i965: Factor out push locations.
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 if (type_sz(dst.type) == 8) {
195 shuffle_32bit_load_result_to_64bit_data(
196 bld, retype(vec4_result, dst.type), vec4_result, 2);
197 }
198
199 vec4_result.type = dst.type;
200 bld.MOV(dst, offset(vec4_result, bld,
201 (const_offset & 0xf) / type_sz(vec4_result.type)));
202 }
203
204 /**
205 * A helper for MOV generation for fixing up broken hardware SEND dependency
206 * handling.
207 */
208 void
209 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
210 {
211 /* The caller always wants uncompressed to emit the minimal extra
212 * dependencies, and to avoid having to deal with aligning its regs to 2.
213 */
214 const fs_builder ubld = bld.annotate("send dependency resolve")
215 .half(0);
216
217 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
218 }
219
220 bool
221 fs_inst::equals(fs_inst *inst) const
222 {
223 return (opcode == inst->opcode &&
224 dst.equals(inst->dst) &&
225 src[0].equals(inst->src[0]) &&
226 src[1].equals(inst->src[1]) &&
227 src[2].equals(inst->src[2]) &&
228 saturate == inst->saturate &&
229 predicate == inst->predicate &&
230 conditional_mod == inst->conditional_mod &&
231 mlen == inst->mlen &&
232 base_mrf == inst->base_mrf &&
233 target == inst->target &&
234 eot == inst->eot &&
235 header_size == inst->header_size &&
236 shadow_compare == inst->shadow_compare &&
237 exec_size == inst->exec_size &&
238 offset == inst->offset);
239 }
240
241 bool
242 fs_inst::is_send_from_grf() const
243 {
244 switch (opcode) {
245 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
246 case SHADER_OPCODE_SHADER_TIME_ADD:
247 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
248 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
249 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
250 case SHADER_OPCODE_UNTYPED_ATOMIC:
251 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
252 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
253 case SHADER_OPCODE_TYPED_ATOMIC:
254 case SHADER_OPCODE_TYPED_SURFACE_READ:
255 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
256 case SHADER_OPCODE_URB_WRITE_SIMD8:
257 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
258 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
260 case SHADER_OPCODE_URB_READ_SIMD8:
261 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
262 return true;
263 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
264 return src[1].file == VGRF;
265 case FS_OPCODE_FB_WRITE:
266 case FS_OPCODE_FB_READ:
267 return src[0].file == VGRF;
268 default:
269 if (is_tex())
270 return src[0].file == VGRF;
271
272 return false;
273 }
274 }
275
276 /**
277 * Returns true if this instruction's sources and destinations cannot
278 * safely be the same register.
279 *
280 * In most cases, a register can be written over safely by the same
281 * instruction that is its last use. For a single instruction, the
282 * sources are dereferenced before writing of the destination starts
283 * (naturally).
284 *
285 * However, there are a few cases where this can be problematic:
286 *
287 * - Virtual opcodes that translate to multiple instructions in the
288 * code generator: if src == dst and one instruction writes the
289 * destination before a later instruction reads the source, then
290 * src will have been clobbered.
291 *
292 * - SIMD16 compressed instructions with certain regioning (see below).
293 *
294 * The register allocator uses this information to set up conflicts between
295 * GRF sources and the destination.
296 */
297 bool
298 fs_inst::has_source_and_destination_hazard() const
299 {
300 switch (opcode) {
301 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
302 /* Multiple partial writes to the destination */
303 return true;
304 default:
305 /* The SIMD16 compressed instruction
306 *
307 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
308 *
309 * is actually decoded in hardware as:
310 *
311 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
312 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
313 *
314 * Which is safe. However, if we have uniform accesses
315 * happening, we get into trouble:
316 *
317 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
318 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
319 *
320 * Now our destination for the first instruction overwrote the
321 * second instruction's src0, and we get garbage for those 8
322 * pixels. There's a similar issue for the pre-gen6
323 * pixel_x/pixel_y, which are registers of 16-bit values and thus
324 * would get stomped by the first decode as well.
325 */
326 if (exec_size == 16) {
327 for (int i = 0; i < sources; i++) {
328 if (src[i].file == VGRF && (src[i].stride == 0 ||
329 src[i].type == BRW_REGISTER_TYPE_UW ||
330 src[i].type == BRW_REGISTER_TYPE_W ||
331 src[i].type == BRW_REGISTER_TYPE_UB ||
332 src[i].type == BRW_REGISTER_TYPE_B)) {
333 return true;
334 }
335 }
336 }
337 return false;
338 }
339 }
340
341 bool
342 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
343 {
344 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
345 return false;
346
347 fs_reg reg = this->src[0];
348 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
349 return false;
350
351 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
352 return false;
353
354 for (int i = 0; i < this->sources; i++) {
355 reg.type = this->src[i].type;
356 if (!this->src[i].equals(reg))
357 return false;
358
359 if (i < this->header_size) {
360 reg.offset += REG_SIZE;
361 } else {
362 reg = horiz_offset(reg, this->exec_size);
363 }
364 }
365
366 return true;
367 }
368
369 bool
370 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
371 {
372 if (devinfo->gen == 6 && is_math())
373 return false;
374
375 if (is_send_from_grf())
376 return false;
377
378 if (!backend_instruction::can_do_source_mods())
379 return false;
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_change_types() const
386 {
387 return dst.type == src[0].type &&
388 !src[0].abs && !src[0].negate && !saturate &&
389 (opcode == BRW_OPCODE_MOV ||
390 (opcode == BRW_OPCODE_SEL &&
391 dst.type == src[1].type &&
392 predicate != BRW_PREDICATE_NONE &&
393 !src[1].abs && !src[1].negate));
394 }
395
396 bool
397 fs_inst::has_side_effects() const
398 {
399 return this->eot || backend_instruction::has_side_effects();
400 }
401
402 void
403 fs_reg::init()
404 {
405 memset(this, 0, sizeof(*this));
406 stride = 1;
407 }
408
409 /** Generic unset register constructor. */
410 fs_reg::fs_reg()
411 {
412 init();
413 this->file = BAD_FILE;
414 }
415
416 fs_reg::fs_reg(struct ::brw_reg reg) :
417 backend_reg(reg)
418 {
419 this->offset = 0;
420 this->stride = 1;
421 if (this->file == IMM &&
422 (this->type != BRW_REGISTER_TYPE_V &&
423 this->type != BRW_REGISTER_TYPE_UV &&
424 this->type != BRW_REGISTER_TYPE_VF)) {
425 this->stride = 0;
426 }
427 }
428
429 bool
430 fs_reg::equals(const fs_reg &r) const
431 {
432 return (this->backend_reg::equals(r) &&
433 stride == r.stride);
434 }
435
436 bool
437 fs_reg::is_contiguous() const
438 {
439 return stride == 1;
440 }
441
442 unsigned
443 fs_reg::component_size(unsigned width) const
444 {
445 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
446 hstride == 0 ? 0 :
447 1 << (hstride - 1));
448 return MAX2(width * stride, 1) * type_sz(type);
449 }
450
451 extern "C" int
452 type_size_scalar(const struct glsl_type *type)
453 {
454 unsigned int size, i;
455
456 switch (type->base_type) {
457 case GLSL_TYPE_UINT:
458 case GLSL_TYPE_INT:
459 case GLSL_TYPE_FLOAT:
460 case GLSL_TYPE_BOOL:
461 return type->components();
462 case GLSL_TYPE_DOUBLE:
463 case GLSL_TYPE_UINT64:
464 case GLSL_TYPE_INT64:
465 return type->components() * 2;
466 case GLSL_TYPE_ARRAY:
467 return type_size_scalar(type->fields.array) * type->length;
468 case GLSL_TYPE_STRUCT:
469 size = 0;
470 for (i = 0; i < type->length; i++) {
471 size += type_size_scalar(type->fields.structure[i].type);
472 }
473 return size;
474 case GLSL_TYPE_SAMPLER:
475 /* Samplers take up no register space, since they're baked in at
476 * link time.
477 */
478 return 0;
479 case GLSL_TYPE_ATOMIC_UINT:
480 return 0;
481 case GLSL_TYPE_SUBROUTINE:
482 return 1;
483 case GLSL_TYPE_IMAGE:
484 return BRW_IMAGE_PARAM_SIZE;
485 case GLSL_TYPE_VOID:
486 case GLSL_TYPE_ERROR:
487 case GLSL_TYPE_INTERFACE:
488 case GLSL_TYPE_FUNCTION:
489 unreachable("not reached");
490 }
491
492 return 0;
493 }
494
495 /**
496 * Create a MOV to read the timestamp register.
497 *
498 * The caller is responsible for emitting the MOV. The return value is
499 * the destination of the MOV, with extra parameters set.
500 */
501 fs_reg
502 fs_visitor::get_timestamp(const fs_builder &bld)
503 {
504 assert(devinfo->gen >= 7);
505
506 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
507 BRW_ARF_TIMESTAMP,
508 0),
509 BRW_REGISTER_TYPE_UD));
510
511 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
512
513 /* We want to read the 3 fields we care about even if it's not enabled in
514 * the dispatch.
515 */
516 bld.group(4, 0).exec_all().MOV(dst, ts);
517
518 return dst;
519 }
520
521 void
522 fs_visitor::emit_shader_time_begin()
523 {
524 /* We want only the low 32 bits of the timestamp. Since it's running
525 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
526 * which is plenty of time for our purposes. It is identical across the
527 * EUs, but since it's tracking GPU core speed it will increment at a
528 * varying rate as render P-states change.
529 */
530 shader_start_time = component(
531 get_timestamp(bld.annotate("shader time start")), 0);
532 }
533
534 void
535 fs_visitor::emit_shader_time_end()
536 {
537 /* Insert our code just before the final SEND with EOT. */
538 exec_node *end = this->instructions.get_tail();
539 assert(end && ((fs_inst *) end)->eot);
540 const fs_builder ibld = bld.annotate("shader time end")
541 .exec_all().at(NULL, end);
542 const fs_reg timestamp = get_timestamp(ibld);
543
544 /* We only use the low 32 bits of the timestamp - see
545 * emit_shader_time_begin()).
546 *
547 * We could also check if render P-states have changed (or anything
548 * else that might disrupt timing) by setting smear to 2 and checking if
549 * that field is != 0.
550 */
551 const fs_reg shader_end_time = component(timestamp, 0);
552
553 /* Check that there weren't any timestamp reset events (assuming these
554 * were the only two timestamp reads that happened).
555 */
556 const fs_reg reset = component(timestamp, 2);
557 set_condmod(BRW_CONDITIONAL_Z,
558 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
559 ibld.IF(BRW_PREDICATE_NORMAL);
560
561 fs_reg start = shader_start_time;
562 start.negate = true;
563 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
564 BRW_REGISTER_TYPE_UD),
565 0);
566 const fs_builder cbld = ibld.group(1, 0);
567 cbld.group(1, 0).ADD(diff, start, shader_end_time);
568
569 /* If there were no instructions between the two timestamp gets, the diff
570 * is 2 cycles. Remove that overhead, so I can forget about that when
571 * trying to determine the time taken for single instructions.
572 */
573 cbld.ADD(diff, diff, brw_imm_ud(-2u));
574 SHADER_TIME_ADD(cbld, 0, diff);
575 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
576 ibld.emit(BRW_OPCODE_ELSE);
577 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
578 ibld.emit(BRW_OPCODE_ENDIF);
579 }
580
581 void
582 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
583 int shader_time_subindex,
584 fs_reg value)
585 {
586 int index = shader_time_index * 3 + shader_time_subindex;
587 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
588
589 fs_reg payload;
590 if (dispatch_width == 8)
591 payload = vgrf(glsl_type::uvec2_type);
592 else
593 payload = vgrf(glsl_type::uint_type);
594
595 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
596 }
597
598 void
599 fs_visitor::vfail(const char *format, va_list va)
600 {
601 char *msg;
602
603 if (failed)
604 return;
605
606 failed = true;
607
608 msg = ralloc_vasprintf(mem_ctx, format, va);
609 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
610
611 this->fail_msg = msg;
612
613 if (debug_enabled) {
614 fprintf(stderr, "%s", msg);
615 }
616 }
617
618 void
619 fs_visitor::fail(const char *format, ...)
620 {
621 va_list va;
622
623 va_start(va, format);
624 vfail(format, va);
625 va_end(va);
626 }
627
628 /**
629 * Mark this program as impossible to compile with dispatch width greater
630 * than n.
631 *
632 * During the SIMD8 compile (which happens first), we can detect and flag
633 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
634 * SIMD16+ compile altogether.
635 *
636 * During a compile of dispatch width greater than n (if one happens anyway),
637 * this just calls fail().
638 */
639 void
640 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
641 {
642 if (dispatch_width > n) {
643 fail("%s", msg);
644 } else {
645 max_dispatch_width = n;
646 compiler->shader_perf_log(log_data,
647 "Shader dispatch width limited to SIMD%d: %s",
648 n, msg);
649 }
650 }
651
652 /**
653 * Returns true if the instruction has a flag that means it won't
654 * update an entire destination register.
655 *
656 * For example, dead code elimination and live variable analysis want to know
657 * when a write to a variable screens off any preceding values that were in
658 * it.
659 */
660 bool
661 fs_inst::is_partial_write() const
662 {
663 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
664 (this->exec_size * type_sz(this->dst.type)) < 32 ||
665 !this->dst.is_contiguous() ||
666 this->dst.offset % REG_SIZE != 0);
667 }
668
669 unsigned
670 fs_inst::components_read(unsigned i) const
671 {
672 /* Return zero if the source is not present. */
673 if (src[i].file == BAD_FILE)
674 return 0;
675
676 switch (opcode) {
677 case FS_OPCODE_LINTERP:
678 if (i == 0)
679 return 2;
680 else
681 return 1;
682
683 case FS_OPCODE_PIXEL_X:
684 case FS_OPCODE_PIXEL_Y:
685 assert(i == 0);
686 return 2;
687
688 case FS_OPCODE_FB_WRITE_LOGICAL:
689 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
690 /* First/second FB write color. */
691 if (i < 2)
692 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
693 else
694 return 1;
695
696 case SHADER_OPCODE_TEX_LOGICAL:
697 case SHADER_OPCODE_TXD_LOGICAL:
698 case SHADER_OPCODE_TXF_LOGICAL:
699 case SHADER_OPCODE_TXL_LOGICAL:
700 case SHADER_OPCODE_TXS_LOGICAL:
701 case FS_OPCODE_TXB_LOGICAL:
702 case SHADER_OPCODE_TXF_CMS_LOGICAL:
703 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
704 case SHADER_OPCODE_TXF_UMS_LOGICAL:
705 case SHADER_OPCODE_TXF_MCS_LOGICAL:
706 case SHADER_OPCODE_LOD_LOGICAL:
707 case SHADER_OPCODE_TG4_LOGICAL:
708 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
709 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
710 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
711 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
712 /* Texture coordinates. */
713 if (i == TEX_LOGICAL_SRC_COORDINATE)
714 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
715 /* Texture derivatives. */
716 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
717 opcode == SHADER_OPCODE_TXD_LOGICAL)
718 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
719 /* Texture offset. */
720 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
721 return 2;
722 /* MCS */
723 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
724 return 2;
725 else
726 return 1;
727
728 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
729 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
730 assert(src[3].file == IMM);
731 /* Surface coordinates. */
732 if (i == 0)
733 return src[3].ud;
734 /* Surface operation source (ignored for reads). */
735 else if (i == 1)
736 return 0;
737 else
738 return 1;
739
740 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
741 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
742 assert(src[3].file == IMM &&
743 src[4].file == IMM);
744 /* Surface coordinates. */
745 if (i == 0)
746 return src[3].ud;
747 /* Surface operation source. */
748 else if (i == 1)
749 return src[4].ud;
750 else
751 return 1;
752
753 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
754 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
755 assert(src[3].file == IMM &&
756 src[4].file == IMM);
757 const unsigned op = src[4].ud;
758 /* Surface coordinates. */
759 if (i == 0)
760 return src[3].ud;
761 /* Surface operation source. */
762 else if (i == 1 && op == BRW_AOP_CMPWR)
763 return 2;
764 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
765 op == BRW_AOP_PREDEC))
766 return 0;
767 else
768 return 1;
769 }
770
771 default:
772 return 1;
773 }
774 }
775
776 unsigned
777 fs_inst::size_read(int arg) const
778 {
779 switch (opcode) {
780 case FS_OPCODE_FB_WRITE:
781 case FS_OPCODE_FB_READ:
782 case SHADER_OPCODE_URB_WRITE_SIMD8:
783 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
784 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
785 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
786 case SHADER_OPCODE_URB_READ_SIMD8:
787 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
788 case SHADER_OPCODE_UNTYPED_ATOMIC:
789 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
790 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
791 case SHADER_OPCODE_TYPED_ATOMIC:
792 case SHADER_OPCODE_TYPED_SURFACE_READ:
793 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
794 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
795 if (arg == 0)
796 return mlen * REG_SIZE;
797 break;
798
799 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
800 /* The payload is actually stored in src1 */
801 if (arg == 1)
802 return mlen * REG_SIZE;
803 break;
804
805 case FS_OPCODE_LINTERP:
806 if (arg == 1)
807 return 16;
808 break;
809
810 case SHADER_OPCODE_LOAD_PAYLOAD:
811 if (arg < this->header_size)
812 return REG_SIZE;
813 break;
814
815 case CS_OPCODE_CS_TERMINATE:
816 case SHADER_OPCODE_BARRIER:
817 return REG_SIZE;
818
819 case SHADER_OPCODE_MOV_INDIRECT:
820 if (arg == 0) {
821 assert(src[2].file == IMM);
822 return src[2].ud;
823 }
824 break;
825
826 default:
827 if (is_tex() && arg == 0 && src[0].file == VGRF)
828 return mlen * REG_SIZE;
829 break;
830 }
831
832 switch (src[arg].file) {
833 case UNIFORM:
834 case IMM:
835 return components_read(arg) * type_sz(src[arg].type);
836 case BAD_FILE:
837 case ARF:
838 case FIXED_GRF:
839 case VGRF:
840 case ATTR:
841 return components_read(arg) * src[arg].component_size(exec_size);
842 case MRF:
843 unreachable("MRF registers are not allowed as sources");
844 }
845 return 0;
846 }
847
848 namespace {
849 /* Return the subset of flag registers that an instruction could
850 * potentially read or write based on the execution controls and flag
851 * subregister number of the instruction.
852 */
853 unsigned
854 flag_mask(const fs_inst *inst)
855 {
856 const unsigned start = inst->flag_subreg * 16 + inst->group;
857 const unsigned end = start + inst->exec_size;
858 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
859 }
860 }
861
862 unsigned
863 fs_inst::flags_read(const gen_device_info *devinfo) const
864 {
865 /* XXX - This doesn't consider explicit uses of the flag register as source
866 * region.
867 */
868 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
869 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
870 /* The vertical predication modes combine corresponding bits from
871 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
872 */
873 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
874 return flag_mask(this) << shift | flag_mask(this);
875 } else if (predicate) {
876 return flag_mask(this);
877 } else {
878 return 0;
879 }
880 }
881
882 unsigned
883 fs_inst::flags_written() const
884 {
885 /* XXX - This doesn't consider explicit uses of the flag register as
886 * destination region.
887 */
888 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
889 opcode != BRW_OPCODE_IF &&
890 opcode != BRW_OPCODE_WHILE)) ||
891 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
892 return flag_mask(this);
893 } else {
894 return 0;
895 }
896 }
897
898 /**
899 * Returns how many MRFs an FS opcode will write over.
900 *
901 * Note that this is not the 0 or 1 implied writes in an actual gen
902 * instruction -- the FS opcodes often generate MOVs in addition.
903 */
904 int
905 fs_visitor::implied_mrf_writes(fs_inst *inst)
906 {
907 if (inst->mlen == 0)
908 return 0;
909
910 if (inst->base_mrf == -1)
911 return 0;
912
913 switch (inst->opcode) {
914 case SHADER_OPCODE_RCP:
915 case SHADER_OPCODE_RSQ:
916 case SHADER_OPCODE_SQRT:
917 case SHADER_OPCODE_EXP2:
918 case SHADER_OPCODE_LOG2:
919 case SHADER_OPCODE_SIN:
920 case SHADER_OPCODE_COS:
921 return 1 * dispatch_width / 8;
922 case SHADER_OPCODE_POW:
923 case SHADER_OPCODE_INT_QUOTIENT:
924 case SHADER_OPCODE_INT_REMAINDER:
925 return 2 * dispatch_width / 8;
926 case SHADER_OPCODE_TEX:
927 case FS_OPCODE_TXB:
928 case SHADER_OPCODE_TXD:
929 case SHADER_OPCODE_TXF:
930 case SHADER_OPCODE_TXF_CMS:
931 case SHADER_OPCODE_TXF_MCS:
932 case SHADER_OPCODE_TG4:
933 case SHADER_OPCODE_TG4_OFFSET:
934 case SHADER_OPCODE_TXL:
935 case SHADER_OPCODE_TXS:
936 case SHADER_OPCODE_LOD:
937 case SHADER_OPCODE_SAMPLEINFO:
938 return 1;
939 case FS_OPCODE_FB_WRITE:
940 return 2;
941 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
942 case SHADER_OPCODE_GEN4_SCRATCH_READ:
943 return 1;
944 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
945 return inst->mlen;
946 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
947 return inst->mlen;
948 default:
949 unreachable("not reached");
950 }
951 }
952
953 fs_reg
954 fs_visitor::vgrf(const glsl_type *const type)
955 {
956 int reg_width = dispatch_width / 8;
957 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
958 brw_type_for_base_type(type));
959 }
960
961 fs_reg::fs_reg(enum brw_reg_file file, int nr)
962 {
963 init();
964 this->file = file;
965 this->nr = nr;
966 this->type = BRW_REGISTER_TYPE_F;
967 this->stride = (file == UNIFORM ? 0 : 1);
968 }
969
970 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
971 {
972 init();
973 this->file = file;
974 this->nr = nr;
975 this->type = type;
976 this->stride = (file == UNIFORM ? 0 : 1);
977 }
978
979 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
980 * This brings in those uniform definitions
981 */
982 void
983 fs_visitor::import_uniforms(fs_visitor *v)
984 {
985 this->push_constant_loc = v->push_constant_loc;
986 this->pull_constant_loc = v->pull_constant_loc;
987 this->uniforms = v->uniforms;
988 }
989
990 void
991 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
992 {
993 assert(stage == MESA_SHADER_FRAGMENT);
994
995 /* gl_FragCoord.x */
996 bld.MOV(wpos, this->pixel_x);
997 wpos = offset(wpos, bld, 1);
998
999 /* gl_FragCoord.y */
1000 bld.MOV(wpos, this->pixel_y);
1001 wpos = offset(wpos, bld, 1);
1002
1003 /* gl_FragCoord.z */
1004 if (devinfo->gen >= 6) {
1005 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1006 } else {
1007 bld.emit(FS_OPCODE_LINTERP, wpos,
1008 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1009 interp_reg(VARYING_SLOT_POS, 2));
1010 }
1011 wpos = offset(wpos, bld, 1);
1012
1013 /* gl_FragCoord.w: Already set up in emit_interpolation */
1014 bld.MOV(wpos, this->wpos_w);
1015 }
1016
1017 enum brw_barycentric_mode
1018 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1019 {
1020 /* Barycentric modes don't make sense for flat inputs. */
1021 assert(mode != INTERP_MODE_FLAT);
1022
1023 unsigned bary;
1024 switch (op) {
1025 case nir_intrinsic_load_barycentric_pixel:
1026 case nir_intrinsic_load_barycentric_at_offset:
1027 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1028 break;
1029 case nir_intrinsic_load_barycentric_centroid:
1030 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1031 break;
1032 case nir_intrinsic_load_barycentric_sample:
1033 case nir_intrinsic_load_barycentric_at_sample:
1034 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1035 break;
1036 default:
1037 unreachable("invalid intrinsic");
1038 }
1039
1040 if (mode == INTERP_MODE_NOPERSPECTIVE)
1041 bary += 3;
1042
1043 return (enum brw_barycentric_mode) bary;
1044 }
1045
1046 /**
1047 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1048 */
1049 static enum brw_barycentric_mode
1050 centroid_to_pixel(enum brw_barycentric_mode bary)
1051 {
1052 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1053 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1054 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1055 }
1056
1057 fs_reg *
1058 fs_visitor::emit_frontfacing_interpolation()
1059 {
1060 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1061
1062 if (devinfo->gen >= 6) {
1063 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1064 * a boolean result from this (~0/true or 0/false).
1065 *
1066 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1067 * this task in only one instruction:
1068 * - a negation source modifier will flip the bit; and
1069 * - a W -> D type conversion will sign extend the bit into the high
1070 * word of the destination.
1071 *
1072 * An ASR 15 fills the low word of the destination.
1073 */
1074 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1075 g0.negate = true;
1076
1077 bld.ASR(*reg, g0, brw_imm_d(15));
1078 } else {
1079 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1080 * a boolean result from this (1/true or 0/false).
1081 *
1082 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1083 * the negation source modifier to flip it. Unfortunately the SHR
1084 * instruction only operates on UD (or D with an abs source modifier)
1085 * sources without negation.
1086 *
1087 * Instead, use ASR (which will give ~0/true or 0/false).
1088 */
1089 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1090 g1_6.negate = true;
1091
1092 bld.ASR(*reg, g1_6, brw_imm_d(31));
1093 }
1094
1095 return reg;
1096 }
1097
1098 void
1099 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1100 {
1101 assert(stage == MESA_SHADER_FRAGMENT);
1102 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1103 assert(dst.type == BRW_REGISTER_TYPE_F);
1104
1105 if (wm_prog_data->persample_dispatch) {
1106 /* Convert int_sample_pos to floating point */
1107 bld.MOV(dst, int_sample_pos);
1108 /* Scale to the range [0, 1] */
1109 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1110 }
1111 else {
1112 /* From ARB_sample_shading specification:
1113 * "When rendering to a non-multisample buffer, or if multisample
1114 * rasterization is disabled, gl_SamplePosition will always be
1115 * (0.5, 0.5).
1116 */
1117 bld.MOV(dst, brw_imm_f(0.5f));
1118 }
1119 }
1120
1121 fs_reg *
1122 fs_visitor::emit_samplepos_setup()
1123 {
1124 assert(devinfo->gen >= 6);
1125
1126 const fs_builder abld = bld.annotate("compute sample position");
1127 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1128 fs_reg pos = *reg;
1129 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1130 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1131
1132 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1133 * mode will be enabled.
1134 *
1135 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1136 * R31.1:0 Position Offset X/Y for Slot[3:0]
1137 * R31.3:2 Position Offset X/Y for Slot[7:4]
1138 * .....
1139 *
1140 * The X, Y sample positions come in as bytes in thread payload. So, read
1141 * the positions using vstride=16, width=8, hstride=2.
1142 */
1143 struct brw_reg sample_pos_reg =
1144 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1145 BRW_REGISTER_TYPE_B), 16, 8, 2);
1146
1147 if (dispatch_width == 8) {
1148 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1149 } else {
1150 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1151 abld.half(1).MOV(half(int_sample_x, 1),
1152 fs_reg(suboffset(sample_pos_reg, 16)));
1153 }
1154 /* Compute gl_SamplePosition.x */
1155 compute_sample_position(pos, int_sample_x);
1156 pos = offset(pos, abld, 1);
1157 if (dispatch_width == 8) {
1158 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1159 } else {
1160 abld.half(0).MOV(half(int_sample_y, 0),
1161 fs_reg(suboffset(sample_pos_reg, 1)));
1162 abld.half(1).MOV(half(int_sample_y, 1),
1163 fs_reg(suboffset(sample_pos_reg, 17)));
1164 }
1165 /* Compute gl_SamplePosition.y */
1166 compute_sample_position(pos, int_sample_y);
1167 return reg;
1168 }
1169
1170 fs_reg *
1171 fs_visitor::emit_sampleid_setup()
1172 {
1173 assert(stage == MESA_SHADER_FRAGMENT);
1174 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1175 assert(devinfo->gen >= 6);
1176
1177 const fs_builder abld = bld.annotate("compute sample id");
1178 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1179
1180 if (!key->multisample_fbo) {
1181 /* As per GL_ARB_sample_shading specification:
1182 * "When rendering to a non-multisample buffer, or if multisample
1183 * rasterization is disabled, gl_SampleID will always be zero."
1184 */
1185 abld.MOV(*reg, brw_imm_d(0));
1186 } else if (devinfo->gen >= 8) {
1187 /* Sample ID comes in as 4-bit numbers in g1.0:
1188 *
1189 * 15:12 Slot 3 SampleID (only used in SIMD16)
1190 * 11:8 Slot 2 SampleID (only used in SIMD16)
1191 * 7:4 Slot 1 SampleID
1192 * 3:0 Slot 0 SampleID
1193 *
1194 * Each slot corresponds to four channels, so we want to replicate each
1195 * half-byte value to 4 channels in a row:
1196 *
1197 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1198 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1199 *
1200 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1201 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1202 *
1203 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1204 * channels to read the first byte (7:0), and the second group of 8
1205 * channels to read the second byte (15:8). Then, we shift right by
1206 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1207 * values into place. Finally, we AND with 0xf to keep the low nibble.
1208 *
1209 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1210 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1211 *
1212 * TODO: These payload bits exist on Gen7 too, but they appear to always
1213 * be zero, so this code fails to work. We should find out why.
1214 */
1215 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1216
1217 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1218 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1219 brw_imm_v(0x44440000));
1220 abld.AND(*reg, tmp, brw_imm_w(0xf));
1221 } else {
1222 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1223 BRW_REGISTER_TYPE_D), 0);
1224 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1225
1226 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1227 * 8x multisampling, subspan 0 will represent sample N (where N
1228 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1229 * 7. We can find the value of N by looking at R0.0 bits 7:6
1230 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1231 * (since samples are always delivered in pairs). That is, we
1232 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1233 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1234 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1235 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1236 * populating a temporary variable with the sequence (0, 1, 2, 3),
1237 * and then reading from it using vstride=1, width=4, hstride=0.
1238 * These computations hold good for 4x multisampling as well.
1239 *
1240 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1241 * the first four slots are sample 0 of subspan 0; the next four
1242 * are sample 1 of subspan 0; the third group is sample 0 of
1243 * subspan 1, and finally sample 1 of subspan 1.
1244 */
1245
1246 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1247 * accomodate 16x MSAA.
1248 */
1249 abld.exec_all().group(1, 0)
1250 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1251 brw_imm_ud(0xc0));
1252 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1253
1254 /* This works for both SIMD8 and SIMD16 */
1255 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1256
1257 /* This special instruction takes care of setting vstride=1,
1258 * width=4, hstride=0 of t2 during an ADD instruction.
1259 */
1260 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1261 }
1262
1263 return reg;
1264 }
1265
1266 fs_reg *
1267 fs_visitor::emit_samplemaskin_setup()
1268 {
1269 assert(stage == MESA_SHADER_FRAGMENT);
1270 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1271 assert(devinfo->gen >= 6);
1272
1273 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1274
1275 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1276 BRW_REGISTER_TYPE_D));
1277
1278 if (wm_prog_data->persample_dispatch) {
1279 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1280 * and a mask representing which sample is being processed by the
1281 * current shader invocation.
1282 *
1283 * From the OES_sample_variables specification:
1284 * "When per-sample shading is active due to the use of a fragment input
1285 * qualified by "sample" or due to the use of the gl_SampleID or
1286 * gl_SamplePosition variables, only the bit for the current sample is
1287 * set in gl_SampleMaskIn."
1288 */
1289 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1290
1291 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1292 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1293
1294 fs_reg one = vgrf(glsl_type::int_type);
1295 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1296 abld.MOV(one, brw_imm_d(1));
1297 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1298 abld.AND(*reg, enabled_mask, coverage_mask);
1299 } else {
1300 /* In per-pixel mode, the coverage mask is sufficient. */
1301 *reg = coverage_mask;
1302 }
1303 return reg;
1304 }
1305
1306 fs_reg
1307 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1308 {
1309 if (!src.abs && !src.negate)
1310 return src;
1311
1312 fs_reg temp = bld.vgrf(src.type);
1313 bld.MOV(temp, src);
1314
1315 return temp;
1316 }
1317
1318 void
1319 fs_visitor::emit_discard_jump()
1320 {
1321 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1322
1323 /* For performance, after a discard, jump to the end of the
1324 * shader if all relevant channels have been discarded.
1325 */
1326 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1327 discard_jump->flag_subreg = 1;
1328
1329 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1330 discard_jump->predicate_inverse = true;
1331 }
1332
1333 void
1334 fs_visitor::emit_gs_thread_end()
1335 {
1336 assert(stage == MESA_SHADER_GEOMETRY);
1337
1338 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1339
1340 if (gs_compile->control_data_header_size_bits > 0) {
1341 emit_gs_control_data_bits(this->final_gs_vertex_count);
1342 }
1343
1344 const fs_builder abld = bld.annotate("thread end");
1345 fs_inst *inst;
1346
1347 if (gs_prog_data->static_vertex_count != -1) {
1348 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1349 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1350 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1351 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1352 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1353 prev->eot = true;
1354
1355 /* Delete now dead instructions. */
1356 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1357 if (dead == prev)
1358 break;
1359 dead->remove();
1360 }
1361 return;
1362 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1363 break;
1364 }
1365 }
1366 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1367 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1368 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1369 inst->mlen = 1;
1370 } else {
1371 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1372 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1373 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1374 sources[1] = this->final_gs_vertex_count;
1375 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1376 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1377 inst->mlen = 2;
1378 }
1379 inst->eot = true;
1380 inst->offset = 0;
1381 }
1382
1383 void
1384 fs_visitor::assign_curb_setup()
1385 {
1386 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1387
1388 unsigned ubo_push_length = 0;
1389 for (int i = 0; i < 4; i++) {
1390 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1391 }
1392
1393 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1394
1395 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1396 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1397 for (unsigned int i = 0; i < inst->sources; i++) {
1398 if (inst->src[i].file == UNIFORM) {
1399 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1400 int constant_nr;
1401 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1402 constant_nr = push_constant_loc[uniform_nr];
1403 } else {
1404 /* Section 5.11 of the OpenGL 4.1 spec says:
1405 * "Out-of-bounds reads return undefined values, which include
1406 * values from other variables of the active program or zero."
1407 * Just return the first push constant.
1408 */
1409 constant_nr = 0;
1410 }
1411
1412 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1413 constant_nr / 8,
1414 constant_nr % 8);
1415 brw_reg.abs = inst->src[i].abs;
1416 brw_reg.negate = inst->src[i].negate;
1417
1418 assert(inst->src[i].stride == 0);
1419 inst->src[i] = byte_offset(
1420 retype(brw_reg, inst->src[i].type),
1421 inst->src[i].offset % 4);
1422 }
1423 }
1424 }
1425
1426 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1427 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1428 }
1429
1430 void
1431 fs_visitor::calculate_urb_setup()
1432 {
1433 assert(stage == MESA_SHADER_FRAGMENT);
1434 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1435 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1436
1437 memset(prog_data->urb_setup, -1,
1438 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1439
1440 int urb_next = 0;
1441 /* Figure out where each of the incoming setup attributes lands. */
1442 if (devinfo->gen >= 6) {
1443 if (_mesa_bitcount_64(nir->info.inputs_read &
1444 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1445 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1446 * first 16 varying inputs, so we can put them wherever we want.
1447 * Just put them in order.
1448 *
1449 * This is useful because it means that (a) inputs not used by the
1450 * fragment shader won't take up valuable register space, and (b) we
1451 * won't have to recompile the fragment shader if it gets paired with
1452 * a different vertex (or geometry) shader.
1453 */
1454 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1455 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1456 BITFIELD64_BIT(i)) {
1457 prog_data->urb_setup[i] = urb_next++;
1458 }
1459 }
1460 } else {
1461 bool include_vue_header =
1462 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1463
1464 /* We have enough input varyings that the SF/SBE pipeline stage can't
1465 * arbitrarily rearrange them to suit our whim; we have to put them
1466 * in an order that matches the output of the previous pipeline stage
1467 * (geometry or vertex shader).
1468 */
1469 struct brw_vue_map prev_stage_vue_map;
1470 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1471 key->input_slots_valid,
1472 nir->info.separate_shader);
1473 int first_slot =
1474 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1475
1476 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1477 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1478 slot++) {
1479 int varying = prev_stage_vue_map.slot_to_varying[slot];
1480 if (varying != BRW_VARYING_SLOT_PAD &&
1481 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1482 BITFIELD64_BIT(varying))) {
1483 prog_data->urb_setup[varying] = slot - first_slot;
1484 }
1485 }
1486 urb_next = prev_stage_vue_map.num_slots - first_slot;
1487 }
1488 } else {
1489 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1490 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1491 /* Point size is packed into the header, not as a general attribute */
1492 if (i == VARYING_SLOT_PSIZ)
1493 continue;
1494
1495 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1496 /* The back color slot is skipped when the front color is
1497 * also written to. In addition, some slots can be
1498 * written in the vertex shader and not read in the
1499 * fragment shader. So the register number must always be
1500 * incremented, mapped or not.
1501 */
1502 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1503 prog_data->urb_setup[i] = urb_next;
1504 urb_next++;
1505 }
1506 }
1507
1508 /*
1509 * It's a FS only attribute, and we did interpolation for this attribute
1510 * in SF thread. So, count it here, too.
1511 *
1512 * See compile_sf_prog() for more info.
1513 */
1514 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1515 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1516 }
1517
1518 prog_data->num_varying_inputs = urb_next;
1519 }
1520
1521 void
1522 fs_visitor::assign_urb_setup()
1523 {
1524 assert(stage == MESA_SHADER_FRAGMENT);
1525 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1526
1527 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1528
1529 /* Offset all the urb_setup[] index by the actual position of the
1530 * setup regs, now that the location of the constants has been chosen.
1531 */
1532 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1533 if (inst->opcode == FS_OPCODE_LINTERP) {
1534 assert(inst->src[1].file == FIXED_GRF);
1535 inst->src[1].nr += urb_start;
1536 }
1537
1538 if (inst->opcode == FS_OPCODE_CINTERP) {
1539 assert(inst->src[0].file == FIXED_GRF);
1540 inst->src[0].nr += urb_start;
1541 }
1542 }
1543
1544 /* Each attribute is 4 setup channels, each of which is half a reg. */
1545 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1546 }
1547
1548 void
1549 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1550 {
1551 for (int i = 0; i < inst->sources; i++) {
1552 if (inst->src[i].file == ATTR) {
1553 int grf = payload.num_regs +
1554 prog_data->curb_read_length +
1555 inst->src[i].nr +
1556 inst->src[i].offset / REG_SIZE;
1557
1558 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1559 *
1560 * VertStride must be used to cross GRF register boundaries. This
1561 * rule implies that elements within a 'Width' cannot cross GRF
1562 * boundaries.
1563 *
1564 * So, for registers that are large enough, we have to split the exec
1565 * size in two and trust the compression state to sort it out.
1566 */
1567 unsigned total_size = inst->exec_size *
1568 inst->src[i].stride *
1569 type_sz(inst->src[i].type);
1570
1571 assert(total_size <= 2 * REG_SIZE);
1572 const unsigned exec_size =
1573 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1574
1575 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1576 struct brw_reg reg =
1577 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1578 inst->src[i].offset % REG_SIZE),
1579 exec_size * inst->src[i].stride,
1580 width, inst->src[i].stride);
1581 reg.abs = inst->src[i].abs;
1582 reg.negate = inst->src[i].negate;
1583
1584 inst->src[i] = reg;
1585 }
1586 }
1587 }
1588
1589 void
1590 fs_visitor::assign_vs_urb_setup()
1591 {
1592 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1593
1594 assert(stage == MESA_SHADER_VERTEX);
1595
1596 /* Each attribute is 4 regs. */
1597 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1598
1599 assert(vs_prog_data->base.urb_read_length <= 15);
1600
1601 /* Rewrite all ATTR file references to the hw grf that they land in. */
1602 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1603 convert_attr_sources_to_hw_regs(inst);
1604 }
1605 }
1606
1607 void
1608 fs_visitor::assign_tcs_single_patch_urb_setup()
1609 {
1610 assert(stage == MESA_SHADER_TESS_CTRL);
1611
1612 /* Rewrite all ATTR file references to HW_REGs. */
1613 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1614 convert_attr_sources_to_hw_regs(inst);
1615 }
1616 }
1617
1618 void
1619 fs_visitor::assign_tes_urb_setup()
1620 {
1621 assert(stage == MESA_SHADER_TESS_EVAL);
1622
1623 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1624
1625 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1626
1627 /* Rewrite all ATTR file references to HW_REGs. */
1628 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1629 convert_attr_sources_to_hw_regs(inst);
1630 }
1631 }
1632
1633 void
1634 fs_visitor::assign_gs_urb_setup()
1635 {
1636 assert(stage == MESA_SHADER_GEOMETRY);
1637
1638 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1639
1640 first_non_payload_grf +=
1641 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1642
1643 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1644 /* Rewrite all ATTR file references to GRFs. */
1645 convert_attr_sources_to_hw_regs(inst);
1646 }
1647 }
1648
1649
1650 /**
1651 * Split large virtual GRFs into separate components if we can.
1652 *
1653 * This is mostly duplicated with what brw_fs_vector_splitting does,
1654 * but that's really conservative because it's afraid of doing
1655 * splitting that doesn't result in real progress after the rest of
1656 * the optimization phases, which would cause infinite looping in
1657 * optimization. We can do it once here, safely. This also has the
1658 * opportunity to split interpolated values, or maybe even uniforms,
1659 * which we don't have at the IR level.
1660 *
1661 * We want to split, because virtual GRFs are what we register
1662 * allocate and spill (due to contiguousness requirements for some
1663 * instructions), and they're what we naturally generate in the
1664 * codegen process, but most virtual GRFs don't actually need to be
1665 * contiguous sets of GRFs. If we split, we'll end up with reduced
1666 * live intervals and better dead code elimination and coalescing.
1667 */
1668 void
1669 fs_visitor::split_virtual_grfs()
1670 {
1671 /* Compact the register file so we eliminate dead vgrfs. This
1672 * only defines split points for live registers, so if we have
1673 * too large dead registers they will hit assertions later.
1674 */
1675 compact_virtual_grfs();
1676
1677 int num_vars = this->alloc.count;
1678
1679 /* Count the total number of registers */
1680 int reg_count = 0;
1681 int vgrf_to_reg[num_vars];
1682 for (int i = 0; i < num_vars; i++) {
1683 vgrf_to_reg[i] = reg_count;
1684 reg_count += alloc.sizes[i];
1685 }
1686
1687 /* An array of "split points". For each register slot, this indicates
1688 * if this slot can be separated from the previous slot. Every time an
1689 * instruction uses multiple elements of a register (as a source or
1690 * destination), we mark the used slots as inseparable. Then we go
1691 * through and split the registers into the smallest pieces we can.
1692 */
1693 bool split_points[reg_count];
1694 memset(split_points, 0, sizeof(split_points));
1695
1696 /* Mark all used registers as fully splittable */
1697 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1698 if (inst->dst.file == VGRF) {
1699 int reg = vgrf_to_reg[inst->dst.nr];
1700 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1701 split_points[reg + j] = true;
1702 }
1703
1704 for (int i = 0; i < inst->sources; i++) {
1705 if (inst->src[i].file == VGRF) {
1706 int reg = vgrf_to_reg[inst->src[i].nr];
1707 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1708 split_points[reg + j] = true;
1709 }
1710 }
1711 }
1712
1713 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1714 if (inst->dst.file == VGRF) {
1715 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1716 for (unsigned j = 1; j < regs_written(inst); j++)
1717 split_points[reg + j] = false;
1718 }
1719 for (int i = 0; i < inst->sources; i++) {
1720 if (inst->src[i].file == VGRF) {
1721 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1722 for (unsigned j = 1; j < regs_read(inst, i); j++)
1723 split_points[reg + j] = false;
1724 }
1725 }
1726 }
1727
1728 int new_virtual_grf[reg_count];
1729 int new_reg_offset[reg_count];
1730
1731 int reg = 0;
1732 for (int i = 0; i < num_vars; i++) {
1733 /* The first one should always be 0 as a quick sanity check. */
1734 assert(split_points[reg] == false);
1735
1736 /* j = 0 case */
1737 new_reg_offset[reg] = 0;
1738 reg++;
1739 int offset = 1;
1740
1741 /* j > 0 case */
1742 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1743 /* If this is a split point, reset the offset to 0 and allocate a
1744 * new virtual GRF for the previous offset many registers
1745 */
1746 if (split_points[reg]) {
1747 assert(offset <= MAX_VGRF_SIZE);
1748 int grf = alloc.allocate(offset);
1749 for (int k = reg - offset; k < reg; k++)
1750 new_virtual_grf[k] = grf;
1751 offset = 0;
1752 }
1753 new_reg_offset[reg] = offset;
1754 offset++;
1755 reg++;
1756 }
1757
1758 /* The last one gets the original register number */
1759 assert(offset <= MAX_VGRF_SIZE);
1760 alloc.sizes[i] = offset;
1761 for (int k = reg - offset; k < reg; k++)
1762 new_virtual_grf[k] = i;
1763 }
1764 assert(reg == reg_count);
1765
1766 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1767 if (inst->dst.file == VGRF) {
1768 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1769 inst->dst.nr = new_virtual_grf[reg];
1770 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1771 inst->dst.offset % REG_SIZE;
1772 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1773 }
1774 for (int i = 0; i < inst->sources; i++) {
1775 if (inst->src[i].file == VGRF) {
1776 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1777 inst->src[i].nr = new_virtual_grf[reg];
1778 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1779 inst->src[i].offset % REG_SIZE;
1780 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1781 }
1782 }
1783 }
1784 invalidate_live_intervals();
1785 }
1786
1787 /**
1788 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1789 *
1790 * During code generation, we create tons of temporary variables, many of
1791 * which get immediately killed and are never used again. Yet, in later
1792 * optimization and analysis passes, such as compute_live_intervals, we need
1793 * to loop over all the virtual GRFs. Compacting them can save a lot of
1794 * overhead.
1795 */
1796 bool
1797 fs_visitor::compact_virtual_grfs()
1798 {
1799 bool progress = false;
1800 int remap_table[this->alloc.count];
1801 memset(remap_table, -1, sizeof(remap_table));
1802
1803 /* Mark which virtual GRFs are used. */
1804 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1805 if (inst->dst.file == VGRF)
1806 remap_table[inst->dst.nr] = 0;
1807
1808 for (int i = 0; i < inst->sources; i++) {
1809 if (inst->src[i].file == VGRF)
1810 remap_table[inst->src[i].nr] = 0;
1811 }
1812 }
1813
1814 /* Compact the GRF arrays. */
1815 int new_index = 0;
1816 for (unsigned i = 0; i < this->alloc.count; i++) {
1817 if (remap_table[i] == -1) {
1818 /* We just found an unused register. This means that we are
1819 * actually going to compact something.
1820 */
1821 progress = true;
1822 } else {
1823 remap_table[i] = new_index;
1824 alloc.sizes[new_index] = alloc.sizes[i];
1825 invalidate_live_intervals();
1826 ++new_index;
1827 }
1828 }
1829
1830 this->alloc.count = new_index;
1831
1832 /* Patch all the instructions to use the newly renumbered registers */
1833 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1834 if (inst->dst.file == VGRF)
1835 inst->dst.nr = remap_table[inst->dst.nr];
1836
1837 for (int i = 0; i < inst->sources; i++) {
1838 if (inst->src[i].file == VGRF)
1839 inst->src[i].nr = remap_table[inst->src[i].nr];
1840 }
1841 }
1842
1843 /* Patch all the references to delta_xy, since they're used in register
1844 * allocation. If they're unused, switch them to BAD_FILE so we don't
1845 * think some random VGRF is delta_xy.
1846 */
1847 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1848 if (delta_xy[i].file == VGRF) {
1849 if (remap_table[delta_xy[i].nr] != -1) {
1850 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1851 } else {
1852 delta_xy[i].file = BAD_FILE;
1853 }
1854 }
1855 }
1856
1857 return progress;
1858 }
1859
1860 static void
1861 set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1862 unsigned *max_chunk_bitsize,
1863 bool contiguous, unsigned bitsize,
1864 const unsigned target_bitsize,
1865 int *push_constant_loc, int *pull_constant_loc,
1866 unsigned *num_push_constants,
1867 unsigned *num_pull_constants,
1868 const unsigned max_push_components,
1869 const unsigned max_chunk_size,
1870 struct brw_stage_prog_data *stage_prog_data)
1871 {
1872 /* This is the first live uniform in the chunk */
1873 if (*chunk_start < 0)
1874 *chunk_start = uniform;
1875
1876 /* Keep track of the maximum bit size access in contiguous uniforms */
1877 *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1878
1879 /* If this element does not need to be contiguous with the next, we
1880 * split at this point and everything between chunk_start and u forms a
1881 * single chunk.
1882 */
1883 if (!contiguous) {
1884 /* If bitsize doesn't match the target one, skip it */
1885 if (*max_chunk_bitsize != target_bitsize) {
1886 /* FIXME: right now we only support 32 and 64-bit accesses */
1887 assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1888 *max_chunk_bitsize = 0;
1889 *chunk_start = -1;
1890 return;
1891 }
1892
1893 unsigned chunk_size = uniform - *chunk_start + 1;
1894
1895 /* Decide whether we should push or pull this parameter. In the
1896 * Vulkan driver, push constants are explicitly exposed via the API
1897 * so we push everything. In GL, we only push small arrays.
1898 */
1899 if (stage_prog_data->pull_param == NULL ||
1900 (*num_push_constants + chunk_size <= max_push_components &&
1901 chunk_size <= max_chunk_size)) {
1902 assert(*num_push_constants + chunk_size <= max_push_components);
1903 for (unsigned j = *chunk_start; j <= uniform; j++)
1904 push_constant_loc[j] = (*num_push_constants)++;
1905 } else {
1906 for (unsigned j = *chunk_start; j <= uniform; j++)
1907 pull_constant_loc[j] = (*num_pull_constants)++;
1908 }
1909
1910 *max_chunk_bitsize = 0;
1911 *chunk_start = -1;
1912 }
1913 }
1914
1915 /**
1916 * Assign UNIFORM file registers to either push constants or pull constants.
1917 *
1918 * We allow a fragment shader to have more than the specified minimum
1919 * maximum number of fragment shader uniform components (64). If
1920 * there are too many of these, they'd fill up all of register space.
1921 * So, this will push some of them out to the pull constant buffer and
1922 * update the program to load them.
1923 */
1924 void
1925 fs_visitor::assign_constant_locations()
1926 {
1927 /* Only the first compile gets to decide on locations. */
1928 if (dispatch_width != min_dispatch_width)
1929 return;
1930
1931 bool is_live[uniforms];
1932 memset(is_live, 0, sizeof(is_live));
1933 unsigned bitsize_access[uniforms];
1934 memset(bitsize_access, 0, sizeof(bitsize_access));
1935
1936 /* For each uniform slot, a value of true indicates that the given slot and
1937 * the next slot must remain contiguous. This is used to keep us from
1938 * splitting arrays apart.
1939 */
1940 bool contiguous[uniforms];
1941 memset(contiguous, 0, sizeof(contiguous));
1942
1943 int thread_local_id_index =
1944 (stage == MESA_SHADER_COMPUTE) ?
1945 brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1946
1947 /* First, we walk through the instructions and do two things:
1948 *
1949 * 1) Figure out which uniforms are live.
1950 *
1951 * 2) Mark any indirectly used ranges of registers as contiguous.
1952 *
1953 * Note that we don't move constant-indexed accesses to arrays. No
1954 * testing has been done of the performance impact of this choice.
1955 */
1956 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1957 for (int i = 0 ; i < inst->sources; i++) {
1958 if (inst->src[i].file != UNIFORM)
1959 continue;
1960
1961 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1962
1963 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1964 assert(inst->src[2].ud % 4 == 0);
1965 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1966 assert(last < uniforms);
1967
1968 for (unsigned j = constant_nr; j < last; j++) {
1969 is_live[j] = true;
1970 contiguous[j] = true;
1971 bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
1972 }
1973 is_live[last] = true;
1974 bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
1975 } else {
1976 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1977 int regs_read = inst->components_read(i) *
1978 type_sz(inst->src[i].type) / 4;
1979 for (int j = 0; j < regs_read; j++) {
1980 is_live[constant_nr + j] = true;
1981 bitsize_access[constant_nr + j] =
1982 MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
1983 }
1984 }
1985 }
1986 }
1987 }
1988
1989 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
1990 thread_local_id_index = -1;
1991
1992 /* Only allow 16 registers (128 uniform components) as push constants.
1993 *
1994 * Just demote the end of the list. We could probably do better
1995 * here, demoting things that are rarely used in the program first.
1996 *
1997 * If changing this value, note the limitation about total_regs in
1998 * brw_curbe.c.
1999 */
2000 unsigned int max_push_components = 16 * 8;
2001 if (thread_local_id_index >= 0)
2002 max_push_components--; /* Save a slot for the thread ID */
2003
2004 /* We push small arrays, but no bigger than 16 floats. This is big enough
2005 * for a vec4 but hopefully not large enough to push out other stuff. We
2006 * should probably use a better heuristic at some point.
2007 */
2008 const unsigned int max_chunk_size = 16;
2009
2010 unsigned int num_push_constants = 0;
2011 unsigned int num_pull_constants = 0;
2012
2013 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2014 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2015
2016 /* Default to -1 meaning no location */
2017 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2018 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2019
2020 int chunk_start = -1;
2021 unsigned max_chunk_bitsize = 0;
2022
2023 /* First push 64-bit uniforms to ensure they are properly aligned */
2024 const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2025 for (unsigned u = 0; u < uniforms; u++) {
2026 if (!is_live[u])
2027 continue;
2028
2029 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2030 contiguous[u], bitsize_access[u],
2031 uniform_64_bit_size,
2032 push_constant_loc, pull_constant_loc,
2033 &num_push_constants, &num_pull_constants,
2034 max_push_components, max_chunk_size,
2035 stage_prog_data);
2036
2037 }
2038
2039 /* Then push the rest of uniforms */
2040 const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2041 for (unsigned u = 0; u < uniforms; u++) {
2042 if (!is_live[u])
2043 continue;
2044
2045 /* Skip thread_local_id_index to put it in the last push register. */
2046 if (thread_local_id_index == (int)u)
2047 continue;
2048
2049 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2050 contiguous[u], bitsize_access[u],
2051 uniform_32_bit_size,
2052 push_constant_loc, pull_constant_loc,
2053 &num_push_constants, &num_pull_constants,
2054 max_push_components, max_chunk_size,
2055 stage_prog_data);
2056 }
2057
2058 /* Add the CS local thread ID uniform at the end of the push constants */
2059 if (thread_local_id_index >= 0)
2060 push_constant_loc[thread_local_id_index] = num_push_constants++;
2061
2062 /* As the uniforms are going to be reordered, take the data from a temporary
2063 * copy of the original param[].
2064 */
2065 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2066 stage_prog_data->nr_params);
2067 memcpy(param, stage_prog_data->param,
2068 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2069 stage_prog_data->nr_params = num_push_constants;
2070 stage_prog_data->nr_pull_params = num_pull_constants;
2071
2072 /* Up until now, the param[] array has been indexed by reg + offset
2073 * of UNIFORM registers. Move pull constants into pull_param[] and
2074 * condense param[] to only contain the uniforms we chose to push.
2075 *
2076 * NOTE: Because we are condensing the params[] array, we know that
2077 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2078 * having to make a copy.
2079 */
2080 int new_thread_local_id_index = -1;
2081 for (unsigned int i = 0; i < uniforms; i++) {
2082 const gl_constant_value *value = param[i];
2083
2084 if (pull_constant_loc[i] != -1) {
2085 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2086 } else if (push_constant_loc[i] != -1) {
2087 stage_prog_data->param[push_constant_loc[i]] = value;
2088 if (thread_local_id_index == (int)i)
2089 new_thread_local_id_index = push_constant_loc[i];
2090 }
2091 }
2092 ralloc_free(param);
2093
2094 if (stage == MESA_SHADER_COMPUTE)
2095 brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2096 new_thread_local_id_index;
2097 }
2098
2099 bool
2100 fs_visitor::get_pull_locs(const fs_reg &src,
2101 unsigned *out_surf_index,
2102 unsigned *out_pull_index)
2103 {
2104 assert(src.file == UNIFORM);
2105
2106 const unsigned location = src.nr + src.offset / 4;
2107
2108 if (location < uniforms && pull_constant_loc[location] != -1) {
2109 /* A regular uniform push constant */
2110 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2111 *out_pull_index = pull_constant_loc[location];
2112 return true;
2113 }
2114
2115 return false;
2116 }
2117
2118 /**
2119 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2120 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2121 */
2122 void
2123 fs_visitor::lower_constant_loads()
2124 {
2125 unsigned index, pull_index;
2126
2127 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2128 /* Set up the annotation tracking for new generated instructions. */
2129 const fs_builder ibld(this, block, inst);
2130
2131 for (int i = 0; i < inst->sources; i++) {
2132 if (inst->src[i].file != UNIFORM)
2133 continue;
2134
2135 /* We'll handle this case later */
2136 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2137 continue;
2138
2139 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2140 continue;
2141
2142 assert(inst->src[i].stride == 0);
2143
2144 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2145 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2146 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2147 const unsigned base = pull_index * 4;
2148
2149 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2150 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2151
2152 /* Rewrite the instruction to use the temporary VGRF. */
2153 inst->src[i].file = VGRF;
2154 inst->src[i].nr = dst.nr;
2155 inst->src[i].offset = (base & (block_sz - 1)) +
2156 inst->src[i].offset % 4;
2157
2158 brw_mark_surface_used(prog_data, index);
2159 }
2160
2161 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2162 inst->src[0].file == UNIFORM) {
2163
2164 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2165 continue;
2166
2167 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2168 brw_imm_ud(index),
2169 inst->src[1],
2170 pull_index * 4);
2171 inst->remove(block);
2172
2173 brw_mark_surface_used(prog_data, index);
2174 }
2175 }
2176 invalidate_live_intervals();
2177 }
2178
2179 bool
2180 fs_visitor::opt_algebraic()
2181 {
2182 bool progress = false;
2183
2184 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2185 switch (inst->opcode) {
2186 case BRW_OPCODE_MOV:
2187 if (inst->src[0].file != IMM)
2188 break;
2189
2190 if (inst->saturate) {
2191 if (inst->dst.type != inst->src[0].type)
2192 assert(!"unimplemented: saturate mixed types");
2193
2194 if (brw_saturate_immediate(inst->dst.type,
2195 &inst->src[0].as_brw_reg())) {
2196 inst->saturate = false;
2197 progress = true;
2198 }
2199 }
2200 break;
2201
2202 case BRW_OPCODE_MUL:
2203 if (inst->src[1].file != IMM)
2204 continue;
2205
2206 /* a * 1.0 = a */
2207 if (inst->src[1].is_one()) {
2208 inst->opcode = BRW_OPCODE_MOV;
2209 inst->src[1] = reg_undef;
2210 progress = true;
2211 break;
2212 }
2213
2214 /* a * -1.0 = -a */
2215 if (inst->src[1].is_negative_one()) {
2216 inst->opcode = BRW_OPCODE_MOV;
2217 inst->src[0].negate = !inst->src[0].negate;
2218 inst->src[1] = reg_undef;
2219 progress = true;
2220 break;
2221 }
2222
2223 /* a * 0.0 = 0.0 */
2224 if (inst->src[1].is_zero()) {
2225 inst->opcode = BRW_OPCODE_MOV;
2226 inst->src[0] = inst->src[1];
2227 inst->src[1] = reg_undef;
2228 progress = true;
2229 break;
2230 }
2231
2232 if (inst->src[0].file == IMM) {
2233 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2234 inst->opcode = BRW_OPCODE_MOV;
2235 inst->src[0].f *= inst->src[1].f;
2236 inst->src[1] = reg_undef;
2237 progress = true;
2238 break;
2239 }
2240 break;
2241 case BRW_OPCODE_ADD:
2242 if (inst->src[1].file != IMM)
2243 continue;
2244
2245 /* a + 0.0 = a */
2246 if (inst->src[1].is_zero()) {
2247 inst->opcode = BRW_OPCODE_MOV;
2248 inst->src[1] = reg_undef;
2249 progress = true;
2250 break;
2251 }
2252
2253 if (inst->src[0].file == IMM) {
2254 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2255 inst->opcode = BRW_OPCODE_MOV;
2256 inst->src[0].f += inst->src[1].f;
2257 inst->src[1] = reg_undef;
2258 progress = true;
2259 break;
2260 }
2261 break;
2262 case BRW_OPCODE_OR:
2263 if (inst->src[0].equals(inst->src[1])) {
2264 inst->opcode = BRW_OPCODE_MOV;
2265 inst->src[1] = reg_undef;
2266 progress = true;
2267 break;
2268 }
2269 break;
2270 case BRW_OPCODE_LRP:
2271 if (inst->src[1].equals(inst->src[2])) {
2272 inst->opcode = BRW_OPCODE_MOV;
2273 inst->src[0] = inst->src[1];
2274 inst->src[1] = reg_undef;
2275 inst->src[2] = reg_undef;
2276 progress = true;
2277 break;
2278 }
2279 break;
2280 case BRW_OPCODE_CMP:
2281 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2282 inst->src[0].abs &&
2283 inst->src[0].negate &&
2284 inst->src[1].is_zero()) {
2285 inst->src[0].abs = false;
2286 inst->src[0].negate = false;
2287 inst->conditional_mod = BRW_CONDITIONAL_Z;
2288 progress = true;
2289 break;
2290 }
2291 break;
2292 case BRW_OPCODE_SEL:
2293 if (inst->src[0].equals(inst->src[1])) {
2294 inst->opcode = BRW_OPCODE_MOV;
2295 inst->src[1] = reg_undef;
2296 inst->predicate = BRW_PREDICATE_NONE;
2297 inst->predicate_inverse = false;
2298 progress = true;
2299 } else if (inst->saturate && inst->src[1].file == IMM) {
2300 switch (inst->conditional_mod) {
2301 case BRW_CONDITIONAL_LE:
2302 case BRW_CONDITIONAL_L:
2303 switch (inst->src[1].type) {
2304 case BRW_REGISTER_TYPE_F:
2305 if (inst->src[1].f >= 1.0f) {
2306 inst->opcode = BRW_OPCODE_MOV;
2307 inst->src[1] = reg_undef;
2308 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2309 progress = true;
2310 }
2311 break;
2312 default:
2313 break;
2314 }
2315 break;
2316 case BRW_CONDITIONAL_GE:
2317 case BRW_CONDITIONAL_G:
2318 switch (inst->src[1].type) {
2319 case BRW_REGISTER_TYPE_F:
2320 if (inst->src[1].f <= 0.0f) {
2321 inst->opcode = BRW_OPCODE_MOV;
2322 inst->src[1] = reg_undef;
2323 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2324 progress = true;
2325 }
2326 break;
2327 default:
2328 break;
2329 }
2330 default:
2331 break;
2332 }
2333 }
2334 break;
2335 case BRW_OPCODE_MAD:
2336 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2337 inst->opcode = BRW_OPCODE_MOV;
2338 inst->src[1] = reg_undef;
2339 inst->src[2] = reg_undef;
2340 progress = true;
2341 } else if (inst->src[0].is_zero()) {
2342 inst->opcode = BRW_OPCODE_MUL;
2343 inst->src[0] = inst->src[2];
2344 inst->src[2] = reg_undef;
2345 progress = true;
2346 } else if (inst->src[1].is_one()) {
2347 inst->opcode = BRW_OPCODE_ADD;
2348 inst->src[1] = inst->src[2];
2349 inst->src[2] = reg_undef;
2350 progress = true;
2351 } else if (inst->src[2].is_one()) {
2352 inst->opcode = BRW_OPCODE_ADD;
2353 inst->src[2] = reg_undef;
2354 progress = true;
2355 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2356 inst->opcode = BRW_OPCODE_ADD;
2357 inst->src[1].f *= inst->src[2].f;
2358 inst->src[2] = reg_undef;
2359 progress = true;
2360 }
2361 break;
2362 case SHADER_OPCODE_BROADCAST:
2363 if (is_uniform(inst->src[0])) {
2364 inst->opcode = BRW_OPCODE_MOV;
2365 inst->sources = 1;
2366 inst->force_writemask_all = true;
2367 progress = true;
2368 } else if (inst->src[1].file == IMM) {
2369 inst->opcode = BRW_OPCODE_MOV;
2370 inst->src[0] = component(inst->src[0],
2371 inst->src[1].ud);
2372 inst->sources = 1;
2373 inst->force_writemask_all = true;
2374 progress = true;
2375 }
2376 break;
2377
2378 default:
2379 break;
2380 }
2381
2382 /* Swap if src[0] is immediate. */
2383 if (progress && inst->is_commutative()) {
2384 if (inst->src[0].file == IMM) {
2385 fs_reg tmp = inst->src[1];
2386 inst->src[1] = inst->src[0];
2387 inst->src[0] = tmp;
2388 }
2389 }
2390 }
2391 return progress;
2392 }
2393
2394 /**
2395 * Optimize sample messages that have constant zero values for the trailing
2396 * texture coordinates. We can just reduce the message length for these
2397 * instructions instead of reserving a register for it. Trailing parameters
2398 * that aren't sent default to zero anyway. This will cause the dead code
2399 * eliminator to remove the MOV instruction that would otherwise be emitted to
2400 * set up the zero value.
2401 */
2402 bool
2403 fs_visitor::opt_zero_samples()
2404 {
2405 /* Gen4 infers the texturing opcode based on the message length so we can't
2406 * change it.
2407 */
2408 if (devinfo->gen < 5)
2409 return false;
2410
2411 bool progress = false;
2412
2413 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2414 if (!inst->is_tex())
2415 continue;
2416
2417 fs_inst *load_payload = (fs_inst *) inst->prev;
2418
2419 if (load_payload->is_head_sentinel() ||
2420 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2421 continue;
2422
2423 /* We don't want to remove the message header or the first parameter.
2424 * Removing the first parameter is not allowed, see the Haswell PRM
2425 * volume 7, page 149:
2426 *
2427 * "Parameter 0 is required except for the sampleinfo message, which
2428 * has no parameter 0"
2429 */
2430 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2431 load_payload->src[(inst->mlen - inst->header_size) /
2432 (inst->exec_size / 8) +
2433 inst->header_size - 1].is_zero()) {
2434 inst->mlen -= inst->exec_size / 8;
2435 progress = true;
2436 }
2437 }
2438
2439 if (progress)
2440 invalidate_live_intervals();
2441
2442 return progress;
2443 }
2444
2445 /**
2446 * Optimize sample messages which are followed by the final RT write.
2447 *
2448 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2449 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2450 * final texturing results copied to the framebuffer write payload and modify
2451 * them to write to the framebuffer directly.
2452 */
2453 bool
2454 fs_visitor::opt_sampler_eot()
2455 {
2456 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2457
2458 if (stage != MESA_SHADER_FRAGMENT)
2459 return false;
2460
2461 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2462 return false;
2463
2464 /* FINISHME: It should be possible to implement this optimization when there
2465 * are multiple drawbuffers.
2466 */
2467 if (key->nr_color_regions != 1)
2468 return false;
2469
2470 /* Requires emitting a bunch of saturating MOV instructions during logical
2471 * send lowering to clamp the color payload, which the sampler unit isn't
2472 * going to do for us.
2473 */
2474 if (key->clamp_fragment_color)
2475 return false;
2476
2477 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2478 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2479 fs_inst *fb_write = (fs_inst *)block->end();
2480 assert(fb_write->eot);
2481 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2482
2483 /* There wasn't one; nothing to do. */
2484 if (unlikely(fb_write->prev->is_head_sentinel()))
2485 return false;
2486
2487 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2488
2489 /* 3D Sampler » Messages » Message Format
2490 *
2491 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2492 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2493 */
2494 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2495 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2496 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2497 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2498 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2499 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2500 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2501 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2502 return false;
2503
2504 /* XXX - This shouldn't be necessary. */
2505 if (tex_inst->prev->is_head_sentinel())
2506 return false;
2507
2508 /* Check that the FB write sources are fully initialized by the single
2509 * texturing instruction.
2510 */
2511 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2512 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2513 if (!fb_write->src[i].equals(tex_inst->dst) ||
2514 fb_write->size_read(i) != tex_inst->size_written)
2515 return false;
2516 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2517 if (fb_write->src[i].file != BAD_FILE)
2518 return false;
2519 }
2520 }
2521
2522 assert(!tex_inst->eot); /* We can't get here twice */
2523 assert((tex_inst->offset & (0xff << 24)) == 0);
2524
2525 const fs_builder ibld(this, block, tex_inst);
2526
2527 tex_inst->offset |= fb_write->target << 24;
2528 tex_inst->eot = true;
2529 tex_inst->dst = ibld.null_reg_ud();
2530 tex_inst->size_written = 0;
2531 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2532
2533 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2534 * flag and submit a header together with the sampler message as required
2535 * by the hardware.
2536 */
2537 invalidate_live_intervals();
2538 return true;
2539 }
2540
2541 bool
2542 fs_visitor::opt_register_renaming()
2543 {
2544 bool progress = false;
2545 int depth = 0;
2546
2547 int remap[alloc.count];
2548 memset(remap, -1, sizeof(int) * alloc.count);
2549
2550 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2551 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2552 depth++;
2553 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2554 inst->opcode == BRW_OPCODE_WHILE) {
2555 depth--;
2556 }
2557
2558 /* Rewrite instruction sources. */
2559 for (int i = 0; i < inst->sources; i++) {
2560 if (inst->src[i].file == VGRF &&
2561 remap[inst->src[i].nr] != -1 &&
2562 remap[inst->src[i].nr] != inst->src[i].nr) {
2563 inst->src[i].nr = remap[inst->src[i].nr];
2564 progress = true;
2565 }
2566 }
2567
2568 const int dst = inst->dst.nr;
2569
2570 if (depth == 0 &&
2571 inst->dst.file == VGRF &&
2572 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2573 !inst->is_partial_write()) {
2574 if (remap[dst] == -1) {
2575 remap[dst] = dst;
2576 } else {
2577 remap[dst] = alloc.allocate(regs_written(inst));
2578 inst->dst.nr = remap[dst];
2579 progress = true;
2580 }
2581 } else if (inst->dst.file == VGRF &&
2582 remap[dst] != -1 &&
2583 remap[dst] != dst) {
2584 inst->dst.nr = remap[dst];
2585 progress = true;
2586 }
2587 }
2588
2589 if (progress) {
2590 invalidate_live_intervals();
2591
2592 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2593 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2594 delta_xy[i].nr = remap[delta_xy[i].nr];
2595 }
2596 }
2597 }
2598
2599 return progress;
2600 }
2601
2602 /**
2603 * Remove redundant or useless discard jumps.
2604 *
2605 * For example, we can eliminate jumps in the following sequence:
2606 *
2607 * discard-jump (redundant with the next jump)
2608 * discard-jump (useless; jumps to the next instruction)
2609 * placeholder-halt
2610 */
2611 bool
2612 fs_visitor::opt_redundant_discard_jumps()
2613 {
2614 bool progress = false;
2615
2616 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2617
2618 fs_inst *placeholder_halt = NULL;
2619 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2620 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2621 placeholder_halt = inst;
2622 break;
2623 }
2624 }
2625
2626 if (!placeholder_halt)
2627 return false;
2628
2629 /* Delete any HALTs immediately before the placeholder halt. */
2630 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2631 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2632 prev = (fs_inst *) placeholder_halt->prev) {
2633 prev->remove(last_bblock);
2634 progress = true;
2635 }
2636
2637 if (progress)
2638 invalidate_live_intervals();
2639
2640 return progress;
2641 }
2642
2643 /**
2644 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2645 * from \p r.offset which overlaps the region starting at \p s.offset and
2646 * spanning \p ds bytes.
2647 */
2648 static inline unsigned
2649 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2650 {
2651 const int rel_offset = reg_offset(s) - reg_offset(r);
2652 const int shift = rel_offset / REG_SIZE;
2653 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2654 assert(reg_space(r) == reg_space(s) &&
2655 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2656 return ((1 << n) - 1) << shift;
2657 }
2658
2659 bool
2660 fs_visitor::compute_to_mrf()
2661 {
2662 bool progress = false;
2663 int next_ip = 0;
2664
2665 /* No MRFs on Gen >= 7. */
2666 if (devinfo->gen >= 7)
2667 return false;
2668
2669 calculate_live_intervals();
2670
2671 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2672 int ip = next_ip;
2673 next_ip++;
2674
2675 if (inst->opcode != BRW_OPCODE_MOV ||
2676 inst->is_partial_write() ||
2677 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2678 inst->dst.type != inst->src[0].type ||
2679 inst->src[0].abs || inst->src[0].negate ||
2680 !inst->src[0].is_contiguous() ||
2681 inst->src[0].offset % REG_SIZE != 0)
2682 continue;
2683
2684 /* Can't compute-to-MRF this GRF if someone else was going to
2685 * read it later.
2686 */
2687 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2688 continue;
2689
2690 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2691 * things that computed the value of all GRFs of the source region. The
2692 * regs_left bitset keeps track of the registers we haven't yet found a
2693 * generating instruction for.
2694 */
2695 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2696
2697 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2698 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2699 inst->src[0], inst->size_read(0))) {
2700 /* Found the last thing to write our reg we want to turn
2701 * into a compute-to-MRF.
2702 */
2703
2704 /* If this one instruction didn't populate all the
2705 * channels, bail. We might be able to rewrite everything
2706 * that writes that reg, but it would require smarter
2707 * tracking.
2708 */
2709 if (scan_inst->is_partial_write())
2710 break;
2711
2712 /* Handling things not fully contained in the source of the copy
2713 * would need us to understand coalescing out more than one MOV at
2714 * a time.
2715 */
2716 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2717 inst->src[0], inst->size_read(0)))
2718 break;
2719
2720 /* SEND instructions can't have MRF as a destination. */
2721 if (scan_inst->mlen)
2722 break;
2723
2724 if (devinfo->gen == 6) {
2725 /* gen6 math instructions must have the destination be
2726 * GRF, so no compute-to-MRF for them.
2727 */
2728 if (scan_inst->is_math()) {
2729 break;
2730 }
2731 }
2732
2733 /* Clear the bits for any registers this instruction overwrites. */
2734 regs_left &= ~mask_relative_to(
2735 inst->src[0], scan_inst->dst, scan_inst->size_written);
2736 if (!regs_left)
2737 break;
2738 }
2739
2740 /* We don't handle control flow here. Most computation of
2741 * values that end up in MRFs are shortly before the MRF
2742 * write anyway.
2743 */
2744 if (block->start() == scan_inst)
2745 break;
2746
2747 /* You can't read from an MRF, so if someone else reads our
2748 * MRF's source GRF that we wanted to rewrite, that stops us.
2749 */
2750 bool interfered = false;
2751 for (int i = 0; i < scan_inst->sources; i++) {
2752 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2753 inst->src[0], inst->size_read(0))) {
2754 interfered = true;
2755 }
2756 }
2757 if (interfered)
2758 break;
2759
2760 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2761 inst->dst, inst->size_written)) {
2762 /* If somebody else writes our MRF here, we can't
2763 * compute-to-MRF before that.
2764 */
2765 break;
2766 }
2767
2768 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2769 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2770 inst->dst, inst->size_written)) {
2771 /* Found a SEND instruction, which means that there are
2772 * live values in MRFs from base_mrf to base_mrf +
2773 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2774 * above it.
2775 */
2776 break;
2777 }
2778 }
2779
2780 if (regs_left)
2781 continue;
2782
2783 /* Found all generating instructions of our MRF's source value, so it
2784 * should be safe to rewrite them to point to the MRF directly.
2785 */
2786 regs_left = (1 << regs_read(inst, 0)) - 1;
2787
2788 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2789 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2790 inst->src[0], inst->size_read(0))) {
2791 /* Clear the bits for any registers this instruction overwrites. */
2792 regs_left &= ~mask_relative_to(
2793 inst->src[0], scan_inst->dst, scan_inst->size_written);
2794
2795 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2796 reg_offset(inst->src[0]);
2797
2798 if (inst->dst.nr & BRW_MRF_COMPR4) {
2799 /* Apply the same address transformation done by the hardware
2800 * for COMPR4 MRF writes.
2801 */
2802 assert(rel_offset < 2 * REG_SIZE);
2803 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2804
2805 /* Clear the COMPR4 bit if the generating instruction is not
2806 * compressed.
2807 */
2808 if (scan_inst->size_written < 2 * REG_SIZE)
2809 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2810
2811 } else {
2812 /* Calculate the MRF number the result of this instruction is
2813 * ultimately written to.
2814 */
2815 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2816 }
2817
2818 scan_inst->dst.file = MRF;
2819 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2820 scan_inst->saturate |= inst->saturate;
2821 if (!regs_left)
2822 break;
2823 }
2824 }
2825
2826 assert(!regs_left);
2827 inst->remove(block);
2828 progress = true;
2829 }
2830
2831 if (progress)
2832 invalidate_live_intervals();
2833
2834 return progress;
2835 }
2836
2837 /**
2838 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2839 * flow. We could probably do better here with some form of divergence
2840 * analysis.
2841 */
2842 bool
2843 fs_visitor::eliminate_find_live_channel()
2844 {
2845 bool progress = false;
2846 unsigned depth = 0;
2847
2848 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2849 /* The optimization below assumes that channel zero is live on thread
2850 * dispatch, which may not be the case if the fixed function dispatches
2851 * threads sparsely.
2852 */
2853 return false;
2854 }
2855
2856 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2857 switch (inst->opcode) {
2858 case BRW_OPCODE_IF:
2859 case BRW_OPCODE_DO:
2860 depth++;
2861 break;
2862
2863 case BRW_OPCODE_ENDIF:
2864 case BRW_OPCODE_WHILE:
2865 depth--;
2866 break;
2867
2868 case FS_OPCODE_DISCARD_JUMP:
2869 /* This can potentially make control flow non-uniform until the end
2870 * of the program.
2871 */
2872 return progress;
2873
2874 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2875 if (depth == 0) {
2876 inst->opcode = BRW_OPCODE_MOV;
2877 inst->src[0] = brw_imm_ud(0u);
2878 inst->sources = 1;
2879 inst->force_writemask_all = true;
2880 progress = true;
2881 }
2882 break;
2883
2884 default:
2885 break;
2886 }
2887 }
2888
2889 return progress;
2890 }
2891
2892 /**
2893 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2894 * instructions to FS_OPCODE_REP_FB_WRITE.
2895 */
2896 void
2897 fs_visitor::emit_repclear_shader()
2898 {
2899 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2900 int base_mrf = 0;
2901 int color_mrf = base_mrf + 2;
2902 fs_inst *mov;
2903
2904 if (uniforms > 0) {
2905 mov = bld.exec_all().group(4, 0)
2906 .MOV(brw_message_reg(color_mrf),
2907 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2908 } else {
2909 struct brw_reg reg =
2910 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2911 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2912 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2913
2914 mov = bld.exec_all().group(4, 0)
2915 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2916 }
2917
2918 fs_inst *write;
2919 if (key->nr_color_regions == 1) {
2920 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2921 write->saturate = key->clamp_fragment_color;
2922 write->base_mrf = color_mrf;
2923 write->target = 0;
2924 write->header_size = 0;
2925 write->mlen = 1;
2926 } else {
2927 assume(key->nr_color_regions > 0);
2928 for (int i = 0; i < key->nr_color_regions; ++i) {
2929 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2930 write->saturate = key->clamp_fragment_color;
2931 write->base_mrf = base_mrf;
2932 write->target = i;
2933 write->header_size = 2;
2934 write->mlen = 3;
2935 }
2936 }
2937 write->eot = true;
2938
2939 calculate_cfg();
2940
2941 assign_constant_locations();
2942 assign_curb_setup();
2943
2944 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2945 if (uniforms > 0) {
2946 assert(mov->src[0].file == FIXED_GRF);
2947 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2948 }
2949 }
2950
2951 /**
2952 * Walks through basic blocks, looking for repeated MRF writes and
2953 * removing the later ones.
2954 */
2955 bool
2956 fs_visitor::remove_duplicate_mrf_writes()
2957 {
2958 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2959 bool progress = false;
2960
2961 /* Need to update the MRF tracking for compressed instructions. */
2962 if (dispatch_width >= 16)
2963 return false;
2964
2965 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2966
2967 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2968 if (inst->is_control_flow()) {
2969 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2970 }
2971
2972 if (inst->opcode == BRW_OPCODE_MOV &&
2973 inst->dst.file == MRF) {
2974 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2975 if (prev_inst && inst->equals(prev_inst)) {
2976 inst->remove(block);
2977 progress = true;
2978 continue;
2979 }
2980 }
2981
2982 /* Clear out the last-write records for MRFs that were overwritten. */
2983 if (inst->dst.file == MRF) {
2984 last_mrf_move[inst->dst.nr] = NULL;
2985 }
2986
2987 if (inst->mlen > 0 && inst->base_mrf != -1) {
2988 /* Found a SEND instruction, which will include two or fewer
2989 * implied MRF writes. We could do better here.
2990 */
2991 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2992 last_mrf_move[inst->base_mrf + i] = NULL;
2993 }
2994 }
2995
2996 /* Clear out any MRF move records whose sources got overwritten. */
2997 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2998 if (last_mrf_move[i] &&
2999 regions_overlap(inst->dst, inst->size_written,
3000 last_mrf_move[i]->src[0],
3001 last_mrf_move[i]->size_read(0))) {
3002 last_mrf_move[i] = NULL;
3003 }
3004 }
3005
3006 if (inst->opcode == BRW_OPCODE_MOV &&
3007 inst->dst.file == MRF &&
3008 inst->src[0].file != ARF &&
3009 !inst->is_partial_write()) {
3010 last_mrf_move[inst->dst.nr] = inst;
3011 }
3012 }
3013
3014 if (progress)
3015 invalidate_live_intervals();
3016
3017 return progress;
3018 }
3019
3020 static void
3021 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3022 {
3023 /* Clear the flag for registers that actually got read (as expected). */
3024 for (int i = 0; i < inst->sources; i++) {
3025 int grf;
3026 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3027 grf = inst->src[i].nr;
3028 } else {
3029 continue;
3030 }
3031
3032 if (grf >= first_grf &&
3033 grf < first_grf + grf_len) {
3034 deps[grf - first_grf] = false;
3035 if (inst->exec_size == 16)
3036 deps[grf - first_grf + 1] = false;
3037 }
3038 }
3039 }
3040
3041 /**
3042 * Implements this workaround for the original 965:
3043 *
3044 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3045 * check for post destination dependencies on this instruction, software
3046 * must ensure that there is no destination hazard for the case of ‘write
3047 * followed by a posted write’ shown in the following example.
3048 *
3049 * 1. mov r3 0
3050 * 2. send r3.xy <rest of send instruction>
3051 * 3. mov r2 r3
3052 *
3053 * Due to no post-destination dependency check on the ‘send’, the above
3054 * code sequence could have two instructions (1 and 2) in flight at the
3055 * same time that both consider ‘r3’ as the target of their final writes.
3056 */
3057 void
3058 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3059 fs_inst *inst)
3060 {
3061 int write_len = regs_written(inst);
3062 int first_write_grf = inst->dst.nr;
3063 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3064 assert(write_len < (int)sizeof(needs_dep) - 1);
3065
3066 memset(needs_dep, false, sizeof(needs_dep));
3067 memset(needs_dep, true, write_len);
3068
3069 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3070
3071 /* Walk backwards looking for writes to registers we're writing which
3072 * aren't read since being written. If we hit the start of the program,
3073 * we assume that there are no outstanding dependencies on entry to the
3074 * program.
3075 */
3076 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3077 /* If we hit control flow, assume that there *are* outstanding
3078 * dependencies, and force their cleanup before our instruction.
3079 */
3080 if (block->start() == scan_inst && block->num != 0) {
3081 for (int i = 0; i < write_len; i++) {
3082 if (needs_dep[i])
3083 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3084 first_write_grf + i);
3085 }
3086 return;
3087 }
3088
3089 /* We insert our reads as late as possible on the assumption that any
3090 * instruction but a MOV that might have left us an outstanding
3091 * dependency has more latency than a MOV.
3092 */
3093 if (scan_inst->dst.file == VGRF) {
3094 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3095 int reg = scan_inst->dst.nr + i;
3096
3097 if (reg >= first_write_grf &&
3098 reg < first_write_grf + write_len &&
3099 needs_dep[reg - first_write_grf]) {
3100 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3101 needs_dep[reg - first_write_grf] = false;
3102 if (scan_inst->exec_size == 16)
3103 needs_dep[reg - first_write_grf + 1] = false;
3104 }
3105 }
3106 }
3107
3108 /* Clear the flag for registers that actually got read (as expected). */
3109 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3110
3111 /* Continue the loop only if we haven't resolved all the dependencies */
3112 int i;
3113 for (i = 0; i < write_len; i++) {
3114 if (needs_dep[i])
3115 break;
3116 }
3117 if (i == write_len)
3118 return;
3119 }
3120 }
3121
3122 /**
3123 * Implements this workaround for the original 965:
3124 *
3125 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3126 * used as a destination register until after it has been sourced by an
3127 * instruction with a different destination register.
3128 */
3129 void
3130 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3131 {
3132 int write_len = regs_written(inst);
3133 int first_write_grf = inst->dst.nr;
3134 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3135 assert(write_len < (int)sizeof(needs_dep) - 1);
3136
3137 memset(needs_dep, false, sizeof(needs_dep));
3138 memset(needs_dep, true, write_len);
3139 /* Walk forwards looking for writes to registers we're writing which aren't
3140 * read before being written.
3141 */
3142 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3143 /* If we hit control flow, force resolve all remaining dependencies. */
3144 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3145 for (int i = 0; i < write_len; i++) {
3146 if (needs_dep[i])
3147 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3148 first_write_grf + i);
3149 }
3150 return;
3151 }
3152
3153 /* Clear the flag for registers that actually got read (as expected). */
3154 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3155
3156 /* We insert our reads as late as possible since they're reading the
3157 * result of a SEND, which has massive latency.
3158 */
3159 if (scan_inst->dst.file == VGRF &&
3160 scan_inst->dst.nr >= first_write_grf &&
3161 scan_inst->dst.nr < first_write_grf + write_len &&
3162 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3163 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3164 scan_inst->dst.nr);
3165 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3166 }
3167
3168 /* Continue the loop only if we haven't resolved all the dependencies */
3169 int i;
3170 for (i = 0; i < write_len; i++) {
3171 if (needs_dep[i])
3172 break;
3173 }
3174 if (i == write_len)
3175 return;
3176 }
3177 }
3178
3179 void
3180 fs_visitor::insert_gen4_send_dependency_workarounds()
3181 {
3182 if (devinfo->gen != 4 || devinfo->is_g4x)
3183 return;
3184
3185 bool progress = false;
3186
3187 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3188 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3189 insert_gen4_pre_send_dependency_workarounds(block, inst);
3190 insert_gen4_post_send_dependency_workarounds(block, inst);
3191 progress = true;
3192 }
3193 }
3194
3195 if (progress)
3196 invalidate_live_intervals();
3197 }
3198
3199 /**
3200 * Turns the generic expression-style uniform pull constant load instruction
3201 * into a hardware-specific series of instructions for loading a pull
3202 * constant.
3203 *
3204 * The expression style allows the CSE pass before this to optimize out
3205 * repeated loads from the same offset, and gives the pre-register-allocation
3206 * scheduling full flexibility, while the conversion to native instructions
3207 * allows the post-register-allocation scheduler the best information
3208 * possible.
3209 *
3210 * Note that execution masking for setting up pull constant loads is special:
3211 * the channels that need to be written are unrelated to the current execution
3212 * mask, since a later instruction will use one of the result channels as a
3213 * source operand for all 8 or 16 of its channels.
3214 */
3215 void
3216 fs_visitor::lower_uniform_pull_constant_loads()
3217 {
3218 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3219 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3220 continue;
3221
3222 if (devinfo->gen >= 7) {
3223 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3224 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3225
3226 ubld.group(8, 0).MOV(payload,
3227 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3228 ubld.group(1, 0).MOV(component(payload, 2),
3229 brw_imm_ud(inst->src[1].ud / 16));
3230
3231 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3232 inst->src[1] = payload;
3233 inst->header_size = 1;
3234 inst->mlen = 1;
3235
3236 invalidate_live_intervals();
3237 } else {
3238 /* Before register allocation, we didn't tell the scheduler about the
3239 * MRF we use. We know it's safe to use this MRF because nothing
3240 * else does except for register spill/unspill, which generates and
3241 * uses its MRF within a single IR instruction.
3242 */
3243 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3244 inst->mlen = 1;
3245 }
3246 }
3247 }
3248
3249 bool
3250 fs_visitor::lower_load_payload()
3251 {
3252 bool progress = false;
3253
3254 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3255 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3256 continue;
3257
3258 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3259 assert(inst->saturate == false);
3260 fs_reg dst = inst->dst;
3261
3262 /* Get rid of COMPR4. We'll add it back in if we need it */
3263 if (dst.file == MRF)
3264 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3265
3266 const fs_builder ibld(this, block, inst);
3267 const fs_builder hbld = ibld.exec_all().group(8, 0);
3268
3269 for (uint8_t i = 0; i < inst->header_size; i++) {
3270 if (inst->src[i].file != BAD_FILE) {
3271 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3272 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3273 hbld.MOV(mov_dst, mov_src);
3274 }
3275 dst = offset(dst, hbld, 1);
3276 }
3277
3278 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3279 inst->exec_size > 8) {
3280 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3281 * a straightforward copy. Instead, the result of the
3282 * LOAD_PAYLOAD is treated as interleaved and the first four
3283 * non-header sources are unpacked as:
3284 *
3285 * m + 0: r0
3286 * m + 1: g0
3287 * m + 2: b0
3288 * m + 3: a0
3289 * m + 4: r1
3290 * m + 5: g1
3291 * m + 6: b1
3292 * m + 7: a1
3293 *
3294 * This is used for gen <= 5 fb writes.
3295 */
3296 assert(inst->exec_size == 16);
3297 assert(inst->header_size + 4 <= inst->sources);
3298 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3299 if (inst->src[i].file != BAD_FILE) {
3300 if (devinfo->has_compr4) {
3301 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3302 compr4_dst.nr |= BRW_MRF_COMPR4;
3303 ibld.MOV(compr4_dst, inst->src[i]);
3304 } else {
3305 /* Platform doesn't have COMPR4. We have to fake it */
3306 fs_reg mov_dst = retype(dst, inst->src[i].type);
3307 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3308 mov_dst.nr += 4;
3309 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3310 }
3311 }
3312
3313 dst.nr++;
3314 }
3315
3316 /* The loop above only ever incremented us through the first set
3317 * of 4 registers. However, thanks to the magic of COMPR4, we
3318 * actually wrote to the first 8 registers, so we need to take
3319 * that into account now.
3320 */
3321 dst.nr += 4;
3322
3323 /* The COMPR4 code took care of the first 4 sources. We'll let
3324 * the regular path handle any remaining sources. Yes, we are
3325 * modifying the instruction but we're about to delete it so
3326 * this really doesn't hurt anything.
3327 */
3328 inst->header_size += 4;
3329 }
3330
3331 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3332 if (inst->src[i].file != BAD_FILE)
3333 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3334 dst = offset(dst, ibld, 1);
3335 }
3336
3337 inst->remove(block);
3338 progress = true;
3339 }
3340
3341 if (progress)
3342 invalidate_live_intervals();
3343
3344 return progress;
3345 }
3346
3347 bool
3348 fs_visitor::lower_integer_multiplication()
3349 {
3350 bool progress = false;
3351
3352 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3353 const fs_builder ibld(this, block, inst);
3354
3355 if (inst->opcode == BRW_OPCODE_MUL) {
3356 if (inst->dst.is_accumulator() ||
3357 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3358 inst->dst.type != BRW_REGISTER_TYPE_UD))
3359 continue;
3360
3361 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3362 * operation directly, but CHV/BXT cannot.
3363 */
3364 if (devinfo->gen >= 8 &&
3365 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3366 continue;
3367
3368 if (inst->src[1].file == IMM &&
3369 inst->src[1].ud < (1 << 16)) {
3370 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3371 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3372 * src1 are used.
3373 *
3374 * If multiplying by an immediate value that fits in 16-bits, do a
3375 * single MUL instruction with that value in the proper location.
3376 */
3377 if (devinfo->gen < 7) {
3378 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3379 inst->dst.type);
3380 ibld.MOV(imm, inst->src[1]);
3381 ibld.MUL(inst->dst, imm, inst->src[0]);
3382 } else {
3383 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3384 ibld.MUL(inst->dst, inst->src[0],
3385 ud ? brw_imm_uw(inst->src[1].ud)
3386 : brw_imm_w(inst->src[1].d));
3387 }
3388 } else {
3389 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3390 * do 32-bit integer multiplication in one instruction, but instead
3391 * must do a sequence (which actually calculates a 64-bit result):
3392 *
3393 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3394 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3395 * mov(8) g2<1>D acc0<8,8,1>D
3396 *
3397 * But on Gen > 6, the ability to use second accumulator register
3398 * (acc1) for non-float data types was removed, preventing a simple
3399 * implementation in SIMD16. A 16-channel result can be calculated by
3400 * executing the three instructions twice in SIMD8, once with quarter
3401 * control of 1Q for the first eight channels and again with 2Q for
3402 * the second eight channels.
3403 *
3404 * Which accumulator register is implicitly accessed (by AccWrEnable
3405 * for instance) is determined by the quarter control. Unfortunately
3406 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3407 * implicit accumulator access by an instruction with 2Q will access
3408 * acc1 regardless of whether the data type is usable in acc1.
3409 *
3410 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3411 * integer data types.
3412 *
3413 * Since we only want the low 32-bits of the result, we can do two
3414 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3415 * adjust the high result and add them (like the mach is doing):
3416 *
3417 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3418 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3419 * shl(8) g9<1>D g8<8,8,1>D 16D
3420 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3421 *
3422 * We avoid the shl instruction by realizing that we only want to add
3423 * the low 16-bits of the "high" result to the high 16-bits of the
3424 * "low" result and using proper regioning on the add:
3425 *
3426 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3427 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3428 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3429 *
3430 * Since it does not use the (single) accumulator register, we can
3431 * schedule multi-component multiplications much better.
3432 */
3433
3434 fs_reg orig_dst = inst->dst;
3435 if (orig_dst.is_null() || orig_dst.file == MRF) {
3436 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3437 inst->dst.type);
3438 }
3439 fs_reg low = inst->dst;
3440 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3441 inst->dst.type);
3442
3443 if (devinfo->gen >= 7) {
3444 if (inst->src[1].file == IMM) {
3445 ibld.MUL(low, inst->src[0],
3446 brw_imm_uw(inst->src[1].ud & 0xffff));
3447 ibld.MUL(high, inst->src[0],
3448 brw_imm_uw(inst->src[1].ud >> 16));
3449 } else {
3450 ibld.MUL(low, inst->src[0],
3451 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3452 ibld.MUL(high, inst->src[0],
3453 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3454 }
3455 } else {
3456 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3457 inst->src[1]);
3458 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3459 inst->src[1]);
3460 }
3461
3462 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3463 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3464 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3465
3466 if (inst->conditional_mod || orig_dst.file == MRF) {
3467 set_condmod(inst->conditional_mod,
3468 ibld.MOV(orig_dst, inst->dst));
3469 }
3470 }
3471
3472 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3473 /* Should have been lowered to 8-wide. */
3474 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3475 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3476 inst->dst.type);
3477 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3478 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3479
3480 if (devinfo->gen >= 8) {
3481 /* Until Gen8, integer multiplies read 32-bits from one source,
3482 * and 16-bits from the other, and relying on the MACH instruction
3483 * to generate the high bits of the result.
3484 *
3485 * On Gen8, the multiply instruction does a full 32x32-bit
3486 * multiply, but in order to do a 64-bit multiply we can simulate
3487 * the previous behavior and then use a MACH instruction.
3488 *
3489 * FINISHME: Don't use source modifiers on src1.
3490 */
3491 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3492 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3493 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3494 mul->src[1].stride *= 2;
3495
3496 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3497 inst->group > 0) {
3498 /* Among other things the quarter control bits influence which
3499 * accumulator register is used by the hardware for instructions
3500 * that access the accumulator implicitly (e.g. MACH). A
3501 * second-half instruction would normally map to acc1, which
3502 * doesn't exist on Gen7 and up (the hardware does emulate it for
3503 * floating-point instructions *only* by taking advantage of the
3504 * extra precision of acc0 not normally used for floating point
3505 * arithmetic).
3506 *
3507 * HSW and up are careful enough not to try to access an
3508 * accumulator register that doesn't exist, but on earlier Gen7
3509 * hardware we need to make sure that the quarter control bits are
3510 * zero to avoid non-deterministic behaviour and emit an extra MOV
3511 * to get the result masked correctly according to the current
3512 * channel enables.
3513 */
3514 mach->group = 0;
3515 mach->force_writemask_all = true;
3516 mach->dst = ibld.vgrf(inst->dst.type);
3517 ibld.MOV(inst->dst, mach->dst);
3518 }
3519 } else {
3520 continue;
3521 }
3522
3523 inst->remove(block);
3524 progress = true;
3525 }
3526
3527 if (progress)
3528 invalidate_live_intervals();
3529
3530 return progress;
3531 }
3532
3533 bool
3534 fs_visitor::lower_minmax()
3535 {
3536 assert(devinfo->gen < 6);
3537
3538 bool progress = false;
3539
3540 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3541 const fs_builder ibld(this, block, inst);
3542
3543 if (inst->opcode == BRW_OPCODE_SEL &&
3544 inst->predicate == BRW_PREDICATE_NONE) {
3545 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3546 * the original SEL.L/GE instruction
3547 */
3548 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3549 inst->conditional_mod);
3550 inst->predicate = BRW_PREDICATE_NORMAL;
3551 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3552
3553 progress = true;
3554 }
3555 }
3556
3557 if (progress)
3558 invalidate_live_intervals();
3559
3560 return progress;
3561 }
3562
3563 static void
3564 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3565 fs_reg *dst, fs_reg color, unsigned components)
3566 {
3567 if (key->clamp_fragment_color) {
3568 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3569 assert(color.type == BRW_REGISTER_TYPE_F);
3570
3571 for (unsigned i = 0; i < components; i++)
3572 set_saturate(true,
3573 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3574
3575 color = tmp;
3576 }
3577
3578 for (unsigned i = 0; i < components; i++)
3579 dst[i] = offset(color, bld, i);
3580 }
3581
3582 static void
3583 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3584 const struct brw_wm_prog_data *prog_data,
3585 const brw_wm_prog_key *key,
3586 const fs_visitor::thread_payload &payload)
3587 {
3588 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3589 const gen_device_info *devinfo = bld.shader->devinfo;
3590 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3591 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3592 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3593 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3594 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3595 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3596 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3597 const unsigned components =
3598 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3599
3600 /* We can potentially have a message length of up to 15, so we have to set
3601 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3602 */
3603 fs_reg sources[15];
3604 int header_size = 2, payload_header_size;
3605 unsigned length = 0;
3606
3607 /* From the Sandy Bridge PRM, volume 4, page 198:
3608 *
3609 * "Dispatched Pixel Enables. One bit per pixel indicating
3610 * which pixels were originally enabled when the thread was
3611 * dispatched. This field is only required for the end-of-
3612 * thread message and on all dual-source messages."
3613 */
3614 if (devinfo->gen >= 6 &&
3615 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3616 color1.file == BAD_FILE &&
3617 key->nr_color_regions == 1) {
3618 header_size = 0;
3619 }
3620
3621 if (header_size != 0) {
3622 assert(header_size == 2);
3623 /* Allocate 2 registers for a header */
3624 length += 2;
3625 }
3626
3627 if (payload.aa_dest_stencil_reg) {
3628 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3629 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3630 .MOV(sources[length],
3631 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3632 length++;
3633 }
3634
3635 if (sample_mask.file != BAD_FILE) {
3636 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3637 BRW_REGISTER_TYPE_UD);
3638
3639 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3640 * relevant. Since it's unsigned single words one vgrf is always
3641 * 16-wide, but only the lower or higher 8 channels will be used by the
3642 * hardware when doing a SIMD8 write depending on whether we have
3643 * selected the subspans for the first or second half respectively.
3644 */
3645 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3646 sample_mask.type = BRW_REGISTER_TYPE_UW;
3647 sample_mask.stride *= 2;
3648
3649 bld.exec_all().annotate("FB write oMask")
3650 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3651 inst->group),
3652 sample_mask);
3653 length++;
3654 }
3655
3656 payload_header_size = length;
3657
3658 if (src0_alpha.file != BAD_FILE) {
3659 /* FIXME: This is being passed at the wrong location in the payload and
3660 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3661 * It's supposed to be immediately before oMask but there seems to be no
3662 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3663 * requires header sources to form a contiguous segment at the beginning
3664 * of the message and src0_alpha has per-channel semantics.
3665 */
3666 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3667 length++;
3668 } else if (key->replicate_alpha && inst->target != 0) {
3669 /* Handle the case when fragment shader doesn't write to draw buffer
3670 * zero. No need to call setup_color_payload() for src0_alpha because
3671 * alpha value will be undefined.
3672 */
3673 length++;
3674 }
3675
3676 setup_color_payload(bld, key, &sources[length], color0, components);
3677 length += 4;
3678
3679 if (color1.file != BAD_FILE) {
3680 setup_color_payload(bld, key, &sources[length], color1, components);
3681 length += 4;
3682 }
3683
3684 if (src_depth.file != BAD_FILE) {
3685 sources[length] = src_depth;
3686 length++;
3687 }
3688
3689 if (dst_depth.file != BAD_FILE) {
3690 sources[length] = dst_depth;
3691 length++;
3692 }
3693
3694 if (src_stencil.file != BAD_FILE) {
3695 assert(devinfo->gen >= 9);
3696 assert(bld.dispatch_width() != 16);
3697
3698 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3699 * available on gen9+. As such it's impossible to have both enabled at the
3700 * same time and therefore length cannot overrun the array.
3701 */
3702 assert(length < 15);
3703
3704 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3705 bld.exec_all().annotate("FB write OS")
3706 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3707 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3708 length++;
3709 }
3710
3711 fs_inst *load;
3712 if (devinfo->gen >= 7) {
3713 /* Send from the GRF */
3714 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3715 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3716 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3717 load->dst = payload;
3718
3719 inst->src[0] = payload;
3720 inst->resize_sources(1);
3721 } else {
3722 /* Send from the MRF */
3723 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3724 sources, length, payload_header_size);
3725
3726 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3727 * will do this for us if we just give it a COMPR4 destination.
3728 */
3729 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3730 load->dst.nr |= BRW_MRF_COMPR4;
3731
3732 inst->resize_sources(0);
3733 inst->base_mrf = 1;
3734 }
3735
3736 inst->opcode = FS_OPCODE_FB_WRITE;
3737 inst->mlen = regs_written(load);
3738 inst->header_size = header_size;
3739 }
3740
3741 static void
3742 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3743 {
3744 const fs_builder &ubld = bld.exec_all();
3745 const unsigned length = 2;
3746 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3747
3748 ubld.group(16, 0)
3749 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3750
3751 inst->resize_sources(1);
3752 inst->src[0] = header;
3753 inst->opcode = FS_OPCODE_FB_READ;
3754 inst->mlen = length;
3755 inst->header_size = length;
3756 }
3757
3758 static void
3759 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3760 const fs_reg &coordinate,
3761 const fs_reg &shadow_c,
3762 const fs_reg &lod, const fs_reg &lod2,
3763 const fs_reg &surface,
3764 const fs_reg &sampler,
3765 unsigned coord_components,
3766 unsigned grad_components)
3767 {
3768 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3769 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3770 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3771 fs_reg msg_end = msg_begin;
3772
3773 /* g0 header. */
3774 msg_end = offset(msg_end, bld.group(8, 0), 1);
3775
3776 for (unsigned i = 0; i < coord_components; i++)
3777 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3778 offset(coordinate, bld, i));
3779
3780 msg_end = offset(msg_end, bld, coord_components);
3781
3782 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3783 * require all three components to be present and zero if they are unused.
3784 */
3785 if (coord_components > 0 &&
3786 (has_lod || shadow_c.file != BAD_FILE ||
3787 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3788 for (unsigned i = coord_components; i < 3; i++)
3789 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3790
3791 msg_end = offset(msg_end, bld, 3 - coord_components);
3792 }
3793
3794 if (op == SHADER_OPCODE_TXD) {
3795 /* TXD unsupported in SIMD16 mode. */
3796 assert(bld.dispatch_width() == 8);
3797
3798 /* the slots for u and v are always present, but r is optional */
3799 if (coord_components < 2)
3800 msg_end = offset(msg_end, bld, 2 - coord_components);
3801
3802 /* P = u, v, r
3803 * dPdx = dudx, dvdx, drdx
3804 * dPdy = dudy, dvdy, drdy
3805 *
3806 * 1-arg: Does not exist.
3807 *
3808 * 2-arg: dudx dvdx dudy dvdy
3809 * dPdx.x dPdx.y dPdy.x dPdy.y
3810 * m4 m5 m6 m7
3811 *
3812 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3813 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3814 * m5 m6 m7 m8 m9 m10
3815 */
3816 for (unsigned i = 0; i < grad_components; i++)
3817 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3818
3819 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3820
3821 for (unsigned i = 0; i < grad_components; i++)
3822 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3823
3824 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3825 }
3826
3827 if (has_lod) {
3828 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3829 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3830 */
3831 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3832 bld.dispatch_width() == 16);
3833
3834 const brw_reg_type type =
3835 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3836 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3837 bld.MOV(retype(msg_end, type), lod);
3838 msg_end = offset(msg_end, bld, 1);
3839 }
3840
3841 if (shadow_c.file != BAD_FILE) {
3842 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3843 /* There's no plain shadow compare message, so we use shadow
3844 * compare with a bias of 0.0.
3845 */
3846 bld.MOV(msg_end, brw_imm_f(0.0f));
3847 msg_end = offset(msg_end, bld, 1);
3848 }
3849
3850 bld.MOV(msg_end, shadow_c);
3851 msg_end = offset(msg_end, bld, 1);
3852 }
3853
3854 inst->opcode = op;
3855 inst->src[0] = reg_undef;
3856 inst->src[1] = surface;
3857 inst->src[2] = sampler;
3858 inst->resize_sources(3);
3859 inst->base_mrf = msg_begin.nr;
3860 inst->mlen = msg_end.nr - msg_begin.nr;
3861 inst->header_size = 1;
3862 }
3863
3864 static void
3865 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3866 const fs_reg &coordinate,
3867 const fs_reg &shadow_c,
3868 const fs_reg &lod, const fs_reg &lod2,
3869 const fs_reg &sample_index,
3870 const fs_reg &surface,
3871 const fs_reg &sampler,
3872 unsigned coord_components,
3873 unsigned grad_components)
3874 {
3875 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3876 fs_reg msg_coords = message;
3877 unsigned header_size = 0;
3878
3879 if (inst->offset != 0) {
3880 /* The offsets set up by the visitor are in the m1 header, so we can't
3881 * go headerless.
3882 */
3883 header_size = 1;
3884 message.nr--;
3885 }
3886
3887 for (unsigned i = 0; i < coord_components; i++)
3888 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3889 offset(coordinate, bld, i));
3890
3891 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3892 fs_reg msg_lod = offset(msg_coords, bld, 4);
3893
3894 if (shadow_c.file != BAD_FILE) {
3895 fs_reg msg_shadow = msg_lod;
3896 bld.MOV(msg_shadow, shadow_c);
3897 msg_lod = offset(msg_shadow, bld, 1);
3898 msg_end = msg_lod;
3899 }
3900
3901 switch (op) {
3902 case SHADER_OPCODE_TXL:
3903 case FS_OPCODE_TXB:
3904 bld.MOV(msg_lod, lod);
3905 msg_end = offset(msg_lod, bld, 1);
3906 break;
3907 case SHADER_OPCODE_TXD:
3908 /**
3909 * P = u, v, r
3910 * dPdx = dudx, dvdx, drdx
3911 * dPdy = dudy, dvdy, drdy
3912 *
3913 * Load up these values:
3914 * - dudx dudy dvdx dvdy drdx drdy
3915 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3916 */
3917 msg_end = msg_lod;
3918 for (unsigned i = 0; i < grad_components; i++) {
3919 bld.MOV(msg_end, offset(lod, bld, i));
3920 msg_end = offset(msg_end, bld, 1);
3921
3922 bld.MOV(msg_end, offset(lod2, bld, i));
3923 msg_end = offset(msg_end, bld, 1);
3924 }
3925 break;
3926 case SHADER_OPCODE_TXS:
3927 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3928 bld.MOV(msg_lod, lod);
3929 msg_end = offset(msg_lod, bld, 1);
3930 break;
3931 case SHADER_OPCODE_TXF:
3932 msg_lod = offset(msg_coords, bld, 3);
3933 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3934 msg_end = offset(msg_lod, bld, 1);
3935 break;
3936 case SHADER_OPCODE_TXF_CMS:
3937 msg_lod = offset(msg_coords, bld, 3);
3938 /* lod */
3939 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3940 /* sample index */
3941 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3942 msg_end = offset(msg_lod, bld, 2);
3943 break;
3944 default:
3945 break;
3946 }
3947
3948 inst->opcode = op;
3949 inst->src[0] = reg_undef;
3950 inst->src[1] = surface;
3951 inst->src[2] = sampler;
3952 inst->resize_sources(3);
3953 inst->base_mrf = message.nr;
3954 inst->mlen = msg_end.nr - message.nr;
3955 inst->header_size = header_size;
3956
3957 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3958 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3959 }
3960
3961 static bool
3962 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
3963 {
3964 if (devinfo->gen < 8 && !devinfo->is_haswell)
3965 return false;
3966
3967 return sampler.file != IMM || sampler.ud >= 16;
3968 }
3969
3970 static void
3971 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3972 const fs_reg &coordinate,
3973 const fs_reg &shadow_c,
3974 fs_reg lod, const fs_reg &lod2,
3975 const fs_reg &sample_index,
3976 const fs_reg &mcs,
3977 const fs_reg &surface,
3978 const fs_reg &sampler,
3979 const fs_reg &tg4_offset,
3980 unsigned coord_components,
3981 unsigned grad_components)
3982 {
3983 const gen_device_info *devinfo = bld.shader->devinfo;
3984 unsigned reg_width = bld.dispatch_width() / 8;
3985 unsigned header_size = 0, length = 0;
3986 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3987 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3988 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3989
3990 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3991 inst->offset != 0 || inst->eot ||
3992 op == SHADER_OPCODE_SAMPLEINFO ||
3993 is_high_sampler(devinfo, sampler)) {
3994 /* For general texture offsets (no txf workaround), we need a header to
3995 * put them in. Note that we're only reserving space for it in the
3996 * message payload as it will be initialized implicitly by the
3997 * generator.
3998 *
3999 * TG4 needs to place its channel select in the header, for interaction
4000 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4001 * larger sampler numbers we need to offset the Sampler State Pointer in
4002 * the header.
4003 */
4004 header_size = 1;
4005 sources[0] = fs_reg();
4006 length++;
4007
4008 /* If we're requesting fewer than four channels worth of response,
4009 * and we have an explicit header, we need to set up the sampler
4010 * writemask. It's reversed from normal: 1 means "don't write".
4011 */
4012 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4013 assert(regs_written(inst) % reg_width == 0);
4014 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4015 inst->offset |= mask << 12;
4016 }
4017 }
4018
4019 if (shadow_c.file != BAD_FILE) {
4020 bld.MOV(sources[length], shadow_c);
4021 length++;
4022 }
4023
4024 bool coordinate_done = false;
4025
4026 /* Set up the LOD info */
4027 switch (op) {
4028 case FS_OPCODE_TXB:
4029 case SHADER_OPCODE_TXL:
4030 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4031 op = SHADER_OPCODE_TXL_LZ;
4032 break;
4033 }
4034 bld.MOV(sources[length], lod);
4035 length++;
4036 break;
4037 case SHADER_OPCODE_TXD:
4038 /* TXD should have been lowered in SIMD16 mode. */
4039 assert(bld.dispatch_width() == 8);
4040
4041 /* Load dPdx and the coordinate together:
4042 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4043 */
4044 for (unsigned i = 0; i < coord_components; i++) {
4045 bld.MOV(sources[length++], offset(coordinate, bld, i));
4046
4047 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4048 * only derivatives for (u, v, r).
4049 */
4050 if (i < grad_components) {
4051 bld.MOV(sources[length++], offset(lod, bld, i));
4052 bld.MOV(sources[length++], offset(lod2, bld, i));
4053 }
4054 }
4055
4056 coordinate_done = true;
4057 break;
4058 case SHADER_OPCODE_TXS:
4059 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4060 length++;
4061 break;
4062 case SHADER_OPCODE_TXF:
4063 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4064 * On Gen9 they are u, v, lod, r
4065 */
4066 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4067
4068 if (devinfo->gen >= 9) {
4069 if (coord_components >= 2) {
4070 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4071 offset(coordinate, bld, 1));
4072 } else {
4073 sources[length] = brw_imm_d(0);
4074 }
4075 length++;
4076 }
4077
4078 if (devinfo->gen >= 9 && lod.is_zero()) {
4079 op = SHADER_OPCODE_TXF_LZ;
4080 } else {
4081 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4082 length++;
4083 }
4084
4085 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4086 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4087 offset(coordinate, bld, i));
4088
4089 coordinate_done = true;
4090 break;
4091
4092 case SHADER_OPCODE_TXF_CMS:
4093 case SHADER_OPCODE_TXF_CMS_W:
4094 case SHADER_OPCODE_TXF_UMS:
4095 case SHADER_OPCODE_TXF_MCS:
4096 if (op == SHADER_OPCODE_TXF_UMS ||
4097 op == SHADER_OPCODE_TXF_CMS ||
4098 op == SHADER_OPCODE_TXF_CMS_W) {
4099 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4100 length++;
4101 }
4102
4103 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4104 /* Data from the multisample control surface. */
4105 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4106 length++;
4107
4108 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4109 * the MCS data.
4110 */
4111 if (op == SHADER_OPCODE_TXF_CMS_W) {
4112 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4113 mcs.file == IMM ?
4114 mcs :
4115 offset(mcs, bld, 1));
4116 length++;
4117 }
4118 }
4119
4120 /* There is no offsetting for this message; just copy in the integer
4121 * texture coordinates.
4122 */
4123 for (unsigned i = 0; i < coord_components; i++)
4124 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4125 offset(coordinate, bld, i));
4126
4127 coordinate_done = true;
4128 break;
4129 case SHADER_OPCODE_TG4_OFFSET:
4130 /* More crazy intermixing */
4131 for (unsigned i = 0; i < 2; i++) /* u, v */
4132 bld.MOV(sources[length++], offset(coordinate, bld, i));
4133
4134 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4135 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4136 offset(tg4_offset, bld, i));
4137
4138 if (coord_components == 3) /* r if present */
4139 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4140
4141 coordinate_done = true;
4142 break;
4143 default:
4144 break;
4145 }
4146
4147 /* Set up the coordinate (except for cases where it was done above) */
4148 if (!coordinate_done) {
4149 for (unsigned i = 0; i < coord_components; i++)
4150 bld.MOV(sources[length++], offset(coordinate, bld, i));
4151 }
4152
4153 int mlen;
4154 if (reg_width == 2)
4155 mlen = length * reg_width - header_size;
4156 else
4157 mlen = length * reg_width;
4158
4159 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4160 BRW_REGISTER_TYPE_F);
4161 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4162
4163 /* Generate the SEND. */
4164 inst->opcode = op;
4165 inst->src[0] = src_payload;
4166 inst->src[1] = surface;
4167 inst->src[2] = sampler;
4168 inst->resize_sources(3);
4169 inst->mlen = mlen;
4170 inst->header_size = header_size;
4171
4172 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4173 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4174 }
4175
4176 static void
4177 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4178 {
4179 const gen_device_info *devinfo = bld.shader->devinfo;
4180 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4181 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4182 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4183 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4184 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4185 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4186 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4187 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4188 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4189 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4190 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4191 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4192 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4193
4194 if (devinfo->gen >= 7) {
4195 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4196 shadow_c, lod, lod2, sample_index,
4197 mcs, surface, sampler, tg4_offset,
4198 coord_components, grad_components);
4199 } else if (devinfo->gen >= 5) {
4200 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4201 shadow_c, lod, lod2, sample_index,
4202 surface, sampler,
4203 coord_components, grad_components);
4204 } else {
4205 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4206 shadow_c, lod, lod2,
4207 surface, sampler,
4208 coord_components, grad_components);
4209 }
4210 }
4211
4212 /**
4213 * Initialize the header present in some typed and untyped surface
4214 * messages.
4215 */
4216 static fs_reg
4217 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4218 {
4219 fs_builder ubld = bld.exec_all().group(8, 0);
4220 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4221 ubld.MOV(dst, brw_imm_d(0));
4222 ubld.MOV(component(dst, 7), sample_mask);
4223 return dst;
4224 }
4225
4226 static void
4227 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4228 const fs_reg &sample_mask)
4229 {
4230 /* Get the logical send arguments. */
4231 const fs_reg &addr = inst->src[0];
4232 const fs_reg &src = inst->src[1];
4233 const fs_reg &surface = inst->src[2];
4234 const UNUSED fs_reg &dims = inst->src[3];
4235 const fs_reg &arg = inst->src[4];
4236
4237 /* Calculate the total number of components of the payload. */
4238 const unsigned addr_sz = inst->components_read(0);
4239 const unsigned src_sz = inst->components_read(1);
4240 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4241 const unsigned sz = header_sz + addr_sz + src_sz;
4242
4243 /* Allocate space for the payload. */
4244 fs_reg *const components = new fs_reg[sz];
4245 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4246 unsigned n = 0;
4247
4248 /* Construct the payload. */
4249 if (header_sz)
4250 components[n++] = emit_surface_header(bld, sample_mask);
4251
4252 for (unsigned i = 0; i < addr_sz; i++)
4253 components[n++] = offset(addr, bld, i);
4254
4255 for (unsigned i = 0; i < src_sz; i++)
4256 components[n++] = offset(src, bld, i);
4257
4258 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4259
4260 /* Update the original instruction. */
4261 inst->opcode = op;
4262 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4263 inst->header_size = header_sz;
4264
4265 inst->src[0] = payload;
4266 inst->src[1] = surface;
4267 inst->src[2] = arg;
4268 inst->resize_sources(3);
4269
4270 delete[] components;
4271 }
4272
4273 static void
4274 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4275 {
4276 const gen_device_info *devinfo = bld.shader->devinfo;
4277
4278 if (devinfo->gen >= 7) {
4279 /* We are switching the instruction from an ALU-like instruction to a
4280 * send-from-grf instruction. Since sends can't handle strides or
4281 * source modifiers, we have to make a copy of the offset source.
4282 */
4283 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4284 bld.MOV(tmp, inst->src[1]);
4285 inst->src[1] = tmp;
4286
4287 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4288
4289 } else {
4290 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4291 BRW_REGISTER_TYPE_UD);
4292
4293 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4294
4295 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4296 inst->resize_sources(1);
4297 inst->base_mrf = payload.nr;
4298 inst->header_size = 1;
4299 inst->mlen = 1 + inst->exec_size / 8;
4300 }
4301 }
4302
4303 static void
4304 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4305 {
4306 assert(bld.shader->devinfo->gen < 6);
4307
4308 inst->base_mrf = 2;
4309 inst->mlen = inst->sources * inst->exec_size / 8;
4310
4311 if (inst->sources > 1) {
4312 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4313 * "Message Payload":
4314 *
4315 * "Operand0[7]. For the INT DIV functions, this operand is the
4316 * denominator."
4317 * ...
4318 * "Operand1[7]. For the INT DIV functions, this operand is the
4319 * numerator."
4320 */
4321 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4322 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4323 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4324
4325 inst->resize_sources(1);
4326 inst->src[0] = src0;
4327
4328 assert(inst->exec_size == 8);
4329 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4330 }
4331 }
4332
4333 bool
4334 fs_visitor::lower_logical_sends()
4335 {
4336 bool progress = false;
4337
4338 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4339 const fs_builder ibld(this, block, inst);
4340
4341 switch (inst->opcode) {
4342 case FS_OPCODE_FB_WRITE_LOGICAL:
4343 assert(stage == MESA_SHADER_FRAGMENT);
4344 lower_fb_write_logical_send(ibld, inst,
4345 brw_wm_prog_data(prog_data),
4346 (const brw_wm_prog_key *)key,
4347 payload);
4348 break;
4349
4350 case FS_OPCODE_FB_READ_LOGICAL:
4351 lower_fb_read_logical_send(ibld, inst);
4352 break;
4353
4354 case SHADER_OPCODE_TEX_LOGICAL:
4355 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4356 break;
4357
4358 case SHADER_OPCODE_TXD_LOGICAL:
4359 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4360 break;
4361
4362 case SHADER_OPCODE_TXF_LOGICAL:
4363 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4364 break;
4365
4366 case SHADER_OPCODE_TXL_LOGICAL:
4367 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4368 break;
4369
4370 case SHADER_OPCODE_TXS_LOGICAL:
4371 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4372 break;
4373
4374 case FS_OPCODE_TXB_LOGICAL:
4375 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4376 break;
4377
4378 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4379 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4380 break;
4381
4382 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4383 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4384 break;
4385
4386 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4387 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4388 break;
4389
4390 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4391 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4392 break;
4393
4394 case SHADER_OPCODE_LOD_LOGICAL:
4395 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4396 break;
4397
4398 case SHADER_OPCODE_TG4_LOGICAL:
4399 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4400 break;
4401
4402 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4403 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4404 break;
4405
4406 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4407 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4408 break;
4409
4410 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4411 lower_surface_logical_send(ibld, inst,
4412 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4413 fs_reg());
4414 break;
4415
4416 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4417 lower_surface_logical_send(ibld, inst,
4418 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4419 ibld.sample_mask_reg());
4420 break;
4421
4422 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4423 lower_surface_logical_send(ibld, inst,
4424 SHADER_OPCODE_UNTYPED_ATOMIC,
4425 ibld.sample_mask_reg());
4426 break;
4427
4428 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4429 lower_surface_logical_send(ibld, inst,
4430 SHADER_OPCODE_TYPED_SURFACE_READ,
4431 brw_imm_d(0xffff));
4432 break;
4433
4434 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4435 lower_surface_logical_send(ibld, inst,
4436 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4437 ibld.sample_mask_reg());
4438 break;
4439
4440 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4441 lower_surface_logical_send(ibld, inst,
4442 SHADER_OPCODE_TYPED_ATOMIC,
4443 ibld.sample_mask_reg());
4444 break;
4445
4446 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4447 lower_varying_pull_constant_logical_send(ibld, inst);
4448 break;
4449
4450 case SHADER_OPCODE_RCP:
4451 case SHADER_OPCODE_RSQ:
4452 case SHADER_OPCODE_SQRT:
4453 case SHADER_OPCODE_EXP2:
4454 case SHADER_OPCODE_LOG2:
4455 case SHADER_OPCODE_SIN:
4456 case SHADER_OPCODE_COS:
4457 case SHADER_OPCODE_POW:
4458 case SHADER_OPCODE_INT_QUOTIENT:
4459 case SHADER_OPCODE_INT_REMAINDER:
4460 /* The math opcodes are overloaded for the send-like and
4461 * expression-like instructions which seems kind of icky. Gen6+ has
4462 * a native (but rather quirky) MATH instruction so we don't need to
4463 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4464 * logical instructions (which we can easily recognize because they
4465 * have mlen = 0) into send-like virtual instructions.
4466 */
4467 if (devinfo->gen < 6 && inst->mlen == 0) {
4468 lower_math_logical_send(ibld, inst);
4469 break;
4470
4471 } else {
4472 continue;
4473 }
4474
4475 default:
4476 continue;
4477 }
4478
4479 progress = true;
4480 }
4481
4482 if (progress)
4483 invalidate_live_intervals();
4484
4485 return progress;
4486 }
4487
4488 /**
4489 * Get the closest allowed SIMD width for instruction \p inst accounting for
4490 * some common regioning and execution control restrictions that apply to FPU
4491 * instructions. These restrictions don't necessarily have any relevance to
4492 * instructions not executed by the FPU pipeline like extended math, control
4493 * flow or send message instructions.
4494 *
4495 * For virtual opcodes it's really up to the instruction -- In some cases
4496 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4497 * instructions) it may simplify virtual instruction lowering if we can
4498 * enforce FPU-like regioning restrictions already on the virtual instruction,
4499 * in other cases (e.g. virtual send-like instructions) this may be
4500 * excessively restrictive.
4501 */
4502 static unsigned
4503 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4504 const fs_inst *inst)
4505 {
4506 /* Maximum execution size representable in the instruction controls. */
4507 unsigned max_width = MIN2(32, inst->exec_size);
4508
4509 /* According to the PRMs:
4510 * "A. In Direct Addressing mode, a source cannot span more than 2
4511 * adjacent GRF registers.
4512 * B. A destination cannot span more than 2 adjacent GRF registers."
4513 *
4514 * Look for the source or destination with the largest register region
4515 * which is the one that is going to limit the overall execution size of
4516 * the instruction due to this rule.
4517 */
4518 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4519
4520 for (unsigned i = 0; i < inst->sources; i++)
4521 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4522
4523 /* Calculate the maximum execution size of the instruction based on the
4524 * factor by which it goes over the hardware limit of 2 GRFs.
4525 */
4526 if (reg_count > 2)
4527 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4528
4529 /* According to the IVB PRMs:
4530 * "When destination spans two registers, the source MUST span two
4531 * registers. The exception to the above rule:
4532 *
4533 * - When source is scalar, the source registers are not incremented.
4534 * - When source is packed integer Word and destination is packed
4535 * integer DWord, the source register is not incremented but the
4536 * source sub register is incremented."
4537 *
4538 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4539 * restrictions. The code below intentionally doesn't check whether the
4540 * destination type is integer because empirically the hardware doesn't
4541 * seem to care what the actual type is as long as it's dword-aligned.
4542 */
4543 if (devinfo->gen < 8) {
4544 for (unsigned i = 0; i < inst->sources; i++) {
4545 /* IVB implements DF scalars as <0;2,1> regions. */
4546 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4547 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4548 const bool is_packed_word_exception =
4549 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4550 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4551
4552 if (inst->size_written > REG_SIZE &&
4553 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4554 !is_scalar_exception && !is_packed_word_exception) {
4555 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4556 max_width = MIN2(max_width, inst->exec_size / reg_count);
4557 }
4558 }
4559 }
4560
4561 /* From the IVB PRMs:
4562 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4563 * are applied for both halves of the SIMD32 instruction. If different
4564 * execution mask channels are required, split the instruction into two
4565 * SIMD16 instructions."
4566 *
4567 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4568 * 32-wide control flow support in hardware and will behave similarly.
4569 */
4570 if (devinfo->gen < 8 && !inst->force_writemask_all)
4571 max_width = MIN2(max_width, 16);
4572
4573 /* From the IVB PRMs (applies to HSW too):
4574 * "Instructions with condition modifiers must not use SIMD32."
4575 *
4576 * From the BDW PRMs (applies to later hardware too):
4577 * "Ternary instruction with condition modifiers must not use SIMD32."
4578 */
4579 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4580 max_width = MIN2(max_width, 16);
4581
4582 /* From the IVB PRMs (applies to other devices that don't have the
4583 * gen_device_info::supports_simd16_3src flag set):
4584 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4585 * SIMD8 is not allowed for DF operations."
4586 */
4587 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4588 max_width = MIN2(max_width, inst->exec_size / reg_count);
4589
4590 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4591 * the 8-bit quarter of the execution mask signals specified in the
4592 * instruction control fields) for the second compressed half of any
4593 * single-precision instruction (for double-precision instructions
4594 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4595 * the EU will apply the wrong execution controls for the second
4596 * sequential GRF write if the number of channels per GRF is not exactly
4597 * eight in single-precision mode (or four in double-float mode).
4598 *
4599 * In this situation we calculate the maximum size of the split
4600 * instructions so they only ever write to a single register.
4601 */
4602 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4603 !inst->force_writemask_all) {
4604 const unsigned channels_per_grf = inst->exec_size /
4605 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4606 const unsigned exec_type_size = get_exec_type_size(inst);
4607 assert(exec_type_size);
4608
4609 /* The hardware shifts exactly 8 channels per compressed half of the
4610 * instruction in single-precision mode and exactly 4 in double-precision.
4611 */
4612 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4613 max_width = MIN2(max_width, channels_per_grf);
4614
4615 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4616 * because HW applies the same channel enable signals to both halves of
4617 * the compressed instruction which will be just wrong under
4618 * non-uniform control flow.
4619 */
4620 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4621 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4622 max_width = MIN2(max_width, 4);
4623 }
4624
4625 /* Only power-of-two execution sizes are representable in the instruction
4626 * control fields.
4627 */
4628 return 1 << _mesa_logbase2(max_width);
4629 }
4630
4631 /**
4632 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4633 * various payload size restrictions that apply to sampler message
4634 * instructions.
4635 *
4636 * This is only intended to provide a maximum theoretical bound for the
4637 * execution size of the message based on the number of argument components
4638 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4639 * variant of the message can be used, though some messages may have
4640 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4641 * the message length to determine the exact SIMD width and argument count,
4642 * which makes a number of sampler message combinations impossible to
4643 * represent).
4644 */
4645 static unsigned
4646 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4647 const fs_inst *inst)
4648 {
4649 /* Calculate the number of coordinate components that have to be present
4650 * assuming that additional arguments follow the texel coordinates in the
4651 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4652 * need to pad to four or three components depending on the message,
4653 * pre-ILK we need to pad to at most three components.
4654 */
4655 const unsigned req_coord_components =
4656 (devinfo->gen >= 7 ||
4657 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4658 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4659 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4660 3;
4661
4662 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4663 * variant of the TXL or TXF message.
4664 */
4665 const bool implicit_lod = devinfo->gen >= 9 &&
4666 (inst->opcode == SHADER_OPCODE_TXL ||
4667 inst->opcode == SHADER_OPCODE_TXF) &&
4668 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4669
4670 /* Calculate the total number of argument components that need to be passed
4671 * to the sampler unit.
4672 */
4673 const unsigned num_payload_components =
4674 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4675 req_coord_components) +
4676 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4677 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4678 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4679 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4680 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4681 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4682 inst->components_read(TEX_LOGICAL_SRC_MCS);
4683
4684 /* SIMD16 messages with more than five arguments exceed the maximum message
4685 * size supported by the sampler, regardless of whether a header is
4686 * provided or not.
4687 */
4688 return MIN2(inst->exec_size,
4689 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4690 }
4691
4692 /**
4693 * Get the closest native SIMD width supported by the hardware for instruction
4694 * \p inst. The instruction will be left untouched by
4695 * fs_visitor::lower_simd_width() if the returned value is equal to the
4696 * original execution size.
4697 */
4698 static unsigned
4699 get_lowered_simd_width(const struct gen_device_info *devinfo,
4700 const fs_inst *inst)
4701 {
4702 switch (inst->opcode) {
4703 case BRW_OPCODE_MOV:
4704 case BRW_OPCODE_SEL:
4705 case BRW_OPCODE_NOT:
4706 case BRW_OPCODE_AND:
4707 case BRW_OPCODE_OR:
4708 case BRW_OPCODE_XOR:
4709 case BRW_OPCODE_SHR:
4710 case BRW_OPCODE_SHL:
4711 case BRW_OPCODE_ASR:
4712 case BRW_OPCODE_CMPN:
4713 case BRW_OPCODE_CSEL:
4714 case BRW_OPCODE_F32TO16:
4715 case BRW_OPCODE_F16TO32:
4716 case BRW_OPCODE_BFREV:
4717 case BRW_OPCODE_BFE:
4718 case BRW_OPCODE_ADD:
4719 case BRW_OPCODE_MUL:
4720 case BRW_OPCODE_AVG:
4721 case BRW_OPCODE_FRC:
4722 case BRW_OPCODE_RNDU:
4723 case BRW_OPCODE_RNDD:
4724 case BRW_OPCODE_RNDE:
4725 case BRW_OPCODE_RNDZ:
4726 case BRW_OPCODE_LZD:
4727 case BRW_OPCODE_FBH:
4728 case BRW_OPCODE_FBL:
4729 case BRW_OPCODE_CBIT:
4730 case BRW_OPCODE_SAD2:
4731 case BRW_OPCODE_MAD:
4732 case BRW_OPCODE_LRP:
4733 case FS_OPCODE_PACK:
4734 return get_fpu_lowered_simd_width(devinfo, inst);
4735
4736 case BRW_OPCODE_CMP: {
4737 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4738 * when the destination is a GRF the dependency-clear bit on the flag
4739 * register is cleared early.
4740 *
4741 * Suggested workarounds are to disable coissuing CMP instructions
4742 * or to split CMP(16) instructions into two CMP(8) instructions.
4743 *
4744 * We choose to split into CMP(8) instructions since disabling
4745 * coissuing would affect CMP instructions not otherwise affected by
4746 * the errata.
4747 */
4748 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4749 !inst->dst.is_null() ? 8 : ~0);
4750 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4751 }
4752 case BRW_OPCODE_BFI1:
4753 case BRW_OPCODE_BFI2:
4754 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4755 * should
4756 * "Force BFI instructions to be executed always in SIMD8."
4757 */
4758 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4759 get_fpu_lowered_simd_width(devinfo, inst));
4760
4761 case BRW_OPCODE_IF:
4762 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4763 return inst->exec_size;
4764
4765 case SHADER_OPCODE_RCP:
4766 case SHADER_OPCODE_RSQ:
4767 case SHADER_OPCODE_SQRT:
4768 case SHADER_OPCODE_EXP2:
4769 case SHADER_OPCODE_LOG2:
4770 case SHADER_OPCODE_SIN:
4771 case SHADER_OPCODE_COS:
4772 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4773 * Gen6.
4774 */
4775 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4776 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4777 MIN2(8, inst->exec_size));
4778
4779 case SHADER_OPCODE_POW:
4780 /* SIMD16 is only allowed on Gen7+. */
4781 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4782 MIN2(8, inst->exec_size));
4783
4784 case SHADER_OPCODE_INT_QUOTIENT:
4785 case SHADER_OPCODE_INT_REMAINDER:
4786 /* Integer division is limited to SIMD8 on all generations. */
4787 return MIN2(8, inst->exec_size);
4788
4789 case FS_OPCODE_LINTERP:
4790 case FS_OPCODE_GET_BUFFER_SIZE:
4791 case FS_OPCODE_DDX_COARSE:
4792 case FS_OPCODE_DDX_FINE:
4793 case FS_OPCODE_DDY_COARSE:
4794 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4795 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4796 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4797 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4798 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4799 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4800 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4801 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4802 return MIN2(16, inst->exec_size);
4803
4804 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4805 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4806 * message used to implement varying pull constant loads, so expand it
4807 * to SIMD16. An alternative with longer message payload length but
4808 * shorter return payload would be to use the SIMD8 sampler message that
4809 * takes (header, u, v, r) as parameters instead of (header, u).
4810 */
4811 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4812
4813 case FS_OPCODE_DDY_FINE:
4814 /* The implementation of this virtual opcode may require emitting
4815 * compressed Align16 instructions, which are severely limited on some
4816 * generations.
4817 *
4818 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4819 * Region Restrictions):
4820 *
4821 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4822 * and SIMD8 is not allowed for DF operations."
4823 *
4824 * In this context, "DW operations" means "operations acting on 32-bit
4825 * values", so it includes operations on floats.
4826 *
4827 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4828 * (Instruction Compression -> Rules and Restrictions):
4829 *
4830 * "A compressed instruction must be in Align1 access mode. Align16
4831 * mode instructions cannot be compressed."
4832 *
4833 * Similar text exists in the g45 PRM.
4834 *
4835 * Empirically, compressed align16 instructions using odd register
4836 * numbers don't appear to work on Sandybridge either.
4837 */
4838 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4839 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4840 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4841
4842 case SHADER_OPCODE_MULH:
4843 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4844 * is 8-wide on Gen7+.
4845 */
4846 return (devinfo->gen >= 7 ? 8 :
4847 get_fpu_lowered_simd_width(devinfo, inst));
4848
4849 case FS_OPCODE_FB_WRITE_LOGICAL:
4850 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4851 * here.
4852 */
4853 assert(devinfo->gen != 6 ||
4854 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4855 inst->exec_size == 8);
4856 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4857 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4858 8 : MIN2(16, inst->exec_size));
4859
4860 case FS_OPCODE_FB_READ_LOGICAL:
4861 return MIN2(16, inst->exec_size);
4862
4863 case SHADER_OPCODE_TEX_LOGICAL:
4864 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4865 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4866 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4867 case SHADER_OPCODE_LOD_LOGICAL:
4868 case SHADER_OPCODE_TG4_LOGICAL:
4869 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4870 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4871 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4872 return get_sampler_lowered_simd_width(devinfo, inst);
4873
4874 case SHADER_OPCODE_TXD_LOGICAL:
4875 /* TXD is unsupported in SIMD16 mode. */
4876 return 8;
4877
4878 case SHADER_OPCODE_TXL_LOGICAL:
4879 case FS_OPCODE_TXB_LOGICAL:
4880 /* Only one execution size is representable pre-ILK depending on whether
4881 * the shadow reference argument is present.
4882 */
4883 if (devinfo->gen == 4)
4884 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4885 else
4886 return get_sampler_lowered_simd_width(devinfo, inst);
4887
4888 case SHADER_OPCODE_TXF_LOGICAL:
4889 case SHADER_OPCODE_TXS_LOGICAL:
4890 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4891 * messages. Use SIMD16 instead.
4892 */
4893 if (devinfo->gen == 4)
4894 return 16;
4895 else
4896 return get_sampler_lowered_simd_width(devinfo, inst);
4897
4898 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4899 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4900 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4901 return 8;
4902
4903 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4904 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4905 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4906 return MIN2(16, inst->exec_size);
4907
4908 case SHADER_OPCODE_URB_READ_SIMD8:
4909 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4910 case SHADER_OPCODE_URB_WRITE_SIMD8:
4911 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4912 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4913 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4914 return MIN2(8, inst->exec_size);
4915
4916 case SHADER_OPCODE_MOV_INDIRECT: {
4917 /* From IVB and HSW PRMs:
4918 *
4919 * "2.When the destination requires two registers and the sources are
4920 * indirect, the sources must use 1x1 regioning mode.
4921 *
4922 * In case of DF instructions in HSW/IVB, the exec_size is limited by
4923 * the EU decompression logic not handling VxH indirect addressing
4924 * correctly.
4925 */
4926 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
4927 /* Prior to Broadwell, we only have 8 address subregisters. */
4928 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4929 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
4930 inst->exec_size);
4931 }
4932
4933 case SHADER_OPCODE_LOAD_PAYLOAD: {
4934 const unsigned reg_count =
4935 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4936
4937 if (reg_count > 2) {
4938 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4939 * can be easily lowered (which excludes headers and heterogeneous
4940 * types).
4941 */
4942 assert(!inst->header_size);
4943 for (unsigned i = 0; i < inst->sources; i++)
4944 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4945 inst->src[i].file == BAD_FILE);
4946
4947 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4948 } else {
4949 return inst->exec_size;
4950 }
4951 }
4952 default:
4953 return inst->exec_size;
4954 }
4955 }
4956
4957 /**
4958 * Return true if splitting out the group of channels of instruction \p inst
4959 * given by lbld.group() requires allocating a temporary for the i-th source
4960 * of the lowered instruction.
4961 */
4962 static inline bool
4963 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4964 {
4965 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4966 (inst->components_read(i) == 1 &&
4967 lbld.dispatch_width() <= inst->exec_size));
4968 }
4969
4970 /**
4971 * Extract the data that would be consumed by the channel group given by
4972 * lbld.group() from the i-th source region of instruction \p inst and return
4973 * it as result in packed form. If any copy instructions are required they
4974 * will be emitted before the given \p inst in \p block.
4975 */
4976 static fs_reg
4977 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
4978 unsigned i)
4979 {
4980 /* Specified channel group from the source region. */
4981 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
4982
4983 if (needs_src_copy(lbld, inst, i)) {
4984 /* Builder of the right width to perform the copy avoiding uninitialized
4985 * data if the lowered execution size is greater than the original
4986 * execution size of the instruction.
4987 */
4988 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
4989 inst->exec_size), 0);
4990 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
4991
4992 for (unsigned k = 0; k < inst->components_read(i); ++k)
4993 cbld.at(block, inst)
4994 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
4995
4996 return tmp;
4997
4998 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
4999 /* The source is invariant for all dispatch_width-wide groups of the
5000 * original region.
5001 */
5002 return inst->src[i];
5003
5004 } else {
5005 /* We can just point the lowered instruction at the right channel group
5006 * from the original region.
5007 */
5008 return src;
5009 }
5010 }
5011
5012 /**
5013 * Return true if splitting out the group of channels of instruction \p inst
5014 * given by lbld.group() requires allocating a temporary for the destination
5015 * of the lowered instruction and copying the data back to the original
5016 * destination region.
5017 */
5018 static inline bool
5019 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5020 {
5021 /* If the instruction writes more than one component we'll have to shuffle
5022 * the results of multiple lowered instructions in order to make sure that
5023 * they end up arranged correctly in the original destination region.
5024 */
5025 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5026 return true;
5027
5028 /* If the lowered execution size is larger than the original the result of
5029 * the instruction won't fit in the original destination, so we'll have to
5030 * allocate a temporary in any case.
5031 */
5032 if (lbld.dispatch_width() > inst->exec_size)
5033 return true;
5034
5035 for (unsigned i = 0; i < inst->sources; i++) {
5036 /* If we already made a copy of the source for other reasons there won't
5037 * be any overlap with the destination.
5038 */
5039 if (needs_src_copy(lbld, inst, i))
5040 continue;
5041
5042 /* In order to keep the logic simple we emit a copy whenever the
5043 * destination region doesn't exactly match an overlapping source, which
5044 * may point at the source and destination not being aligned group by
5045 * group which could cause one of the lowered instructions to overwrite
5046 * the data read from the same source by other lowered instructions.
5047 */
5048 if (regions_overlap(inst->dst, inst->size_written,
5049 inst->src[i], inst->size_read(i)) &&
5050 !inst->dst.equals(inst->src[i]))
5051 return true;
5052 }
5053
5054 return false;
5055 }
5056
5057 /**
5058 * Insert data from a packed temporary into the channel group given by
5059 * lbld.group() of the destination region of instruction \p inst and return
5060 * the temporary as result. If any copy instructions are required they will
5061 * be emitted around the given \p inst in \p block.
5062 */
5063 static fs_reg
5064 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5065 {
5066 /* Builder of the right width to perform the copy avoiding uninitialized
5067 * data if the lowered execution size is greater than the original
5068 * execution size of the instruction.
5069 */
5070 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5071 inst->exec_size), 0);
5072
5073 /* Specified channel group from the destination region. */
5074 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5075 const unsigned dst_size = inst->size_written /
5076 inst->dst.component_size(inst->exec_size);
5077
5078 if (needs_dst_copy(lbld, inst)) {
5079 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5080
5081 if (inst->predicate) {
5082 /* Handle predication by copying the original contents of
5083 * the destination into the temporary before emitting the
5084 * lowered instruction.
5085 */
5086 for (unsigned k = 0; k < dst_size; ++k)
5087 cbld.at(block, inst)
5088 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5089 }
5090
5091 for (unsigned k = 0; k < dst_size; ++k)
5092 cbld.at(block, inst->next)
5093 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5094
5095 return tmp;
5096
5097 } else {
5098 /* No need to allocate a temporary for the lowered instruction, just
5099 * take the right group of channels from the original region.
5100 */
5101 return dst;
5102 }
5103 }
5104
5105 bool
5106 fs_visitor::lower_simd_width()
5107 {
5108 bool progress = false;
5109
5110 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5111 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5112
5113 if (lower_width != inst->exec_size) {
5114 /* Builder matching the original instruction. We may also need to
5115 * emit an instruction of width larger than the original, set the
5116 * execution size of the builder to the highest of both for now so
5117 * we're sure that both cases can be handled.
5118 */
5119 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5120 const fs_builder ibld = bld.at(block, inst)
5121 .exec_all(inst->force_writemask_all)
5122 .group(max_width, inst->group / max_width);
5123
5124 /* Split the copies in chunks of the execution width of either the
5125 * original or the lowered instruction, whichever is lower.
5126 */
5127 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5128 const unsigned dst_size = inst->size_written /
5129 inst->dst.component_size(inst->exec_size);
5130
5131 assert(!inst->writes_accumulator && !inst->mlen);
5132
5133 for (unsigned i = 0; i < n; i++) {
5134 /* Emit a copy of the original instruction with the lowered width.
5135 * If the EOT flag was set throw it away except for the last
5136 * instruction to avoid killing the thread prematurely.
5137 */
5138 fs_inst split_inst = *inst;
5139 split_inst.exec_size = lower_width;
5140 split_inst.eot = inst->eot && i == n - 1;
5141
5142 /* Select the correct channel enables for the i-th group, then
5143 * transform the sources and destination and emit the lowered
5144 * instruction.
5145 */
5146 const fs_builder lbld = ibld.group(lower_width, i);
5147
5148 for (unsigned j = 0; j < inst->sources; j++)
5149 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5150
5151 split_inst.dst = emit_zip(lbld, block, inst);
5152 split_inst.size_written =
5153 split_inst.dst.component_size(lower_width) * dst_size;
5154
5155 lbld.emit(split_inst);
5156 }
5157
5158 inst->remove(block);
5159 progress = true;
5160 }
5161 }
5162
5163 if (progress)
5164 invalidate_live_intervals();
5165
5166 return progress;
5167 }
5168
5169 void
5170 fs_visitor::dump_instructions()
5171 {
5172 dump_instructions(NULL);
5173 }
5174
5175 void
5176 fs_visitor::dump_instructions(const char *name)
5177 {
5178 FILE *file = stderr;
5179 if (name && geteuid() != 0) {
5180 file = fopen(name, "w");
5181 if (!file)
5182 file = stderr;
5183 }
5184
5185 if (cfg) {
5186 calculate_register_pressure();
5187 int ip = 0, max_pressure = 0;
5188 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5189 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5190 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5191 dump_instruction(inst, file);
5192 ip++;
5193 }
5194 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5195 } else {
5196 int ip = 0;
5197 foreach_in_list(backend_instruction, inst, &instructions) {
5198 fprintf(file, "%4d: ", ip++);
5199 dump_instruction(inst, file);
5200 }
5201 }
5202
5203 if (file != stderr) {
5204 fclose(file);
5205 }
5206 }
5207
5208 void
5209 fs_visitor::dump_instruction(backend_instruction *be_inst)
5210 {
5211 dump_instruction(be_inst, stderr);
5212 }
5213
5214 void
5215 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5216 {
5217 fs_inst *inst = (fs_inst *)be_inst;
5218
5219 if (inst->predicate) {
5220 fprintf(file, "(%cf0.%d) ",
5221 inst->predicate_inverse ? '-' : '+',
5222 inst->flag_subreg);
5223 }
5224
5225 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5226 if (inst->saturate)
5227 fprintf(file, ".sat");
5228 if (inst->conditional_mod) {
5229 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5230 if (!inst->predicate &&
5231 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5232 inst->opcode != BRW_OPCODE_IF &&
5233 inst->opcode != BRW_OPCODE_WHILE))) {
5234 fprintf(file, ".f0.%d", inst->flag_subreg);
5235 }
5236 }
5237 fprintf(file, "(%d) ", inst->exec_size);
5238
5239 if (inst->mlen) {
5240 fprintf(file, "(mlen: %d) ", inst->mlen);
5241 }
5242
5243 if (inst->eot) {
5244 fprintf(file, "(EOT) ");
5245 }
5246
5247 switch (inst->dst.file) {
5248 case VGRF:
5249 fprintf(file, "vgrf%d", inst->dst.nr);
5250 break;
5251 case FIXED_GRF:
5252 fprintf(file, "g%d", inst->dst.nr);
5253 break;
5254 case MRF:
5255 fprintf(file, "m%d", inst->dst.nr);
5256 break;
5257 case BAD_FILE:
5258 fprintf(file, "(null)");
5259 break;
5260 case UNIFORM:
5261 fprintf(file, "***u%d***", inst->dst.nr);
5262 break;
5263 case ATTR:
5264 fprintf(file, "***attr%d***", inst->dst.nr);
5265 break;
5266 case ARF:
5267 switch (inst->dst.nr) {
5268 case BRW_ARF_NULL:
5269 fprintf(file, "null");
5270 break;
5271 case BRW_ARF_ADDRESS:
5272 fprintf(file, "a0.%d", inst->dst.subnr);
5273 break;
5274 case BRW_ARF_ACCUMULATOR:
5275 fprintf(file, "acc%d", inst->dst.subnr);
5276 break;
5277 case BRW_ARF_FLAG:
5278 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5279 break;
5280 default:
5281 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5282 break;
5283 }
5284 break;
5285 case IMM:
5286 unreachable("not reached");
5287 }
5288
5289 if (inst->dst.offset ||
5290 (inst->dst.file == VGRF &&
5291 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5292 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5293 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5294 inst->dst.offset % reg_size);
5295 }
5296
5297 if (inst->dst.stride != 1)
5298 fprintf(file, "<%u>", inst->dst.stride);
5299 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5300
5301 for (int i = 0; i < inst->sources; i++) {
5302 if (inst->src[i].negate)
5303 fprintf(file, "-");
5304 if (inst->src[i].abs)
5305 fprintf(file, "|");
5306 switch (inst->src[i].file) {
5307 case VGRF:
5308 fprintf(file, "vgrf%d", inst->src[i].nr);
5309 break;
5310 case FIXED_GRF:
5311 fprintf(file, "g%d", inst->src[i].nr);
5312 break;
5313 case MRF:
5314 fprintf(file, "***m%d***", inst->src[i].nr);
5315 break;
5316 case ATTR:
5317 fprintf(file, "attr%d", inst->src[i].nr);
5318 break;
5319 case UNIFORM:
5320 fprintf(file, "u%d", inst->src[i].nr);
5321 break;
5322 case BAD_FILE:
5323 fprintf(file, "(null)");
5324 break;
5325 case IMM:
5326 switch (inst->src[i].type) {
5327 case BRW_REGISTER_TYPE_F:
5328 fprintf(file, "%-gf", inst->src[i].f);
5329 break;
5330 case BRW_REGISTER_TYPE_DF:
5331 fprintf(file, "%fdf", inst->src[i].df);
5332 break;
5333 case BRW_REGISTER_TYPE_W:
5334 case BRW_REGISTER_TYPE_D:
5335 fprintf(file, "%dd", inst->src[i].d);
5336 break;
5337 case BRW_REGISTER_TYPE_UW:
5338 case BRW_REGISTER_TYPE_UD:
5339 fprintf(file, "%uu", inst->src[i].ud);
5340 break;
5341 case BRW_REGISTER_TYPE_VF:
5342 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5343 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5344 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5345 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5346 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5347 break;
5348 default:
5349 fprintf(file, "???");
5350 break;
5351 }
5352 break;
5353 case ARF:
5354 switch (inst->src[i].nr) {
5355 case BRW_ARF_NULL:
5356 fprintf(file, "null");
5357 break;
5358 case BRW_ARF_ADDRESS:
5359 fprintf(file, "a0.%d", inst->src[i].subnr);
5360 break;
5361 case BRW_ARF_ACCUMULATOR:
5362 fprintf(file, "acc%d", inst->src[i].subnr);
5363 break;
5364 case BRW_ARF_FLAG:
5365 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5366 break;
5367 default:
5368 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5369 break;
5370 }
5371 break;
5372 }
5373
5374 if (inst->src[i].offset ||
5375 (inst->src[i].file == VGRF &&
5376 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5377 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5378 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5379 inst->src[i].offset % reg_size);
5380 }
5381
5382 if (inst->src[i].abs)
5383 fprintf(file, "|");
5384
5385 if (inst->src[i].file != IMM) {
5386 unsigned stride;
5387 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5388 unsigned hstride = inst->src[i].hstride;
5389 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5390 } else {
5391 stride = inst->src[i].stride;
5392 }
5393 if (stride != 1)
5394 fprintf(file, "<%u>", stride);
5395
5396 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5397 }
5398
5399 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5400 fprintf(file, ", ");
5401 }
5402
5403 fprintf(file, " ");
5404
5405 if (inst->force_writemask_all)
5406 fprintf(file, "NoMask ");
5407
5408 if (inst->exec_size != dispatch_width)
5409 fprintf(file, "group%d ", inst->group);
5410
5411 fprintf(file, "\n");
5412 }
5413
5414 /**
5415 * Possibly returns an instruction that set up @param reg.
5416 *
5417 * Sometimes we want to take the result of some expression/variable
5418 * dereference tree and rewrite the instruction generating the result
5419 * of the tree. When processing the tree, we know that the
5420 * instructions generated are all writing temporaries that are dead
5421 * outside of this tree. So, if we have some instructions that write
5422 * a temporary, we're free to point that temp write somewhere else.
5423 *
5424 * Note that this doesn't guarantee that the instruction generated
5425 * only reg -- it might be the size=4 destination of a texture instruction.
5426 */
5427 fs_inst *
5428 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5429 fs_inst *end,
5430 const fs_reg &reg)
5431 {
5432 if (end == start ||
5433 end->is_partial_write() ||
5434 !reg.equals(end->dst)) {
5435 return NULL;
5436 } else {
5437 return end;
5438 }
5439 }
5440
5441 void
5442 fs_visitor::setup_fs_payload_gen6()
5443 {
5444 assert(stage == MESA_SHADER_FRAGMENT);
5445 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5446
5447 assert(devinfo->gen >= 6);
5448
5449 /* R0-1: masks, pixel X/Y coordinates. */
5450 payload.num_regs = 2;
5451 /* R2: only for 32-pixel dispatch.*/
5452
5453 /* R3-26: barycentric interpolation coordinates. These appear in the
5454 * same order that they appear in the brw_barycentric_mode
5455 * enum. Each set of coordinates occupies 2 registers if dispatch width
5456 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5457 * appear if they were enabled using the "Barycentric Interpolation
5458 * Mode" bits in WM_STATE.
5459 */
5460 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5461 if (prog_data->barycentric_interp_modes & (1 << i)) {
5462 payload.barycentric_coord_reg[i] = payload.num_regs;
5463 payload.num_regs += 2;
5464 if (dispatch_width == 16) {
5465 payload.num_regs += 2;
5466 }
5467 }
5468 }
5469
5470 /* R27: interpolated depth if uses source depth */
5471 prog_data->uses_src_depth =
5472 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5473 if (prog_data->uses_src_depth) {
5474 payload.source_depth_reg = payload.num_regs;
5475 payload.num_regs++;
5476 if (dispatch_width == 16) {
5477 /* R28: interpolated depth if not SIMD8. */
5478 payload.num_regs++;
5479 }
5480 }
5481
5482 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5483 prog_data->uses_src_w =
5484 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5485 if (prog_data->uses_src_w) {
5486 payload.source_w_reg = payload.num_regs;
5487 payload.num_regs++;
5488 if (dispatch_width == 16) {
5489 /* R30: interpolated W if not SIMD8. */
5490 payload.num_regs++;
5491 }
5492 }
5493
5494 /* R31: MSAA position offsets. */
5495 if (prog_data->persample_dispatch &&
5496 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5497 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5498 *
5499 * "MSDISPMODE_PERSAMPLE is required in order to select
5500 * POSOFFSET_SAMPLE"
5501 *
5502 * So we can only really get sample positions if we are doing real
5503 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5504 * persample dispatch, we hard-code it to 0.5.
5505 */
5506 prog_data->uses_pos_offset = true;
5507 payload.sample_pos_reg = payload.num_regs;
5508 payload.num_regs++;
5509 }
5510
5511 /* R32: MSAA input coverage mask */
5512 prog_data->uses_sample_mask =
5513 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5514 if (prog_data->uses_sample_mask) {
5515 assert(devinfo->gen >= 7);
5516 payload.sample_mask_in_reg = payload.num_regs;
5517 payload.num_regs++;
5518 if (dispatch_width == 16) {
5519 /* R33: input coverage mask if not SIMD8. */
5520 payload.num_regs++;
5521 }
5522 }
5523
5524 /* R34-: bary for 32-pixel. */
5525 /* R58-59: interp W for 32-pixel. */
5526
5527 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5528 source_depth_to_render_target = true;
5529 }
5530 }
5531
5532 void
5533 fs_visitor::setup_vs_payload()
5534 {
5535 /* R0: thread header, R1: urb handles */
5536 payload.num_regs = 2;
5537 }
5538
5539 void
5540 fs_visitor::setup_gs_payload()
5541 {
5542 assert(stage == MESA_SHADER_GEOMETRY);
5543
5544 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5545 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5546
5547 /* R0: thread header, R1: output URB handles */
5548 payload.num_regs = 2;
5549
5550 if (gs_prog_data->include_primitive_id) {
5551 /* R2: Primitive ID 0..7 */
5552 payload.num_regs++;
5553 }
5554
5555 /* Use a maximum of 24 registers for push-model inputs. */
5556 const unsigned max_push_components = 24;
5557
5558 /* If pushing our inputs would take too many registers, reduce the URB read
5559 * length (which is in HWords, or 8 registers), and resort to pulling.
5560 *
5561 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5562 * have to multiply by VerticesIn to obtain the total storage requirement.
5563 */
5564 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5565 max_push_components || gs_prog_data->invocations > 1) {
5566 gs_prog_data->base.include_vue_handles = true;
5567
5568 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5569 payload.num_regs += nir->info.gs.vertices_in;
5570
5571 vue_prog_data->urb_read_length =
5572 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5573 }
5574 }
5575
5576 void
5577 fs_visitor::setup_cs_payload()
5578 {
5579 assert(devinfo->gen >= 7);
5580 payload.num_regs = 1;
5581 }
5582
5583 void
5584 fs_visitor::calculate_register_pressure()
5585 {
5586 invalidate_live_intervals();
5587 calculate_live_intervals();
5588
5589 unsigned num_instructions = 0;
5590 foreach_block(block, cfg)
5591 num_instructions += block->instructions.length();
5592
5593 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5594
5595 for (unsigned reg = 0; reg < alloc.count; reg++) {
5596 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5597 regs_live_at_ip[ip] += alloc.sizes[reg];
5598 }
5599 }
5600
5601 /**
5602 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5603 *
5604 * The needs_unlit_centroid_workaround ends up producing one of these per
5605 * channel of centroid input, so it's good to clean them up.
5606 *
5607 * An assumption here is that nothing ever modifies the dispatched pixels
5608 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5609 * dictates that anyway.
5610 */
5611 bool
5612 fs_visitor::opt_drop_redundant_mov_to_flags()
5613 {
5614 bool flag_mov_found[2] = {false};
5615 bool progress = false;
5616
5617 /* Instructions removed by this pass can only be added if this were true */
5618 if (!devinfo->needs_unlit_centroid_workaround)
5619 return false;
5620
5621 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5622 if (inst->is_control_flow()) {
5623 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5624 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5625 if (!flag_mov_found[inst->flag_subreg]) {
5626 flag_mov_found[inst->flag_subreg] = true;
5627 } else {
5628 inst->remove(block);
5629 progress = true;
5630 }
5631 } else if (inst->flags_written()) {
5632 flag_mov_found[inst->flag_subreg] = false;
5633 }
5634 }
5635
5636 return progress;
5637 }
5638
5639 void
5640 fs_visitor::optimize()
5641 {
5642 /* Start by validating the shader we currently have. */
5643 validate();
5644
5645 /* bld is the common builder object pointing at the end of the program we
5646 * used to translate it into i965 IR. For the optimization and lowering
5647 * passes coming next, any code added after the end of the program without
5648 * having explicitly called fs_builder::at() clearly points at a mistake.
5649 * Ideally optimization passes wouldn't be part of the visitor so they
5650 * wouldn't have access to bld at all, but they do, so just in case some
5651 * pass forgets to ask for a location explicitly set it to NULL here to
5652 * make it trip. The dispatch width is initialized to a bogus value to
5653 * make sure that optimizations set the execution controls explicitly to
5654 * match the code they are manipulating instead of relying on the defaults.
5655 */
5656 bld = fs_builder(this, 64);
5657
5658 assign_constant_locations();
5659 lower_constant_loads();
5660
5661 validate();
5662
5663 split_virtual_grfs();
5664 validate();
5665
5666 #define OPT(pass, args...) ({ \
5667 pass_num++; \
5668 bool this_progress = pass(args); \
5669 \
5670 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5671 char filename[64]; \
5672 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5673 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5674 \
5675 backend_shader::dump_instructions(filename); \
5676 } \
5677 \
5678 validate(); \
5679 \
5680 progress = progress || this_progress; \
5681 this_progress; \
5682 })
5683
5684 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5685 char filename[64];
5686 snprintf(filename, 64, "%s%d-%s-00-00-start",
5687 stage_abbrev, dispatch_width, nir->info.name);
5688
5689 backend_shader::dump_instructions(filename);
5690 }
5691
5692 bool progress = false;
5693 int iteration = 0;
5694 int pass_num = 0;
5695
5696 OPT(opt_drop_redundant_mov_to_flags);
5697
5698 do {
5699 progress = false;
5700 pass_num = 0;
5701 iteration++;
5702
5703 OPT(remove_duplicate_mrf_writes);
5704
5705 OPT(opt_algebraic);
5706 OPT(opt_cse);
5707 OPT(opt_copy_propagation);
5708 OPT(opt_predicated_break, this);
5709 OPT(opt_cmod_propagation);
5710 OPT(dead_code_eliminate);
5711 OPT(opt_peephole_sel);
5712 OPT(dead_control_flow_eliminate, this);
5713 OPT(opt_register_renaming);
5714 OPT(opt_saturate_propagation);
5715 OPT(register_coalesce);
5716 OPT(compute_to_mrf);
5717 OPT(eliminate_find_live_channel);
5718
5719 OPT(compact_virtual_grfs);
5720 } while (progress);
5721
5722 progress = false;
5723 pass_num = 0;
5724
5725 if (OPT(lower_pack)) {
5726 OPT(register_coalesce);
5727 OPT(dead_code_eliminate);
5728 }
5729
5730 OPT(lower_simd_width);
5731
5732 /* After SIMD lowering just in case we had to unroll the EOT send. */
5733 OPT(opt_sampler_eot);
5734
5735 OPT(lower_logical_sends);
5736
5737 if (progress) {
5738 OPT(opt_copy_propagation);
5739 /* Only run after logical send lowering because it's easier to implement
5740 * in terms of physical sends.
5741 */
5742 if (OPT(opt_zero_samples))
5743 OPT(opt_copy_propagation);
5744 /* Run after logical send lowering to give it a chance to CSE the
5745 * LOAD_PAYLOAD instructions created to construct the payloads of
5746 * e.g. texturing messages in cases where it wasn't possible to CSE the
5747 * whole logical instruction.
5748 */
5749 OPT(opt_cse);
5750 OPT(register_coalesce);
5751 OPT(compute_to_mrf);
5752 OPT(dead_code_eliminate);
5753 OPT(remove_duplicate_mrf_writes);
5754 OPT(opt_peephole_sel);
5755 }
5756
5757 OPT(opt_redundant_discard_jumps);
5758
5759 if (OPT(lower_load_payload)) {
5760 split_virtual_grfs();
5761 OPT(register_coalesce);
5762 OPT(compute_to_mrf);
5763 OPT(dead_code_eliminate);
5764 }
5765
5766 OPT(opt_combine_constants);
5767 OPT(lower_integer_multiplication);
5768
5769 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5770 OPT(opt_cmod_propagation);
5771 OPT(opt_cse);
5772 OPT(opt_copy_propagation);
5773 OPT(dead_code_eliminate);
5774 }
5775
5776 if (OPT(lower_conversions)) {
5777 OPT(opt_copy_propagation);
5778 OPT(dead_code_eliminate);
5779 OPT(lower_simd_width);
5780 }
5781
5782 lower_uniform_pull_constant_loads();
5783
5784 validate();
5785 }
5786
5787 /**
5788 * Three source instruction must have a GRF/MRF destination register.
5789 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5790 */
5791 void
5792 fs_visitor::fixup_3src_null_dest()
5793 {
5794 bool progress = false;
5795
5796 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5797 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5798 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5799 inst->dst.type);
5800 progress = true;
5801 }
5802 }
5803
5804 if (progress)
5805 invalidate_live_intervals();
5806 }
5807
5808 void
5809 fs_visitor::allocate_registers(bool allow_spilling)
5810 {
5811 bool allocated_without_spills;
5812
5813 static const enum instruction_scheduler_mode pre_modes[] = {
5814 SCHEDULE_PRE,
5815 SCHEDULE_PRE_NON_LIFO,
5816 SCHEDULE_PRE_LIFO,
5817 };
5818
5819 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5820
5821 /* Try each scheduling heuristic to see if it can successfully register
5822 * allocate without spilling. They should be ordered by decreasing
5823 * performance but increasing likelihood of allocating.
5824 */
5825 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5826 schedule_instructions(pre_modes[i]);
5827
5828 if (0) {
5829 assign_regs_trivial();
5830 allocated_without_spills = true;
5831 } else {
5832 allocated_without_spills = assign_regs(false, spill_all);
5833 }
5834 if (allocated_without_spills)
5835 break;
5836 }
5837
5838 if (!allocated_without_spills) {
5839 if (!allow_spilling)
5840 fail("Failure to register allocate and spilling is not allowed.");
5841
5842 /* We assume that any spilling is worse than just dropping back to
5843 * SIMD8. There's probably actually some intermediate point where
5844 * SIMD16 with a couple of spills is still better.
5845 */
5846 if (dispatch_width > min_dispatch_width) {
5847 fail("Failure to register allocate. Reduce number of "
5848 "live scalar values to avoid this.");
5849 } else {
5850 compiler->shader_perf_log(log_data,
5851 "%s shader triggered register spilling. "
5852 "Try reducing the number of live scalar "
5853 "values to improve performance.\n",
5854 stage_name);
5855 }
5856
5857 /* Since we're out of heuristics, just go spill registers until we
5858 * get an allocation.
5859 */
5860 while (!assign_regs(true, spill_all)) {
5861 if (failed)
5862 break;
5863 }
5864 }
5865
5866 /* This must come after all optimization and register allocation, since
5867 * it inserts dead code that happens to have side effects, and it does
5868 * so based on the actual physical registers in use.
5869 */
5870 insert_gen4_send_dependency_workarounds();
5871
5872 if (failed)
5873 return;
5874
5875 schedule_instructions(SCHEDULE_POST);
5876
5877 if (last_scratch > 0) {
5878 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5879
5880 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5881
5882 if (stage == MESA_SHADER_COMPUTE) {
5883 if (devinfo->is_haswell) {
5884 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5885 * field documentation, Haswell supports a minimum of 2kB of
5886 * scratch space for compute shaders, unlike every other stage
5887 * and platform.
5888 */
5889 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5890 } else if (devinfo->gen <= 7) {
5891 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5892 * field documentation, platforms prior to Haswell measure scratch
5893 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5894 */
5895 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5896 max_scratch_size = 12 * 1024;
5897 }
5898 }
5899
5900 /* We currently only support up to 2MB of scratch space. If we
5901 * need to support more eventually, the documentation suggests
5902 * that we could allocate a larger buffer, and partition it out
5903 * ourselves. We'd just have to undo the hardware's address
5904 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5905 * and then add FFTID * (Larger Per Thread Scratch Space).
5906 *
5907 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5908 * Thread Group Tracking > Local Memory/Scratch Space.
5909 */
5910 assert(prog_data->total_scratch < max_scratch_size);
5911 }
5912 }
5913
5914 bool
5915 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5916 {
5917 assert(stage == MESA_SHADER_VERTEX);
5918
5919 setup_vs_payload();
5920
5921 if (shader_time_index >= 0)
5922 emit_shader_time_begin();
5923
5924 emit_nir_code();
5925
5926 if (failed)
5927 return false;
5928
5929 compute_clip_distance(clip_planes);
5930
5931 emit_urb_writes();
5932
5933 if (shader_time_index >= 0)
5934 emit_shader_time_end();
5935
5936 calculate_cfg();
5937
5938 optimize();
5939
5940 assign_curb_setup();
5941 assign_vs_urb_setup();
5942
5943 fixup_3src_null_dest();
5944 allocate_registers(true);
5945
5946 return !failed;
5947 }
5948
5949 bool
5950 fs_visitor::run_tcs_single_patch()
5951 {
5952 assert(stage == MESA_SHADER_TESS_CTRL);
5953
5954 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
5955
5956 /* r1-r4 contain the ICP handles. */
5957 payload.num_regs = 5;
5958
5959 if (shader_time_index >= 0)
5960 emit_shader_time_begin();
5961
5962 /* Initialize gl_InvocationID */
5963 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5964 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5965 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5966 bld.MOV(channels_ud, channels_uw);
5967
5968 if (tcs_prog_data->instances == 1) {
5969 invocation_id = channels_ud;
5970 } else {
5971 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
5972
5973 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
5974 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
5975 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5976 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
5977 brw_imm_ud(INTEL_MASK(23, 17)));
5978 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
5979
5980 bld.ADD(invocation_id, instance_times_8, channels_ud);
5981 }
5982
5983 /* Fix the disptach mask */
5984 if (nir->info.tess.tcs_vertices_out % 8) {
5985 bld.CMP(bld.null_reg_ud(), invocation_id,
5986 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
5987 bld.IF(BRW_PREDICATE_NORMAL);
5988 }
5989
5990 emit_nir_code();
5991
5992 if (nir->info.tess.tcs_vertices_out % 8) {
5993 bld.emit(BRW_OPCODE_ENDIF);
5994 }
5995
5996 /* Emit EOT write; set TR DS Cache bit */
5997 fs_reg srcs[3] = {
5998 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
5999 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6000 fs_reg(brw_imm_ud(0)),
6001 };
6002 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6003 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6004
6005 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6006 bld.null_reg_ud(), payload);
6007 inst->mlen = 3;
6008 inst->eot = true;
6009
6010 if (shader_time_index >= 0)
6011 emit_shader_time_end();
6012
6013 if (failed)
6014 return false;
6015
6016 calculate_cfg();
6017
6018 optimize();
6019
6020 assign_curb_setup();
6021 assign_tcs_single_patch_urb_setup();
6022
6023 fixup_3src_null_dest();
6024 allocate_registers(true);
6025
6026 return !failed;
6027 }
6028
6029 bool
6030 fs_visitor::run_tes()
6031 {
6032 assert(stage == MESA_SHADER_TESS_EVAL);
6033
6034 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6035 payload.num_regs = 5;
6036
6037 if (shader_time_index >= 0)
6038 emit_shader_time_begin();
6039
6040 emit_nir_code();
6041
6042 if (failed)
6043 return false;
6044
6045 emit_urb_writes();
6046
6047 if (shader_time_index >= 0)
6048 emit_shader_time_end();
6049
6050 calculate_cfg();
6051
6052 optimize();
6053
6054 assign_curb_setup();
6055 assign_tes_urb_setup();
6056
6057 fixup_3src_null_dest();
6058 allocate_registers(true);
6059
6060 return !failed;
6061 }
6062
6063 bool
6064 fs_visitor::run_gs()
6065 {
6066 assert(stage == MESA_SHADER_GEOMETRY);
6067
6068 setup_gs_payload();
6069
6070 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6071
6072 if (gs_compile->control_data_header_size_bits > 0) {
6073 /* Create a VGRF to store accumulated control data bits. */
6074 this->control_data_bits = vgrf(glsl_type::uint_type);
6075
6076 /* If we're outputting more than 32 control data bits, then EmitVertex()
6077 * will set control_data_bits to 0 after emitting the first vertex.
6078 * Otherwise, we need to initialize it to 0 here.
6079 */
6080 if (gs_compile->control_data_header_size_bits <= 32) {
6081 const fs_builder abld = bld.annotate("initialize control data bits");
6082 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6083 }
6084 }
6085
6086 if (shader_time_index >= 0)
6087 emit_shader_time_begin();
6088
6089 emit_nir_code();
6090
6091 emit_gs_thread_end();
6092
6093 if (shader_time_index >= 0)
6094 emit_shader_time_end();
6095
6096 if (failed)
6097 return false;
6098
6099 calculate_cfg();
6100
6101 optimize();
6102
6103 assign_curb_setup();
6104 assign_gs_urb_setup();
6105
6106 fixup_3src_null_dest();
6107 allocate_registers(true);
6108
6109 return !failed;
6110 }
6111
6112 bool
6113 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6114 {
6115 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6116 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6117
6118 assert(stage == MESA_SHADER_FRAGMENT);
6119
6120 if (devinfo->gen >= 6)
6121 setup_fs_payload_gen6();
6122 else
6123 setup_fs_payload_gen4();
6124
6125 if (0) {
6126 emit_dummy_fs();
6127 } else if (do_rep_send) {
6128 assert(dispatch_width == 16);
6129 emit_repclear_shader();
6130 } else {
6131 if (shader_time_index >= 0)
6132 emit_shader_time_begin();
6133
6134 calculate_urb_setup();
6135 if (nir->info.inputs_read > 0 ||
6136 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6137 if (devinfo->gen < 6)
6138 emit_interpolation_setup_gen4();
6139 else
6140 emit_interpolation_setup_gen6();
6141 }
6142
6143 /* We handle discards by keeping track of the still-live pixels in f0.1.
6144 * Initialize it with the dispatched pixels.
6145 */
6146 if (wm_prog_data->uses_kill) {
6147 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6148 discard_init->flag_subreg = 1;
6149 }
6150
6151 /* Generate FS IR for main(). (the visitor only descends into
6152 * functions called "main").
6153 */
6154 emit_nir_code();
6155
6156 if (failed)
6157 return false;
6158
6159 if (wm_prog_data->uses_kill)
6160 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6161
6162 if (wm_key->alpha_test_func)
6163 emit_alpha_test();
6164
6165 emit_fb_writes();
6166
6167 if (shader_time_index >= 0)
6168 emit_shader_time_end();
6169
6170 calculate_cfg();
6171
6172 optimize();
6173
6174 assign_curb_setup();
6175 assign_urb_setup();
6176
6177 fixup_3src_null_dest();
6178 allocate_registers(allow_spilling);
6179
6180 if (failed)
6181 return false;
6182 }
6183
6184 return !failed;
6185 }
6186
6187 bool
6188 fs_visitor::run_cs()
6189 {
6190 assert(stage == MESA_SHADER_COMPUTE);
6191
6192 setup_cs_payload();
6193
6194 if (shader_time_index >= 0)
6195 emit_shader_time_begin();
6196
6197 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6198 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6199 const fs_builder abld = bld.exec_all().group(1, 0);
6200 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6201 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6202 }
6203
6204 emit_nir_code();
6205
6206 if (failed)
6207 return false;
6208
6209 emit_cs_terminate();
6210
6211 if (shader_time_index >= 0)
6212 emit_shader_time_end();
6213
6214 calculate_cfg();
6215
6216 optimize();
6217
6218 assign_curb_setup();
6219
6220 fixup_3src_null_dest();
6221 allocate_registers(true);
6222
6223 if (failed)
6224 return false;
6225
6226 return !failed;
6227 }
6228
6229 /**
6230 * Return a bitfield where bit n is set if barycentric interpolation mode n
6231 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6232 *
6233 * We examine the load_barycentric intrinsics rather than looking at input
6234 * variables so that we catch interpolateAtCentroid() messages too, which
6235 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6236 */
6237 static unsigned
6238 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6239 const nir_shader *shader)
6240 {
6241 unsigned barycentric_interp_modes = 0;
6242
6243 nir_foreach_function(f, shader) {
6244 if (!f->impl)
6245 continue;
6246
6247 nir_foreach_block(block, f->impl) {
6248 nir_foreach_instr(instr, block) {
6249 if (instr->type != nir_instr_type_intrinsic)
6250 continue;
6251
6252 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6253 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6254 continue;
6255
6256 /* Ignore WPOS; it doesn't require interpolation. */
6257 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6258 continue;
6259
6260 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6261 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6262 nir_intrinsic_interp_mode(intrin);
6263 nir_intrinsic_op bary_op = intrin->intrinsic;
6264 enum brw_barycentric_mode bary =
6265 brw_barycentric_mode(interp, bary_op);
6266
6267 barycentric_interp_modes |= 1 << bary;
6268
6269 if (devinfo->needs_unlit_centroid_workaround &&
6270 bary_op == nir_intrinsic_load_barycentric_centroid)
6271 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6272 }
6273 }
6274 }
6275
6276 return barycentric_interp_modes;
6277 }
6278
6279 static void
6280 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6281 const nir_shader *shader)
6282 {
6283 prog_data->flat_inputs = 0;
6284
6285 nir_foreach_variable(var, &shader->inputs) {
6286 int input_index = prog_data->urb_setup[var->data.location];
6287
6288 if (input_index < 0)
6289 continue;
6290
6291 /* flat shading */
6292 if (var->data.interpolation == INTERP_MODE_FLAT)
6293 prog_data->flat_inputs |= (1 << input_index);
6294 }
6295 }
6296
6297 static uint8_t
6298 computed_depth_mode(const nir_shader *shader)
6299 {
6300 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6301 switch (shader->info.fs.depth_layout) {
6302 case FRAG_DEPTH_LAYOUT_NONE:
6303 case FRAG_DEPTH_LAYOUT_ANY:
6304 return BRW_PSCDEPTH_ON;
6305 case FRAG_DEPTH_LAYOUT_GREATER:
6306 return BRW_PSCDEPTH_ON_GE;
6307 case FRAG_DEPTH_LAYOUT_LESS:
6308 return BRW_PSCDEPTH_ON_LE;
6309 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6310 return BRW_PSCDEPTH_OFF;
6311 }
6312 }
6313 return BRW_PSCDEPTH_OFF;
6314 }
6315
6316 /**
6317 * Move load_interpolated_input with simple (payload-based) barycentric modes
6318 * to the top of the program so we don't emit multiple PLNs for the same input.
6319 *
6320 * This works around CSE not being able to handle non-dominating cases
6321 * such as:
6322 *
6323 * if (...) {
6324 * interpolate input
6325 * } else {
6326 * interpolate the same exact input
6327 * }
6328 *
6329 * This should be replaced by global value numbering someday.
6330 */
6331 static bool
6332 move_interpolation_to_top(nir_shader *nir)
6333 {
6334 bool progress = false;
6335
6336 nir_foreach_function(f, nir) {
6337 if (!f->impl)
6338 continue;
6339
6340 nir_block *top = nir_start_block(f->impl);
6341 exec_node *cursor_node = NULL;
6342
6343 nir_foreach_block(block, f->impl) {
6344 if (block == top)
6345 continue;
6346
6347 nir_foreach_instr_safe(instr, block) {
6348 if (instr->type != nir_instr_type_intrinsic)
6349 continue;
6350
6351 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6352 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6353 continue;
6354 nir_intrinsic_instr *bary_intrinsic =
6355 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6356 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6357
6358 /* Leave interpolateAtSample/Offset() where they are. */
6359 if (op == nir_intrinsic_load_barycentric_at_sample ||
6360 op == nir_intrinsic_load_barycentric_at_offset)
6361 continue;
6362
6363 nir_instr *move[3] = {
6364 &bary_intrinsic->instr,
6365 intrin->src[1].ssa->parent_instr,
6366 instr
6367 };
6368
6369 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6370 if (move[i]->block != top) {
6371 move[i]->block = top;
6372 exec_node_remove(&move[i]->node);
6373 if (cursor_node) {
6374 exec_node_insert_after(cursor_node, &move[i]->node);
6375 } else {
6376 exec_list_push_head(&top->instr_list, &move[i]->node);
6377 }
6378 cursor_node = &move[i]->node;
6379 progress = true;
6380 }
6381 }
6382 }
6383 }
6384 nir_metadata_preserve(f->impl, (nir_metadata)
6385 ((unsigned) nir_metadata_block_index |
6386 (unsigned) nir_metadata_dominance));
6387 }
6388
6389 return progress;
6390 }
6391
6392 /**
6393 * Demote per-sample barycentric intrinsics to centroid.
6394 *
6395 * Useful when rendering to a non-multisampled buffer.
6396 */
6397 static bool
6398 demote_sample_qualifiers(nir_shader *nir)
6399 {
6400 bool progress = true;
6401
6402 nir_foreach_function(f, nir) {
6403 if (!f->impl)
6404 continue;
6405
6406 nir_builder b;
6407 nir_builder_init(&b, f->impl);
6408
6409 nir_foreach_block(block, f->impl) {
6410 nir_foreach_instr_safe(instr, block) {
6411 if (instr->type != nir_instr_type_intrinsic)
6412 continue;
6413
6414 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6415 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6416 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6417 continue;
6418
6419 b.cursor = nir_before_instr(instr);
6420 nir_ssa_def *centroid =
6421 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6422 nir_intrinsic_interp_mode(intrin));
6423 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6424 nir_src_for_ssa(centroid));
6425 nir_instr_remove(instr);
6426 progress = true;
6427 }
6428 }
6429
6430 nir_metadata_preserve(f->impl, (nir_metadata)
6431 ((unsigned) nir_metadata_block_index |
6432 (unsigned) nir_metadata_dominance));
6433 }
6434
6435 return progress;
6436 }
6437
6438 /**
6439 * Pre-gen6, the register file of the EUs was shared between threads,
6440 * and each thread used some subset allocated on a 16-register block
6441 * granularity. The unit states wanted these block counts.
6442 */
6443 static inline int
6444 brw_register_blocks(int reg_count)
6445 {
6446 return ALIGN(reg_count, 16) / 16 - 1;
6447 }
6448
6449 const unsigned *
6450 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6451 void *mem_ctx,
6452 const struct brw_wm_prog_key *key,
6453 struct brw_wm_prog_data *prog_data,
6454 const nir_shader *src_shader,
6455 struct gl_program *prog,
6456 int shader_time_index8, int shader_time_index16,
6457 bool allow_spilling,
6458 bool use_rep_send, struct brw_vue_map *vue_map,
6459 unsigned *final_assembly_size,
6460 char **error_str)
6461 {
6462 const struct gen_device_info *devinfo = compiler->devinfo;
6463
6464 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6465 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6466 brw_nir_lower_fs_inputs(shader, devinfo, key);
6467 brw_nir_lower_fs_outputs(shader);
6468
6469 if (devinfo->gen < 6) {
6470 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6471 }
6472
6473 if (!key->multisample_fbo)
6474 NIR_PASS_V(shader, demote_sample_qualifiers);
6475 NIR_PASS_V(shader, move_interpolation_to_top);
6476 shader = brw_postprocess_nir(shader, compiler, true);
6477
6478 /* key->alpha_test_func means simulating alpha testing via discards,
6479 * so the shader definitely kills pixels.
6480 */
6481 prog_data->uses_kill = shader->info.fs.uses_discard ||
6482 key->alpha_test_func;
6483 prog_data->uses_omask = key->multisample_fbo &&
6484 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6485 prog_data->computed_depth_mode = computed_depth_mode(shader);
6486 prog_data->computed_stencil =
6487 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6488
6489 prog_data->persample_dispatch =
6490 key->multisample_fbo &&
6491 (key->persample_interp ||
6492 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6493 SYSTEM_BIT_SAMPLE_POS)) ||
6494 shader->info.fs.uses_sample_qualifier ||
6495 shader->info.outputs_read);
6496
6497 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6498 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6499 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6500
6501 prog_data->barycentric_interp_modes =
6502 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6503
6504 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6505 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6506 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6507
6508 fs_visitor v8(compiler, log_data, mem_ctx, key,
6509 &prog_data->base, prog, shader, 8,
6510 shader_time_index8);
6511 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6512 if (error_str)
6513 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6514
6515 return NULL;
6516 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6517 simd8_cfg = v8.cfg;
6518 simd8_grf_start = v8.payload.num_regs;
6519 simd8_grf_used = v8.grf_used;
6520 }
6521
6522 if (v8.max_dispatch_width >= 16 &&
6523 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6524 /* Try a SIMD16 compile */
6525 fs_visitor v16(compiler, log_data, mem_ctx, key,
6526 &prog_data->base, prog, shader, 16,
6527 shader_time_index16);
6528 v16.import_uniforms(&v8);
6529 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6530 compiler->shader_perf_log(log_data,
6531 "SIMD16 shader failed to compile: %s",
6532 v16.fail_msg);
6533 } else {
6534 simd16_cfg = v16.cfg;
6535 simd16_grf_start = v16.payload.num_regs;
6536 simd16_grf_used = v16.grf_used;
6537 }
6538 }
6539
6540 /* When the caller requests a repclear shader, they want SIMD16-only */
6541 if (use_rep_send)
6542 simd8_cfg = NULL;
6543
6544 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6545 * at the top to select the shader. We've never implemented that.
6546 * Instead, we just give them exactly one shader and we pick the widest one
6547 * available.
6548 */
6549 if (compiler->devinfo->gen < 5 && simd16_cfg)
6550 simd8_cfg = NULL;
6551
6552 if (prog_data->persample_dispatch) {
6553 /* Starting with SandyBridge (where we first get MSAA), the different
6554 * pixel dispatch combinations are grouped into classifications A
6555 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6556 * generations, the only configurations supporting persample dispatch
6557 * are are this in which only one dispatch width is enabled.
6558 *
6559 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6560 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6561 */
6562 if (compiler->devinfo->gen == 6 &&
6563 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6564 simd16_cfg = NULL;
6565 } else if (simd16_cfg) {
6566 simd8_cfg = NULL;
6567 }
6568 }
6569
6570 /* We have to compute the flat inputs after the visitor is finished running
6571 * because it relies on prog_data->urb_setup which is computed in
6572 * fs_visitor::calculate_urb_setup().
6573 */
6574 brw_compute_flat_inputs(prog_data, shader);
6575
6576 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6577 v8.promoted_constants, v8.runtime_check_aads_emit,
6578 MESA_SHADER_FRAGMENT);
6579
6580 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6581 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6582 shader->info.label ?
6583 shader->info.label : "unnamed",
6584 shader->info.name));
6585 }
6586
6587 if (simd8_cfg) {
6588 prog_data->dispatch_8 = true;
6589 g.generate_code(simd8_cfg, 8);
6590 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6591 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6592
6593 if (simd16_cfg) {
6594 prog_data->dispatch_16 = true;
6595 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6596 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6597 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6598 }
6599 } else if (simd16_cfg) {
6600 prog_data->dispatch_16 = true;
6601 g.generate_code(simd16_cfg, 16);
6602 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6603 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6604 }
6605
6606 return g.get_assembly(final_assembly_size);
6607 }
6608
6609 fs_reg *
6610 fs_visitor::emit_cs_work_group_id_setup()
6611 {
6612 assert(stage == MESA_SHADER_COMPUTE);
6613
6614 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6615
6616 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6617 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6618 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6619
6620 bld.MOV(*reg, r0_1);
6621 bld.MOV(offset(*reg, bld, 1), r0_6);
6622 bld.MOV(offset(*reg, bld, 2), r0_7);
6623
6624 return reg;
6625 }
6626
6627 static void
6628 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6629 {
6630 block->dwords = dwords;
6631 block->regs = DIV_ROUND_UP(dwords, 8);
6632 block->size = block->regs * 32;
6633 }
6634
6635 static void
6636 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6637 struct brw_cs_prog_data *cs_prog_data)
6638 {
6639 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6640 bool fill_thread_id =
6641 cs_prog_data->thread_local_id_index >= 0 &&
6642 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6643 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6644
6645 /* The thread ID should be stored in the last param dword */
6646 assert(prog_data->nr_params > 0 || !fill_thread_id);
6647 assert(!fill_thread_id ||
6648 cs_prog_data->thread_local_id_index ==
6649 (int)prog_data->nr_params - 1);
6650
6651 unsigned cross_thread_dwords, per_thread_dwords;
6652 if (!cross_thread_supported) {
6653 cross_thread_dwords = 0u;
6654 per_thread_dwords = prog_data->nr_params;
6655 } else if (fill_thread_id) {
6656 /* Fill all but the last register with cross-thread payload */
6657 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6658 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6659 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6660 } else {
6661 /* Fill all data using cross-thread payload */
6662 cross_thread_dwords = prog_data->nr_params;
6663 per_thread_dwords = 0u;
6664 }
6665
6666 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6667 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6668
6669 unsigned total_dwords =
6670 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6671 cs_prog_data->push.cross_thread.size) / 4;
6672 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6673
6674 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6675 cs_prog_data->push.per_thread.size == 0);
6676 assert(cs_prog_data->push.cross_thread.dwords +
6677 cs_prog_data->push.per_thread.dwords ==
6678 prog_data->nr_params);
6679 }
6680
6681 static void
6682 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6683 {
6684 cs_prog_data->simd_size = size;
6685 unsigned group_size = cs_prog_data->local_size[0] *
6686 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6687 cs_prog_data->threads = (group_size + size - 1) / size;
6688 }
6689
6690 const unsigned *
6691 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6692 void *mem_ctx,
6693 const struct brw_cs_prog_key *key,
6694 struct brw_cs_prog_data *prog_data,
6695 const nir_shader *src_shader,
6696 int shader_time_index,
6697 unsigned *final_assembly_size,
6698 char **error_str)
6699 {
6700 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6701 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6702 brw_nir_lower_cs_shared(shader);
6703 prog_data->base.total_shared += shader->num_shared;
6704
6705 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6706 * the thread_local_id_index.
6707 */
6708 assert(prog_data->thread_local_id_index >= 0);
6709 shader->num_uniforms =
6710 MAX2(shader->num_uniforms,
6711 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6712
6713 brw_nir_lower_intrinsics(shader, &prog_data->base);
6714 shader = brw_postprocess_nir(shader, compiler, true);
6715
6716 prog_data->local_size[0] = shader->info.cs.local_size[0];
6717 prog_data->local_size[1] = shader->info.cs.local_size[1];
6718 prog_data->local_size[2] = shader->info.cs.local_size[2];
6719 unsigned local_workgroup_size =
6720 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6721 shader->info.cs.local_size[2];
6722
6723 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6724 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6725
6726 cfg_t *cfg = NULL;
6727 const char *fail_msg = NULL;
6728
6729 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6730 */
6731 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6732 NULL, /* Never used in core profile */
6733 shader, 8, shader_time_index);
6734 if (simd_required <= 8) {
6735 if (!v8.run_cs()) {
6736 fail_msg = v8.fail_msg;
6737 } else {
6738 cfg = v8.cfg;
6739 cs_set_simd_size(prog_data, 8);
6740 cs_fill_push_const_info(compiler->devinfo, prog_data);
6741 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6742 }
6743 }
6744
6745 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6746 NULL, /* Never used in core profile */
6747 shader, 16, shader_time_index);
6748 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6749 !fail_msg && v8.max_dispatch_width >= 16 &&
6750 simd_required <= 16) {
6751 /* Try a SIMD16 compile */
6752 if (simd_required <= 8)
6753 v16.import_uniforms(&v8);
6754 if (!v16.run_cs()) {
6755 compiler->shader_perf_log(log_data,
6756 "SIMD16 shader failed to compile: %s",
6757 v16.fail_msg);
6758 if (!cfg) {
6759 fail_msg =
6760 "Couldn't generate SIMD16 program and not "
6761 "enough threads for SIMD8";
6762 }
6763 } else {
6764 cfg = v16.cfg;
6765 cs_set_simd_size(prog_data, 16);
6766 cs_fill_push_const_info(compiler->devinfo, prog_data);
6767 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6768 }
6769 }
6770
6771 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6772 NULL, /* Never used in core profile */
6773 shader, 32, shader_time_index);
6774 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6775 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6776 /* Try a SIMD32 compile */
6777 if (simd_required <= 8)
6778 v32.import_uniforms(&v8);
6779 else if (simd_required <= 16)
6780 v32.import_uniforms(&v16);
6781
6782 if (!v32.run_cs()) {
6783 compiler->shader_perf_log(log_data,
6784 "SIMD32 shader failed to compile: %s",
6785 v16.fail_msg);
6786 if (!cfg) {
6787 fail_msg =
6788 "Couldn't generate SIMD32 program and not "
6789 "enough threads for SIMD16";
6790 }
6791 } else {
6792 cfg = v32.cfg;
6793 cs_set_simd_size(prog_data, 32);
6794 cs_fill_push_const_info(compiler->devinfo, prog_data);
6795 }
6796 }
6797
6798 if (unlikely(cfg == NULL)) {
6799 assert(fail_msg);
6800 if (error_str)
6801 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6802
6803 return NULL;
6804 }
6805
6806 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6807 v8.promoted_constants, v8.runtime_check_aads_emit,
6808 MESA_SHADER_COMPUTE);
6809 if (INTEL_DEBUG & DEBUG_CS) {
6810 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6811 shader->info.label ? shader->info.label :
6812 "unnamed",
6813 shader->info.name);
6814 g.enable_debug(name);
6815 }
6816
6817 g.generate_code(cfg, prog_data->simd_size);
6818
6819 return g.get_assembly(final_assembly_size);
6820 }
6821
6822 /**
6823 * Test the dispatch mask packing assumptions of
6824 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6825 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6826 * executed with an unexpected dispatch mask.
6827 */
6828 static UNUSED void
6829 brw_fs_test_dispatch_packing(const fs_builder &bld)
6830 {
6831 const gl_shader_stage stage = bld.shader->stage;
6832
6833 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6834 bld.shader->stage_prog_data)) {
6835 const fs_builder ubld = bld.exec_all().group(1, 0);
6836 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6837 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6838 brw_dmask_reg());
6839
6840 ubld.ADD(tmp, mask, brw_imm_ud(1));
6841 ubld.AND(tmp, mask, tmp);
6842
6843 /* This will loop forever if the dispatch mask doesn't have the expected
6844 * form '2^n-1', in which case tmp will be non-zero.
6845 */
6846 bld.emit(BRW_OPCODE_DO);
6847 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6848 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6849 }
6850 }