 if (devinfo->gen < 8) {
4591 for (unsigned i = 0; i < inst->sources; i++) {
4592 /* IVB implements DF scalars as <0;2,1> regions. */
4593 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4594 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4595 const bool is_packed_word_exception =
4596 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4597 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4598
4599 if (inst->size_written > REG_SIZE &&
4600 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4601 !is_scalar_exception && !is_packed_word_exception) {
4602 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4603 max_width = MIN2(max_width, inst->exec_size / reg_count);
4604 }
4605 }
4606 }
4607
4608 /* From the IVB PRMs:
4609 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4610 * are applied for both halves of the SIMD32 instruction. If different
4611 * execution mask channels are required, split the instruction into two
4612 * SIMD16 instructions."
4613 *
4614 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4615 * 32-wide control flow support in hardware and will behave similarly.
4616 */
4617 if (devinfo->gen < 8 && !inst->force_writemask_all)
4618 max_width = MIN2(max_width, 16);
4619
4620 /* From the IVB PRMs (applies to HSW too):
4621 * "Instructions with condition modifiers must not use SIMD32."
4622 *
4623 * From the BDW PRMs (applies to later hardware too):
4624 * "Ternary instruction with condition modifiers must not use SIMD32."
4625 */
4626 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4627 max_width = MIN2(max_width, 16);
4628
4629 /* From the IVB PRMs (applies to other devices that don't have the
4630 * gen_device_info::supports_simd16_3src flag set):
4631 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4632 * SIMD8 is not allowed for DF operations."
4633 */
4634 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4635 max_width = MIN2(max_width, inst->exec_size / reg_count);
4636
4637 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4638 * the 8-bit quarter of the execution mask signals specified in the
4639 * instruction control fields) for the second compressed half of any
4640 * single-precision instruction (for double-precision instructions
4641 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4642 * the EU will apply the wrong execution controls for the second
4643 * sequential GRF write if the number of channels per GRF is not exactly
4644 * eight in single-precision mode (or four in double-float mode).
4645 *
4646 * In this situation we calculate the maximum size of the split
4647 * instructions so they only ever write to a single register.
4648 */
4649 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4650 !inst->force_writemask_all) {
4651 const unsigned channels_per_grf = inst->exec_size /
4652 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4653 const unsigned exec_type_size = get_exec_type_size(inst);
4654 assert(exec_type_size);
4655
4656 /* The hardware shifts exactly 8 channels per compressed half of the
4657 * instruction in single-precision mode and exactly 4 in double-precision.
4658 */
4659 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4660 max_width = MIN2(max_width, channels_per_grf);
4661
4662 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4663 * because HW applies the same channel enable signals to both halves of
4664 * the compressed instruction which will be just wrong under
4665 * non-uniform control flow.
4666 */
4667 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4668 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4669 max_width = MIN2(max_width, 4);
4670 }
4671
4672 /* Only power-of-two execution sizes are representable in the instruction
4673 * control fields.
4674 */
4675 return 1 << _mesa_logbase2(max_width);
4676 }
4677
4678 /**
4679 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4680 * various payload size restrictions that apply to sampler message
4681 * instructions.
4682 *
4683 * This is only intended to provide a maximum theoretical bound for the
4684 * execution size of the message based on the number of argument components
4685 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4686 * variant of the message can be used, though some messages may have
4687 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4688 * the message length to determine the exact SIMD width and argument count,
4689 * which makes a number of sampler message combinations impossible to
4690 * represent).
4691 */
4692 static unsigned
4693 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4694 const fs_inst *inst)
4695 {
4696 /* Calculate the number of coordinate components that have to be present
4697 * assuming that additional arguments follow the texel coordinates in the
4698 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4699 * need to pad to four or three components depending on the message,
4700 * pre-ILK we need to pad to at most three components.
4701 */
4702 const unsigned req_coord_components =
4703 (devinfo->gen >= 7 ||
4704 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4705 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4706 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4707 3;
4708
4709 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4710 * variant of the TXL or TXF message.
4711 */
4712 const bool implicit_lod = devinfo->gen >= 9 &&
4713 (inst->opcode == SHADER_OPCODE_TXL ||
4714 inst->opcode == SHADER_OPCODE_TXF) &&
4715 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4716
4717 /* Calculate the total number of argument components that need to be passed
4718 * to the sampler unit.
4719 */
4720 const unsigned num_payload_components =
4721 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4722 req_coord_components) +
4723 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4724 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4725 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4726 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4727 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4728 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4729 inst->components_read(TEX_LOGICAL_SRC_MCS);
4730
4731 /* SIMD16 messages with more than five arguments exceed the maximum message
4732 * size supported by the sampler, regardless of whether a header is
4733 * provided or not.
4734 */
4735 return MIN2(inst->exec_size,
4736 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4737 }
4738
4739 /**
4740 * Get the closest native SIMD width supported by the hardware for instruction
4741 * \p inst. The instruction will be left untouched by
4742 * fs_visitor::lower_simd_width() if the returned value is equal to the
4743 * original execution size.
4744 */
4745 static unsigned
4746 get_lowered_simd_width(const struct gen_device_info *devinfo,
4747 const fs_inst *inst)
4748 {
4749 switch (inst->opcode) {
4750 case BRW_OPCODE_MOV:
4751 case BRW_OPCODE_SEL:
4752 case BRW_OPCODE_NOT:
4753 case BRW_OPCODE_AND:
4754 case BRW_OPCODE_OR:
4755 case BRW_OPCODE_XOR:
4756 case BRW_OPCODE_SHR:
4757 case BRW_OPCODE_SHL:
4758 case BRW_OPCODE_ASR:
4759 case BRW_OPCODE_CMPN:
4760 case BRW_OPCODE_CSEL:
4761 case BRW_OPCODE_F32TO16:
4762 case BRW_OPCODE_F16TO32:
4763 case BRW_OPCODE_BFREV:
4764 case BRW_OPCODE_BFE:
4765 case BRW_OPCODE_ADD:
4766 case BRW_OPCODE_MUL:
4767 case BRW_OPCODE_AVG:
4768 case BRW_OPCODE_FRC:
4769 case BRW_OPCODE_RNDU:
4770 case BRW_OPCODE_RNDD:
4771 case BRW_OPCODE_RNDE:
4772 case BRW_OPCODE_RNDZ:
4773 case BRW_OPCODE_LZD:
4774 case BRW_OPCODE_FBH:
4775 case BRW_OPCODE_FBL:
4776 case BRW_OPCODE_CBIT:
4777 case BRW_OPCODE_SAD2:
4778 case BRW_OPCODE_MAD:
4779 case BRW_OPCODE_LRP:
4780 case FS_OPCODE_PACK:
4781 return get_fpu_lowered_simd_width(devinfo, inst);
4782
4783 case BRW_OPCODE_CMP: {
4784 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4785 * when the destination is a GRF the dependency-clear bit on the flag
4786 * register is cleared early.
4787 *
4788 * Suggested workarounds are to disable coissuing CMP instructions
4789 * or to split CMP(16) instructions into two CMP(8) instructions.
4790 *
4791 * We choose to split into CMP(8) instructions since disabling
4792 * coissuing would affect CMP instructions not otherwise affected by
4793 * the errata.
4794 */
4795 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4796 !inst->dst.is_null() ? 8 : ~0);
4797 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4798 }
4799 case BRW_OPCODE_BFI1:
4800 case BRW_OPCODE_BFI2:
4801 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4802 * should
4803 * "Force BFI instructions to be executed always in SIMD8."
4804 */
4805 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4806 get_fpu_lowered_simd_width(devinfo, inst));
4807
4808 case BRW_OPCODE_IF:
4809 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4810 return inst->exec_size;
4811
4812 case SHADER_OPCODE_RCP:
4813 case SHADER_OPCODE_RSQ:
4814 case SHADER_OPCODE_SQRT:
4815 case SHADER_OPCODE_EXP2:
4816 case SHADER_OPCODE_LOG2:
4817 case SHADER_OPCODE_SIN:
4818 case SHADER_OPCODE_COS:
4819 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4820 * Gen6.
4821 */
4822 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4823 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4824 MIN2(8, inst->exec_size));
4825
4826 case SHADER_OPCODE_POW:
4827 /* SIMD16 is only allowed on Gen7+. */
4828 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4829 MIN2(8, inst->exec_size));
4830
4831 case SHADER_OPCODE_INT_QUOTIENT:
4832 case SHADER_OPCODE_INT_REMAINDER:
4833 /* Integer division is limited to SIMD8 on all generations. */
4834 return MIN2(8, inst->exec_size);
4835
4836 case FS_OPCODE_LINTERP:
4837 case FS_OPCODE_GET_BUFFER_SIZE:
4838 case FS_OPCODE_DDX_COARSE:
4839 case FS_OPCODE_DDX_FINE:
4840 case FS_OPCODE_DDY_COARSE:
4841 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4842 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4843 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4844 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4845 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4846 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4847 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4848 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4849 return MIN2(16, inst->exec_size);
4850
4851 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4852 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4853 * message used to implement varying pull constant loads, so expand it
4854 * to SIMD16. An alternative with longer message payload length but
4855 * shorter return payload would be to use the SIMD8 sampler message that
4856 * takes (header, u, v, r) as parameters instead of (header, u).
4857 */
4858 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4859
4860 case FS_OPCODE_DDY_FINE:
4861 /* The implementation of this virtual opcode may require emitting
4862 * compressed Align16 instructions, which are severely limited on some
4863 * generations.
4864 *
4865 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4866 * Region Restrictions):
4867 *
4868 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4869 * and SIMD8 is not allowed for DF operations."
4870 *
4871 * In this context, "DW operations" means "operations acting on 32-bit
4872 * values", so it includes operations on floats.
4873 *
4874 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4875 * (Instruction Compression -> Rules and Restrictions):
4876 *
4877 * "A compressed instruction must be in Align1 access mode. Align16
4878 * mode instructions cannot be compressed."
4879 *
4880 * Similar text exists in the g45 PRM.
4881 *
4882 * Empirically, compressed align16 instructions using odd register
4883 * numbers don't appear to work on Sandybridge either.
4884 */
4885 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4886 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4887 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4888
4889 case SHADER_OPCODE_MULH:
4890 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4891 * is 8-wide on Gen7+.
4892 */
4893 return (devinfo->gen >= 7 ? 8 :
4894 get_fpu_lowered_simd_width(devinfo, inst));
4895
4896 case FS_OPCODE_FB_WRITE_LOGICAL:
4897 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4898 * here.
4899 */
4900 assert(devinfo->gen != 6 ||
4901 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4902 inst->exec_size == 8);
4903 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4904 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4905 8 : MIN2(16, inst->exec_size));
4906
4907 case FS_OPCODE_FB_READ_LOGICAL:
4908 return MIN2(16, inst->exec_size);
4909
4910 case SHADER_OPCODE_TEX_LOGICAL:
4911 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4912 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4913 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4914 case SHADER_OPCODE_LOD_LOGICAL:
4915 case SHADER_OPCODE_TG4_LOGICAL:
4916 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4917 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4918 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4919 return get_sampler_lowered_simd_width(devinfo, inst);
4920
4921 case SHADER_OPCODE_TXD_LOGICAL:
4922 /* TXD is unsupported in SIMD16 mode. */
4923 return 8;
4924
4925 case SHADER_OPCODE_TXL_LOGICAL:
4926 case FS_OPCODE_TXB_LOGICAL:
4927 /* Only one execution size is representable pre-ILK depending on whether
4928 * the shadow reference argument is present.
4929 */
4930 if (devinfo->gen == 4)
4931 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4932 else
4933 return get_sampler_lowered_simd_width(devinfo, inst);
4934
4935 case SHADER_OPCODE_TXF_LOGICAL:
4936 case SHADER_OPCODE_TXS_LOGICAL:
4937 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4938 * messages. Use SIMD16 instead.
4939 */
4940 if (devinfo->gen == 4)
4941 return 16;
4942 else
4943 return get_sampler_lowered_simd_width(devinfo, inst);
4944
4945 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4946 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4947 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4948 return 8;
4949
4950 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4951 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4952 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4953 return MIN2(16, inst->exec_size);
4954
4955 case SHADER_OPCODE_URB_READ_SIMD8:
4956 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4957 case SHADER_OPCODE_URB_WRITE_SIMD8:
4958 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4959 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4960 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4961 return MIN2(8, inst->exec_size);
4962
4963 case SHADER_OPCODE_MOV_INDIRECT: {
4964 /* From IVB and HSW PRMs:
4965 *
4966 * "2.When the destination requires two registers and the sources are
4967 * indirect, the sources must use 1x1 regioning mode.
4968 *
4969 * In case of DF instructions in HSW/IVB, the exec_size is limited by
4970 * the EU decompression logic not handling VxH indirect addressing
4971 * correctly.
4972 */
4973 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
4974 /* Prior to Broadwell, we only have 8 address subregisters. */
4975 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4976 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
4977 inst->exec_size);
4978 }
4979
4980 case SHADER_OPCODE_LOAD_PAYLOAD: {
4981 const unsigned reg_count =
4982 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4983
4984 if (reg_count > 2) {
4985 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4986 * can be easily lowered (which excludes headers and heterogeneous
4987 * types).
4988 */
4989 assert(!inst->header_size);
4990 for (unsigned i = 0; i < inst->sources; i++)
4991 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4992 inst->src[i].file == BAD_FILE);
4993
4994 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4995 } else {
4996 return inst->exec_size;
4997 }
4998 }
4999 default:
5000 return inst->exec_size;
5001 }
5002 }
5003
5004 /**
5005 * Return true if splitting out the group of channels of instruction \p inst
5006 * given by lbld.group() requires allocating a temporary for the i-th source
5007 * of the lowered instruction.
5008 */
5009 static inline bool
5010 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5011 {
5012 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5013 (inst->components_read(i) == 1 &&
5014 lbld.dispatch_width() <= inst->exec_size));
5015 }
5016
5017 /**
5018 * Extract the data that would be consumed by the channel group given by
5019 * lbld.group() from the i-th source region of instruction \p inst and return
5020 * it as result in packed form. If any copy instructions are required they
5021 * will be emitted before the given \p inst in \p block.
5022 */
5023 static fs_reg
5024 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
5025 unsigned i)
5026 {
5027 /* Specified channel group from the source region. */
5028 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5029
5030 if (needs_src_copy(lbld, inst, i)) {
5031 /* Builder of the right width to perform the copy avoiding uninitialized
5032 * data if the lowered execution size is greater than the original
5033 * execution size of the instruction.
5034 */
5035 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5036 inst->exec_size), 0);
5037 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5038
5039 for (unsigned k = 0; k < inst->components_read(i); ++k)
5040 cbld.at(block, inst)
5041 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5042
5043 return tmp;
5044
5045 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5046 /* The source is invariant for all dispatch_width-wide groups of the
5047 * original region.
5048 */
5049 return inst->src[i];
5050
5051 } else {
5052 /* We can just point the lowered instruction at the right channel group
5053 * from the original region.
5054 */
5055 return src;
5056 }
5057 }
5058
5059 /**
5060 * Return true if splitting out the group of channels of instruction \p inst
5061 * given by lbld.group() requires allocating a temporary for the destination
5062 * of the lowered instruction and copying the data back to the original
5063 * destination region.
5064 */
5065 static inline bool
5066 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5067 {
5068 /* If the instruction writes more than one component we'll have to shuffle
5069 * the results of multiple lowered instructions in order to make sure that
5070 * they end up arranged correctly in the original destination region.
5071 */
5072 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5073 return true;
5074
5075 /* If the lowered execution size is larger than the original the result of
5076 * the instruction won't fit in the original destination, so we'll have to
5077 * allocate a temporary in any case.
5078 */
5079 if (lbld.dispatch_width() > inst->exec_size)
5080 return true;
5081
5082 for (unsigned i = 0; i < inst->sources; i++) {
5083 /* If we already made a copy of the source for other reasons there won't
5084 * be any overlap with the destination.
5085 */
5086 if (needs_src_copy(lbld, inst, i))
5087 continue;
5088
5089 /* In order to keep the logic simple we emit a copy whenever the
5090 * destination region doesn't exactly match an overlapping source, which
5091 * may point at the source and destination not being aligned group by
5092 * group which could cause one of the lowered instructions to overwrite
5093 * the data read from the same source by other lowered instructions.
5094 */
5095 if (regions_overlap(inst->dst, inst->size_written,
5096 inst->src[i], inst->size_read(i)) &&
5097 !inst->dst.equals(inst->src[i]))
5098 return true;
5099 }
5100
5101 return false;
5102 }
5103
5104 /**
5105 * Insert data from a packed temporary into the channel group given by
5106 * lbld.group() of the destination region of instruction \p inst and return
5107 * the temporary as result. If any copy instructions are required they will
5108 * be emitted around the given \p inst in \p block.
5109 */
5110 static fs_reg
5111 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5112 {
5113 /* Builder of the right width to perform the copy avoiding uninitialized
5114 * data if the lowered execution size is greater than the original
5115 * execution size of the instruction.
5116 */
5117 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5118 inst->exec_size), 0);
5119
5120 /* Specified channel group from the destination region. */
5121 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5122 const unsigned dst_size = inst->size_written /
5123 inst->dst.component_size(inst->exec_size);
5124
5125 if (needs_dst_copy(lbld, inst)) {
5126 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5127
5128 if (inst->predicate) {
5129 /* Handle predication by copying the original contents of
5130 * the destination into the temporary before emitting the
5131 * lowered instruction.
5132 */
5133 for (unsigned k = 0; k < dst_size; ++k)
5134 cbld.at(block, inst)
5135 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5136 }
5137
5138 for (unsigned k = 0; k < dst_size; ++k)
5139 cbld.at(block, inst->next)
5140 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5141
5142 return tmp;
5143
5144 } else {
5145 /* No need to allocate a temporary for the lowered instruction, just
5146 * take the right group of channels from the original region.
5147 */
5148 return dst;
5149 }
5150 }
5151
5152 bool
5153 fs_visitor::lower_simd_width()
5154 {
5155 bool progress = false;
5156
5157 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5158 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5159
5160 if (lower_width != inst->exec_size) {
5161 /* Builder matching the original instruction. We may also need to
5162 * emit an instruction of width larger than the original, set the
5163 * execution size of the builder to the highest of both for now so
5164 * we're sure that both cases can be handled.
5165 */
5166 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5167 const fs_builder ibld = bld.at(block, inst)
5168 .exec_all(inst->force_writemask_all)
5169 .group(max_width, inst->group / max_width);
5170
5171 /* Split the copies in chunks of the execution width of either the
5172 * original or the lowered instruction, whichever is lower.
5173 */
5174 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5175 const unsigned dst_size = inst->size_written /
5176 inst->dst.component_size(inst->exec_size);
5177
5178 assert(!inst->writes_accumulator && !inst->mlen);
5179
5180 for (unsigned i = 0; i < n; i++) {
5181 /* Emit a copy of the original instruction with the lowered width.
5182 * If the EOT flag was set throw it away except for the last
5183 * instruction to avoid killing the thread prematurely.
5184 */
5185 fs_inst split_inst = *inst;
5186 split_inst.exec_size = lower_width;
5187 split_inst.eot = inst->eot && i == n - 1;
5188
5189 /* Select the correct channel enables for the i-th group, then
5190 * transform the sources and destination and emit the lowered
5191 * instruction.
5192 */
5193 const fs_builder lbld = ibld.group(lower_width, i);
5194
5195 for (unsigned j = 0; j < inst->sources; j++)
5196 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5197
5198 split_inst.dst = emit_zip(lbld, block, inst);
5199 split_inst.size_written =
5200 split_inst.dst.component_size(lower_width) * dst_size;
5201
5202 lbld.emit(split_inst);
5203 }
5204
5205 inst->remove(block);
5206 progress = true;
5207 }
5208 }
5209
5210 if (progress)
5211 invalidate_live_intervals();
5212
5213 return progress;
5214 }
5215
5216 void
5217 fs_visitor::dump_instructions()
5218 {
5219 dump_instructions(NULL);
5220 }
5221
5222 void
5223 fs_visitor::dump_instructions(const char *name)
5224 {
5225 FILE *file = stderr;
5226 if (name && geteuid() != 0) {
5227 file = fopen(name, "w");
5228 if (!file)
5229 file = stderr;
5230 }
5231
5232 if (cfg) {
5233 calculate_register_pressure();
5234 int ip = 0, max_pressure = 0;
5235 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5236 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5237 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5238 dump_instruction(inst, file);
5239 ip++;
5240 }
5241 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5242 } else {
5243 int ip = 0;
5244 foreach_in_list(backend_instruction, inst, &instructions) {
5245 fprintf(file, "%4d: ", ip++);
5246 dump_instruction(inst, file);
5247 }
5248 }
5249
5250 if (file != stderr) {
5251 fclose(file);
5252 }
5253 }
5254
5255 void
5256 fs_visitor::dump_instruction(backend_instruction *be_inst)
5257 {
5258 dump_instruction(be_inst, stderr);
5259 }
5260
5261 void
5262 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5263 {
5264 fs_inst *inst = (fs_inst *)be_inst;
5265
5266 if (inst->predicate) {
5267 fprintf(file, "(%cf0.%d) ",
5268 inst->predicate_inverse ? '-' : '+',
5269 inst->flag_subreg);
5270 }
5271
5272 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5273 if (inst->saturate)
5274 fprintf(file, ".sat");
5275 if (inst->conditional_mod) {
5276 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5277 if (!inst->predicate &&
5278 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5279 inst->opcode != BRW_OPCODE_IF &&
5280 inst->opcode != BRW_OPCODE_WHILE))) {
5281 fprintf(file, ".f0.%d", inst->flag_subreg);
5282 }
5283 }
5284 fprintf(file, "(%d) ", inst->exec_size);
5285
5286 if (inst->mlen) {
5287 fprintf(file, "(mlen: %d) ", inst->mlen);
5288 }
5289
5290 if (inst->eot) {
5291 fprintf(file, "(EOT) ");
5292 }
5293
5294 switch (inst->dst.file) {
5295 case VGRF:
5296 fprintf(file, "vgrf%d", inst->dst.nr);
5297 break;
5298 case FIXED_GRF:
5299 fprintf(file, "g%d", inst->dst.nr);
5300 break;
5301 case MRF:
5302 fprintf(file, "m%d", inst->dst.nr);
5303 break;
5304 case BAD_FILE:
5305 fprintf(file, "(null)");
5306 break;
5307 case UNIFORM:
5308 fprintf(file, "***u%d***", inst->dst.nr);
5309 break;
5310 case ATTR:
5311 fprintf(file, "***attr%d***", inst->dst.nr);
5312 break;
5313 case ARF:
5314 switch (inst->dst.nr) {
5315 case BRW_ARF_NULL:
5316 fprintf(file, "null");
5317 break;
5318 case BRW_ARF_ADDRESS:
5319 fprintf(file, "a0.%d", inst->dst.subnr);
5320 break;
5321 case BRW_ARF_ACCUMULATOR:
5322 fprintf(file, "acc%d", inst->dst.subnr);
5323 break;
5324 case BRW_ARF_FLAG:
5325 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5326 break;
5327 default:
5328 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5329 break;
5330 }
5331 break;
5332 case IMM:
5333 unreachable("not reached");
5334 }
5335
5336 if (inst->dst.offset ||
5337 (inst->dst.file == VGRF &&
5338 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5339 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5340 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5341 inst->dst.offset % reg_size);
5342 }
5343
5344 if (inst->dst.stride != 1)
5345 fprintf(file, "<%u>", inst->dst.stride);
5346 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5347
5348 for (int i = 0; i < inst->sources; i++) {
5349 if (inst->src[i].negate)
5350 fprintf(file, "-");
5351 if (inst->src[i].abs)
5352 fprintf(file, "|");
5353 switch (inst->src[i].file) {
5354 case VGRF:
5355 fprintf(file, "vgrf%d", inst->src[i].nr);
5356 break;
5357 case FIXED_GRF:
5358 fprintf(file, "g%d", inst->src[i].nr);
5359 break;
5360 case MRF:
5361 fprintf(file, "***m%d***", inst->src[i].nr);
5362 break;
5363 case ATTR:
5364 fprintf(file, "attr%d", inst->src[i].nr);
5365 break;
5366 case UNIFORM:
5367 fprintf(file, "u%d", inst->src[i].nr);
5368 break;
5369 case BAD_FILE:
5370 fprintf(file, "(null)");
5371 break;
5372 case IMM:
5373 switch (inst->src[i].type) {
5374 case BRW_REGISTER_TYPE_F:
5375 fprintf(file, "%-gf", inst->src[i].f);
5376 break;
5377 case BRW_REGISTER_TYPE_DF:
5378 fprintf(file, "%fdf", inst->src[i].df);
5379 break;
5380 case BRW_REGISTER_TYPE_W:
5381 case BRW_REGISTER_TYPE_D:
5382 fprintf(file, "%dd", inst->src[i].d);
5383 break;
5384 case BRW_REGISTER_TYPE_UW:
5385 case BRW_REGISTER_TYPE_UD:
5386 fprintf(file, "%uu", inst->src[i].ud);
5387 break;
5388 case BRW_REGISTER_TYPE_VF:
5389 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5390 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5391 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5392 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5393 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5394 break;
5395 default:
5396 fprintf(file, "???");
5397 break;
5398 }
5399 break;
5400 case ARF:
5401 switch (inst->src[i].nr) {
5402 case BRW_ARF_NULL:
5403 fprintf(file, "null");
5404 break;
5405 case BRW_ARF_ADDRESS:
5406 fprintf(file, "a0.%d", inst->src[i].subnr);
5407 break;
5408 case BRW_ARF_ACCUMULATOR:
5409 fprintf(file, "acc%d", inst->src[i].subnr);
5410 break;
5411 case BRW_ARF_FLAG:
5412 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5413 break;
5414 default:
5415 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5416 break;
5417 }
5418 break;
5419 }
5420
5421 if (inst->src[i].offset ||
5422 (inst->src[i].file == VGRF &&
5423 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5424 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5425 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5426 inst->src[i].offset % reg_size);
5427 }
5428
5429 if (inst->src[i].abs)
5430 fprintf(file, "|");
5431
5432 if (inst->src[i].file != IMM) {
5433 unsigned stride;
5434 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5435 unsigned hstride = inst->src[i].hstride;
5436 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5437 } else {
5438 stride = inst->src[i].stride;
5439 }
5440 if (stride != 1)
5441 fprintf(file, "<%u>", stride);
5442
5443 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5444 }
5445
5446 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5447 fprintf(file, ", ");
5448 }
5449
5450 fprintf(file, " ");
5451
5452 if (inst->force_writemask_all)
5453 fprintf(file, "NoMask ");
5454
5455 if (inst->exec_size != dispatch_width)
5456 fprintf(file, "group%d ", inst->group);
5457
5458 fprintf(file, "\n");
5459 }
5460
5461 /**
5462 * Possibly returns an instruction that set up @param reg.
5463 *
5464 * Sometimes we want to take the result of some expression/variable
5465 * dereference tree and rewrite the instruction generating the result
5466 * of the tree. When processing the tree, we know that the
5467 * instructions generated are all writing temporaries that are dead
5468 * outside of this tree. So, if we have some instructions that write
5469 * a temporary, we're free to point that temp write somewhere else.
5470 *
5471 * Note that this doesn't guarantee that the instruction generated
5472 * only reg -- it might be the size=4 destination of a texture instruction.
5473 */
5474 fs_inst *
5475 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5476 fs_inst *end,
5477 const fs_reg &reg)
5478 {
5479 if (end == start ||
5480 end->is_partial_write() ||
5481 !reg.equals(end->dst)) {
5482 return NULL;
5483 } else {
5484 return end;
5485 }
5486 }
5487
5488 void
5489 fs_visitor::setup_fs_payload_gen6()
5490 {
5491 assert(stage == MESA_SHADER_FRAGMENT);
5492 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5493
5494 assert(devinfo->gen >= 6);
5495
5496 /* R0-1: masks, pixel X/Y coordinates. */
5497 payload.num_regs = 2;
5498 /* R2: only for 32-pixel dispatch.*/
5499
5500 /* R3-26: barycentric interpolation coordinates. These appear in the
5501 * same order that they appear in the brw_barycentric_mode
5502 * enum. Each set of coordinates occupies 2 registers if dispatch width
5503 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5504 * appear if they were enabled using the "Barycentric Interpolation
5505 * Mode" bits in WM_STATE.
5506 */
5507 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5508 if (prog_data->barycentric_interp_modes & (1 << i)) {
5509 payload.barycentric_coord_reg[i] = payload.num_regs;
5510 payload.num_regs += 2;
5511 if (dispatch_width == 16) {
5512 payload.num_regs += 2;
5513 }
5514 }
5515 }
5516
5517 /* R27: interpolated depth if uses source depth */
5518 prog_data->uses_src_depth =
5519 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5520 if (prog_data->uses_src_depth) {
5521 payload.source_depth_reg = payload.num_regs;
5522 payload.num_regs++;
5523 if (dispatch_width == 16) {
5524 /* R28: interpolated depth if not SIMD8. */
5525 payload.num_regs++;
5526 }
5527 }
5528
5529 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5530 prog_data->uses_src_w =
5531 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5532 if (prog_data->uses_src_w) {
5533 payload.source_w_reg = payload.num_regs;
5534 payload.num_regs++;
5535 if (dispatch_width == 16) {
5536 /* R30: interpolated W if not SIMD8. */
5537 payload.num_regs++;
5538 }
5539 }
5540
5541 /* R31: MSAA position offsets. */
5542 if (prog_data->persample_dispatch &&
5543 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5544 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5545 *
5546 * "MSDISPMODE_PERSAMPLE is required in order to select
5547 * POSOFFSET_SAMPLE"
5548 *
5549 * So we can only really get sample positions if we are doing real
5550 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5551 * persample dispatch, we hard-code it to 0.5.
5552 */
5553 prog_data->uses_pos_offset = true;
5554 payload.sample_pos_reg = payload.num_regs;
5555 payload.num_regs++;
5556 }
5557
5558 /* R32: MSAA input coverage mask */
5559 prog_data->uses_sample_mask =
5560 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5561 if (prog_data->uses_sample_mask) {
5562 assert(devinfo->gen >= 7);
5563 payload.sample_mask_in_reg = payload.num_regs;
5564 payload.num_regs++;
5565 if (dispatch_width == 16) {
5566 /* R33: input coverage mask if not SIMD8. */
5567 payload.num_regs++;
5568 }
5569 }
5570
5571 /* R34-: bary for 32-pixel. */
5572 /* R58-59: interp W for 32-pixel. */
5573
5574 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5575 source_depth_to_render_target = true;
5576 }
5577 }
5578
5579 void
5580 fs_visitor::setup_vs_payload()
5581 {
5582 /* R0: thread header, R1: urb handles */
5583 payload.num_regs = 2;
5584 }
5585
5586 void
5587 fs_visitor::setup_gs_payload()
5588 {
5589 assert(stage == MESA_SHADER_GEOMETRY);
5590
5591 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5592 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5593
5594 /* R0: thread header, R1: output URB handles */
5595 payload.num_regs = 2;
5596
5597 if (gs_prog_data->include_primitive_id) {
5598 /* R2: Primitive ID 0..7 */
5599 payload.num_regs++;
5600 }
5601
5602 /* Always enable VUE handles so we can safely use pull model if needed.
5603 *
5604 * The push model for a GS uses a ton of register space even for trivial
5605 * scenarios with just a few inputs, so just make things easier and a bit
5606 * safer by always having pull model available.
5607 */
5608 gs_prog_data->base.include_vue_handles = true;
5609
5610 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5611 payload.num_regs += nir->info.gs.vertices_in;
5612
5613 /* Use a maximum of 24 registers for push-model inputs. */
5614 const unsigned max_push_components = 24;
5615
5616 /* If pushing our inputs would take too many registers, reduce the URB read
5617 * length (which is in HWords, or 8 registers), and resort to pulling.
5618 *
5619 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5620 * have to multiply by VerticesIn to obtain the total storage requirement.
5621 */
5622 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5623 max_push_components) {
5624 vue_prog_data->urb_read_length =
5625 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5626 }
5627 }
5628
5629 void
5630 fs_visitor::setup_cs_payload()
5631 {
5632 assert(devinfo->gen >= 7);
5633 payload.num_regs = 1;
5634 }
5635
5636 void
5637 fs_visitor::calculate_register_pressure()
5638 {
5639 invalidate_live_intervals();
5640 calculate_live_intervals();
5641
5642 unsigned num_instructions = 0;
5643 foreach_block(block, cfg)
5644 num_instructions += block->instructions.length();
5645
5646 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5647
5648 for (unsigned reg = 0; reg < alloc.count; reg++) {
5649 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5650 regs_live_at_ip[ip] += alloc.sizes[reg];
5651 }
5652 }
5653
5654 /**
5655 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5656 *
5657 * The needs_unlit_centroid_workaround ends up producing one of these per
5658 * channel of centroid input, so it's good to clean them up.
5659 *
5660 * An assumption here is that nothing ever modifies the dispatched pixels
5661 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5662 * dictates that anyway.
5663 */
5664 bool
5665 fs_visitor::opt_drop_redundant_mov_to_flags()
5666 {
5667 bool flag_mov_found[2] = {false};
5668 bool progress = false;
5669
5670 /* Instructions removed by this pass can only be added if this were true */
5671 if (!devinfo->needs_unlit_centroid_workaround)
5672 return false;
5673
5674 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5675 if (inst->is_control_flow()) {
5676 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5677 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5678 if (!flag_mov_found[inst->flag_subreg]) {
5679 flag_mov_found[inst->flag_subreg] = true;
5680 } else {
5681 inst->remove(block);
5682 progress = true;
5683 }
5684 } else if (inst->flags_written()) {
5685 flag_mov_found[inst->flag_subreg] = false;
5686 }
5687 }
5688
5689 return progress;
5690 }
5691
5692 void
5693 fs_visitor::optimize()
5694 {
5695 /* Start by validating the shader we currently have. */
5696 validate();
5697
5698 /* bld is the common builder object pointing at the end of the program we
5699 * used to translate it into i965 IR. For the optimization and lowering
5700 * passes coming next, any code added after the end of the program without
5701 * having explicitly called fs_builder::at() clearly points at a mistake.
5702 * Ideally optimization passes wouldn't be part of the visitor so they
5703 * wouldn't have access to bld at all, but they do, so just in case some
5704 * pass forgets to ask for a location explicitly set it to NULL here to
5705 * make it trip. The dispatch width is initialized to a bogus value to
5706 * make sure that optimizations set the execution controls explicitly to
5707 * match the code they are manipulating instead of relying on the defaults.
5708 */
5709 bld = fs_builder(this, 64);
5710
5711 assign_constant_locations();
5712 lower_constant_loads();
5713
5714 validate();
5715
5716 split_virtual_grfs();
5717 validate();
5718
5719 #define OPT(pass, args...) ({ \
5720 pass_num++; \
5721 bool this_progress = pass(args); \
5722 \
5723 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5724 char filename[64]; \
5725 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5726 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5727 \
5728 backend_shader::dump_instructions(filename); \
5729 } \
5730 \
5731 validate(); \
5732 \
5733 progress = progress || this_progress; \
5734 this_progress; \
5735 })
5736
5737 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5738 char filename[64];
5739 snprintf(filename, 64, "%s%d-%s-00-00-start",
5740 stage_abbrev, dispatch_width, nir->info.name);
5741
5742 backend_shader::dump_instructions(filename);
5743 }
5744
5745 bool progress = false;
5746 int iteration = 0;
5747 int pass_num = 0;
5748
5749 OPT(opt_drop_redundant_mov_to_flags);
5750
5751 do {
5752 progress = false;
5753 pass_num = 0;
5754 iteration++;
5755
5756 OPT(remove_duplicate_mrf_writes);
5757
5758 OPT(opt_algebraic);
5759 OPT(opt_cse);
5760 OPT(opt_copy_propagation);
5761 OPT(opt_predicated_break, this);
5762 OPT(opt_cmod_propagation);
5763 OPT(dead_code_eliminate);
5764 OPT(opt_peephole_sel);
5765 OPT(dead_control_flow_eliminate, this);
5766 OPT(opt_register_renaming);
5767 OPT(opt_saturate_propagation);
5768 OPT(register_coalesce);
5769 OPT(compute_to_mrf);
5770 OPT(eliminate_find_live_channel);
5771
5772 OPT(compact_virtual_grfs);
5773 } while (progress);
5774
5775 progress = false;
5776 pass_num = 0;
5777
5778 if (OPT(lower_pack)) {
5779 OPT(register_coalesce);
5780 OPT(dead_code_eliminate);
5781 }
5782
5783 OPT(lower_simd_width);
5784
5785 /* After SIMD lowering just in case we had to unroll the EOT send. */
5786 OPT(opt_sampler_eot);
5787
5788 OPT(lower_logical_sends);
5789
5790 if (progress) {
5791 OPT(opt_copy_propagation);
5792 /* Only run after logical send lowering because it's easier to implement
5793 * in terms of physical sends.
5794 */
5795 if (OPT(opt_zero_samples))
5796 OPT(opt_copy_propagation);
5797 /* Run after logical send lowering to give it a chance to CSE the
5798 * LOAD_PAYLOAD instructions created to construct the payloads of
5799 * e.g. texturing messages in cases where it wasn't possible to CSE the
5800 * whole logical instruction.
5801 */
5802 OPT(opt_cse);
5803 OPT(register_coalesce);
5804 OPT(compute_to_mrf);
5805 OPT(dead_code_eliminate);
5806 OPT(remove_duplicate_mrf_writes);
5807 OPT(opt_peephole_sel);
5808 }
5809
5810 OPT(opt_redundant_discard_jumps);
5811
5812 if (OPT(lower_load_payload)) {
5813 split_virtual_grfs();
5814 OPT(register_coalesce);
5815 OPT(compute_to_mrf);
5816 OPT(dead_code_eliminate);
5817 }
5818
5819 OPT(opt_combine_constants);
5820 OPT(lower_integer_multiplication);
5821
5822 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5823 OPT(opt_cmod_propagation);
5824 OPT(opt_cse);
5825 OPT(opt_copy_propagation);
5826 OPT(dead_code_eliminate);
5827 }
5828
5829 if (OPT(lower_conversions)) {
5830 OPT(opt_copy_propagation);
5831 OPT(dead_code_eliminate);
5832 OPT(lower_simd_width);
5833 }
5834
5835 lower_uniform_pull_constant_loads();
5836
5837 validate();
5838 }
5839
5840 /**
5841 * Three source instruction must have a GRF/MRF destination register.
5842 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5843 */
5844 void
5845 fs_visitor::fixup_3src_null_dest()
5846 {
5847 bool progress = false;
5848
5849 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5850 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5851 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5852 inst->dst.type);
5853 progress = true;
5854 }
5855 }
5856
5857 if (progress)
5858 invalidate_live_intervals();
5859 }
5860
5861 void
5862 fs_visitor::allocate_registers(bool allow_spilling)
5863 {
5864 bool allocated_without_spills;
5865
5866 static const enum instruction_scheduler_mode pre_modes[] = {
5867 SCHEDULE_PRE,
5868 SCHEDULE_PRE_NON_LIFO,
5869 SCHEDULE_PRE_LIFO,
5870 };
5871
5872 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5873
5874 /* Try each scheduling heuristic to see if it can successfully register
5875 * allocate without spilling. They should be ordered by decreasing
5876 * performance but increasing likelihood of allocating.
5877 */
5878 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5879 schedule_instructions(pre_modes[i]);
5880
5881 if (0) {
5882 assign_regs_trivial();
5883 allocated_without_spills = true;
5884 } else {
5885 allocated_without_spills = assign_regs(false, spill_all);
5886 }
5887 if (allocated_without_spills)
5888 break;
5889 }
5890
5891 if (!allocated_without_spills) {
5892 if (!allow_spilling)
5893 fail("Failure to register allocate and spilling is not allowed.");
5894
5895 /* We assume that any spilling is worse than just dropping back to
5896 * SIMD8. There's probably actually some intermediate point where
5897 * SIMD16 with a couple of spills is still better.
5898 */
5899 if (dispatch_width > min_dispatch_width) {
5900 fail("Failure to register allocate. Reduce number of "
5901 "live scalar values to avoid this.");
5902 } else {
5903 compiler->shader_perf_log(log_data,
5904 "%s shader triggered register spilling. "
5905 "Try reducing the number of live scalar "
5906 "values to improve performance.\n",
5907 stage_name);
5908 }
5909
5910 /* Since we're out of heuristics, just go spill registers until we
5911 * get an allocation.
5912 */
5913 while (!assign_regs(true, spill_all)) {
5914 if (failed)
5915 break;
5916 }
5917 }
5918
5919 /* This must come after all optimization and register allocation, since
5920 * it inserts dead code that happens to have side effects, and it does
5921 * so based on the actual physical registers in use.
5922 */
5923 insert_gen4_send_dependency_workarounds();
5924
5925 if (failed)
5926 return;
5927
5928 schedule_instructions(SCHEDULE_POST);
5929
5930 if (last_scratch > 0) {
5931 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5932
5933 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5934
5935 if (stage == MESA_SHADER_COMPUTE) {
5936 if (devinfo->is_haswell) {
5937 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5938 * field documentation, Haswell supports a minimum of 2kB of
5939 * scratch space for compute shaders, unlike every other stage
5940 * and platform.
5941 */
5942 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5943 } else if (devinfo->gen <= 7) {
5944 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5945 * field documentation, platforms prior to Haswell measure scratch
5946 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5947 */
5948 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5949 max_scratch_size = 12 * 1024;
5950 }
5951 }
5952
5953 /* We currently only support up to 2MB of scratch space. If we
5954 * need to support more eventually, the documentation suggests
5955 * that we could allocate a larger buffer, and partition it out
5956 * ourselves. We'd just have to undo the hardware's address
5957 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5958 * and then add FFTID * (Larger Per Thread Scratch Space).
5959 *
5960 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5961 * Thread Group Tracking > Local Memory/Scratch Space.
5962 */
5963 assert(prog_data->total_scratch < max_scratch_size);
5964 }
5965 }
5966
5967 bool
5968 fs_visitor::run_vs()
5969 {
5970 assert(stage == MESA_SHADER_VERTEX);
5971
5972 setup_vs_payload();
5973
5974 if (shader_time_index >= 0)
5975 emit_shader_time_begin();
5976
5977 emit_nir_code();
5978
5979 if (failed)
5980 return false;
5981
5982 compute_clip_distance();
5983
5984 emit_urb_writes();
5985
5986 if (shader_time_index >= 0)
5987 emit_shader_time_end();
5988
5989 calculate_cfg();
5990
5991 optimize();
5992
5993 assign_curb_setup();
5994 assign_vs_urb_setup();
5995
5996 fixup_3src_null_dest();
5997 allocate_registers(true);
5998
5999 return !failed;
6000 }
6001
6002 bool
6003 fs_visitor::run_tcs_single_patch()
6004 {
6005 assert(stage == MESA_SHADER_TESS_CTRL);
6006
6007 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6008
6009 /* r1-r4 contain the ICP handles. */
6010 payload.num_regs = 5;
6011
6012 if (shader_time_index >= 0)
6013 emit_shader_time_begin();
6014
6015 /* Initialize gl_InvocationID */
6016 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6017 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6018 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6019 bld.MOV(channels_ud, channels_uw);
6020
6021 if (tcs_prog_data->instances == 1) {
6022 invocation_id = channels_ud;
6023 } else {
6024 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6025
6026 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6027 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6028 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6029 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6030 brw_imm_ud(INTEL_MASK(23, 17)));
6031 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6032
6033 bld.ADD(invocation_id, instance_times_8, channels_ud);
6034 }
6035
6036 /* Fix the disptach mask */
6037 if (nir->info.tess.tcs_vertices_out % 8) {
6038 bld.CMP(bld.null_reg_ud(), invocation_id,
6039 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6040 bld.IF(BRW_PREDICATE_NORMAL);
6041 }
6042
6043 emit_nir_code();
6044
6045 if (nir->info.tess.tcs_vertices_out % 8) {
6046 bld.emit(BRW_OPCODE_ENDIF);
6047 }
6048
6049 /* Emit EOT write; set TR DS Cache bit */
6050 fs_reg srcs[3] = {
6051 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6052 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6053 fs_reg(brw_imm_ud(0)),
6054 };
6055 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6056 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6057
6058 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6059 bld.null_reg_ud(), payload);
6060 inst->mlen = 3;
6061 inst->eot = true;
6062
6063 if (shader_time_index >= 0)
6064 emit_shader_time_end();
6065
6066 if (failed)
6067 return false;
6068
6069 calculate_cfg();
6070
6071 optimize();
6072
6073 assign_curb_setup();
6074 assign_tcs_single_patch_urb_setup();
6075
6076 fixup_3src_null_dest();
6077 allocate_registers(true);
6078
6079 return !failed;
6080 }
6081
6082 bool
6083 fs_visitor::run_tes()
6084 {
6085 assert(stage == MESA_SHADER_TESS_EVAL);
6086
6087 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6088 payload.num_regs = 5;
6089
6090 if (shader_time_index >= 0)
6091 emit_shader_time_begin();
6092
6093 emit_nir_code();
6094
6095 if (failed)
6096 return false;
6097
6098 emit_urb_writes();
6099
6100 if (shader_time_index >= 0)
6101 emit_shader_time_end();
6102
6103 calculate_cfg();
6104
6105 optimize();
6106
6107 assign_curb_setup();
6108 assign_tes_urb_setup();
6109
6110 fixup_3src_null_dest();
6111 allocate_registers(true);
6112
6113 return !failed;
6114 }
6115
6116 bool
6117 fs_visitor::run_gs()
6118 {
6119 assert(stage == MESA_SHADER_GEOMETRY);
6120
6121 setup_gs_payload();
6122
6123 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6124
6125 if (gs_compile->control_data_header_size_bits > 0) {
6126 /* Create a VGRF to store accumulated control data bits. */
6127 this->control_data_bits = vgrf(glsl_type::uint_type);
6128
6129 /* If we're outputting more than 32 control data bits, then EmitVertex()
6130 * will set control_data_bits to 0 after emitting the first vertex.
6131 * Otherwise, we need to initialize it to 0 here.
6132 */
6133 if (gs_compile->control_data_header_size_bits <= 32) {
6134 const fs_builder abld = bld.annotate("initialize control data bits");
6135 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6136 }
6137 }
6138
6139 if (shader_time_index >= 0)
6140 emit_shader_time_begin();
6141
6142 emit_nir_code();
6143
6144 emit_gs_thread_end();
6145
6146 if (shader_time_index >= 0)
6147 emit_shader_time_end();
6148
6149 if (failed)
6150 return false;
6151
6152 calculate_cfg();
6153
6154 optimize();
6155
6156 assign_curb_setup();
6157 assign_gs_urb_setup();
6158
6159 fixup_3src_null_dest();
6160 allocate_registers(true);
6161
6162 return !failed;
6163 }
6164
6165 bool
6166 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6167 {
6168 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6169 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6170
6171 assert(stage == MESA_SHADER_FRAGMENT);
6172
6173 if (devinfo->gen >= 6)
6174 setup_fs_payload_gen6();
6175 else
6176 setup_fs_payload_gen4();
6177
6178 if (0) {
6179 emit_dummy_fs();
6180 } else if (do_rep_send) {
6181 assert(dispatch_width == 16);
6182 emit_repclear_shader();
6183 } else {
6184 if (shader_time_index >= 0)
6185 emit_shader_time_begin();
6186
6187 calculate_urb_setup();
6188 if (nir->info.inputs_read > 0 ||
6189 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6190 if (devinfo->gen < 6)
6191 emit_interpolation_setup_gen4();
6192 else
6193 emit_interpolation_setup_gen6();
6194 }
6195
6196 /* We handle discards by keeping track of the still-live pixels in f0.1.
6197 * Initialize it with the dispatched pixels.
6198 */
6199 if (wm_prog_data->uses_kill) {
6200 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6201 discard_init->flag_subreg = 1;
6202 }
6203
6204 /* Generate FS IR for main(). (the visitor only descends into
6205 * functions called "main").
6206 */
6207 emit_nir_code();
6208
6209 if (failed)
6210 return false;
6211
6212 if (wm_prog_data->uses_kill)
6213 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6214
6215 if (wm_key->alpha_test_func)
6216 emit_alpha_test();
6217
6218 emit_fb_writes();
6219
6220 if (shader_time_index >= 0)
6221 emit_shader_time_end();
6222
6223 calculate_cfg();
6224
6225 optimize();
6226
6227 assign_curb_setup();
6228 assign_urb_setup();
6229
6230 fixup_3src_null_dest();
6231 allocate_registers(allow_spilling);
6232
6233 if (failed)
6234 return false;
6235 }
6236
6237 return !failed;
6238 }
6239
6240 bool
6241 fs_visitor::run_cs()
6242 {
6243 assert(stage == MESA_SHADER_COMPUTE);
6244
6245 setup_cs_payload();
6246
6247 if (shader_time_index >= 0)
6248 emit_shader_time_begin();
6249
6250 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6251 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6252 const fs_builder abld = bld.exec_all().group(1, 0);
6253 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6254 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6255 }
6256
6257 emit_nir_code();
6258
6259 if (failed)
6260 return false;
6261
6262 emit_cs_terminate();
6263
6264 if (shader_time_index >= 0)
6265 emit_shader_time_end();
6266
6267 calculate_cfg();
6268
6269 optimize();
6270
6271 assign_curb_setup();
6272
6273 fixup_3src_null_dest();
6274 allocate_registers(true);
6275
6276 if (failed)
6277 return false;
6278
6279 return !failed;
6280 }
6281
6282 /**
6283 * Return a bitfield where bit n is set if barycentric interpolation mode n
6284 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6285 *
6286 * We examine the load_barycentric intrinsics rather than looking at input
6287 * variables so that we catch interpolateAtCentroid() messages too, which
6288 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6289 */
6290 static unsigned
6291 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6292 const nir_shader *shader)
6293 {
6294 unsigned barycentric_interp_modes = 0;
6295
6296 nir_foreach_function(f, shader) {
6297 if (!f->impl)
6298 continue;
6299
6300 nir_foreach_block(block, f->impl) {
6301 nir_foreach_instr(instr, block) {
6302 if (instr->type != nir_instr_type_intrinsic)
6303 continue;
6304
6305 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6306 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6307 continue;
6308
6309 /* Ignore WPOS; it doesn't require interpolation. */
6310 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6311 continue;
6312
6313 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6314 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6315 nir_intrinsic_interp_mode(intrin);
6316 nir_intrinsic_op bary_op = intrin->intrinsic;
6317 enum brw_barycentric_mode bary =
6318 brw_barycentric_mode(interp, bary_op);
6319
6320 barycentric_interp_modes |= 1 << bary;
6321
6322 if (devinfo->needs_unlit_centroid_workaround &&
6323 bary_op == nir_intrinsic_load_barycentric_centroid)
6324 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6325 }
6326 }
6327 }
6328
6329 return barycentric_interp_modes;
6330 }
6331
6332 static void
6333 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6334 const nir_shader *shader)
6335 {
6336 prog_data->flat_inputs = 0;
6337
6338 nir_foreach_variable(var, &shader->inputs) {
6339 int input_index = prog_data->urb_setup[var->data.location];
6340
6341 if (input_index < 0)
6342 continue;
6343
6344 /* flat shading */
6345 if (var->data.interpolation == INTERP_MODE_FLAT)
6346 prog_data->flat_inputs |= (1 << input_index);
6347 }
6348 }
6349
6350 static uint8_t
6351 computed_depth_mode(const nir_shader *shader)
6352 {
6353 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6354 switch (shader->info.fs.depth_layout) {
6355 case FRAG_DEPTH_LAYOUT_NONE:
6356 case FRAG_DEPTH_LAYOUT_ANY:
6357 return BRW_PSCDEPTH_ON;
6358 case FRAG_DEPTH_LAYOUT_GREATER:
6359 return BRW_PSCDEPTH_ON_GE;
6360 case FRAG_DEPTH_LAYOUT_LESS:
6361 return BRW_PSCDEPTH_ON_LE;
6362 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6363 return BRW_PSCDEPTH_OFF;
6364 }
6365 }
6366 return BRW_PSCDEPTH_OFF;
6367 }
6368
6369 /**
6370 * Move load_interpolated_input with simple (payload-based) barycentric modes
6371 * to the top of the program so we don't emit multiple PLNs for the same input.
6372 *
6373 * This works around CSE not being able to handle non-dominating cases
6374 * such as:
6375 *
6376 * if (...) {
6377 * interpolate input
6378 * } else {
6379 * interpolate the same exact input
6380 * }
6381 *
6382 * This should be replaced by global value numbering someday.
6383 */
6384 static bool
6385 move_interpolation_to_top(nir_shader *nir)
6386 {
6387 bool progress = false;
6388
6389 nir_foreach_function(f, nir) {
6390 if (!f->impl)
6391 continue;
6392
6393 nir_block *top = nir_start_block(f->impl);
6394 exec_node *cursor_node = NULL;
6395
6396 nir_foreach_block(block, f->impl) {
6397 if (block == top)
6398 continue;
6399
6400 nir_foreach_instr_safe(instr, block) {
6401 if (instr->type != nir_instr_type_intrinsic)
6402 continue;
6403
6404 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6405 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6406 continue;
6407 nir_intrinsic_instr *bary_intrinsic =
6408 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6409 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6410
6411 /* Leave interpolateAtSample/Offset() where they are. */
6412 if (op == nir_intrinsic_load_barycentric_at_sample ||
6413 op == nir_intrinsic_load_barycentric_at_offset)
6414 continue;
6415
6416 nir_instr *move[3] = {
6417 &bary_intrinsic->instr,
6418 intrin->src[1].ssa->parent_instr,
6419 instr
6420 };
6421
6422 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6423 if (move[i]->block != top) {
6424 move[i]->block = top;
6425 exec_node_remove(&move[i]->node);
6426 if (cursor_node) {
6427 exec_node_insert_after(cursor_node, &move[i]->node);
6428 } else {
6429 exec_list_push_head(&top->instr_list, &move[i]->node);
6430 }
6431 cursor_node = &move[i]->node;
6432 progress = true;
6433 }
6434 }
6435 }
6436 }
6437 nir_metadata_preserve(f->impl, (nir_metadata)
6438 ((unsigned) nir_metadata_block_index |
6439 (unsigned) nir_metadata_dominance));
6440 }
6441
6442 return progress;
6443 }
6444
6445 /**
6446 * Demote per-sample barycentric intrinsics to centroid.
6447 *
6448 * Useful when rendering to a non-multisampled buffer.
6449 */
6450 static bool
6451 demote_sample_qualifiers(nir_shader *nir)
6452 {
6453 bool progress = true;
6454
6455 nir_foreach_function(f, nir) {
6456 if (!f->impl)
6457 continue;
6458
6459 nir_builder b;
6460 nir_builder_init(&b, f->impl);
6461
6462 nir_foreach_block(block, f->impl) {
6463 nir_foreach_instr_safe(instr, block) {
6464 if (instr->type != nir_instr_type_intrinsic)
6465 continue;
6466
6467 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6468 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6469 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6470 continue;
6471
6472 b.cursor = nir_before_instr(instr);
6473 nir_ssa_def *centroid =
6474 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6475 nir_intrinsic_interp_mode(intrin));
6476 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6477 nir_src_for_ssa(centroid));
6478 nir_instr_remove(instr);
6479 progress = true;
6480 }
6481 }
6482
6483 nir_metadata_preserve(f->impl, (nir_metadata)
6484 ((unsigned) nir_metadata_block_index |
6485 (unsigned) nir_metadata_dominance));
6486 }
6487
6488 return progress;
6489 }
6490
6491 /**
6492 * Pre-gen6, the register file of the EUs was shared between threads,
6493 * and each thread used some subset allocated on a 16-register block
6494 * granularity. The unit states wanted these block counts.
6495 */
6496 static inline int
6497 brw_register_blocks(int reg_count)
6498 {
6499 return ALIGN(reg_count, 16) / 16 - 1;
6500 }
6501
6502 const unsigned *
6503 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6504 void *mem_ctx,
6505 const struct brw_wm_prog_key *key,
6506 struct brw_wm_prog_data *prog_data,
6507 const nir_shader *src_shader,
6508 struct gl_program *prog,
6509 int shader_time_index8, int shader_time_index16,
6510 bool allow_spilling,
6511 bool use_rep_send, struct brw_vue_map *vue_map,
6512 unsigned *final_assembly_size,
6513 char **error_str)
6514 {
6515 const struct gen_device_info *devinfo = compiler->devinfo;
6516
6517 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6518 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6519 brw_nir_lower_fs_inputs(shader, devinfo, key);
6520 brw_nir_lower_fs_outputs(shader);
6521
6522 if (devinfo->gen < 6) {
6523 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6524 }
6525
6526 if (!key->multisample_fbo)
6527 NIR_PASS_V(shader, demote_sample_qualifiers);
6528 NIR_PASS_V(shader, move_interpolation_to_top);
6529 shader = brw_postprocess_nir(shader, compiler, true);
6530
6531 /* key->alpha_test_func means simulating alpha testing via discards,
6532 * so the shader definitely kills pixels.
6533 */
6534 prog_data->uses_kill = shader->info.fs.uses_discard ||
6535 key->alpha_test_func;
6536 prog_data->uses_omask = key->multisample_fbo &&
6537 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6538 prog_data->computed_depth_mode = computed_depth_mode(shader);
6539 prog_data->computed_stencil =
6540 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6541
6542 prog_data->persample_dispatch =
6543 key->multisample_fbo &&
6544 (key->persample_interp ||
6545 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6546 SYSTEM_BIT_SAMPLE_POS)) ||
6547 shader->info.fs.uses_sample_qualifier ||
6548 shader->info.outputs_read);
6549
6550 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
6551
6552 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6553 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6554 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6555
6556 prog_data->barycentric_interp_modes =
6557 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6558
6559 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6560 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6561 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6562
6563 fs_visitor v8(compiler, log_data, mem_ctx, key,
6564 &prog_data->base, prog, shader, 8,
6565 shader_time_index8);
6566 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6567 if (error_str)
6568 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6569
6570 return NULL;
6571 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6572 simd8_cfg = v8.cfg;
6573 simd8_grf_start = v8.payload.num_regs;
6574 simd8_grf_used = v8.grf_used;
6575 }
6576
6577 if (v8.max_dispatch_width >= 16 &&
6578 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6579 /* Try a SIMD16 compile */
6580 fs_visitor v16(compiler, log_data, mem_ctx, key,
6581 &prog_data->base, prog, shader, 16,
6582 shader_time_index16);
6583 v16.import_uniforms(&v8);
6584 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6585 compiler->shader_perf_log(log_data,
6586 "SIMD16 shader failed to compile: %s",
6587 v16.fail_msg);
6588 } else {
6589 simd16_cfg = v16.cfg;
6590 simd16_grf_start = v16.payload.num_regs;
6591 simd16_grf_used = v16.grf_used;
6592 }
6593 }
6594
6595 /* When the caller requests a repclear shader, they want SIMD16-only */
6596 if (use_rep_send)
6597 simd8_cfg = NULL;
6598
6599 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6600 * at the top to select the shader. We've never implemented that.
6601 * Instead, we just give them exactly one shader and we pick the widest one
6602 * available.
6603 */
6604 if (compiler->devinfo->gen < 5 && simd16_cfg)
6605 simd8_cfg = NULL;
6606
6607 if (prog_data->persample_dispatch) {
6608 /* Starting with SandyBridge (where we first get MSAA), the different
6609 * pixel dispatch combinations are grouped into classifications A
6610 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6611 * generations, the only configurations supporting persample dispatch
6612 * are are this in which only one dispatch width is enabled.
6613 *
6614 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6615 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6616 */
6617 if (compiler->devinfo->gen == 6 &&
6618 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6619 simd16_cfg = NULL;
6620 } else if (simd16_cfg) {
6621 simd8_cfg = NULL;
6622 }
6623 }
6624
6625 /* We have to compute the flat inputs after the visitor is finished running
6626 * because it relies on prog_data->urb_setup which is computed in
6627 * fs_visitor::calculate_urb_setup().
6628 */
6629 brw_compute_flat_inputs(prog_data, shader);
6630
6631 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6632 v8.promoted_constants, v8.runtime_check_aads_emit,
6633 MESA_SHADER_FRAGMENT);
6634
6635 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6636 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6637 shader->info.label ?
6638 shader->info.label : "unnamed",
6639 shader->info.name));
6640 }
6641
6642 if (simd8_cfg) {
6643 prog_data->dispatch_8 = true;
6644 g.generate_code(simd8_cfg, 8);
6645 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6646 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6647
6648 if (simd16_cfg) {
6649 prog_data->dispatch_16 = true;
6650 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6651 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6652 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6653 }
6654 } else if (simd16_cfg) {
6655 prog_data->dispatch_16 = true;
6656 g.generate_code(simd16_cfg, 16);
6657 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6658 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6659 }
6660
6661 return g.get_assembly(final_assembly_size);
6662 }
6663
6664 fs_reg *
6665 fs_visitor::emit_cs_work_group_id_setup()
6666 {
6667 assert(stage == MESA_SHADER_COMPUTE);
6668
6669 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6670
6671 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6672 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6673 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6674
6675 bld.MOV(*reg, r0_1);
6676 bld.MOV(offset(*reg, bld, 1), r0_6);
6677 bld.MOV(offset(*reg, bld, 2), r0_7);
6678
6679 return reg;
6680 }
6681
6682 static void
6683 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6684 {
6685 block->dwords = dwords;
6686 block->regs = DIV_ROUND_UP(dwords, 8);
6687 block->size = block->regs * 32;
6688 }
6689
6690 static void
6691 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6692 struct brw_cs_prog_data *cs_prog_data)
6693 {
6694 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6695 bool fill_thread_id =
6696 cs_prog_data->thread_local_id_index >= 0 &&
6697 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6698 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6699
6700 /* The thread ID should be stored in the last param dword */
6701 assert(prog_data->nr_params > 0 || !fill_thread_id);
6702 assert(!fill_thread_id ||
6703 cs_prog_data->thread_local_id_index ==
6704 (int)prog_data->nr_params - 1);
6705
6706 unsigned cross_thread_dwords, per_thread_dwords;
6707 if (!cross_thread_supported) {
6708 cross_thread_dwords = 0u;
6709 per_thread_dwords = prog_data->nr_params;
6710 } else if (fill_thread_id) {
6711 /* Fill all but the last register with cross-thread payload */
6712 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6713 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6714 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6715 } else {
6716 /* Fill all data using cross-thread payload */
6717 cross_thread_dwords = prog_data->nr_params;
6718 per_thread_dwords = 0u;
6719 }
6720
6721 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6722 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6723
6724 unsigned total_dwords =
6725 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6726 cs_prog_data->push.cross_thread.size) / 4;
6727 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6728
6729 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6730 cs_prog_data->push.per_thread.size == 0);
6731 assert(cs_prog_data->push.cross_thread.dwords +
6732 cs_prog_data->push.per_thread.dwords ==
6733 prog_data->nr_params);
6734 }
6735
6736 static void
6737 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6738 {
6739 cs_prog_data->simd_size = size;
6740 unsigned group_size = cs_prog_data->local_size[0] *
6741 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6742 cs_prog_data->threads = (group_size + size - 1) / size;
6743 }
6744
6745 const unsigned *
6746 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6747 void *mem_ctx,
6748 const struct brw_cs_prog_key *key,
6749 struct brw_cs_prog_data *prog_data,
6750 const nir_shader *src_shader,
6751 int shader_time_index,
6752 unsigned *final_assembly_size,
6753 char **error_str)
6754 {
6755 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6756 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6757
6758 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6759 * the thread_local_id_index.
6760 */
6761 assert(prog_data->thread_local_id_index >= 0);
6762 shader->num_uniforms =
6763 MAX2(shader->num_uniforms,
6764 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6765
6766 brw_nir_lower_intrinsics(shader, &prog_data->base);
6767 shader = brw_postprocess_nir(shader, compiler, true);
6768
6769 prog_data->local_size[0] = shader->info.cs.local_size[0];
6770 prog_data->local_size[1] = shader->info.cs.local_size[1];
6771 prog_data->local_size[2] = shader->info.cs.local_size[2];
6772 unsigned local_workgroup_size =
6773 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6774 shader->info.cs.local_size[2];
6775
6776 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6777 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6778
6779 cfg_t *cfg = NULL;
6780 const char *fail_msg = NULL;
6781
6782 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6783 */
6784 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6785 NULL, /* Never used in core profile */
6786 shader, 8, shader_time_index);
6787 if (simd_required <= 8) {
6788 if (!v8.run_cs()) {
6789 fail_msg = v8.fail_msg;
6790 } else {
6791 cfg = v8.cfg;
6792 cs_set_simd_size(prog_data, 8);
6793 cs_fill_push_const_info(compiler->devinfo, prog_data);
6794 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6795 }
6796 }
6797
6798 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6799 NULL, /* Never used in core profile */
6800 shader, 16, shader_time_index);
6801 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6802 !fail_msg && v8.max_dispatch_width >= 16 &&
6803 simd_required <= 16) {
6804 /* Try a SIMD16 compile */
6805 if (simd_required <= 8)
6806 v16.import_uniforms(&v8);
6807 if (!v16.run_cs()) {
6808 compiler->shader_perf_log(log_data,
6809 "SIMD16 shader failed to compile: %s",
6810 v16.fail_msg);
6811 if (!cfg) {
6812 fail_msg =
6813 "Couldn't generate SIMD16 program and not "
6814 "enough threads for SIMD8";
6815 }
6816 } else {
6817 cfg = v16.cfg;
6818 cs_set_simd_size(prog_data, 16);
6819 cs_fill_push_const_info(compiler->devinfo, prog_data);
6820 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6821 }
6822 }
6823
6824 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6825 NULL, /* Never used in core profile */
6826 shader, 32, shader_time_index);
6827 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6828 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6829 /* Try a SIMD32 compile */
6830 if (simd_required <= 8)
6831 v32.import_uniforms(&v8);
6832 else if (simd_required <= 16)
6833 v32.import_uniforms(&v16);
6834
6835 if (!v32.run_cs()) {
6836 compiler->shader_perf_log(log_data,
6837 "SIMD32 shader failed to compile: %s",
6838 v16.fail_msg);
6839 if (!cfg) {
6840 fail_msg =
6841 "Couldn't generate SIMD32 program and not "
6842 "enough threads for SIMD16";
6843 }
6844 } else {
6845 cfg = v32.cfg;
6846 cs_set_simd_size(prog_data, 32);
6847 cs_fill_push_const_info(compiler->devinfo, prog_data);
6848 }
6849 }
6850
6851 if (unlikely(cfg == NULL)) {
6852 assert(fail_msg);
6853 if (error_str)
6854 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6855
6856 return NULL;
6857 }
6858
6859 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6860 v8.promoted_constants, v8.runtime_check_aads_emit,
6861 MESA_SHADER_COMPUTE);
6862 if (INTEL_DEBUG & DEBUG_CS) {
6863 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6864 shader->info.label ? shader->info.label :
6865 "unnamed",
6866 shader->info.name);
6867 g.enable_debug(name);
6868 }
6869
6870 g.generate_code(cfg, prog_data->simd_size);
6871
6872 return g.get_assembly(final_assembly_size);
6873 }
6874
6875 /**
6876 * Test the dispatch mask packing assumptions of
6877 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6878 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6879 * executed with an unexpected dispatch mask.
6880 */
6881 static UNUSED void
6882 brw_fs_test_dispatch_packing(const fs_builder &bld)
6883 {
6884 const gl_shader_stage stage = bld.shader->stage;
6885
6886 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6887 bld.shader->stage_prog_data)) {
6888 const fs_builder ubld = bld.exec_all().group(1, 0);
6889 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6890 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6891 brw_dmask_reg());
6892
6893 ubld.ADD(tmp, mask, brw_imm_ud(1));
6894 ubld.AND(tmp, mask, tmp);
6895
6896 /* This will loop forever if the dispatch mask doesn't have the expected
6897 * form '2^n-1', in which case tmp will be non-zero.
6898 */
6899 bld.emit(BRW_OPCODE_DO);
6900 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6901 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6902 }
6903 }