intel/cs: Push subgroup ID instead of base thread ID
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 if (type_sz(dst.type) == 8) {
195 shuffle_32bit_load_result_to_64bit_data(
196 bld, retype(vec4_result, dst.type), vec4_result, 2);
197 }
198
199 vec4_result.type = dst.type;
200 bld.MOV(dst, offset(vec4_result, bld,
201 (const_offset & 0xf) / type_sz(vec4_result.type)));
202 }
203
204 /**
205 * A helper for MOV generation for fixing up broken hardware SEND dependency
206 * handling.
207 */
208 void
209 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
210 {
211 /* The caller always wants uncompressed to emit the minimal extra
212 * dependencies, and to avoid having to deal with aligning its regs to 2.
213 */
214 const fs_builder ubld = bld.annotate("send dependency resolve")
215 .half(0);
216
217 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
218 }
219
220 bool
221 fs_inst::equals(fs_inst *inst) const
222 {
223 return (opcode == inst->opcode &&
224 dst.equals(inst->dst) &&
225 src[0].equals(inst->src[0]) &&
226 src[1].equals(inst->src[1]) &&
227 src[2].equals(inst->src[2]) &&
228 saturate == inst->saturate &&
229 predicate == inst->predicate &&
230 conditional_mod == inst->conditional_mod &&
231 mlen == inst->mlen &&
232 base_mrf == inst->base_mrf &&
233 target == inst->target &&
234 eot == inst->eot &&
235 header_size == inst->header_size &&
236 shadow_compare == inst->shadow_compare &&
237 exec_size == inst->exec_size &&
238 offset == inst->offset);
239 }
240
241 bool
242 fs_inst::is_send_from_grf() const
243 {
244 switch (opcode) {
245 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
246 case SHADER_OPCODE_SHADER_TIME_ADD:
247 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
248 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
249 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
250 case SHADER_OPCODE_UNTYPED_ATOMIC:
251 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
252 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
253 case SHADER_OPCODE_TYPED_ATOMIC:
254 case SHADER_OPCODE_TYPED_SURFACE_READ:
255 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
256 case SHADER_OPCODE_URB_WRITE_SIMD8:
257 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
258 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
260 case SHADER_OPCODE_URB_READ_SIMD8:
261 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
262 return true;
263 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
264 return src[1].file == VGRF;
265 case FS_OPCODE_FB_WRITE:
266 case FS_OPCODE_FB_READ:
267 return src[0].file == VGRF;
268 default:
269 if (is_tex())
270 return src[0].file == VGRF;
271
272 return false;
273 }
274 }
275
276 /**
277 * Returns true if this instruction's sources and destinations cannot
278 * safely be the same register.
279 *
280 * In most cases, a register can be written over safely by the same
281 * instruction that is its last use. For a single instruction, the
282 * sources are dereferenced before writing of the destination starts
283 * (naturally).
284 *
285 * However, there are a few cases where this can be problematic:
286 *
287 * - Virtual opcodes that translate to multiple instructions in the
288 * code generator: if src == dst and one instruction writes the
289 * destination before a later instruction reads the source, then
290 * src will have been clobbered.
291 *
292 * - SIMD16 compressed instructions with certain regioning (see below).
293 *
294 * The register allocator uses this information to set up conflicts between
295 * GRF sources and the destination.
296 */
297 bool
298 fs_inst::has_source_and_destination_hazard() const
299 {
300 switch (opcode) {
301 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
302 /* Multiple partial writes to the destination */
303 return true;
304 default:
305 /* The SIMD16 compressed instruction
306 *
307 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
308 *
309 * is actually decoded in hardware as:
310 *
311 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
312 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
313 *
314 * Which is safe. However, if we have uniform accesses
315 * happening, we get into trouble:
316 *
317 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
318 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
319 *
320 * Now our destination for the first instruction overwrote the
321 * second instruction's src0, and we get garbage for those 8
322 * pixels. There's a similar issue for the pre-gen6
323 * pixel_x/pixel_y, which are registers of 16-bit values and thus
324 * would get stomped by the first decode as well.
325 */
326 if (exec_size == 16) {
327 for (int i = 0; i < sources; i++) {
328 if (src[i].file == VGRF && (src[i].stride == 0 ||
329 src[i].type == BRW_REGISTER_TYPE_UW ||
330 src[i].type == BRW_REGISTER_TYPE_W ||
331 src[i].type == BRW_REGISTER_TYPE_UB ||
332 src[i].type == BRW_REGISTER_TYPE_B)) {
333 return true;
334 }
335 }
336 }
337 return false;
338 }
339 }
340
341 bool
342 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
343 {
344 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
345 return false;
346
347 fs_reg reg = this->src[0];
348 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
349 return false;
350
351 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
352 return false;
353
354 for (int i = 0; i < this->sources; i++) {
355 reg.type = this->src[i].type;
356 if (!this->src[i].equals(reg))
357 return false;
358
359 if (i < this->header_size) {
360 reg.offset += REG_SIZE;
361 } else {
362 reg = horiz_offset(reg, this->exec_size);
363 }
364 }
365
366 return true;
367 }
368
369 bool
370 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
371 {
372 if (devinfo->gen == 6 && is_math())
373 return false;
374
375 if (is_send_from_grf())
376 return false;
377
378 if (!backend_instruction::can_do_source_mods())
379 return false;
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_change_types() const
386 {
387 return dst.type == src[0].type &&
388 !src[0].abs && !src[0].negate && !saturate &&
389 (opcode == BRW_OPCODE_MOV ||
390 (opcode == BRW_OPCODE_SEL &&
391 dst.type == src[1].type &&
392 predicate != BRW_PREDICATE_NONE &&
393 !src[1].abs && !src[1].negate));
394 }
395
396 void
397 fs_reg::init()
398 {
399 memset(this, 0, sizeof(*this));
400 type = BRW_REGISTER_TYPE_UD;
401 stride = 1;
402 }
403
404 /** Generic unset register constructor. */
405 fs_reg::fs_reg()
406 {
407 init();
408 this->file = BAD_FILE;
409 }
410
411 fs_reg::fs_reg(struct ::brw_reg reg) :
412 backend_reg(reg)
413 {
414 this->offset = 0;
415 this->stride = 1;
416 if (this->file == IMM &&
417 (this->type != BRW_REGISTER_TYPE_V &&
418 this->type != BRW_REGISTER_TYPE_UV &&
419 this->type != BRW_REGISTER_TYPE_VF)) {
420 this->stride = 0;
421 }
422 }
423
424 bool
425 fs_reg::equals(const fs_reg &r) const
426 {
427 return (this->backend_reg::equals(r) &&
428 stride == r.stride);
429 }
430
431 bool
432 fs_reg::is_contiguous() const
433 {
434 return stride == 1;
435 }
436
437 unsigned
438 fs_reg::component_size(unsigned width) const
439 {
440 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
441 hstride == 0 ? 0 :
442 1 << (hstride - 1));
443 return MAX2(width * stride, 1) * type_sz(type);
444 }
445
446 extern "C" int
447 type_size_scalar(const struct glsl_type *type)
448 {
449 unsigned int size, i;
450
451 switch (type->base_type) {
452 case GLSL_TYPE_UINT:
453 case GLSL_TYPE_INT:
454 case GLSL_TYPE_FLOAT:
455 case GLSL_TYPE_BOOL:
456 return type->components();
457 case GLSL_TYPE_DOUBLE:
458 case GLSL_TYPE_UINT64:
459 case GLSL_TYPE_INT64:
460 return type->components() * 2;
461 case GLSL_TYPE_ARRAY:
462 return type_size_scalar(type->fields.array) * type->length;
463 case GLSL_TYPE_STRUCT:
464 size = 0;
465 for (i = 0; i < type->length; i++) {
466 size += type_size_scalar(type->fields.structure[i].type);
467 }
468 return size;
469 case GLSL_TYPE_SAMPLER:
470 /* Samplers take up no register space, since they're baked in at
471 * link time.
472 */
473 return 0;
474 case GLSL_TYPE_ATOMIC_UINT:
475 return 0;
476 case GLSL_TYPE_SUBROUTINE:
477 return 1;
478 case GLSL_TYPE_IMAGE:
479 return BRW_IMAGE_PARAM_SIZE;
480 case GLSL_TYPE_VOID:
481 case GLSL_TYPE_ERROR:
482 case GLSL_TYPE_INTERFACE:
483 case GLSL_TYPE_FUNCTION:
484 unreachable("not reached");
485 }
486
487 return 0;
488 }
489
490 /**
491 * Create a MOV to read the timestamp register.
492 *
493 * The caller is responsible for emitting the MOV. The return value is
494 * the destination of the MOV, with extra parameters set.
495 */
496 fs_reg
497 fs_visitor::get_timestamp(const fs_builder &bld)
498 {
499 assert(devinfo->gen >= 7);
500
501 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
502 BRW_ARF_TIMESTAMP,
503 0),
504 BRW_REGISTER_TYPE_UD));
505
506 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
507
508 /* We want to read the 3 fields we care about even if it's not enabled in
509 * the dispatch.
510 */
511 bld.group(4, 0).exec_all().MOV(dst, ts);
512
513 return dst;
514 }
515
516 void
517 fs_visitor::emit_shader_time_begin()
518 {
519 /* We want only the low 32 bits of the timestamp. Since it's running
520 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
521 * which is plenty of time for our purposes. It is identical across the
522 * EUs, but since it's tracking GPU core speed it will increment at a
523 * varying rate as render P-states change.
524 */
525 shader_start_time = component(
526 get_timestamp(bld.annotate("shader time start")), 0);
527 }
528
529 void
530 fs_visitor::emit_shader_time_end()
531 {
532 /* Insert our code just before the final SEND with EOT. */
533 exec_node *end = this->instructions.get_tail();
534 assert(end && ((fs_inst *) end)->eot);
535 const fs_builder ibld = bld.annotate("shader time end")
536 .exec_all().at(NULL, end);
537 const fs_reg timestamp = get_timestamp(ibld);
538
539 /* We only use the low 32 bits of the timestamp - see
540 * emit_shader_time_begin()).
541 *
542 * We could also check if render P-states have changed (or anything
543 * else that might disrupt timing) by setting smear to 2 and checking if
544 * that field is != 0.
545 */
546 const fs_reg shader_end_time = component(timestamp, 0);
547
548 /* Check that there weren't any timestamp reset events (assuming these
549 * were the only two timestamp reads that happened).
550 */
551 const fs_reg reset = component(timestamp, 2);
552 set_condmod(BRW_CONDITIONAL_Z,
553 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
554 ibld.IF(BRW_PREDICATE_NORMAL);
555
556 fs_reg start = shader_start_time;
557 start.negate = true;
558 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
559 BRW_REGISTER_TYPE_UD),
560 0);
561 const fs_builder cbld = ibld.group(1, 0);
562 cbld.group(1, 0).ADD(diff, start, shader_end_time);
563
564 /* If there were no instructions between the two timestamp gets, the diff
565 * is 2 cycles. Remove that overhead, so I can forget about that when
566 * trying to determine the time taken for single instructions.
567 */
568 cbld.ADD(diff, diff, brw_imm_ud(-2u));
569 SHADER_TIME_ADD(cbld, 0, diff);
570 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
571 ibld.emit(BRW_OPCODE_ELSE);
572 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
573 ibld.emit(BRW_OPCODE_ENDIF);
574 }
575
576 void
577 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
578 int shader_time_subindex,
579 fs_reg value)
580 {
581 int index = shader_time_index * 3 + shader_time_subindex;
582 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
583
584 fs_reg payload;
585 if (dispatch_width == 8)
586 payload = vgrf(glsl_type::uvec2_type);
587 else
588 payload = vgrf(glsl_type::uint_type);
589
590 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
591 }
592
593 void
594 fs_visitor::vfail(const char *format, va_list va)
595 {
596 char *msg;
597
598 if (failed)
599 return;
600
601 failed = true;
602
603 msg = ralloc_vasprintf(mem_ctx, format, va);
604 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
605
606 this->fail_msg = msg;
607
608 if (debug_enabled) {
609 fprintf(stderr, "%s", msg);
610 }
611 }
612
613 void
614 fs_visitor::fail(const char *format, ...)
615 {
616 va_list va;
617
618 va_start(va, format);
619 vfail(format, va);
620 va_end(va);
621 }
622
623 /**
624 * Mark this program as impossible to compile with dispatch width greater
625 * than n.
626 *
627 * During the SIMD8 compile (which happens first), we can detect and flag
628 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
629 * SIMD16+ compile altogether.
630 *
631 * During a compile of dispatch width greater than n (if one happens anyway),
632 * this just calls fail().
633 */
634 void
635 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
636 {
637 if (dispatch_width > n) {
638 fail("%s", msg);
639 } else {
640 max_dispatch_width = n;
641 compiler->shader_perf_log(log_data,
642 "Shader dispatch width limited to SIMD%d: %s",
643 n, msg);
644 }
645 }
646
647 /**
648 * Returns true if the instruction has a flag that means it won't
649 * update an entire destination register.
650 *
651 * For example, dead code elimination and live variable analysis want to know
652 * when a write to a variable screens off any preceding values that were in
653 * it.
654 */
655 bool
656 fs_inst::is_partial_write() const
657 {
658 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
659 (this->exec_size * type_sz(this->dst.type)) < 32 ||
660 !this->dst.is_contiguous() ||
661 this->dst.offset % REG_SIZE != 0);
662 }
663
664 unsigned
665 fs_inst::components_read(unsigned i) const
666 {
667 /* Return zero if the source is not present. */
668 if (src[i].file == BAD_FILE)
669 return 0;
670
671 switch (opcode) {
672 case FS_OPCODE_LINTERP:
673 if (i == 0)
674 return 2;
675 else
676 return 1;
677
678 case FS_OPCODE_PIXEL_X:
679 case FS_OPCODE_PIXEL_Y:
680 assert(i == 0);
681 return 2;
682
683 case FS_OPCODE_FB_WRITE_LOGICAL:
684 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
685 /* First/second FB write color. */
686 if (i < 2)
687 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
688 else
689 return 1;
690
691 case SHADER_OPCODE_TEX_LOGICAL:
692 case SHADER_OPCODE_TXD_LOGICAL:
693 case SHADER_OPCODE_TXF_LOGICAL:
694 case SHADER_OPCODE_TXL_LOGICAL:
695 case SHADER_OPCODE_TXS_LOGICAL:
696 case FS_OPCODE_TXB_LOGICAL:
697 case SHADER_OPCODE_TXF_CMS_LOGICAL:
698 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
699 case SHADER_OPCODE_TXF_UMS_LOGICAL:
700 case SHADER_OPCODE_TXF_MCS_LOGICAL:
701 case SHADER_OPCODE_LOD_LOGICAL:
702 case SHADER_OPCODE_TG4_LOGICAL:
703 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
704 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
705 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
706 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
707 /* Texture coordinates. */
708 if (i == TEX_LOGICAL_SRC_COORDINATE)
709 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
710 /* Texture derivatives. */
711 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
712 opcode == SHADER_OPCODE_TXD_LOGICAL)
713 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
714 /* Texture offset. */
715 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
716 return 2;
717 /* MCS */
718 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
719 return 2;
720 else
721 return 1;
722
723 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
724 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
725 assert(src[3].file == IMM);
726 /* Surface coordinates. */
727 if (i == 0)
728 return src[3].ud;
729 /* Surface operation source (ignored for reads). */
730 else if (i == 1)
731 return 0;
732 else
733 return 1;
734
735 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
736 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
737 assert(src[3].file == IMM &&
738 src[4].file == IMM);
739 /* Surface coordinates. */
740 if (i == 0)
741 return src[3].ud;
742 /* Surface operation source. */
743 else if (i == 1)
744 return src[4].ud;
745 else
746 return 1;
747
748 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
749 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
750 assert(src[3].file == IMM &&
751 src[4].file == IMM);
752 const unsigned op = src[4].ud;
753 /* Surface coordinates. */
754 if (i == 0)
755 return src[3].ud;
756 /* Surface operation source. */
757 else if (i == 1 && op == BRW_AOP_CMPWR)
758 return 2;
759 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
760 op == BRW_AOP_PREDEC))
761 return 0;
762 else
763 return 1;
764 }
765
766 default:
767 return 1;
768 }
769 }
770
771 unsigned
772 fs_inst::size_read(int arg) const
773 {
774 switch (opcode) {
775 case FS_OPCODE_FB_WRITE:
776 case FS_OPCODE_FB_READ:
777 case SHADER_OPCODE_URB_WRITE_SIMD8:
778 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
779 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
780 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
781 case SHADER_OPCODE_URB_READ_SIMD8:
782 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
783 case SHADER_OPCODE_UNTYPED_ATOMIC:
784 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
785 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
786 case SHADER_OPCODE_TYPED_ATOMIC:
787 case SHADER_OPCODE_TYPED_SURFACE_READ:
788 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
789 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
790 if (arg == 0)
791 return mlen * REG_SIZE;
792 break;
793
794 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
795 /* The payload is actually stored in src1 */
796 if (arg == 1)
797 return mlen * REG_SIZE;
798 break;
799
800 case FS_OPCODE_LINTERP:
801 if (arg == 1)
802 return 16;
803 break;
804
805 case SHADER_OPCODE_LOAD_PAYLOAD:
806 if (arg < this->header_size)
807 return REG_SIZE;
808 break;
809
810 case CS_OPCODE_CS_TERMINATE:
811 case SHADER_OPCODE_BARRIER:
812 return REG_SIZE;
813
814 case SHADER_OPCODE_MOV_INDIRECT:
815 if (arg == 0) {
816 assert(src[2].file == IMM);
817 return src[2].ud;
818 }
819 break;
820
821 default:
822 if (is_tex() && arg == 0 && src[0].file == VGRF)
823 return mlen * REG_SIZE;
824 break;
825 }
826
827 switch (src[arg].file) {
828 case UNIFORM:
829 case IMM:
830 return components_read(arg) * type_sz(src[arg].type);
831 case BAD_FILE:
832 case ARF:
833 case FIXED_GRF:
834 case VGRF:
835 case ATTR:
836 return components_read(arg) * src[arg].component_size(exec_size);
837 case MRF:
838 unreachable("MRF registers are not allowed as sources");
839 }
840 return 0;
841 }
842
843 namespace {
844 /* Return the subset of flag registers that an instruction could
845 * potentially read or write based on the execution controls and flag
846 * subregister number of the instruction.
847 */
848 unsigned
849 flag_mask(const fs_inst *inst)
850 {
851 const unsigned start = inst->flag_subreg * 16 + inst->group;
852 const unsigned end = start + inst->exec_size;
853 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
854 }
855
856 unsigned
857 bit_mask(unsigned n)
858 {
859 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
860 }
861
862 unsigned
863 flag_mask(const fs_reg &r, unsigned sz)
864 {
865 if (r.file == ARF) {
866 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
867 const unsigned end = start + sz;
868 return bit_mask(end) & ~bit_mask(start);
869 } else {
870 return 0;
871 }
872 }
873 }
874
875 unsigned
876 fs_inst::flags_read(const gen_device_info *devinfo) const
877 {
878 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
879 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
880 /* The vertical predication modes combine corresponding bits from
881 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
882 */
883 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
884 return flag_mask(this) << shift | flag_mask(this);
885 } else if (predicate) {
886 return flag_mask(this);
887 } else {
888 unsigned mask = 0;
889 for (int i = 0; i < sources; i++) {
890 mask |= flag_mask(src[i], size_read(i));
891 }
892 return mask;
893 }
894 }
895
896 unsigned
897 fs_inst::flags_written() const
898 {
899 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
900 opcode != BRW_OPCODE_IF &&
901 opcode != BRW_OPCODE_WHILE)) ||
902 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
903 return flag_mask(this);
904 } else {
905 return flag_mask(dst, size_written);
906 }
907 }
908
909 /**
910 * Returns how many MRFs an FS opcode will write over.
911 *
912 * Note that this is not the 0 or 1 implied writes in an actual gen
913 * instruction -- the FS opcodes often generate MOVs in addition.
914 */
915 int
916 fs_visitor::implied_mrf_writes(fs_inst *inst)
917 {
918 if (inst->mlen == 0)
919 return 0;
920
921 if (inst->base_mrf == -1)
922 return 0;
923
924 switch (inst->opcode) {
925 case SHADER_OPCODE_RCP:
926 case SHADER_OPCODE_RSQ:
927 case SHADER_OPCODE_SQRT:
928 case SHADER_OPCODE_EXP2:
929 case SHADER_OPCODE_LOG2:
930 case SHADER_OPCODE_SIN:
931 case SHADER_OPCODE_COS:
932 return 1 * dispatch_width / 8;
933 case SHADER_OPCODE_POW:
934 case SHADER_OPCODE_INT_QUOTIENT:
935 case SHADER_OPCODE_INT_REMAINDER:
936 return 2 * dispatch_width / 8;
937 case SHADER_OPCODE_TEX:
938 case FS_OPCODE_TXB:
939 case SHADER_OPCODE_TXD:
940 case SHADER_OPCODE_TXF:
941 case SHADER_OPCODE_TXF_CMS:
942 case SHADER_OPCODE_TXF_MCS:
943 case SHADER_OPCODE_TG4:
944 case SHADER_OPCODE_TG4_OFFSET:
945 case SHADER_OPCODE_TXL:
946 case SHADER_OPCODE_TXS:
947 case SHADER_OPCODE_LOD:
948 case SHADER_OPCODE_SAMPLEINFO:
949 return 1;
950 case FS_OPCODE_FB_WRITE:
951 return 2;
952 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
953 case SHADER_OPCODE_GEN4_SCRATCH_READ:
954 return 1;
955 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
956 return inst->mlen;
957 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
958 return inst->mlen;
959 default:
960 unreachable("not reached");
961 }
962 }
963
964 fs_reg
965 fs_visitor::vgrf(const glsl_type *const type)
966 {
967 int reg_width = dispatch_width / 8;
968 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
969 brw_type_for_base_type(type));
970 }
971
972 fs_reg::fs_reg(enum brw_reg_file file, int nr)
973 {
974 init();
975 this->file = file;
976 this->nr = nr;
977 this->type = BRW_REGISTER_TYPE_F;
978 this->stride = (file == UNIFORM ? 0 : 1);
979 }
980
981 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
982 {
983 init();
984 this->file = file;
985 this->nr = nr;
986 this->type = type;
987 this->stride = (file == UNIFORM ? 0 : 1);
988 }
989
990 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
991 * This brings in those uniform definitions
992 */
993 void
994 fs_visitor::import_uniforms(fs_visitor *v)
995 {
996 this->push_constant_loc = v->push_constant_loc;
997 this->pull_constant_loc = v->pull_constant_loc;
998 this->uniforms = v->uniforms;
999 this->subgroup_id = v->subgroup_id;
1000 }
1001
1002 void
1003 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1004 {
1005 assert(stage == MESA_SHADER_FRAGMENT);
1006
1007 /* gl_FragCoord.x */
1008 bld.MOV(wpos, this->pixel_x);
1009 wpos = offset(wpos, bld, 1);
1010
1011 /* gl_FragCoord.y */
1012 bld.MOV(wpos, this->pixel_y);
1013 wpos = offset(wpos, bld, 1);
1014
1015 /* gl_FragCoord.z */
1016 if (devinfo->gen >= 6) {
1017 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1018 } else {
1019 bld.emit(FS_OPCODE_LINTERP, wpos,
1020 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1021 interp_reg(VARYING_SLOT_POS, 2));
1022 }
1023 wpos = offset(wpos, bld, 1);
1024
1025 /* gl_FragCoord.w: Already set up in emit_interpolation */
1026 bld.MOV(wpos, this->wpos_w);
1027 }
1028
1029 enum brw_barycentric_mode
1030 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1031 {
1032 /* Barycentric modes don't make sense for flat inputs. */
1033 assert(mode != INTERP_MODE_FLAT);
1034
1035 unsigned bary;
1036 switch (op) {
1037 case nir_intrinsic_load_barycentric_pixel:
1038 case nir_intrinsic_load_barycentric_at_offset:
1039 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1040 break;
1041 case nir_intrinsic_load_barycentric_centroid:
1042 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1043 break;
1044 case nir_intrinsic_load_barycentric_sample:
1045 case nir_intrinsic_load_barycentric_at_sample:
1046 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1047 break;
1048 default:
1049 unreachable("invalid intrinsic");
1050 }
1051
1052 if (mode == INTERP_MODE_NOPERSPECTIVE)
1053 bary += 3;
1054
1055 return (enum brw_barycentric_mode) bary;
1056 }
1057
1058 /**
1059 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1060 */
1061 static enum brw_barycentric_mode
1062 centroid_to_pixel(enum brw_barycentric_mode bary)
1063 {
1064 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1065 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1066 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1067 }
1068
1069 fs_reg *
1070 fs_visitor::emit_frontfacing_interpolation()
1071 {
1072 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1073
1074 if (devinfo->gen >= 6) {
1075 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1076 * a boolean result from this (~0/true or 0/false).
1077 *
1078 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1079 * this task in only one instruction:
1080 * - a negation source modifier will flip the bit; and
1081 * - a W -> D type conversion will sign extend the bit into the high
1082 * word of the destination.
1083 *
1084 * An ASR 15 fills the low word of the destination.
1085 */
1086 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1087 g0.negate = true;
1088
1089 bld.ASR(*reg, g0, brw_imm_d(15));
1090 } else {
1091 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1092 * a boolean result from this (1/true or 0/false).
1093 *
1094 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1095 * the negation source modifier to flip it. Unfortunately the SHR
1096 * instruction only operates on UD (or D with an abs source modifier)
1097 * sources without negation.
1098 *
1099 * Instead, use ASR (which will give ~0/true or 0/false).
1100 */
1101 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1102 g1_6.negate = true;
1103
1104 bld.ASR(*reg, g1_6, brw_imm_d(31));
1105 }
1106
1107 return reg;
1108 }
1109
1110 void
1111 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1112 {
1113 assert(stage == MESA_SHADER_FRAGMENT);
1114 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1115 assert(dst.type == BRW_REGISTER_TYPE_F);
1116
1117 if (wm_prog_data->persample_dispatch) {
1118 /* Convert int_sample_pos to floating point */
1119 bld.MOV(dst, int_sample_pos);
1120 /* Scale to the range [0, 1] */
1121 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1122 }
1123 else {
1124 /* From ARB_sample_shading specification:
1125 * "When rendering to a non-multisample buffer, or if multisample
1126 * rasterization is disabled, gl_SamplePosition will always be
1127 * (0.5, 0.5).
1128 */
1129 bld.MOV(dst, brw_imm_f(0.5f));
1130 }
1131 }
1132
1133 fs_reg *
1134 fs_visitor::emit_samplepos_setup()
1135 {
1136 assert(devinfo->gen >= 6);
1137
1138 const fs_builder abld = bld.annotate("compute sample position");
1139 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1140 fs_reg pos = *reg;
1141 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1142 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1143
1144 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1145 * mode will be enabled.
1146 *
1147 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1148 * R31.1:0 Position Offset X/Y for Slot[3:0]
1149 * R31.3:2 Position Offset X/Y for Slot[7:4]
1150 * .....
1151 *
1152 * The X, Y sample positions come in as bytes in thread payload. So, read
1153 * the positions using vstride=16, width=8, hstride=2.
1154 */
1155 struct brw_reg sample_pos_reg =
1156 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1157 BRW_REGISTER_TYPE_B), 16, 8, 2);
1158
1159 if (dispatch_width == 8) {
1160 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1161 } else {
1162 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1163 abld.half(1).MOV(half(int_sample_x, 1),
1164 fs_reg(suboffset(sample_pos_reg, 16)));
1165 }
1166 /* Compute gl_SamplePosition.x */
1167 compute_sample_position(pos, int_sample_x);
1168 pos = offset(pos, abld, 1);
1169 if (dispatch_width == 8) {
1170 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1171 } else {
1172 abld.half(0).MOV(half(int_sample_y, 0),
1173 fs_reg(suboffset(sample_pos_reg, 1)));
1174 abld.half(1).MOV(half(int_sample_y, 1),
1175 fs_reg(suboffset(sample_pos_reg, 17)));
1176 }
1177 /* Compute gl_SamplePosition.y */
1178 compute_sample_position(pos, int_sample_y);
1179 return reg;
1180 }
1181
1182 fs_reg *
1183 fs_visitor::emit_sampleid_setup()
1184 {
1185 assert(stage == MESA_SHADER_FRAGMENT);
1186 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1187 assert(devinfo->gen >= 6);
1188
1189 const fs_builder abld = bld.annotate("compute sample id");
1190 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1191
1192 if (!key->multisample_fbo) {
1193 /* As per GL_ARB_sample_shading specification:
1194 * "When rendering to a non-multisample buffer, or if multisample
1195 * rasterization is disabled, gl_SampleID will always be zero."
1196 */
1197 abld.MOV(*reg, brw_imm_d(0));
1198 } else if (devinfo->gen >= 8) {
1199 /* Sample ID comes in as 4-bit numbers in g1.0:
1200 *
1201 * 15:12 Slot 3 SampleID (only used in SIMD16)
1202 * 11:8 Slot 2 SampleID (only used in SIMD16)
1203 * 7:4 Slot 1 SampleID
1204 * 3:0 Slot 0 SampleID
1205 *
1206 * Each slot corresponds to four channels, so we want to replicate each
1207 * half-byte value to 4 channels in a row:
1208 *
1209 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1210 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1211 *
1212 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1213 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1214 *
1215 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1216 * channels to read the first byte (7:0), and the second group of 8
1217 * channels to read the second byte (15:8). Then, we shift right by
1218 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1219 * values into place. Finally, we AND with 0xf to keep the low nibble.
1220 *
1221 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1222 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1223 *
1224 * TODO: These payload bits exist on Gen7 too, but they appear to always
1225 * be zero, so this code fails to work. We should find out why.
1226 */
1227 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1228
1229 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1230 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1231 brw_imm_v(0x44440000));
1232 abld.AND(*reg, tmp, brw_imm_w(0xf));
1233 } else {
1234 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1235 BRW_REGISTER_TYPE_D), 0);
1236 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1237
1238 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1239 * 8x multisampling, subspan 0 will represent sample N (where N
1240 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1241 * 7. We can find the value of N by looking at R0.0 bits 7:6
1242 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1243 * (since samples are always delivered in pairs). That is, we
1244 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1245 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1246 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1247 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1248 * populating a temporary variable with the sequence (0, 1, 2, 3),
1249 * and then reading from it using vstride=1, width=4, hstride=0.
1250 * These computations hold good for 4x multisampling as well.
1251 *
1252 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1253 * the first four slots are sample 0 of subspan 0; the next four
1254 * are sample 1 of subspan 0; the third group is sample 0 of
1255 * subspan 1, and finally sample 1 of subspan 1.
1256 */
1257
1258 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1259 * accomodate 16x MSAA.
1260 */
1261 abld.exec_all().group(1, 0)
1262 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1263 brw_imm_ud(0xc0));
1264 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1265
1266 /* This works for both SIMD8 and SIMD16 */
1267 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1268
1269 /* This special instruction takes care of setting vstride=1,
1270 * width=4, hstride=0 of t2 during an ADD instruction.
1271 */
1272 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1273 }
1274
1275 return reg;
1276 }
1277
1278 fs_reg *
1279 fs_visitor::emit_samplemaskin_setup()
1280 {
1281 assert(stage == MESA_SHADER_FRAGMENT);
1282 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1283 assert(devinfo->gen >= 6);
1284
1285 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1286
1287 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1288 BRW_REGISTER_TYPE_D));
1289
1290 if (wm_prog_data->persample_dispatch) {
1291 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1292 * and a mask representing which sample is being processed by the
1293 * current shader invocation.
1294 *
1295 * From the OES_sample_variables specification:
1296 * "When per-sample shading is active due to the use of a fragment input
1297 * qualified by "sample" or due to the use of the gl_SampleID or
1298 * gl_SamplePosition variables, only the bit for the current sample is
1299 * set in gl_SampleMaskIn."
1300 */
1301 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1302
1303 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1304 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1305
1306 fs_reg one = vgrf(glsl_type::int_type);
1307 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1308 abld.MOV(one, brw_imm_d(1));
1309 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1310 abld.AND(*reg, enabled_mask, coverage_mask);
1311 } else {
1312 /* In per-pixel mode, the coverage mask is sufficient. */
1313 *reg = coverage_mask;
1314 }
1315 return reg;
1316 }
1317
1318 fs_reg
1319 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1320 {
1321 if (!src.abs && !src.negate)
1322 return src;
1323
1324 fs_reg temp = bld.vgrf(src.type);
1325 bld.MOV(temp, src);
1326
1327 return temp;
1328 }
1329
1330 void
1331 fs_visitor::emit_discard_jump()
1332 {
1333 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1334
1335 /* For performance, after a discard, jump to the end of the
1336 * shader if all relevant channels have been discarded.
1337 */
1338 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1339 discard_jump->flag_subreg = 1;
1340
1341 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1342 discard_jump->predicate_inverse = true;
1343 }
1344
1345 void
1346 fs_visitor::emit_gs_thread_end()
1347 {
1348 assert(stage == MESA_SHADER_GEOMETRY);
1349
1350 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1351
1352 if (gs_compile->control_data_header_size_bits > 0) {
1353 emit_gs_control_data_bits(this->final_gs_vertex_count);
1354 }
1355
1356 const fs_builder abld = bld.annotate("thread end");
1357 fs_inst *inst;
1358
1359 if (gs_prog_data->static_vertex_count != -1) {
1360 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1361 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1362 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1363 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1364 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1365 prev->eot = true;
1366
1367 /* Delete now dead instructions. */
1368 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1369 if (dead == prev)
1370 break;
1371 dead->remove();
1372 }
1373 return;
1374 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1375 break;
1376 }
1377 }
1378 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1379 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1380 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1381 inst->mlen = 1;
1382 } else {
1383 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1384 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1385 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1386 sources[1] = this->final_gs_vertex_count;
1387 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1388 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1389 inst->mlen = 2;
1390 }
1391 inst->eot = true;
1392 inst->offset = 0;
1393 }
1394
1395 void
1396 fs_visitor::assign_curb_setup()
1397 {
1398 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1399
1400 unsigned ubo_push_length = 0;
1401 unsigned ubo_push_start[4];
1402 for (int i = 0; i < 4; i++) {
1403 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1404 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1405 }
1406
1407 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1408
1409 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1410 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1411 for (unsigned int i = 0; i < inst->sources; i++) {
1412 if (inst->src[i].file == UNIFORM) {
1413 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1414 int constant_nr;
1415 if (inst->src[i].nr >= UBO_START) {
1416 /* constant_nr is in 32-bit units, the rest are in bytes */
1417 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1418 inst->src[i].offset / 4;
1419 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1420 constant_nr = push_constant_loc[uniform_nr];
1421 } else {
1422 /* Section 5.11 of the OpenGL 4.1 spec says:
1423 * "Out-of-bounds reads return undefined values, which include
1424 * values from other variables of the active program or zero."
1425 * Just return the first push constant.
1426 */
1427 constant_nr = 0;
1428 }
1429
1430 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1431 constant_nr / 8,
1432 constant_nr % 8);
1433 brw_reg.abs = inst->src[i].abs;
1434 brw_reg.negate = inst->src[i].negate;
1435
1436 assert(inst->src[i].stride == 0);
1437 inst->src[i] = byte_offset(
1438 retype(brw_reg, inst->src[i].type),
1439 inst->src[i].offset % 4);
1440 }
1441 }
1442 }
1443
1444 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1445 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1446 }
1447
1448 void
1449 fs_visitor::calculate_urb_setup()
1450 {
1451 assert(stage == MESA_SHADER_FRAGMENT);
1452 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1453 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1454
1455 memset(prog_data->urb_setup, -1,
1456 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1457
1458 int urb_next = 0;
1459 /* Figure out where each of the incoming setup attributes lands. */
1460 if (devinfo->gen >= 6) {
1461 if (_mesa_bitcount_64(nir->info.inputs_read &
1462 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1463 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1464 * first 16 varying inputs, so we can put them wherever we want.
1465 * Just put them in order.
1466 *
1467 * This is useful because it means that (a) inputs not used by the
1468 * fragment shader won't take up valuable register space, and (b) we
1469 * won't have to recompile the fragment shader if it gets paired with
1470 * a different vertex (or geometry) shader.
1471 */
1472 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1473 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1474 BITFIELD64_BIT(i)) {
1475 prog_data->urb_setup[i] = urb_next++;
1476 }
1477 }
1478 } else {
1479 /* We have enough input varyings that the SF/SBE pipeline stage can't
1480 * arbitrarily rearrange them to suit our whim; we have to put them
1481 * in an order that matches the output of the previous pipeline stage
1482 * (geometry or vertex shader).
1483 */
1484 struct brw_vue_map prev_stage_vue_map;
1485 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1486 key->input_slots_valid,
1487 nir->info.separate_shader);
1488
1489 int first_slot =
1490 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1491 &prev_stage_vue_map);
1492
1493 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1494 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1495 slot++) {
1496 int varying = prev_stage_vue_map.slot_to_varying[slot];
1497 if (varying != BRW_VARYING_SLOT_PAD &&
1498 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1499 BITFIELD64_BIT(varying))) {
1500 prog_data->urb_setup[varying] = slot - first_slot;
1501 }
1502 }
1503 urb_next = prev_stage_vue_map.num_slots - first_slot;
1504 }
1505 } else {
1506 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1507 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1508 /* Point size is packed into the header, not as a general attribute */
1509 if (i == VARYING_SLOT_PSIZ)
1510 continue;
1511
1512 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1513 /* The back color slot is skipped when the front color is
1514 * also written to. In addition, some slots can be
1515 * written in the vertex shader and not read in the
1516 * fragment shader. So the register number must always be
1517 * incremented, mapped or not.
1518 */
1519 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1520 prog_data->urb_setup[i] = urb_next;
1521 urb_next++;
1522 }
1523 }
1524
1525 /*
1526 * It's a FS only attribute, and we did interpolation for this attribute
1527 * in SF thread. So, count it here, too.
1528 *
1529 * See compile_sf_prog() for more info.
1530 */
1531 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1532 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1533 }
1534
1535 prog_data->num_varying_inputs = urb_next;
1536 }
1537
1538 void
1539 fs_visitor::assign_urb_setup()
1540 {
1541 assert(stage == MESA_SHADER_FRAGMENT);
1542 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1543
1544 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1545
1546 /* Offset all the urb_setup[] index by the actual position of the
1547 * setup regs, now that the location of the constants has been chosen.
1548 */
1549 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1550 if (inst->opcode == FS_OPCODE_LINTERP) {
1551 assert(inst->src[1].file == FIXED_GRF);
1552 inst->src[1].nr += urb_start;
1553 }
1554
1555 if (inst->opcode == FS_OPCODE_CINTERP) {
1556 assert(inst->src[0].file == FIXED_GRF);
1557 inst->src[0].nr += urb_start;
1558 }
1559 }
1560
1561 /* Each attribute is 4 setup channels, each of which is half a reg. */
1562 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1563 }
1564
1565 void
1566 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1567 {
1568 for (int i = 0; i < inst->sources; i++) {
1569 if (inst->src[i].file == ATTR) {
1570 int grf = payload.num_regs +
1571 prog_data->curb_read_length +
1572 inst->src[i].nr +
1573 inst->src[i].offset / REG_SIZE;
1574
1575 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1576 *
1577 * VertStride must be used to cross GRF register boundaries. This
1578 * rule implies that elements within a 'Width' cannot cross GRF
1579 * boundaries.
1580 *
1581 * So, for registers that are large enough, we have to split the exec
1582 * size in two and trust the compression state to sort it out.
1583 */
1584 unsigned total_size = inst->exec_size *
1585 inst->src[i].stride *
1586 type_sz(inst->src[i].type);
1587
1588 assert(total_size <= 2 * REG_SIZE);
1589 const unsigned exec_size =
1590 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1591
1592 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1593 struct brw_reg reg =
1594 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1595 inst->src[i].offset % REG_SIZE),
1596 exec_size * inst->src[i].stride,
1597 width, inst->src[i].stride);
1598 reg.abs = inst->src[i].abs;
1599 reg.negate = inst->src[i].negate;
1600
1601 inst->src[i] = reg;
1602 }
1603 }
1604 }
1605
1606 void
1607 fs_visitor::assign_vs_urb_setup()
1608 {
1609 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1610
1611 assert(stage == MESA_SHADER_VERTEX);
1612
1613 /* Each attribute is 4 regs. */
1614 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1615
1616 assert(vs_prog_data->base.urb_read_length <= 15);
1617
1618 /* Rewrite all ATTR file references to the hw grf that they land in. */
1619 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1620 convert_attr_sources_to_hw_regs(inst);
1621 }
1622 }
1623
1624 void
1625 fs_visitor::assign_tcs_single_patch_urb_setup()
1626 {
1627 assert(stage == MESA_SHADER_TESS_CTRL);
1628
1629 /* Rewrite all ATTR file references to HW_REGs. */
1630 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1631 convert_attr_sources_to_hw_regs(inst);
1632 }
1633 }
1634
1635 void
1636 fs_visitor::assign_tes_urb_setup()
1637 {
1638 assert(stage == MESA_SHADER_TESS_EVAL);
1639
1640 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1641
1642 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1643
1644 /* Rewrite all ATTR file references to HW_REGs. */
1645 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1646 convert_attr_sources_to_hw_regs(inst);
1647 }
1648 }
1649
1650 void
1651 fs_visitor::assign_gs_urb_setup()
1652 {
1653 assert(stage == MESA_SHADER_GEOMETRY);
1654
1655 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1656
1657 first_non_payload_grf +=
1658 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1659
1660 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1661 /* Rewrite all ATTR file references to GRFs. */
1662 convert_attr_sources_to_hw_regs(inst);
1663 }
1664 }
1665
1666
1667 /**
1668 * Split large virtual GRFs into separate components if we can.
1669 *
1670 * This is mostly duplicated with what brw_fs_vector_splitting does,
1671 * but that's really conservative because it's afraid of doing
1672 * splitting that doesn't result in real progress after the rest of
1673 * the optimization phases, which would cause infinite looping in
1674 * optimization. We can do it once here, safely. This also has the
1675 * opportunity to split interpolated values, or maybe even uniforms,
1676 * which we don't have at the IR level.
1677 *
1678 * We want to split, because virtual GRFs are what we register
1679 * allocate and spill (due to contiguousness requirements for some
1680 * instructions), and they're what we naturally generate in the
1681 * codegen process, but most virtual GRFs don't actually need to be
1682 * contiguous sets of GRFs. If we split, we'll end up with reduced
1683 * live intervals and better dead code elimination and coalescing.
1684 */
1685 void
1686 fs_visitor::split_virtual_grfs()
1687 {
1688 /* Compact the register file so we eliminate dead vgrfs. This
1689 * only defines split points for live registers, so if we have
1690 * too large dead registers they will hit assertions later.
1691 */
1692 compact_virtual_grfs();
1693
1694 int num_vars = this->alloc.count;
1695
1696 /* Count the total number of registers */
1697 int reg_count = 0;
1698 int vgrf_to_reg[num_vars];
1699 for (int i = 0; i < num_vars; i++) {
1700 vgrf_to_reg[i] = reg_count;
1701 reg_count += alloc.sizes[i];
1702 }
1703
1704 /* An array of "split points". For each register slot, this indicates
1705 * if this slot can be separated from the previous slot. Every time an
1706 * instruction uses multiple elements of a register (as a source or
1707 * destination), we mark the used slots as inseparable. Then we go
1708 * through and split the registers into the smallest pieces we can.
1709 */
1710 bool split_points[reg_count];
1711 memset(split_points, 0, sizeof(split_points));
1712
1713 /* Mark all used registers as fully splittable */
1714 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1715 if (inst->dst.file == VGRF) {
1716 int reg = vgrf_to_reg[inst->dst.nr];
1717 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1718 split_points[reg + j] = true;
1719 }
1720
1721 for (int i = 0; i < inst->sources; i++) {
1722 if (inst->src[i].file == VGRF) {
1723 int reg = vgrf_to_reg[inst->src[i].nr];
1724 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1725 split_points[reg + j] = true;
1726 }
1727 }
1728 }
1729
1730 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1731 if (inst->dst.file == VGRF) {
1732 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1733 for (unsigned j = 1; j < regs_written(inst); j++)
1734 split_points[reg + j] = false;
1735 }
1736 for (int i = 0; i < inst->sources; i++) {
1737 if (inst->src[i].file == VGRF) {
1738 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1739 for (unsigned j = 1; j < regs_read(inst, i); j++)
1740 split_points[reg + j] = false;
1741 }
1742 }
1743 }
1744
1745 int new_virtual_grf[reg_count];
1746 int new_reg_offset[reg_count];
1747
1748 int reg = 0;
1749 for (int i = 0; i < num_vars; i++) {
1750 /* The first one should always be 0 as a quick sanity check. */
1751 assert(split_points[reg] == false);
1752
1753 /* j = 0 case */
1754 new_reg_offset[reg] = 0;
1755 reg++;
1756 int offset = 1;
1757
1758 /* j > 0 case */
1759 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1760 /* If this is a split point, reset the offset to 0 and allocate a
1761 * new virtual GRF for the previous offset many registers
1762 */
1763 if (split_points[reg]) {
1764 assert(offset <= MAX_VGRF_SIZE);
1765 int grf = alloc.allocate(offset);
1766 for (int k = reg - offset; k < reg; k++)
1767 new_virtual_grf[k] = grf;
1768 offset = 0;
1769 }
1770 new_reg_offset[reg] = offset;
1771 offset++;
1772 reg++;
1773 }
1774
1775 /* The last one gets the original register number */
1776 assert(offset <= MAX_VGRF_SIZE);
1777 alloc.sizes[i] = offset;
1778 for (int k = reg - offset; k < reg; k++)
1779 new_virtual_grf[k] = i;
1780 }
1781 assert(reg == reg_count);
1782
1783 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1784 if (inst->dst.file == VGRF) {
1785 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1786 inst->dst.nr = new_virtual_grf[reg];
1787 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1788 inst->dst.offset % REG_SIZE;
1789 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1790 }
1791 for (int i = 0; i < inst->sources; i++) {
1792 if (inst->src[i].file == VGRF) {
1793 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1794 inst->src[i].nr = new_virtual_grf[reg];
1795 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1796 inst->src[i].offset % REG_SIZE;
1797 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1798 }
1799 }
1800 }
1801 invalidate_live_intervals();
1802 }
1803
1804 /**
1805 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1806 *
1807 * During code generation, we create tons of temporary variables, many of
1808 * which get immediately killed and are never used again. Yet, in later
1809 * optimization and analysis passes, such as compute_live_intervals, we need
1810 * to loop over all the virtual GRFs. Compacting them can save a lot of
1811 * overhead.
1812 */
1813 bool
1814 fs_visitor::compact_virtual_grfs()
1815 {
1816 bool progress = false;
1817 int remap_table[this->alloc.count];
1818 memset(remap_table, -1, sizeof(remap_table));
1819
1820 /* Mark which virtual GRFs are used. */
1821 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1822 if (inst->dst.file == VGRF)
1823 remap_table[inst->dst.nr] = 0;
1824
1825 for (int i = 0; i < inst->sources; i++) {
1826 if (inst->src[i].file == VGRF)
1827 remap_table[inst->src[i].nr] = 0;
1828 }
1829 }
1830
1831 /* Compact the GRF arrays. */
1832 int new_index = 0;
1833 for (unsigned i = 0; i < this->alloc.count; i++) {
1834 if (remap_table[i] == -1) {
1835 /* We just found an unused register. This means that we are
1836 * actually going to compact something.
1837 */
1838 progress = true;
1839 } else {
1840 remap_table[i] = new_index;
1841 alloc.sizes[new_index] = alloc.sizes[i];
1842 invalidate_live_intervals();
1843 ++new_index;
1844 }
1845 }
1846
1847 this->alloc.count = new_index;
1848
1849 /* Patch all the instructions to use the newly renumbered registers */
1850 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1851 if (inst->dst.file == VGRF)
1852 inst->dst.nr = remap_table[inst->dst.nr];
1853
1854 for (int i = 0; i < inst->sources; i++) {
1855 if (inst->src[i].file == VGRF)
1856 inst->src[i].nr = remap_table[inst->src[i].nr];
1857 }
1858 }
1859
1860 /* Patch all the references to delta_xy, since they're used in register
1861 * allocation. If they're unused, switch them to BAD_FILE so we don't
1862 * think some random VGRF is delta_xy.
1863 */
1864 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1865 if (delta_xy[i].file == VGRF) {
1866 if (remap_table[delta_xy[i].nr] != -1) {
1867 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1868 } else {
1869 delta_xy[i].file = BAD_FILE;
1870 }
1871 }
1872 }
1873
1874 return progress;
1875 }
1876
1877 static void
1878 set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1879 unsigned *max_chunk_bitsize,
1880 bool contiguous, unsigned bitsize,
1881 const unsigned target_bitsize,
1882 int *push_constant_loc, int *pull_constant_loc,
1883 unsigned *num_push_constants,
1884 unsigned *num_pull_constants,
1885 const unsigned max_push_components,
1886 const unsigned max_chunk_size,
1887 bool allow_pull_constants,
1888 struct brw_stage_prog_data *stage_prog_data)
1889 {
1890 /* This is the first live uniform in the chunk */
1891 if (*chunk_start < 0)
1892 *chunk_start = uniform;
1893
1894 /* Keep track of the maximum bit size access in contiguous uniforms */
1895 *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1896
1897 /* If this element does not need to be contiguous with the next, we
1898 * split at this point and everything between chunk_start and u forms a
1899 * single chunk.
1900 */
1901 if (!contiguous) {
1902 /* If bitsize doesn't match the target one, skip it */
1903 if (*max_chunk_bitsize != target_bitsize) {
1904 /* FIXME: right now we only support 32 and 64-bit accesses */
1905 assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1906 *max_chunk_bitsize = 0;
1907 *chunk_start = -1;
1908 return;
1909 }
1910
1911 unsigned chunk_size = uniform - *chunk_start + 1;
1912
1913 /* Decide whether we should push or pull this parameter. In the
1914 * Vulkan driver, push constants are explicitly exposed via the API
1915 * so we push everything. In GL, we only push small arrays.
1916 */
1917 if (!allow_pull_constants ||
1918 (*num_push_constants + chunk_size <= max_push_components &&
1919 chunk_size <= max_chunk_size)) {
1920 assert(*num_push_constants + chunk_size <= max_push_components);
1921 for (unsigned j = *chunk_start; j <= uniform; j++)
1922 push_constant_loc[j] = (*num_push_constants)++;
1923 } else {
1924 for (unsigned j = *chunk_start; j <= uniform; j++)
1925 pull_constant_loc[j] = (*num_pull_constants)++;
1926 }
1927
1928 *max_chunk_bitsize = 0;
1929 *chunk_start = -1;
1930 }
1931 }
1932
1933 static int
1934 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
1935 {
1936 if (prog_data->nr_params == 0)
1937 return -1;
1938
1939 /* The local thread id is always the last parameter in the list */
1940 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
1941 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
1942 return prog_data->nr_params - 1;
1943
1944 return -1;
1945 }
1946
1947 /**
1948 * Assign UNIFORM file registers to either push constants or pull constants.
1949 *
1950 * We allow a fragment shader to have more than the specified minimum
1951 * maximum number of fragment shader uniform components (64). If
1952 * there are too many of these, they'd fill up all of register space.
1953 * So, this will push some of them out to the pull constant buffer and
1954 * update the program to load them.
1955 */
1956 void
1957 fs_visitor::assign_constant_locations()
1958 {
1959 /* Only the first compile gets to decide on locations. */
1960 if (push_constant_loc) {
1961 assert(pull_constant_loc);
1962 return;
1963 }
1964
1965 bool is_live[uniforms];
1966 memset(is_live, 0, sizeof(is_live));
1967 unsigned bitsize_access[uniforms];
1968 memset(bitsize_access, 0, sizeof(bitsize_access));
1969
1970 /* For each uniform slot, a value of true indicates that the given slot and
1971 * the next slot must remain contiguous. This is used to keep us from
1972 * splitting arrays and 64-bit values apart.
1973 */
1974 bool contiguous[uniforms];
1975 memset(contiguous, 0, sizeof(contiguous));
1976
1977 /* First, we walk through the instructions and do two things:
1978 *
1979 * 1) Figure out which uniforms are live.
1980 *
1981 * 2) Mark any indirectly used ranges of registers as contiguous.
1982 *
1983 * Note that we don't move constant-indexed accesses to arrays. No
1984 * testing has been done of the performance impact of this choice.
1985 */
1986 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1987 for (int i = 0 ; i < inst->sources; i++) {
1988 if (inst->src[i].file != UNIFORM)
1989 continue;
1990
1991 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1992
1993 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1994 assert(inst->src[2].ud % 4 == 0);
1995 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1996 assert(last < uniforms);
1997
1998 for (unsigned j = constant_nr; j < last; j++) {
1999 is_live[j] = true;
2000 contiguous[j] = true;
2001 bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
2002 }
2003 is_live[last] = true;
2004 bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
2005 } else {
2006 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
2007 int regs_read = inst->components_read(i) *
2008 type_sz(inst->src[i].type) / 4;
2009 assert(regs_read <= 2);
2010 if (regs_read == 2)
2011 contiguous[constant_nr] = true;
2012 for (int j = 0; j < regs_read; j++) {
2013 is_live[constant_nr + j] = true;
2014 bitsize_access[constant_nr + j] =
2015 MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
2016 }
2017 }
2018 }
2019 }
2020 }
2021
2022 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2023
2024 /* Only allow 16 registers (128 uniform components) as push constants.
2025 *
2026 * Just demote the end of the list. We could probably do better
2027 * here, demoting things that are rarely used in the program first.
2028 *
2029 * If changing this value, note the limitation about total_regs in
2030 * brw_curbe.c.
2031 */
2032 unsigned int max_push_components = 16 * 8;
2033 if (subgroup_id_index >= 0)
2034 max_push_components--; /* Save a slot for the thread ID */
2035
2036 /* We push small arrays, but no bigger than 16 floats. This is big enough
2037 * for a vec4 but hopefully not large enough to push out other stuff. We
2038 * should probably use a better heuristic at some point.
2039 */
2040 const unsigned int max_chunk_size = 16;
2041
2042 unsigned int num_push_constants = 0;
2043 unsigned int num_pull_constants = 0;
2044
2045 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2046 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2047
2048 /* Default to -1 meaning no location */
2049 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2050 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2051
2052 int chunk_start = -1;
2053 unsigned max_chunk_bitsize = 0;
2054
2055 /* First push 64-bit uniforms to ensure they are properly aligned */
2056 const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2057 for (unsigned u = 0; u < uniforms; u++) {
2058 if (!is_live[u])
2059 continue;
2060
2061 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2062 contiguous[u], bitsize_access[u],
2063 uniform_64_bit_size,
2064 push_constant_loc, pull_constant_loc,
2065 &num_push_constants, &num_pull_constants,
2066 max_push_components, max_chunk_size,
2067 compiler->supports_pull_constants,
2068 stage_prog_data);
2069
2070 }
2071
2072 /* Then push the rest of uniforms */
2073 const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2074 for (unsigned u = 0; u < uniforms; u++) {
2075 if (!is_live[u])
2076 continue;
2077
2078 /* Skip subgroup_id_index to put it in the last push register. */
2079 if (subgroup_id_index == (int)u)
2080 continue;
2081
2082 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2083 contiguous[u], bitsize_access[u],
2084 uniform_32_bit_size,
2085 push_constant_loc, pull_constant_loc,
2086 &num_push_constants, &num_pull_constants,
2087 max_push_components, max_chunk_size,
2088 compiler->supports_pull_constants,
2089 stage_prog_data);
2090 }
2091
2092 /* Add the CS local thread ID uniform at the end of the push constants */
2093 if (subgroup_id_index >= 0)
2094 push_constant_loc[subgroup_id_index] = num_push_constants++;
2095
2096 /* As the uniforms are going to be reordered, stash the old array and
2097 * create two new arrays for push/pull params.
2098 */
2099 uint32_t *param = stage_prog_data->param;
2100 stage_prog_data->nr_params = num_push_constants;
2101 if (num_push_constants) {
2102 stage_prog_data->param = ralloc_array(mem_ctx, uint32_t,
2103 num_push_constants);
2104 } else {
2105 stage_prog_data->param = NULL;
2106 }
2107 assert(stage_prog_data->nr_pull_params == 0);
2108 assert(stage_prog_data->pull_param == NULL);
2109 if (num_pull_constants > 0) {
2110 stage_prog_data->nr_pull_params = num_pull_constants;
2111 stage_prog_data->pull_param = ralloc_array(mem_ctx, uint32_t,
2112 num_pull_constants);
2113 }
2114
2115 /* Now that we know how many regular uniforms we'll push, reduce the
2116 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2117 */
2118 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2119 for (int i = 0; i < 4; i++) {
2120 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2121
2122 if (push_length + range->length > 64)
2123 range->length = 64 - push_length;
2124
2125 push_length += range->length;
2126 }
2127 assert(push_length <= 64);
2128
2129 /* Up until now, the param[] array has been indexed by reg + offset
2130 * of UNIFORM registers. Move pull constants into pull_param[] and
2131 * condense param[] to only contain the uniforms we chose to push.
2132 *
2133 * NOTE: Because we are condensing the params[] array, we know that
2134 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2135 * having to make a copy.
2136 */
2137 for (unsigned int i = 0; i < uniforms; i++) {
2138 uint32_t value = param[i];
2139 if (pull_constant_loc[i] != -1) {
2140 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2141 } else if (push_constant_loc[i] != -1) {
2142 stage_prog_data->param[push_constant_loc[i]] = value;
2143 }
2144 }
2145 ralloc_free(param);
2146 }
2147
2148 bool
2149 fs_visitor::get_pull_locs(const fs_reg &src,
2150 unsigned *out_surf_index,
2151 unsigned *out_pull_index)
2152 {
2153 assert(src.file == UNIFORM);
2154
2155 if (src.nr >= UBO_START) {
2156 const struct brw_ubo_range *range =
2157 &prog_data->ubo_ranges[src.nr - UBO_START];
2158
2159 /* If this access is in our (reduced) range, use the push data. */
2160 if (src.offset / 32 < range->length)
2161 return false;
2162
2163 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2164 *out_pull_index = (32 * range->start + src.offset) / 4;
2165 return true;
2166 }
2167
2168 const unsigned location = src.nr + src.offset / 4;
2169
2170 if (location < uniforms && pull_constant_loc[location] != -1) {
2171 /* A regular uniform push constant */
2172 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2173 *out_pull_index = pull_constant_loc[location];
2174 return true;
2175 }
2176
2177 return false;
2178 }
2179
2180 /**
2181 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2182 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2183 */
2184 void
2185 fs_visitor::lower_constant_loads()
2186 {
2187 unsigned index, pull_index;
2188
2189 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2190 /* Set up the annotation tracking for new generated instructions. */
2191 const fs_builder ibld(this, block, inst);
2192
2193 for (int i = 0; i < inst->sources; i++) {
2194 if (inst->src[i].file != UNIFORM)
2195 continue;
2196
2197 /* We'll handle this case later */
2198 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2199 continue;
2200
2201 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2202 continue;
2203
2204 assert(inst->src[i].stride == 0);
2205
2206 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2207 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2208 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2209 const unsigned base = pull_index * 4;
2210
2211 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2212 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2213
2214 /* Rewrite the instruction to use the temporary VGRF. */
2215 inst->src[i].file = VGRF;
2216 inst->src[i].nr = dst.nr;
2217 inst->src[i].offset = (base & (block_sz - 1)) +
2218 inst->src[i].offset % 4;
2219
2220 brw_mark_surface_used(prog_data, index);
2221 }
2222
2223 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2224 inst->src[0].file == UNIFORM) {
2225
2226 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2227 continue;
2228
2229 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2230 brw_imm_ud(index),
2231 inst->src[1],
2232 pull_index * 4);
2233 inst->remove(block);
2234
2235 brw_mark_surface_used(prog_data, index);
2236 }
2237 }
2238 invalidate_live_intervals();
2239 }
2240
2241 bool
2242 fs_visitor::opt_algebraic()
2243 {
2244 bool progress = false;
2245
2246 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2247 switch (inst->opcode) {
2248 case BRW_OPCODE_MOV:
2249 if (inst->src[0].file != IMM)
2250 break;
2251
2252 if (inst->saturate) {
2253 if (inst->dst.type != inst->src[0].type)
2254 assert(!"unimplemented: saturate mixed types");
2255
2256 if (brw_saturate_immediate(inst->dst.type,
2257 &inst->src[0].as_brw_reg())) {
2258 inst->saturate = false;
2259 progress = true;
2260 }
2261 }
2262 break;
2263
2264 case BRW_OPCODE_MUL:
2265 if (inst->src[1].file != IMM)
2266 continue;
2267
2268 /* a * 1.0 = a */
2269 if (inst->src[1].is_one()) {
2270 inst->opcode = BRW_OPCODE_MOV;
2271 inst->src[1] = reg_undef;
2272 progress = true;
2273 break;
2274 }
2275
2276 /* a * -1.0 = -a */
2277 if (inst->src[1].is_negative_one()) {
2278 inst->opcode = BRW_OPCODE_MOV;
2279 inst->src[0].negate = !inst->src[0].negate;
2280 inst->src[1] = reg_undef;
2281 progress = true;
2282 break;
2283 }
2284
2285 /* a * 0.0 = 0.0 */
2286 if (inst->src[1].is_zero()) {
2287 inst->opcode = BRW_OPCODE_MOV;
2288 inst->src[0] = inst->src[1];
2289 inst->src[1] = reg_undef;
2290 progress = true;
2291 break;
2292 }
2293
2294 if (inst->src[0].file == IMM) {
2295 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2296 inst->opcode = BRW_OPCODE_MOV;
2297 inst->src[0].f *= inst->src[1].f;
2298 inst->src[1] = reg_undef;
2299 progress = true;
2300 break;
2301 }
2302 break;
2303 case BRW_OPCODE_ADD:
2304 if (inst->src[1].file != IMM)
2305 continue;
2306
2307 /* a + 0.0 = a */
2308 if (inst->src[1].is_zero()) {
2309 inst->opcode = BRW_OPCODE_MOV;
2310 inst->src[1] = reg_undef;
2311 progress = true;
2312 break;
2313 }
2314
2315 if (inst->src[0].file == IMM) {
2316 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2317 inst->opcode = BRW_OPCODE_MOV;
2318 inst->src[0].f += inst->src[1].f;
2319 inst->src[1] = reg_undef;
2320 progress = true;
2321 break;
2322 }
2323 break;
2324 case BRW_OPCODE_OR:
2325 if (inst->src[0].equals(inst->src[1])) {
2326 inst->opcode = BRW_OPCODE_MOV;
2327 inst->src[1] = reg_undef;
2328 progress = true;
2329 break;
2330 }
2331 break;
2332 case BRW_OPCODE_LRP:
2333 if (inst->src[1].equals(inst->src[2])) {
2334 inst->opcode = BRW_OPCODE_MOV;
2335 inst->src[0] = inst->src[1];
2336 inst->src[1] = reg_undef;
2337 inst->src[2] = reg_undef;
2338 progress = true;
2339 break;
2340 }
2341 break;
2342 case BRW_OPCODE_CMP:
2343 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2344 inst->src[0].abs &&
2345 inst->src[0].negate &&
2346 inst->src[1].is_zero()) {
2347 inst->src[0].abs = false;
2348 inst->src[0].negate = false;
2349 inst->conditional_mod = BRW_CONDITIONAL_Z;
2350 progress = true;
2351 break;
2352 }
2353 break;
2354 case BRW_OPCODE_SEL:
2355 if (inst->src[0].equals(inst->src[1])) {
2356 inst->opcode = BRW_OPCODE_MOV;
2357 inst->src[1] = reg_undef;
2358 inst->predicate = BRW_PREDICATE_NONE;
2359 inst->predicate_inverse = false;
2360 progress = true;
2361 } else if (inst->saturate && inst->src[1].file == IMM) {
2362 switch (inst->conditional_mod) {
2363 case BRW_CONDITIONAL_LE:
2364 case BRW_CONDITIONAL_L:
2365 switch (inst->src[1].type) {
2366 case BRW_REGISTER_TYPE_F:
2367 if (inst->src[1].f >= 1.0f) {
2368 inst->opcode = BRW_OPCODE_MOV;
2369 inst->src[1] = reg_undef;
2370 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2371 progress = true;
2372 }
2373 break;
2374 default:
2375 break;
2376 }
2377 break;
2378 case BRW_CONDITIONAL_GE:
2379 case BRW_CONDITIONAL_G:
2380 switch (inst->src[1].type) {
2381 case BRW_REGISTER_TYPE_F:
2382 if (inst->src[1].f <= 0.0f) {
2383 inst->opcode = BRW_OPCODE_MOV;
2384 inst->src[1] = reg_undef;
2385 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2386 progress = true;
2387 }
2388 break;
2389 default:
2390 break;
2391 }
2392 default:
2393 break;
2394 }
2395 }
2396 break;
2397 case BRW_OPCODE_MAD:
2398 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2399 inst->opcode = BRW_OPCODE_MOV;
2400 inst->src[1] = reg_undef;
2401 inst->src[2] = reg_undef;
2402 progress = true;
2403 } else if (inst->src[0].is_zero()) {
2404 inst->opcode = BRW_OPCODE_MUL;
2405 inst->src[0] = inst->src[2];
2406 inst->src[2] = reg_undef;
2407 progress = true;
2408 } else if (inst->src[1].is_one()) {
2409 inst->opcode = BRW_OPCODE_ADD;
2410 inst->src[1] = inst->src[2];
2411 inst->src[2] = reg_undef;
2412 progress = true;
2413 } else if (inst->src[2].is_one()) {
2414 inst->opcode = BRW_OPCODE_ADD;
2415 inst->src[2] = reg_undef;
2416 progress = true;
2417 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2418 inst->opcode = BRW_OPCODE_ADD;
2419 inst->src[1].f *= inst->src[2].f;
2420 inst->src[2] = reg_undef;
2421 progress = true;
2422 }
2423 break;
2424 case SHADER_OPCODE_BROADCAST:
2425 if (is_uniform(inst->src[0])) {
2426 inst->opcode = BRW_OPCODE_MOV;
2427 inst->sources = 1;
2428 inst->force_writemask_all = true;
2429 progress = true;
2430 } else if (inst->src[1].file == IMM) {
2431 inst->opcode = BRW_OPCODE_MOV;
2432 /* It's possible that the selected component will be too large and
2433 * overflow the register. This can happen if someone does a
2434 * readInvocation() from GLSL or SPIR-V and provides an OOB
2435 * invocationIndex. If this happens and we some how manage
2436 * to constant fold it in and get here, then component() may cause
2437 * us to start reading outside of the VGRF which will lead to an
2438 * assert later. Instead, just let it wrap around if it goes over
2439 * exec_size.
2440 */
2441 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2442 inst->src[0] = component(inst->src[0], comp);
2443 inst->sources = 1;
2444 inst->force_writemask_all = true;
2445 progress = true;
2446 }
2447 break;
2448
2449 default:
2450 break;
2451 }
2452
2453 /* Swap if src[0] is immediate. */
2454 if (progress && inst->is_commutative()) {
2455 if (inst->src[0].file == IMM) {
2456 fs_reg tmp = inst->src[1];
2457 inst->src[1] = inst->src[0];
2458 inst->src[0] = tmp;
2459 }
2460 }
2461 }
2462 return progress;
2463 }
2464
2465 /**
2466 * Optimize sample messages that have constant zero values for the trailing
2467 * texture coordinates. We can just reduce the message length for these
2468 * instructions instead of reserving a register for it. Trailing parameters
2469 * that aren't sent default to zero anyway. This will cause the dead code
2470 * eliminator to remove the MOV instruction that would otherwise be emitted to
2471 * set up the zero value.
2472 */
2473 bool
2474 fs_visitor::opt_zero_samples()
2475 {
2476 /* Gen4 infers the texturing opcode based on the message length so we can't
2477 * change it.
2478 */
2479 if (devinfo->gen < 5)
2480 return false;
2481
2482 bool progress = false;
2483
2484 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2485 if (!inst->is_tex())
2486 continue;
2487
2488 fs_inst *load_payload = (fs_inst *) inst->prev;
2489
2490 if (load_payload->is_head_sentinel() ||
2491 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2492 continue;
2493
2494 /* We don't want to remove the message header or the first parameter.
2495 * Removing the first parameter is not allowed, see the Haswell PRM
2496 * volume 7, page 149:
2497 *
2498 * "Parameter 0 is required except for the sampleinfo message, which
2499 * has no parameter 0"
2500 */
2501 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2502 load_payload->src[(inst->mlen - inst->header_size) /
2503 (inst->exec_size / 8) +
2504 inst->header_size - 1].is_zero()) {
2505 inst->mlen -= inst->exec_size / 8;
2506 progress = true;
2507 }
2508 }
2509
2510 if (progress)
2511 invalidate_live_intervals();
2512
2513 return progress;
2514 }
2515
2516 /**
2517 * Optimize sample messages which are followed by the final RT write.
2518 *
2519 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2520 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2521 * final texturing results copied to the framebuffer write payload and modify
2522 * them to write to the framebuffer directly.
2523 */
2524 bool
2525 fs_visitor::opt_sampler_eot()
2526 {
2527 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2528
2529 if (stage != MESA_SHADER_FRAGMENT)
2530 return false;
2531
2532 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2533 return false;
2534
2535 /* FINISHME: It should be possible to implement this optimization when there
2536 * are multiple drawbuffers.
2537 */
2538 if (key->nr_color_regions != 1)
2539 return false;
2540
2541 /* Requires emitting a bunch of saturating MOV instructions during logical
2542 * send lowering to clamp the color payload, which the sampler unit isn't
2543 * going to do for us.
2544 */
2545 if (key->clamp_fragment_color)
2546 return false;
2547
2548 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2549 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2550 fs_inst *fb_write = (fs_inst *)block->end();
2551 assert(fb_write->eot);
2552 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2553
2554 /* There wasn't one; nothing to do. */
2555 if (unlikely(fb_write->prev->is_head_sentinel()))
2556 return false;
2557
2558 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2559
2560 /* 3D Sampler » Messages » Message Format
2561 *
2562 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2563 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2564 */
2565 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2566 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2567 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2568 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2569 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2570 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2571 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2572 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2573 return false;
2574
2575 /* XXX - This shouldn't be necessary. */
2576 if (tex_inst->prev->is_head_sentinel())
2577 return false;
2578
2579 /* Check that the FB write sources are fully initialized by the single
2580 * texturing instruction.
2581 */
2582 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2583 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2584 if (!fb_write->src[i].equals(tex_inst->dst) ||
2585 fb_write->size_read(i) != tex_inst->size_written)
2586 return false;
2587 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2588 if (fb_write->src[i].file != BAD_FILE)
2589 return false;
2590 }
2591 }
2592
2593 assert(!tex_inst->eot); /* We can't get here twice */
2594 assert((tex_inst->offset & (0xff << 24)) == 0);
2595
2596 const fs_builder ibld(this, block, tex_inst);
2597
2598 tex_inst->offset |= fb_write->target << 24;
2599 tex_inst->eot = true;
2600 tex_inst->dst = ibld.null_reg_ud();
2601 tex_inst->size_written = 0;
2602 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2603
2604 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2605 * flag and submit a header together with the sampler message as required
2606 * by the hardware.
2607 */
2608 invalidate_live_intervals();
2609 return true;
2610 }
2611
2612 bool
2613 fs_visitor::opt_register_renaming()
2614 {
2615 bool progress = false;
2616 int depth = 0;
2617
2618 int remap[alloc.count];
2619 memset(remap, -1, sizeof(int) * alloc.count);
2620
2621 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2622 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2623 depth++;
2624 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2625 inst->opcode == BRW_OPCODE_WHILE) {
2626 depth--;
2627 }
2628
2629 /* Rewrite instruction sources. */
2630 for (int i = 0; i < inst->sources; i++) {
2631 if (inst->src[i].file == VGRF &&
2632 remap[inst->src[i].nr] != -1 &&
2633 remap[inst->src[i].nr] != inst->src[i].nr) {
2634 inst->src[i].nr = remap[inst->src[i].nr];
2635 progress = true;
2636 }
2637 }
2638
2639 const int dst = inst->dst.nr;
2640
2641 if (depth == 0 &&
2642 inst->dst.file == VGRF &&
2643 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2644 !inst->is_partial_write()) {
2645 if (remap[dst] == -1) {
2646 remap[dst] = dst;
2647 } else {
2648 remap[dst] = alloc.allocate(regs_written(inst));
2649 inst->dst.nr = remap[dst];
2650 progress = true;
2651 }
2652 } else if (inst->dst.file == VGRF &&
2653 remap[dst] != -1 &&
2654 remap[dst] != dst) {
2655 inst->dst.nr = remap[dst];
2656 progress = true;
2657 }
2658 }
2659
2660 if (progress) {
2661 invalidate_live_intervals();
2662
2663 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2664 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2665 delta_xy[i].nr = remap[delta_xy[i].nr];
2666 }
2667 }
2668 }
2669
2670 return progress;
2671 }
2672
2673 /**
2674 * Remove redundant or useless discard jumps.
2675 *
2676 * For example, we can eliminate jumps in the following sequence:
2677 *
2678 * discard-jump (redundant with the next jump)
2679 * discard-jump (useless; jumps to the next instruction)
2680 * placeholder-halt
2681 */
2682 bool
2683 fs_visitor::opt_redundant_discard_jumps()
2684 {
2685 bool progress = false;
2686
2687 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2688
2689 fs_inst *placeholder_halt = NULL;
2690 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2691 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2692 placeholder_halt = inst;
2693 break;
2694 }
2695 }
2696
2697 if (!placeholder_halt)
2698 return false;
2699
2700 /* Delete any HALTs immediately before the placeholder halt. */
2701 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2702 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2703 prev = (fs_inst *) placeholder_halt->prev) {
2704 prev->remove(last_bblock);
2705 progress = true;
2706 }
2707
2708 if (progress)
2709 invalidate_live_intervals();
2710
2711 return progress;
2712 }
2713
2714 /**
2715 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2716 * from \p r.offset which overlaps the region starting at \p s.offset and
2717 * spanning \p ds bytes.
2718 */
2719 static inline unsigned
2720 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2721 {
2722 const int rel_offset = reg_offset(s) - reg_offset(r);
2723 const int shift = rel_offset / REG_SIZE;
2724 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2725 assert(reg_space(r) == reg_space(s) &&
2726 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2727 return ((1 << n) - 1) << shift;
2728 }
2729
2730 bool
2731 fs_visitor::compute_to_mrf()
2732 {
2733 bool progress = false;
2734 int next_ip = 0;
2735
2736 /* No MRFs on Gen >= 7. */
2737 if (devinfo->gen >= 7)
2738 return false;
2739
2740 calculate_live_intervals();
2741
2742 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2743 int ip = next_ip;
2744 next_ip++;
2745
2746 if (inst->opcode != BRW_OPCODE_MOV ||
2747 inst->is_partial_write() ||
2748 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2749 inst->dst.type != inst->src[0].type ||
2750 inst->src[0].abs || inst->src[0].negate ||
2751 !inst->src[0].is_contiguous() ||
2752 inst->src[0].offset % REG_SIZE != 0)
2753 continue;
2754
2755 /* Can't compute-to-MRF this GRF if someone else was going to
2756 * read it later.
2757 */
2758 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2759 continue;
2760
2761 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2762 * things that computed the value of all GRFs of the source region. The
2763 * regs_left bitset keeps track of the registers we haven't yet found a
2764 * generating instruction for.
2765 */
2766 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2767
2768 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2769 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2770 inst->src[0], inst->size_read(0))) {
2771 /* Found the last thing to write our reg we want to turn
2772 * into a compute-to-MRF.
2773 */
2774
2775 /* If this one instruction didn't populate all the
2776 * channels, bail. We might be able to rewrite everything
2777 * that writes that reg, but it would require smarter
2778 * tracking.
2779 */
2780 if (scan_inst->is_partial_write())
2781 break;
2782
2783 /* Handling things not fully contained in the source of the copy
2784 * would need us to understand coalescing out more than one MOV at
2785 * a time.
2786 */
2787 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2788 inst->src[0], inst->size_read(0)))
2789 break;
2790
2791 /* SEND instructions can't have MRF as a destination. */
2792 if (scan_inst->mlen)
2793 break;
2794
2795 if (devinfo->gen == 6) {
2796 /* gen6 math instructions must have the destination be
2797 * GRF, so no compute-to-MRF for them.
2798 */
2799 if (scan_inst->is_math()) {
2800 break;
2801 }
2802 }
2803
2804 /* Clear the bits for any registers this instruction overwrites. */
2805 regs_left &= ~mask_relative_to(
2806 inst->src[0], scan_inst->dst, scan_inst->size_written);
2807 if (!regs_left)
2808 break;
2809 }
2810
2811 /* We don't handle control flow here. Most computation of
2812 * values that end up in MRFs are shortly before the MRF
2813 * write anyway.
2814 */
2815 if (block->start() == scan_inst)
2816 break;
2817
2818 /* You can't read from an MRF, so if someone else reads our
2819 * MRF's source GRF that we wanted to rewrite, that stops us.
2820 */
2821 bool interfered = false;
2822 for (int i = 0; i < scan_inst->sources; i++) {
2823 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2824 inst->src[0], inst->size_read(0))) {
2825 interfered = true;
2826 }
2827 }
2828 if (interfered)
2829 break;
2830
2831 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2832 inst->dst, inst->size_written)) {
2833 /* If somebody else writes our MRF here, we can't
2834 * compute-to-MRF before that.
2835 */
2836 break;
2837 }
2838
2839 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2840 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2841 inst->dst, inst->size_written)) {
2842 /* Found a SEND instruction, which means that there are
2843 * live values in MRFs from base_mrf to base_mrf +
2844 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2845 * above it.
2846 */
2847 break;
2848 }
2849 }
2850
2851 if (regs_left)
2852 continue;
2853
2854 /* Found all generating instructions of our MRF's source value, so it
2855 * should be safe to rewrite them to point to the MRF directly.
2856 */
2857 regs_left = (1 << regs_read(inst, 0)) - 1;
2858
2859 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2860 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2861 inst->src[0], inst->size_read(0))) {
2862 /* Clear the bits for any registers this instruction overwrites. */
2863 regs_left &= ~mask_relative_to(
2864 inst->src[0], scan_inst->dst, scan_inst->size_written);
2865
2866 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2867 reg_offset(inst->src[0]);
2868
2869 if (inst->dst.nr & BRW_MRF_COMPR4) {
2870 /* Apply the same address transformation done by the hardware
2871 * for COMPR4 MRF writes.
2872 */
2873 assert(rel_offset < 2 * REG_SIZE);
2874 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2875
2876 /* Clear the COMPR4 bit if the generating instruction is not
2877 * compressed.
2878 */
2879 if (scan_inst->size_written < 2 * REG_SIZE)
2880 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2881
2882 } else {
2883 /* Calculate the MRF number the result of this instruction is
2884 * ultimately written to.
2885 */
2886 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2887 }
2888
2889 scan_inst->dst.file = MRF;
2890 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2891 scan_inst->saturate |= inst->saturate;
2892 if (!regs_left)
2893 break;
2894 }
2895 }
2896
2897 assert(!regs_left);
2898 inst->remove(block);
2899 progress = true;
2900 }
2901
2902 if (progress)
2903 invalidate_live_intervals();
2904
2905 return progress;
2906 }
2907
2908 /**
2909 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2910 * flow. We could probably do better here with some form of divergence
2911 * analysis.
2912 */
2913 bool
2914 fs_visitor::eliminate_find_live_channel()
2915 {
2916 bool progress = false;
2917 unsigned depth = 0;
2918
2919 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2920 /* The optimization below assumes that channel zero is live on thread
2921 * dispatch, which may not be the case if the fixed function dispatches
2922 * threads sparsely.
2923 */
2924 return false;
2925 }
2926
2927 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2928 switch (inst->opcode) {
2929 case BRW_OPCODE_IF:
2930 case BRW_OPCODE_DO:
2931 depth++;
2932 break;
2933
2934 case BRW_OPCODE_ENDIF:
2935 case BRW_OPCODE_WHILE:
2936 depth--;
2937 break;
2938
2939 case FS_OPCODE_DISCARD_JUMP:
2940 /* This can potentially make control flow non-uniform until the end
2941 * of the program.
2942 */
2943 return progress;
2944
2945 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2946 if (depth == 0) {
2947 inst->opcode = BRW_OPCODE_MOV;
2948 inst->src[0] = brw_imm_ud(0u);
2949 inst->sources = 1;
2950 inst->force_writemask_all = true;
2951 progress = true;
2952 }
2953 break;
2954
2955 default:
2956 break;
2957 }
2958 }
2959
2960 return progress;
2961 }
2962
2963 /**
2964 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2965 * instructions to FS_OPCODE_REP_FB_WRITE.
2966 */
2967 void
2968 fs_visitor::emit_repclear_shader()
2969 {
2970 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2971 int base_mrf = 0;
2972 int color_mrf = base_mrf + 2;
2973 fs_inst *mov;
2974
2975 if (uniforms > 0) {
2976 mov = bld.exec_all().group(4, 0)
2977 .MOV(brw_message_reg(color_mrf),
2978 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2979 } else {
2980 struct brw_reg reg =
2981 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2982 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2983 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2984
2985 mov = bld.exec_all().group(4, 0)
2986 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2987 }
2988
2989 fs_inst *write;
2990 if (key->nr_color_regions == 1) {
2991 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2992 write->saturate = key->clamp_fragment_color;
2993 write->base_mrf = color_mrf;
2994 write->target = 0;
2995 write->header_size = 0;
2996 write->mlen = 1;
2997 } else {
2998 assume(key->nr_color_regions > 0);
2999 for (int i = 0; i < key->nr_color_regions; ++i) {
3000 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3001 write->saturate = key->clamp_fragment_color;
3002 write->base_mrf = base_mrf;
3003 write->target = i;
3004 write->header_size = 2;
3005 write->mlen = 3;
3006 }
3007 }
3008 write->eot = true;
3009
3010 calculate_cfg();
3011
3012 assign_constant_locations();
3013 assign_curb_setup();
3014
3015 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3016 if (uniforms > 0) {
3017 assert(mov->src[0].file == FIXED_GRF);
3018 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3019 }
3020 }
3021
3022 /**
3023 * Walks through basic blocks, looking for repeated MRF writes and
3024 * removing the later ones.
3025 */
3026 bool
3027 fs_visitor::remove_duplicate_mrf_writes()
3028 {
3029 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3030 bool progress = false;
3031
3032 /* Need to update the MRF tracking for compressed instructions. */
3033 if (dispatch_width >= 16)
3034 return false;
3035
3036 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3037
3038 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3039 if (inst->is_control_flow()) {
3040 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3041 }
3042
3043 if (inst->opcode == BRW_OPCODE_MOV &&
3044 inst->dst.file == MRF) {
3045 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3046 if (prev_inst && inst->equals(prev_inst)) {
3047 inst->remove(block);
3048 progress = true;
3049 continue;
3050 }
3051 }
3052
3053 /* Clear out the last-write records for MRFs that were overwritten. */
3054 if (inst->dst.file == MRF) {
3055 last_mrf_move[inst->dst.nr] = NULL;
3056 }
3057
3058 if (inst->mlen > 0 && inst->base_mrf != -1) {
3059 /* Found a SEND instruction, which will include two or fewer
3060 * implied MRF writes. We could do better here.
3061 */
3062 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3063 last_mrf_move[inst->base_mrf + i] = NULL;
3064 }
3065 }
3066
3067 /* Clear out any MRF move records whose sources got overwritten. */
3068 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3069 if (last_mrf_move[i] &&
3070 regions_overlap(inst->dst, inst->size_written,
3071 last_mrf_move[i]->src[0],
3072 last_mrf_move[i]->size_read(0))) {
3073 last_mrf_move[i] = NULL;
3074 }
3075 }
3076
3077 if (inst->opcode == BRW_OPCODE_MOV &&
3078 inst->dst.file == MRF &&
3079 inst->src[0].file != ARF &&
3080 !inst->is_partial_write()) {
3081 last_mrf_move[inst->dst.nr] = inst;
3082 }
3083 }
3084
3085 if (progress)
3086 invalidate_live_intervals();
3087
3088 return progress;
3089 }
3090
3091 static void
3092 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3093 {
3094 /* Clear the flag for registers that actually got read (as expected). */
3095 for (int i = 0; i < inst->sources; i++) {
3096 int grf;
3097 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3098 grf = inst->src[i].nr;
3099 } else {
3100 continue;
3101 }
3102
3103 if (grf >= first_grf &&
3104 grf < first_grf + grf_len) {
3105 deps[grf - first_grf] = false;
3106 if (inst->exec_size == 16)
3107 deps[grf - first_grf + 1] = false;
3108 }
3109 }
3110 }
3111
3112 /**
3113 * Implements this workaround for the original 965:
3114 *
3115 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3116 * check for post destination dependencies on this instruction, software
3117 * must ensure that there is no destination hazard for the case of ‘write
3118 * followed by a posted write’ shown in the following example.
3119 *
3120 * 1. mov r3 0
3121 * 2. send r3.xy <rest of send instruction>
3122 * 3. mov r2 r3
3123 *
3124 * Due to no post-destination dependency check on the ‘send’, the above
3125 * code sequence could have two instructions (1 and 2) in flight at the
3126 * same time that both consider ‘r3’ as the target of their final writes.
3127 */
3128 void
3129 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3130 fs_inst *inst)
3131 {
3132 int write_len = regs_written(inst);
3133 int first_write_grf = inst->dst.nr;
3134 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3135 assert(write_len < (int)sizeof(needs_dep) - 1);
3136
3137 memset(needs_dep, false, sizeof(needs_dep));
3138 memset(needs_dep, true, write_len);
3139
3140 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3141
3142 /* Walk backwards looking for writes to registers we're writing which
3143 * aren't read since being written. If we hit the start of the program,
3144 * we assume that there are no outstanding dependencies on entry to the
3145 * program.
3146 */
3147 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3148 /* If we hit control flow, assume that there *are* outstanding
3149 * dependencies, and force their cleanup before our instruction.
3150 */
3151 if (block->start() == scan_inst && block->num != 0) {
3152 for (int i = 0; i < write_len; i++) {
3153 if (needs_dep[i])
3154 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3155 first_write_grf + i);
3156 }
3157 return;
3158 }
3159
3160 /* We insert our reads as late as possible on the assumption that any
3161 * instruction but a MOV that might have left us an outstanding
3162 * dependency has more latency than a MOV.
3163 */
3164 if (scan_inst->dst.file == VGRF) {
3165 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3166 int reg = scan_inst->dst.nr + i;
3167
3168 if (reg >= first_write_grf &&
3169 reg < first_write_grf + write_len &&
3170 needs_dep[reg - first_write_grf]) {
3171 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3172 needs_dep[reg - first_write_grf] = false;
3173 if (scan_inst->exec_size == 16)
3174 needs_dep[reg - first_write_grf + 1] = false;
3175 }
3176 }
3177 }
3178
3179 /* Clear the flag for registers that actually got read (as expected). */
3180 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3181
3182 /* Continue the loop only if we haven't resolved all the dependencies */
3183 int i;
3184 for (i = 0; i < write_len; i++) {
3185 if (needs_dep[i])
3186 break;
3187 }
3188 if (i == write_len)
3189 return;
3190 }
3191 }
3192
3193 /**
3194 * Implements this workaround for the original 965:
3195 *
3196 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3197 * used as a destination register until after it has been sourced by an
3198 * instruction with a different destination register.
3199 */
3200 void
3201 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3202 {
3203 int write_len = regs_written(inst);
3204 int first_write_grf = inst->dst.nr;
3205 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3206 assert(write_len < (int)sizeof(needs_dep) - 1);
3207
3208 memset(needs_dep, false, sizeof(needs_dep));
3209 memset(needs_dep, true, write_len);
3210 /* Walk forwards looking for writes to registers we're writing which aren't
3211 * read before being written.
3212 */
3213 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3214 /* If we hit control flow, force resolve all remaining dependencies. */
3215 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3216 for (int i = 0; i < write_len; i++) {
3217 if (needs_dep[i])
3218 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3219 first_write_grf + i);
3220 }
3221 return;
3222 }
3223
3224 /* Clear the flag for registers that actually got read (as expected). */
3225 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3226
3227 /* We insert our reads as late as possible since they're reading the
3228 * result of a SEND, which has massive latency.
3229 */
3230 if (scan_inst->dst.file == VGRF &&
3231 scan_inst->dst.nr >= first_write_grf &&
3232 scan_inst->dst.nr < first_write_grf + write_len &&
3233 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3234 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3235 scan_inst->dst.nr);
3236 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3237 }
3238
3239 /* Continue the loop only if we haven't resolved all the dependencies */
3240 int i;
3241 for (i = 0; i < write_len; i++) {
3242 if (needs_dep[i])
3243 break;
3244 }
3245 if (i == write_len)
3246 return;
3247 }
3248 }
3249
3250 void
3251 fs_visitor::insert_gen4_send_dependency_workarounds()
3252 {
3253 if (devinfo->gen != 4 || devinfo->is_g4x)
3254 return;
3255
3256 bool progress = false;
3257
3258 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3259 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3260 insert_gen4_pre_send_dependency_workarounds(block, inst);
3261 insert_gen4_post_send_dependency_workarounds(block, inst);
3262 progress = true;
3263 }
3264 }
3265
3266 if (progress)
3267 invalidate_live_intervals();
3268 }
3269
3270 /**
3271 * Turns the generic expression-style uniform pull constant load instruction
3272 * into a hardware-specific series of instructions for loading a pull
3273 * constant.
3274 *
3275 * The expression style allows the CSE pass before this to optimize out
3276 * repeated loads from the same offset, and gives the pre-register-allocation
3277 * scheduling full flexibility, while the conversion to native instructions
3278 * allows the post-register-allocation scheduler the best information
3279 * possible.
3280 *
3281 * Note that execution masking for setting up pull constant loads is special:
3282 * the channels that need to be written are unrelated to the current execution
3283 * mask, since a later instruction will use one of the result channels as a
3284 * source operand for all 8 or 16 of its channels.
3285 */
3286 void
3287 fs_visitor::lower_uniform_pull_constant_loads()
3288 {
3289 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3290 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3291 continue;
3292
3293 if (devinfo->gen >= 7) {
3294 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3295 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3296
3297 ubld.group(8, 0).MOV(payload,
3298 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3299 ubld.group(1, 0).MOV(component(payload, 2),
3300 brw_imm_ud(inst->src[1].ud / 16));
3301
3302 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3303 inst->src[1] = payload;
3304 inst->header_size = 1;
3305 inst->mlen = 1;
3306
3307 invalidate_live_intervals();
3308 } else {
3309 /* Before register allocation, we didn't tell the scheduler about the
3310 * MRF we use. We know it's safe to use this MRF because nothing
3311 * else does except for register spill/unspill, which generates and
3312 * uses its MRF within a single IR instruction.
3313 */
3314 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3315 inst->mlen = 1;
3316 }
3317 }
3318 }
3319
3320 bool
3321 fs_visitor::lower_load_payload()
3322 {
3323 bool progress = false;
3324
3325 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3326 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3327 continue;
3328
3329 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3330 assert(inst->saturate == false);
3331 fs_reg dst = inst->dst;
3332
3333 /* Get rid of COMPR4. We'll add it back in if we need it */
3334 if (dst.file == MRF)
3335 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3336
3337 const fs_builder ibld(this, block, inst);
3338 const fs_builder hbld = ibld.exec_all().group(8, 0);
3339
3340 for (uint8_t i = 0; i < inst->header_size; i++) {
3341 if (inst->src[i].file != BAD_FILE) {
3342 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3343 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3344 hbld.MOV(mov_dst, mov_src);
3345 }
3346 dst = offset(dst, hbld, 1);
3347 }
3348
3349 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3350 inst->exec_size > 8) {
3351 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3352 * a straightforward copy. Instead, the result of the
3353 * LOAD_PAYLOAD is treated as interleaved and the first four
3354 * non-header sources are unpacked as:
3355 *
3356 * m + 0: r0
3357 * m + 1: g0
3358 * m + 2: b0
3359 * m + 3: a0
3360 * m + 4: r1
3361 * m + 5: g1
3362 * m + 6: b1
3363 * m + 7: a1
3364 *
3365 * This is used for gen <= 5 fb writes.
3366 */
3367 assert(inst->exec_size == 16);
3368 assert(inst->header_size + 4 <= inst->sources);
3369 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3370 if (inst->src[i].file != BAD_FILE) {
3371 if (devinfo->has_compr4) {
3372 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3373 compr4_dst.nr |= BRW_MRF_COMPR4;
3374 ibld.MOV(compr4_dst, inst->src[i]);
3375 } else {
3376 /* Platform doesn't have COMPR4. We have to fake it */
3377 fs_reg mov_dst = retype(dst, inst->src[i].type);
3378 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3379 mov_dst.nr += 4;
3380 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3381 }
3382 }
3383
3384 dst.nr++;
3385 }
3386
3387 /* The loop above only ever incremented us through the first set
3388 * of 4 registers. However, thanks to the magic of COMPR4, we
3389 * actually wrote to the first 8 registers, so we need to take
3390 * that into account now.
3391 */
3392 dst.nr += 4;
3393
3394 /* The COMPR4 code took care of the first 4 sources. We'll let
3395 * the regular path handle any remaining sources. Yes, we are
3396 * modifying the instruction but we're about to delete it so
3397 * this really doesn't hurt anything.
3398 */
3399 inst->header_size += 4;
3400 }
3401
3402 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3403 if (inst->src[i].file != BAD_FILE)
3404 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3405 dst = offset(dst, ibld, 1);
3406 }
3407
3408 inst->remove(block);
3409 progress = true;
3410 }
3411
3412 if (progress)
3413 invalidate_live_intervals();
3414
3415 return progress;
3416 }
3417
3418 bool
3419 fs_visitor::lower_integer_multiplication()
3420 {
3421 bool progress = false;
3422
3423 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3424 const fs_builder ibld(this, block, inst);
3425
3426 if (inst->opcode == BRW_OPCODE_MUL) {
3427 if (inst->dst.is_accumulator() ||
3428 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3429 inst->dst.type != BRW_REGISTER_TYPE_UD))
3430 continue;
3431
3432 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3433 * operation directly, but CHV/BXT cannot.
3434 */
3435 if (devinfo->gen >= 8 &&
3436 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3437 continue;
3438
3439 if (inst->src[1].file == IMM &&
3440 inst->src[1].ud < (1 << 16)) {
3441 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3442 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3443 * src1 are used.
3444 *
3445 * If multiplying by an immediate value that fits in 16-bits, do a
3446 * single MUL instruction with that value in the proper location.
3447 */
3448 if (devinfo->gen < 7) {
3449 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3450 inst->dst.type);
3451 ibld.MOV(imm, inst->src[1]);
3452 ibld.MUL(inst->dst, imm, inst->src[0]);
3453 } else {
3454 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3455 ibld.MUL(inst->dst, inst->src[0],
3456 ud ? brw_imm_uw(inst->src[1].ud)
3457 : brw_imm_w(inst->src[1].d));
3458 }
3459 } else {
3460 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3461 * do 32-bit integer multiplication in one instruction, but instead
3462 * must do a sequence (which actually calculates a 64-bit result):
3463 *
3464 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3465 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3466 * mov(8) g2<1>D acc0<8,8,1>D
3467 *
3468 * But on Gen > 6, the ability to use second accumulator register
3469 * (acc1) for non-float data types was removed, preventing a simple
3470 * implementation in SIMD16. A 16-channel result can be calculated by
3471 * executing the three instructions twice in SIMD8, once with quarter
3472 * control of 1Q for the first eight channels and again with 2Q for
3473 * the second eight channels.
3474 *
3475 * Which accumulator register is implicitly accessed (by AccWrEnable
3476 * for instance) is determined by the quarter control. Unfortunately
3477 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3478 * implicit accumulator access by an instruction with 2Q will access
3479 * acc1 regardless of whether the data type is usable in acc1.
3480 *
3481 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3482 * integer data types.
3483 *
3484 * Since we only want the low 32-bits of the result, we can do two
3485 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3486 * adjust the high result and add them (like the mach is doing):
3487 *
3488 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3489 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3490 * shl(8) g9<1>D g8<8,8,1>D 16D
3491 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3492 *
3493 * We avoid the shl instruction by realizing that we only want to add
3494 * the low 16-bits of the "high" result to the high 16-bits of the
3495 * "low" result and using proper regioning on the add:
3496 *
3497 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3498 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3499 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3500 *
3501 * Since it does not use the (single) accumulator register, we can
3502 * schedule multi-component multiplications much better.
3503 */
3504
3505 bool needs_mov = false;
3506 fs_reg orig_dst = inst->dst;
3507 fs_reg low = inst->dst;
3508 if (orig_dst.is_null() || orig_dst.file == MRF ||
3509 regions_overlap(inst->dst, inst->size_written,
3510 inst->src[0], inst->size_read(0)) ||
3511 regions_overlap(inst->dst, inst->size_written,
3512 inst->src[1], inst->size_read(1))) {
3513 needs_mov = true;
3514 low.nr = alloc.allocate(regs_written(inst));
3515 low.offset = low.offset % REG_SIZE;
3516 }
3517
3518 fs_reg high = inst->dst;
3519 high.nr = alloc.allocate(regs_written(inst));
3520 high.offset = high.offset % REG_SIZE;
3521
3522 if (devinfo->gen >= 7) {
3523 if (inst->src[1].file == IMM) {
3524 ibld.MUL(low, inst->src[0],
3525 brw_imm_uw(inst->src[1].ud & 0xffff));
3526 ibld.MUL(high, inst->src[0],
3527 brw_imm_uw(inst->src[1].ud >> 16));
3528 } else {
3529 ibld.MUL(low, inst->src[0],
3530 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3531 ibld.MUL(high, inst->src[0],
3532 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3533 }
3534 } else {
3535 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3536 inst->src[1]);
3537 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3538 inst->src[1]);
3539 }
3540
3541 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3542 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3543 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3544
3545 if (needs_mov || inst->conditional_mod) {
3546 set_condmod(inst->conditional_mod,
3547 ibld.MOV(orig_dst, low));
3548 }
3549 }
3550
3551 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3552 /* Should have been lowered to 8-wide. */
3553 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3554 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3555 inst->dst.type);
3556 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3557 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3558
3559 if (devinfo->gen >= 8) {
3560 /* Until Gen8, integer multiplies read 32-bits from one source,
3561 * and 16-bits from the other, and relying on the MACH instruction
3562 * to generate the high bits of the result.
3563 *
3564 * On Gen8, the multiply instruction does a full 32x32-bit
3565 * multiply, but in order to do a 64-bit multiply we can simulate
3566 * the previous behavior and then use a MACH instruction.
3567 *
3568 * FINISHME: Don't use source modifiers on src1.
3569 */
3570 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3571 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3572 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3573 mul->src[1].stride *= 2;
3574
3575 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3576 inst->group > 0) {
3577 /* Among other things the quarter control bits influence which
3578 * accumulator register is used by the hardware for instructions
3579 * that access the accumulator implicitly (e.g. MACH). A
3580 * second-half instruction would normally map to acc1, which
3581 * doesn't exist on Gen7 and up (the hardware does emulate it for
3582 * floating-point instructions *only* by taking advantage of the
3583 * extra precision of acc0 not normally used for floating point
3584 * arithmetic).
3585 *
3586 * HSW and up are careful enough not to try to access an
3587 * accumulator register that doesn't exist, but on earlier Gen7
3588 * hardware we need to make sure that the quarter control bits are
3589 * zero to avoid non-deterministic behaviour and emit an extra MOV
3590 * to get the result masked correctly according to the current
3591 * channel enables.
3592 */
3593 mach->group = 0;
3594 mach->force_writemask_all = true;
3595 mach->dst = ibld.vgrf(inst->dst.type);
3596 ibld.MOV(inst->dst, mach->dst);
3597 }
3598 } else {
3599 continue;
3600 }
3601
3602 inst->remove(block);
3603 progress = true;
3604 }
3605
3606 if (progress)
3607 invalidate_live_intervals();
3608
3609 return progress;
3610 }
3611
3612 bool
3613 fs_visitor::lower_minmax()
3614 {
3615 assert(devinfo->gen < 6);
3616
3617 bool progress = false;
3618
3619 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3620 const fs_builder ibld(this, block, inst);
3621
3622 if (inst->opcode == BRW_OPCODE_SEL &&
3623 inst->predicate == BRW_PREDICATE_NONE) {
3624 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3625 * the original SEL.L/GE instruction
3626 */
3627 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3628 inst->conditional_mod);
3629 inst->predicate = BRW_PREDICATE_NORMAL;
3630 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3631
3632 progress = true;
3633 }
3634 }
3635
3636 if (progress)
3637 invalidate_live_intervals();
3638
3639 return progress;
3640 }
3641
3642 static void
3643 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3644 fs_reg *dst, fs_reg color, unsigned components)
3645 {
3646 if (key->clamp_fragment_color) {
3647 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3648 assert(color.type == BRW_REGISTER_TYPE_F);
3649
3650 for (unsigned i = 0; i < components; i++)
3651 set_saturate(true,
3652 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3653
3654 color = tmp;
3655 }
3656
3657 for (unsigned i = 0; i < components; i++)
3658 dst[i] = offset(color, bld, i);
3659 }
3660
3661 static void
3662 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3663 const struct brw_wm_prog_data *prog_data,
3664 const brw_wm_prog_key *key,
3665 const fs_visitor::thread_payload &payload)
3666 {
3667 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3668 const gen_device_info *devinfo = bld.shader->devinfo;
3669 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3670 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3671 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3672 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3673 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3674 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3675 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3676 const unsigned components =
3677 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3678
3679 /* We can potentially have a message length of up to 15, so we have to set
3680 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3681 */
3682 fs_reg sources[15];
3683 int header_size = 2, payload_header_size;
3684 unsigned length = 0;
3685
3686 /* From the Sandy Bridge PRM, volume 4, page 198:
3687 *
3688 * "Dispatched Pixel Enables. One bit per pixel indicating
3689 * which pixels were originally enabled when the thread was
3690 * dispatched. This field is only required for the end-of-
3691 * thread message and on all dual-source messages."
3692 */
3693 if (devinfo->gen >= 6 &&
3694 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3695 color1.file == BAD_FILE &&
3696 key->nr_color_regions == 1) {
3697 header_size = 0;
3698 }
3699
3700 if (header_size != 0) {
3701 assert(header_size == 2);
3702 /* Allocate 2 registers for a header */
3703 length += 2;
3704 }
3705
3706 if (payload.aa_dest_stencil_reg) {
3707 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3708 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3709 .MOV(sources[length],
3710 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3711 length++;
3712 }
3713
3714 if (sample_mask.file != BAD_FILE) {
3715 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3716 BRW_REGISTER_TYPE_UD);
3717
3718 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3719 * relevant. Since it's unsigned single words one vgrf is always
3720 * 16-wide, but only the lower or higher 8 channels will be used by the
3721 * hardware when doing a SIMD8 write depending on whether we have
3722 * selected the subspans for the first or second half respectively.
3723 */
3724 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3725 sample_mask.type = BRW_REGISTER_TYPE_UW;
3726 sample_mask.stride *= 2;
3727
3728 bld.exec_all().annotate("FB write oMask")
3729 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3730 inst->group),
3731 sample_mask);
3732 length++;
3733 }
3734
3735 payload_header_size = length;
3736
3737 if (src0_alpha.file != BAD_FILE) {
3738 /* FIXME: This is being passed at the wrong location in the payload and
3739 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3740 * It's supposed to be immediately before oMask but there seems to be no
3741 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3742 * requires header sources to form a contiguous segment at the beginning
3743 * of the message and src0_alpha has per-channel semantics.
3744 */
3745 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3746 length++;
3747 } else if (key->replicate_alpha && inst->target != 0) {
3748 /* Handle the case when fragment shader doesn't write to draw buffer
3749 * zero. No need to call setup_color_payload() for src0_alpha because
3750 * alpha value will be undefined.
3751 */
3752 length++;
3753 }
3754
3755 setup_color_payload(bld, key, &sources[length], color0, components);
3756 length += 4;
3757
3758 if (color1.file != BAD_FILE) {
3759 setup_color_payload(bld, key, &sources[length], color1, components);
3760 length += 4;
3761 }
3762
3763 if (src_depth.file != BAD_FILE) {
3764 sources[length] = src_depth;
3765 length++;
3766 }
3767
3768 if (dst_depth.file != BAD_FILE) {
3769 sources[length] = dst_depth;
3770 length++;
3771 }
3772
3773 if (src_stencil.file != BAD_FILE) {
3774 assert(devinfo->gen >= 9);
3775 assert(bld.dispatch_width() != 16);
3776
3777 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3778 * available on gen9+. As such it's impossible to have both enabled at the
3779 * same time and therefore length cannot overrun the array.
3780 */
3781 assert(length < 15);
3782
3783 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3784 bld.exec_all().annotate("FB write OS")
3785 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3786 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3787 length++;
3788 }
3789
3790 fs_inst *load;
3791 if (devinfo->gen >= 7) {
3792 /* Send from the GRF */
3793 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3794 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3795 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3796 load->dst = payload;
3797
3798 inst->src[0] = payload;
3799 inst->resize_sources(1);
3800 } else {
3801 /* Send from the MRF */
3802 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3803 sources, length, payload_header_size);
3804
3805 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3806 * will do this for us if we just give it a COMPR4 destination.
3807 */
3808 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3809 load->dst.nr |= BRW_MRF_COMPR4;
3810
3811 inst->resize_sources(0);
3812 inst->base_mrf = 1;
3813 }
3814
3815 inst->opcode = FS_OPCODE_FB_WRITE;
3816 inst->mlen = regs_written(load);
3817 inst->header_size = header_size;
3818 }
3819
3820 static void
3821 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3822 {
3823 const fs_builder &ubld = bld.exec_all();
3824 const unsigned length = 2;
3825 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3826
3827 ubld.group(16, 0)
3828 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3829
3830 inst->resize_sources(1);
3831 inst->src[0] = header;
3832 inst->opcode = FS_OPCODE_FB_READ;
3833 inst->mlen = length;
3834 inst->header_size = length;
3835 }
3836
3837 static void
3838 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3839 const fs_reg &coordinate,
3840 const fs_reg &shadow_c,
3841 const fs_reg &lod, const fs_reg &lod2,
3842 const fs_reg &surface,
3843 const fs_reg &sampler,
3844 unsigned coord_components,
3845 unsigned grad_components)
3846 {
3847 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3848 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3849 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3850 fs_reg msg_end = msg_begin;
3851
3852 /* g0 header. */
3853 msg_end = offset(msg_end, bld.group(8, 0), 1);
3854
3855 for (unsigned i = 0; i < coord_components; i++)
3856 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3857 offset(coordinate, bld, i));
3858
3859 msg_end = offset(msg_end, bld, coord_components);
3860
3861 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3862 * require all three components to be present and zero if they are unused.
3863 */
3864 if (coord_components > 0 &&
3865 (has_lod || shadow_c.file != BAD_FILE ||
3866 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3867 for (unsigned i = coord_components; i < 3; i++)
3868 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3869
3870 msg_end = offset(msg_end, bld, 3 - coord_components);
3871 }
3872
3873 if (op == SHADER_OPCODE_TXD) {
3874 /* TXD unsupported in SIMD16 mode. */
3875 assert(bld.dispatch_width() == 8);
3876
3877 /* the slots for u and v are always present, but r is optional */
3878 if (coord_components < 2)
3879 msg_end = offset(msg_end, bld, 2 - coord_components);
3880
3881 /* P = u, v, r
3882 * dPdx = dudx, dvdx, drdx
3883 * dPdy = dudy, dvdy, drdy
3884 *
3885 * 1-arg: Does not exist.
3886 *
3887 * 2-arg: dudx dvdx dudy dvdy
3888 * dPdx.x dPdx.y dPdy.x dPdy.y
3889 * m4 m5 m6 m7
3890 *
3891 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3892 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3893 * m5 m6 m7 m8 m9 m10
3894 */
3895 for (unsigned i = 0; i < grad_components; i++)
3896 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3897
3898 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3899
3900 for (unsigned i = 0; i < grad_components; i++)
3901 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3902
3903 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3904 }
3905
3906 if (has_lod) {
3907 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3908 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3909 */
3910 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3911 bld.dispatch_width() == 16);
3912
3913 const brw_reg_type type =
3914 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3915 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3916 bld.MOV(retype(msg_end, type), lod);
3917 msg_end = offset(msg_end, bld, 1);
3918 }
3919
3920 if (shadow_c.file != BAD_FILE) {
3921 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3922 /* There's no plain shadow compare message, so we use shadow
3923 * compare with a bias of 0.0.
3924 */
3925 bld.MOV(msg_end, brw_imm_f(0.0f));
3926 msg_end = offset(msg_end, bld, 1);
3927 }
3928
3929 bld.MOV(msg_end, shadow_c);
3930 msg_end = offset(msg_end, bld, 1);
3931 }
3932
3933 inst->opcode = op;
3934 inst->src[0] = reg_undef;
3935 inst->src[1] = surface;
3936 inst->src[2] = sampler;
3937 inst->resize_sources(3);
3938 inst->base_mrf = msg_begin.nr;
3939 inst->mlen = msg_end.nr - msg_begin.nr;
3940 inst->header_size = 1;
3941 }
3942
3943 static void
3944 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3945 const fs_reg &coordinate,
3946 const fs_reg &shadow_c,
3947 const fs_reg &lod, const fs_reg &lod2,
3948 const fs_reg &sample_index,
3949 const fs_reg &surface,
3950 const fs_reg &sampler,
3951 unsigned coord_components,
3952 unsigned grad_components)
3953 {
3954 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3955 fs_reg msg_coords = message;
3956 unsigned header_size = 0;
3957
3958 if (inst->offset != 0) {
3959 /* The offsets set up by the visitor are in the m1 header, so we can't
3960 * go headerless.
3961 */
3962 header_size = 1;
3963 message.nr--;
3964 }
3965
3966 for (unsigned i = 0; i < coord_components; i++)
3967 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3968 offset(coordinate, bld, i));
3969
3970 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3971 fs_reg msg_lod = offset(msg_coords, bld, 4);
3972
3973 if (shadow_c.file != BAD_FILE) {
3974 fs_reg msg_shadow = msg_lod;
3975 bld.MOV(msg_shadow, shadow_c);
3976 msg_lod = offset(msg_shadow, bld, 1);
3977 msg_end = msg_lod;
3978 }
3979
3980 switch (op) {
3981 case SHADER_OPCODE_TXL:
3982 case FS_OPCODE_TXB:
3983 bld.MOV(msg_lod, lod);
3984 msg_end = offset(msg_lod, bld, 1);
3985 break;
3986 case SHADER_OPCODE_TXD:
3987 /**
3988 * P = u, v, r
3989 * dPdx = dudx, dvdx, drdx
3990 * dPdy = dudy, dvdy, drdy
3991 *
3992 * Load up these values:
3993 * - dudx dudy dvdx dvdy drdx drdy
3994 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3995 */
3996 msg_end = msg_lod;
3997 for (unsigned i = 0; i < grad_components; i++) {
3998 bld.MOV(msg_end, offset(lod, bld, i));
3999 msg_end = offset(msg_end, bld, 1);
4000
4001 bld.MOV(msg_end, offset(lod2, bld, i));
4002 msg_end = offset(msg_end, bld, 1);
4003 }
4004 break;
4005 case SHADER_OPCODE_TXS:
4006 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4007 bld.MOV(msg_lod, lod);
4008 msg_end = offset(msg_lod, bld, 1);
4009 break;
4010 case SHADER_OPCODE_TXF:
4011 msg_lod = offset(msg_coords, bld, 3);
4012 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4013 msg_end = offset(msg_lod, bld, 1);
4014 break;
4015 case SHADER_OPCODE_TXF_CMS:
4016 msg_lod = offset(msg_coords, bld, 3);
4017 /* lod */
4018 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4019 /* sample index */
4020 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4021 msg_end = offset(msg_lod, bld, 2);
4022 break;
4023 default:
4024 break;
4025 }
4026
4027 inst->opcode = op;
4028 inst->src[0] = reg_undef;
4029 inst->src[1] = surface;
4030 inst->src[2] = sampler;
4031 inst->resize_sources(3);
4032 inst->base_mrf = message.nr;
4033 inst->mlen = msg_end.nr - message.nr;
4034 inst->header_size = header_size;
4035
4036 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4037 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4038 }
4039
4040 static bool
4041 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4042 {
4043 if (devinfo->gen < 8 && !devinfo->is_haswell)
4044 return false;
4045
4046 return sampler.file != IMM || sampler.ud >= 16;
4047 }
4048
4049 static void
4050 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4051 const fs_reg &coordinate,
4052 const fs_reg &shadow_c,
4053 fs_reg lod, const fs_reg &lod2,
4054 const fs_reg &sample_index,
4055 const fs_reg &mcs,
4056 const fs_reg &surface,
4057 const fs_reg &sampler,
4058 const fs_reg &tg4_offset,
4059 unsigned coord_components,
4060 unsigned grad_components)
4061 {
4062 const gen_device_info *devinfo = bld.shader->devinfo;
4063 unsigned reg_width = bld.dispatch_width() / 8;
4064 unsigned header_size = 0, length = 0;
4065 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4066 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4067 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4068
4069 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4070 inst->offset != 0 || inst->eot ||
4071 op == SHADER_OPCODE_SAMPLEINFO ||
4072 is_high_sampler(devinfo, sampler)) {
4073 /* For general texture offsets (no txf workaround), we need a header to
4074 * put them in. Note that we're only reserving space for it in the
4075 * message payload as it will be initialized implicitly by the
4076 * generator.
4077 *
4078 * TG4 needs to place its channel select in the header, for interaction
4079 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4080 * larger sampler numbers we need to offset the Sampler State Pointer in
4081 * the header.
4082 */
4083 header_size = 1;
4084 sources[0] = fs_reg();
4085 length++;
4086
4087 /* If we're requesting fewer than four channels worth of response,
4088 * and we have an explicit header, we need to set up the sampler
4089 * writemask. It's reversed from normal: 1 means "don't write".
4090 */
4091 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4092 assert(regs_written(inst) % reg_width == 0);
4093 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4094 inst->offset |= mask << 12;
4095 }
4096 }
4097
4098 if (shadow_c.file != BAD_FILE) {
4099 bld.MOV(sources[length], shadow_c);
4100 length++;
4101 }
4102
4103 bool coordinate_done = false;
4104
4105 /* Set up the LOD info */
4106 switch (op) {
4107 case FS_OPCODE_TXB:
4108 case SHADER_OPCODE_TXL:
4109 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4110 op = SHADER_OPCODE_TXL_LZ;
4111 break;
4112 }
4113 bld.MOV(sources[length], lod);
4114 length++;
4115 break;
4116 case SHADER_OPCODE_TXD:
4117 /* TXD should have been lowered in SIMD16 mode. */
4118 assert(bld.dispatch_width() == 8);
4119
4120 /* Load dPdx and the coordinate together:
4121 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4122 */
4123 for (unsigned i = 0; i < coord_components; i++) {
4124 bld.MOV(sources[length++], offset(coordinate, bld, i));
4125
4126 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4127 * only derivatives for (u, v, r).
4128 */
4129 if (i < grad_components) {
4130 bld.MOV(sources[length++], offset(lod, bld, i));
4131 bld.MOV(sources[length++], offset(lod2, bld, i));
4132 }
4133 }
4134
4135 coordinate_done = true;
4136 break;
4137 case SHADER_OPCODE_TXS:
4138 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4139 length++;
4140 break;
4141 case SHADER_OPCODE_TXF:
4142 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4143 * On Gen9 they are u, v, lod, r
4144 */
4145 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4146
4147 if (devinfo->gen >= 9) {
4148 if (coord_components >= 2) {
4149 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4150 offset(coordinate, bld, 1));
4151 } else {
4152 sources[length] = brw_imm_d(0);
4153 }
4154 length++;
4155 }
4156
4157 if (devinfo->gen >= 9 && lod.is_zero()) {
4158 op = SHADER_OPCODE_TXF_LZ;
4159 } else {
4160 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4161 length++;
4162 }
4163
4164 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4165 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4166 offset(coordinate, bld, i));
4167
4168 coordinate_done = true;
4169 break;
4170
4171 case SHADER_OPCODE_TXF_CMS:
4172 case SHADER_OPCODE_TXF_CMS_W:
4173 case SHADER_OPCODE_TXF_UMS:
4174 case SHADER_OPCODE_TXF_MCS:
4175 if (op == SHADER_OPCODE_TXF_UMS ||
4176 op == SHADER_OPCODE_TXF_CMS ||
4177 op == SHADER_OPCODE_TXF_CMS_W) {
4178 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4179 length++;
4180 }
4181
4182 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4183 /* Data from the multisample control surface. */
4184 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4185 length++;
4186
4187 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4188 * the MCS data.
4189 */
4190 if (op == SHADER_OPCODE_TXF_CMS_W) {
4191 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4192 mcs.file == IMM ?
4193 mcs :
4194 offset(mcs, bld, 1));
4195 length++;
4196 }
4197 }
4198
4199 /* There is no offsetting for this message; just copy in the integer
4200 * texture coordinates.
4201 */
4202 for (unsigned i = 0; i < coord_components; i++)
4203 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4204 offset(coordinate, bld, i));
4205
4206 coordinate_done = true;
4207 break;
4208 case SHADER_OPCODE_TG4_OFFSET:
4209 /* More crazy intermixing */
4210 for (unsigned i = 0; i < 2; i++) /* u, v */
4211 bld.MOV(sources[length++], offset(coordinate, bld, i));
4212
4213 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4214 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4215 offset(tg4_offset, bld, i));
4216
4217 if (coord_components == 3) /* r if present */
4218 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4219
4220 coordinate_done = true;
4221 break;
4222 default:
4223 break;
4224 }
4225
4226 /* Set up the coordinate (except for cases where it was done above) */
4227 if (!coordinate_done) {
4228 for (unsigned i = 0; i < coord_components; i++)
4229 bld.MOV(sources[length++], offset(coordinate, bld, i));
4230 }
4231
4232 int mlen;
4233 if (reg_width == 2)
4234 mlen = length * reg_width - header_size;
4235 else
4236 mlen = length * reg_width;
4237
4238 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4239 BRW_REGISTER_TYPE_F);
4240 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4241
4242 /* Generate the SEND. */
4243 inst->opcode = op;
4244 inst->src[0] = src_payload;
4245 inst->src[1] = surface;
4246 inst->src[2] = sampler;
4247 inst->resize_sources(3);
4248 inst->mlen = mlen;
4249 inst->header_size = header_size;
4250
4251 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4252 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4253 }
4254
4255 static void
4256 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4257 {
4258 const gen_device_info *devinfo = bld.shader->devinfo;
4259 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4260 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4261 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4262 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4263 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4264 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4265 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4266 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4267 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4268 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4269 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4270 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4271 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4272
4273 if (devinfo->gen >= 7) {
4274 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4275 shadow_c, lod, lod2, sample_index,
4276 mcs, surface, sampler, tg4_offset,
4277 coord_components, grad_components);
4278 } else if (devinfo->gen >= 5) {
4279 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4280 shadow_c, lod, lod2, sample_index,
4281 surface, sampler,
4282 coord_components, grad_components);
4283 } else {
4284 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4285 shadow_c, lod, lod2,
4286 surface, sampler,
4287 coord_components, grad_components);
4288 }
4289 }
4290
4291 /**
4292 * Initialize the header present in some typed and untyped surface
4293 * messages.
4294 */
4295 static fs_reg
4296 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4297 {
4298 fs_builder ubld = bld.exec_all().group(8, 0);
4299 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4300 ubld.MOV(dst, brw_imm_d(0));
4301 ubld.MOV(component(dst, 7), sample_mask);
4302 return dst;
4303 }
4304
4305 static void
4306 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4307 const fs_reg &sample_mask)
4308 {
4309 /* Get the logical send arguments. */
4310 const fs_reg &addr = inst->src[0];
4311 const fs_reg &src = inst->src[1];
4312 const fs_reg &surface = inst->src[2];
4313 const UNUSED fs_reg &dims = inst->src[3];
4314 const fs_reg &arg = inst->src[4];
4315
4316 /* Calculate the total number of components of the payload. */
4317 const unsigned addr_sz = inst->components_read(0);
4318 const unsigned src_sz = inst->components_read(1);
4319 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4320 const unsigned sz = header_sz + addr_sz + src_sz;
4321
4322 /* Allocate space for the payload. */
4323 fs_reg *const components = new fs_reg[sz];
4324 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4325 unsigned n = 0;
4326
4327 /* Construct the payload. */
4328 if (header_sz)
4329 components[n++] = emit_surface_header(bld, sample_mask);
4330
4331 for (unsigned i = 0; i < addr_sz; i++)
4332 components[n++] = offset(addr, bld, i);
4333
4334 for (unsigned i = 0; i < src_sz; i++)
4335 components[n++] = offset(src, bld, i);
4336
4337 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4338
4339 /* Update the original instruction. */
4340 inst->opcode = op;
4341 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4342 inst->header_size = header_sz;
4343
4344 inst->src[0] = payload;
4345 inst->src[1] = surface;
4346 inst->src[2] = arg;
4347 inst->resize_sources(3);
4348
4349 delete[] components;
4350 }
4351
4352 static void
4353 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4354 {
4355 const gen_device_info *devinfo = bld.shader->devinfo;
4356
4357 if (devinfo->gen >= 7) {
4358 /* We are switching the instruction from an ALU-like instruction to a
4359 * send-from-grf instruction. Since sends can't handle strides or
4360 * source modifiers, we have to make a copy of the offset source.
4361 */
4362 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4363 bld.MOV(tmp, inst->src[1]);
4364 inst->src[1] = tmp;
4365
4366 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4367
4368 } else {
4369 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4370 BRW_REGISTER_TYPE_UD);
4371
4372 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4373
4374 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4375 inst->resize_sources(1);
4376 inst->base_mrf = payload.nr;
4377 inst->header_size = 1;
4378 inst->mlen = 1 + inst->exec_size / 8;
4379 }
4380 }
4381
4382 static void
4383 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4384 {
4385 assert(bld.shader->devinfo->gen < 6);
4386
4387 inst->base_mrf = 2;
4388 inst->mlen = inst->sources * inst->exec_size / 8;
4389
4390 if (inst->sources > 1) {
4391 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4392 * "Message Payload":
4393 *
4394 * "Operand0[7]. For the INT DIV functions, this operand is the
4395 * denominator."
4396 * ...
4397 * "Operand1[7]. For the INT DIV functions, this operand is the
4398 * numerator."
4399 */
4400 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4401 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4402 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4403
4404 inst->resize_sources(1);
4405 inst->src[0] = src0;
4406
4407 assert(inst->exec_size == 8);
4408 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4409 }
4410 }
4411
4412 bool
4413 fs_visitor::lower_logical_sends()
4414 {
4415 bool progress = false;
4416
4417 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4418 const fs_builder ibld(this, block, inst);
4419
4420 switch (inst->opcode) {
4421 case FS_OPCODE_FB_WRITE_LOGICAL:
4422 assert(stage == MESA_SHADER_FRAGMENT);
4423 lower_fb_write_logical_send(ibld, inst,
4424 brw_wm_prog_data(prog_data),
4425 (const brw_wm_prog_key *)key,
4426 payload);
4427 break;
4428
4429 case FS_OPCODE_FB_READ_LOGICAL:
4430 lower_fb_read_logical_send(ibld, inst);
4431 break;
4432
4433 case SHADER_OPCODE_TEX_LOGICAL:
4434 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4435 break;
4436
4437 case SHADER_OPCODE_TXD_LOGICAL:
4438 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4439 break;
4440
4441 case SHADER_OPCODE_TXF_LOGICAL:
4442 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4443 break;
4444
4445 case SHADER_OPCODE_TXL_LOGICAL:
4446 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4447 break;
4448
4449 case SHADER_OPCODE_TXS_LOGICAL:
4450 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4451 break;
4452
4453 case FS_OPCODE_TXB_LOGICAL:
4454 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4455 break;
4456
4457 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4458 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4459 break;
4460
4461 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4462 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4463 break;
4464
4465 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4466 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4467 break;
4468
4469 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4470 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4471 break;
4472
4473 case SHADER_OPCODE_LOD_LOGICAL:
4474 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4475 break;
4476
4477 case SHADER_OPCODE_TG4_LOGICAL:
4478 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4479 break;
4480
4481 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4482 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4483 break;
4484
4485 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4486 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4487 break;
4488
4489 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4490 lower_surface_logical_send(ibld, inst,
4491 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4492 fs_reg());
4493 break;
4494
4495 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4496 lower_surface_logical_send(ibld, inst,
4497 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4498 ibld.sample_mask_reg());
4499 break;
4500
4501 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4502 lower_surface_logical_send(ibld, inst,
4503 SHADER_OPCODE_UNTYPED_ATOMIC,
4504 ibld.sample_mask_reg());
4505 break;
4506
4507 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4508 lower_surface_logical_send(ibld, inst,
4509 SHADER_OPCODE_TYPED_SURFACE_READ,
4510 brw_imm_d(0xffff));
4511 break;
4512
4513 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4514 lower_surface_logical_send(ibld, inst,
4515 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4516 ibld.sample_mask_reg());
4517 break;
4518
4519 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4520 lower_surface_logical_send(ibld, inst,
4521 SHADER_OPCODE_TYPED_ATOMIC,
4522 ibld.sample_mask_reg());
4523 break;
4524
4525 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4526 lower_varying_pull_constant_logical_send(ibld, inst);
4527 break;
4528
4529 case SHADER_OPCODE_RCP:
4530 case SHADER_OPCODE_RSQ:
4531 case SHADER_OPCODE_SQRT:
4532 case SHADER_OPCODE_EXP2:
4533 case SHADER_OPCODE_LOG2:
4534 case SHADER_OPCODE_SIN:
4535 case SHADER_OPCODE_COS:
4536 case SHADER_OPCODE_POW:
4537 case SHADER_OPCODE_INT_QUOTIENT:
4538 case SHADER_OPCODE_INT_REMAINDER:
4539 /* The math opcodes are overloaded for the send-like and
4540 * expression-like instructions which seems kind of icky. Gen6+ has
4541 * a native (but rather quirky) MATH instruction so we don't need to
4542 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4543 * logical instructions (which we can easily recognize because they
4544 * have mlen = 0) into send-like virtual instructions.
4545 */
4546 if (devinfo->gen < 6 && inst->mlen == 0) {
4547 lower_math_logical_send(ibld, inst);
4548 break;
4549
4550 } else {
4551 continue;
4552 }
4553
4554 default:
4555 continue;
4556 }
4557
4558 progress = true;
4559 }
4560
4561 if (progress)
4562 invalidate_live_intervals();
4563
4564 return progress;
4565 }
4566
4567 /**
4568 * Get the closest allowed SIMD width for instruction \p inst accounting for
4569 * some common regioning and execution control restrictions that apply to FPU
4570 * instructions. These restrictions don't necessarily have any relevance to
4571 * instructions not executed by the FPU pipeline like extended math, control
4572 * flow or send message instructions.
4573 *
4574 * For virtual opcodes it's really up to the instruction -- In some cases
4575 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4576 * instructions) it may simplify virtual instruction lowering if we can
4577 * enforce FPU-like regioning restrictions already on the virtual instruction,
4578 * in other cases (e.g. virtual send-like instructions) this may be
4579 * excessively restrictive.
4580 */
4581 static unsigned
4582 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4583 const fs_inst *inst)
4584 {
4585 /* Maximum execution size representable in the instruction controls. */
4586 unsigned max_width = MIN2(32, inst->exec_size);
4587
4588 /* According to the PRMs:
4589 * "A. In Direct Addressing mode, a source cannot span more than 2
4590 * adjacent GRF registers.
4591 * B. A destination cannot span more than 2 adjacent GRF registers."
4592 *
4593 * Look for the source or destination with the largest register region
4594 * which is the one that is going to limit the overall execution size of
4595 * the instruction due to this rule.
4596 */
4597 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4598
4599 for (unsigned i = 0; i < inst->sources; i++)
4600 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4601
4602 /* Calculate the maximum execution size of the instruction based on the
4603 * factor by which it goes over the hardware limit of 2 GRFs.
4604 */
4605 if (reg_count > 2)
4606 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4607
4608 /* According to the IVB PRMs:
4609 * "When destination spans two registers, the source MUST span two
4610 * registers. The exception to the above rule:
4611 *
4612 * - When source is scalar, the source registers are not incremented.
4613 * - When source is packed integer Word and destination is packed
4614 * integer DWord, the source register is not incremented but the
4615 * source sub register is incremented."
4616 *
4617 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4618 * restrictions. The code below intentionally doesn't check whether the
4619 * destination type is integer because empirically the hardware doesn't
4620 * seem to care what the actual type is as long as it's dword-aligned.
4621 */
4622 if (devinfo->gen < 8) {
4623 for (unsigned i = 0; i < inst->sources; i++) {
4624 /* IVB implements DF scalars as <0;2,1> regions. */
4625 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4626 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4627 const bool is_packed_word_exception =
4628 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4629 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4630
4631 if (inst->size_written > REG_SIZE &&
4632 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4633 !is_scalar_exception && !is_packed_word_exception) {
4634 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4635 max_width = MIN2(max_width, inst->exec_size / reg_count);
4636 }
4637 }
4638 }
4639
4640 /* From the IVB PRMs:
4641 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4642 * are applied for both halves of the SIMD32 instruction. If different
4643 * execution mask channels are required, split the instruction into two
4644 * SIMD16 instructions."
4645 *
4646 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4647 * 32-wide control flow support in hardware and will behave similarly.
4648 */
4649 if (devinfo->gen < 8 && !inst->force_writemask_all)
4650 max_width = MIN2(max_width, 16);
4651
4652 /* From the IVB PRMs (applies to HSW too):
4653 * "Instructions with condition modifiers must not use SIMD32."
4654 *
4655 * From the BDW PRMs (applies to later hardware too):
4656 * "Ternary instruction with condition modifiers must not use SIMD32."
4657 */
4658 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4659 max_width = MIN2(max_width, 16);
4660
4661 /* From the IVB PRMs (applies to other devices that don't have the
4662 * gen_device_info::supports_simd16_3src flag set):
4663 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4664 * SIMD8 is not allowed for DF operations."
4665 */
4666 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4667 max_width = MIN2(max_width, inst->exec_size / reg_count);
4668
4669 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4670 * the 8-bit quarter of the execution mask signals specified in the
4671 * instruction control fields) for the second compressed half of any
4672 * single-precision instruction (for double-precision instructions
4673 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4674 * the EU will apply the wrong execution controls for the second
4675 * sequential GRF write if the number of channels per GRF is not exactly
4676 * eight in single-precision mode (or four in double-float mode).
4677 *
4678 * In this situation we calculate the maximum size of the split
4679 * instructions so they only ever write to a single register.
4680 */
4681 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4682 !inst->force_writemask_all) {
4683 const unsigned channels_per_grf = inst->exec_size /
4684 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4685 const unsigned exec_type_size = get_exec_type_size(inst);
4686 assert(exec_type_size);
4687
4688 /* The hardware shifts exactly 8 channels per compressed half of the
4689 * instruction in single-precision mode and exactly 4 in double-precision.
4690 */
4691 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4692 max_width = MIN2(max_width, channels_per_grf);
4693
4694 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4695 * because HW applies the same channel enable signals to both halves of
4696 * the compressed instruction which will be just wrong under
4697 * non-uniform control flow.
4698 */
4699 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4700 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4701 max_width = MIN2(max_width, 4);
4702 }
4703
4704 /* Only power-of-two execution sizes are representable in the instruction
4705 * control fields.
4706 */
4707 return 1 << _mesa_logbase2(max_width);
4708 }
4709
4710 /**
4711 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4712 * various payload size restrictions that apply to sampler message
4713 * instructions.
4714 *
4715 * This is only intended to provide a maximum theoretical bound for the
4716 * execution size of the message based on the number of argument components
4717 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4718 * variant of the message can be used, though some messages may have
4719 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4720 * the message length to determine the exact SIMD width and argument count,
4721 * which makes a number of sampler message combinations impossible to
4722 * represent).
4723 */
4724 static unsigned
4725 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4726 const fs_inst *inst)
4727 {
4728 /* Calculate the number of coordinate components that have to be present
4729 * assuming that additional arguments follow the texel coordinates in the
4730 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4731 * need to pad to four or three components depending on the message,
4732 * pre-ILK we need to pad to at most three components.
4733 */
4734 const unsigned req_coord_components =
4735 (devinfo->gen >= 7 ||
4736 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4737 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4738 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4739 3;
4740
4741 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4742 * variant of the TXL or TXF message.
4743 */
4744 const bool implicit_lod = devinfo->gen >= 9 &&
4745 (inst->opcode == SHADER_OPCODE_TXL ||
4746 inst->opcode == SHADER_OPCODE_TXF) &&
4747 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4748
4749 /* Calculate the total number of argument components that need to be passed
4750 * to the sampler unit.
4751 */
4752 const unsigned num_payload_components =
4753 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4754 req_coord_components) +
4755 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4756 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4757 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4758 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4759 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4760 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4761 inst->components_read(TEX_LOGICAL_SRC_MCS);
4762
4763 /* SIMD16 messages with more than five arguments exceed the maximum message
4764 * size supported by the sampler, regardless of whether a header is
4765 * provided or not.
4766 */
4767 return MIN2(inst->exec_size,
4768 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4769 }
4770
4771 /**
4772 * Get the closest native SIMD width supported by the hardware for instruction
4773 * \p inst. The instruction will be left untouched by
4774 * fs_visitor::lower_simd_width() if the returned value is equal to the
4775 * original execution size.
4776 */
4777 static unsigned
4778 get_lowered_simd_width(const struct gen_device_info *devinfo,
4779 const fs_inst *inst)
4780 {
4781 switch (inst->opcode) {
4782 case BRW_OPCODE_MOV:
4783 case BRW_OPCODE_SEL:
4784 case BRW_OPCODE_NOT:
4785 case BRW_OPCODE_AND:
4786 case BRW_OPCODE_OR:
4787 case BRW_OPCODE_XOR:
4788 case BRW_OPCODE_SHR:
4789 case BRW_OPCODE_SHL:
4790 case BRW_OPCODE_ASR:
4791 case BRW_OPCODE_CMPN:
4792 case BRW_OPCODE_CSEL:
4793 case BRW_OPCODE_F32TO16:
4794 case BRW_OPCODE_F16TO32:
4795 case BRW_OPCODE_BFREV:
4796 case BRW_OPCODE_BFE:
4797 case BRW_OPCODE_ADD:
4798 case BRW_OPCODE_MUL:
4799 case BRW_OPCODE_AVG:
4800 case BRW_OPCODE_FRC:
4801 case BRW_OPCODE_RNDU:
4802 case BRW_OPCODE_RNDD:
4803 case BRW_OPCODE_RNDE:
4804 case BRW_OPCODE_RNDZ:
4805 case BRW_OPCODE_LZD:
4806 case BRW_OPCODE_FBH:
4807 case BRW_OPCODE_FBL:
4808 case BRW_OPCODE_CBIT:
4809 case BRW_OPCODE_SAD2:
4810 case BRW_OPCODE_MAD:
4811 case BRW_OPCODE_LRP:
4812 case FS_OPCODE_PACK:
4813 return get_fpu_lowered_simd_width(devinfo, inst);
4814
4815 case BRW_OPCODE_CMP: {
4816 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4817 * when the destination is a GRF the dependency-clear bit on the flag
4818 * register is cleared early.
4819 *
4820 * Suggested workarounds are to disable coissuing CMP instructions
4821 * or to split CMP(16) instructions into two CMP(8) instructions.
4822 *
4823 * We choose to split into CMP(8) instructions since disabling
4824 * coissuing would affect CMP instructions not otherwise affected by
4825 * the errata.
4826 */
4827 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4828 !inst->dst.is_null() ? 8 : ~0);
4829 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4830 }
4831 case BRW_OPCODE_BFI1:
4832 case BRW_OPCODE_BFI2:
4833 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4834 * should
4835 * "Force BFI instructions to be executed always in SIMD8."
4836 */
4837 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4838 get_fpu_lowered_simd_width(devinfo, inst));
4839
4840 case BRW_OPCODE_IF:
4841 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4842 return inst->exec_size;
4843
4844 case SHADER_OPCODE_RCP:
4845 case SHADER_OPCODE_RSQ:
4846 case SHADER_OPCODE_SQRT:
4847 case SHADER_OPCODE_EXP2:
4848 case SHADER_OPCODE_LOG2:
4849 case SHADER_OPCODE_SIN:
4850 case SHADER_OPCODE_COS:
4851 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4852 * Gen6.
4853 */
4854 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4855 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4856 MIN2(8, inst->exec_size));
4857
4858 case SHADER_OPCODE_POW:
4859 /* SIMD16 is only allowed on Gen7+. */
4860 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4861 MIN2(8, inst->exec_size));
4862
4863 case SHADER_OPCODE_INT_QUOTIENT:
4864 case SHADER_OPCODE_INT_REMAINDER:
4865 /* Integer division is limited to SIMD8 on all generations. */
4866 return MIN2(8, inst->exec_size);
4867
4868 case FS_OPCODE_LINTERP:
4869 case FS_OPCODE_GET_BUFFER_SIZE:
4870 case FS_OPCODE_DDX_COARSE:
4871 case FS_OPCODE_DDX_FINE:
4872 case FS_OPCODE_DDY_COARSE:
4873 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4874 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4875 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4876 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4877 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4878 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4879 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4880 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4881 return MIN2(16, inst->exec_size);
4882
4883 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4884 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4885 * message used to implement varying pull constant loads, so expand it
4886 * to SIMD16. An alternative with longer message payload length but
4887 * shorter return payload would be to use the SIMD8 sampler message that
4888 * takes (header, u, v, r) as parameters instead of (header, u).
4889 */
4890 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4891
4892 case FS_OPCODE_DDY_FINE:
4893 /* The implementation of this virtual opcode may require emitting
4894 * compressed Align16 instructions, which are severely limited on some
4895 * generations.
4896 *
4897 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4898 * Region Restrictions):
4899 *
4900 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4901 * and SIMD8 is not allowed for DF operations."
4902 *
4903 * In this context, "DW operations" means "operations acting on 32-bit
4904 * values", so it includes operations on floats.
4905 *
4906 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4907 * (Instruction Compression -> Rules and Restrictions):
4908 *
4909 * "A compressed instruction must be in Align1 access mode. Align16
4910 * mode instructions cannot be compressed."
4911 *
4912 * Similar text exists in the g45 PRM.
4913 *
4914 * Empirically, compressed align16 instructions using odd register
4915 * numbers don't appear to work on Sandybridge either.
4916 */
4917 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4918 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4919 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4920
4921 case SHADER_OPCODE_MULH:
4922 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4923 * is 8-wide on Gen7+.
4924 */
4925 return (devinfo->gen >= 7 ? 8 :
4926 get_fpu_lowered_simd_width(devinfo, inst));
4927
4928 case FS_OPCODE_FB_WRITE_LOGICAL:
4929 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4930 * here.
4931 */
4932 assert(devinfo->gen != 6 ||
4933 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4934 inst->exec_size == 8);
4935 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4936 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4937 8 : MIN2(16, inst->exec_size));
4938
4939 case FS_OPCODE_FB_READ_LOGICAL:
4940 return MIN2(16, inst->exec_size);
4941
4942 case SHADER_OPCODE_TEX_LOGICAL:
4943 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4944 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4945 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4946 case SHADER_OPCODE_LOD_LOGICAL:
4947 case SHADER_OPCODE_TG4_LOGICAL:
4948 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4949 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4950 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4951 return get_sampler_lowered_simd_width(devinfo, inst);
4952
4953 case SHADER_OPCODE_TXD_LOGICAL:
4954 /* TXD is unsupported in SIMD16 mode. */
4955 return 8;
4956
4957 case SHADER_OPCODE_TXL_LOGICAL:
4958 case FS_OPCODE_TXB_LOGICAL:
4959 /* Only one execution size is representable pre-ILK depending on whether
4960 * the shadow reference argument is present.
4961 */
4962 if (devinfo->gen == 4)
4963 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4964 else
4965 return get_sampler_lowered_simd_width(devinfo, inst);
4966
4967 case SHADER_OPCODE_TXF_LOGICAL:
4968 case SHADER_OPCODE_TXS_LOGICAL:
4969 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4970 * messages. Use SIMD16 instead.
4971 */
4972 if (devinfo->gen == 4)
4973 return 16;
4974 else
4975 return get_sampler_lowered_simd_width(devinfo, inst);
4976
4977 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4978 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4979 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4980 return 8;
4981
4982 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4983 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4984 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4985 return MIN2(16, inst->exec_size);
4986
4987 case SHADER_OPCODE_URB_READ_SIMD8:
4988 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4989 case SHADER_OPCODE_URB_WRITE_SIMD8:
4990 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4991 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4992 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4993 return MIN2(8, inst->exec_size);
4994
4995 case SHADER_OPCODE_MOV_INDIRECT: {
4996 /* From IVB and HSW PRMs:
4997 *
4998 * "2.When the destination requires two registers and the sources are
4999 * indirect, the sources must use 1x1 regioning mode.
5000 *
5001 * In case of DF instructions in HSW/IVB, the exec_size is limited by
5002 * the EU decompression logic not handling VxH indirect addressing
5003 * correctly.
5004 */
5005 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
5006 /* Prior to Broadwell, we only have 8 address subregisters. */
5007 return MIN3(devinfo->gen >= 8 ? 16 : 8,
5008 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
5009 inst->exec_size);
5010 }
5011
5012 case SHADER_OPCODE_LOAD_PAYLOAD: {
5013 const unsigned reg_count =
5014 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
5015
5016 if (reg_count > 2) {
5017 /* Only LOAD_PAYLOAD instructions with per-channel destination region
5018 * can be easily lowered (which excludes headers and heterogeneous
5019 * types).
5020 */
5021 assert(!inst->header_size);
5022 for (unsigned i = 0; i < inst->sources; i++)
5023 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
5024 inst->src[i].file == BAD_FILE);
5025
5026 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
5027 } else {
5028 return inst->exec_size;
5029 }
5030 }
5031 default:
5032 return inst->exec_size;
5033 }
5034 }
5035
5036 /**
5037 * Return true if splitting out the group of channels of instruction \p inst
5038 * given by lbld.group() requires allocating a temporary for the i-th source
5039 * of the lowered instruction.
5040 */
5041 static inline bool
5042 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5043 {
5044 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5045 (inst->components_read(i) == 1 &&
5046 lbld.dispatch_width() <= inst->exec_size)) ||
5047 (inst->flags_written() &
5048 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
5049 }
5050
5051 /**
5052 * Extract the data that would be consumed by the channel group given by
5053 * lbld.group() from the i-th source region of instruction \p inst and return
5054 * it as result in packed form.
5055 */
5056 static fs_reg
5057 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
5058 {
5059 /* Specified channel group from the source region. */
5060 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5061
5062 if (needs_src_copy(lbld, inst, i)) {
5063 /* Builder of the right width to perform the copy avoiding uninitialized
5064 * data if the lowered execution size is greater than the original
5065 * execution size of the instruction.
5066 */
5067 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5068 inst->exec_size), 0);
5069 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5070
5071 for (unsigned k = 0; k < inst->components_read(i); ++k)
5072 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5073
5074 return tmp;
5075
5076 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5077 /* The source is invariant for all dispatch_width-wide groups of the
5078 * original region.
5079 */
5080 return inst->src[i];
5081
5082 } else {
5083 /* We can just point the lowered instruction at the right channel group
5084 * from the original region.
5085 */
5086 return src;
5087 }
5088 }
5089
5090 /**
5091 * Return true if splitting out the group of channels of instruction \p inst
5092 * given by lbld.group() requires allocating a temporary for the destination
5093 * of the lowered instruction and copying the data back to the original
5094 * destination region.
5095 */
5096 static inline bool
5097 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5098 {
5099 /* If the instruction writes more than one component we'll have to shuffle
5100 * the results of multiple lowered instructions in order to make sure that
5101 * they end up arranged correctly in the original destination region.
5102 */
5103 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5104 return true;
5105
5106 /* If the lowered execution size is larger than the original the result of
5107 * the instruction won't fit in the original destination, so we'll have to
5108 * allocate a temporary in any case.
5109 */
5110 if (lbld.dispatch_width() > inst->exec_size)
5111 return true;
5112
5113 for (unsigned i = 0; i < inst->sources; i++) {
5114 /* If we already made a copy of the source for other reasons there won't
5115 * be any overlap with the destination.
5116 */
5117 if (needs_src_copy(lbld, inst, i))
5118 continue;
5119
5120 /* In order to keep the logic simple we emit a copy whenever the
5121 * destination region doesn't exactly match an overlapping source, which
5122 * may point at the source and destination not being aligned group by
5123 * group which could cause one of the lowered instructions to overwrite
5124 * the data read from the same source by other lowered instructions.
5125 */
5126 if (regions_overlap(inst->dst, inst->size_written,
5127 inst->src[i], inst->size_read(i)) &&
5128 !inst->dst.equals(inst->src[i]))
5129 return true;
5130 }
5131
5132 return false;
5133 }
5134
5135 /**
5136 * Insert data from a packed temporary into the channel group given by
5137 * lbld.group() of the destination region of instruction \p inst and return
5138 * the temporary as result. Any copy instructions that are required for
5139 * unzipping the previous value (in the case of partial writes) will be
5140 * inserted using \p lbld_before and any copy instructions required for
5141 * zipping up the destination of \p inst will be inserted using \p lbld_after.
5142 */
5143 static fs_reg
5144 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
5145 fs_inst *inst)
5146 {
5147 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
5148 assert(lbld_before.group() == lbld_after.group());
5149
5150 /* Specified channel group from the destination region. */
5151 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group());
5152 const unsigned dst_size = inst->size_written /
5153 inst->dst.component_size(inst->exec_size);
5154
5155 if (needs_dst_copy(lbld_after, inst)) {
5156 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
5157
5158 if (inst->predicate) {
5159 /* Handle predication by copying the original contents of
5160 * the destination into the temporary before emitting the
5161 * lowered instruction.
5162 */
5163 const fs_builder gbld_before =
5164 lbld_before.group(MIN2(lbld_before.dispatch_width(),
5165 inst->exec_size), 0);
5166 for (unsigned k = 0; k < dst_size; ++k) {
5167 gbld_before.MOV(offset(tmp, lbld_before, k),
5168 offset(dst, inst->exec_size, k));
5169 }
5170 }
5171
5172 const fs_builder gbld_after =
5173 lbld_after.group(MIN2(lbld_after.dispatch_width(),
5174 inst->exec_size), 0);
5175 for (unsigned k = 0; k < dst_size; ++k) {
5176 /* Use a builder of the right width to perform the copy avoiding
5177 * uninitialized data if the lowered execution size is greater than
5178 * the original execution size of the instruction.
5179 */
5180 gbld_after.MOV(offset(dst, inst->exec_size, k),
5181 offset(tmp, lbld_after, k));
5182 }
5183
5184 return tmp;
5185
5186 } else {
5187 /* No need to allocate a temporary for the lowered instruction, just
5188 * take the right group of channels from the original region.
5189 */
5190 return dst;
5191 }
5192 }
5193
5194 bool
5195 fs_visitor::lower_simd_width()
5196 {
5197 bool progress = false;
5198
5199 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5200 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5201
5202 if (lower_width != inst->exec_size) {
5203 /* Builder matching the original instruction. We may also need to
5204 * emit an instruction of width larger than the original, set the
5205 * execution size of the builder to the highest of both for now so
5206 * we're sure that both cases can be handled.
5207 */
5208 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5209 const fs_builder ibld = bld.at(block, inst)
5210 .exec_all(inst->force_writemask_all)
5211 .group(max_width, inst->group / max_width);
5212
5213 /* Split the copies in chunks of the execution width of either the
5214 * original or the lowered instruction, whichever is lower.
5215 */
5216 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5217 const unsigned dst_size = inst->size_written /
5218 inst->dst.component_size(inst->exec_size);
5219
5220 assert(!inst->writes_accumulator && !inst->mlen);
5221
5222 /* Inserting the zip, unzip, and duplicated instructions in all of
5223 * the right spots is somewhat tricky. All of the unzip and any
5224 * instructions from the zip which unzip the destination prior to
5225 * writing need to happen before all of the per-group instructions
5226 * and the zip instructions need to happen after. In order to sort
5227 * this all out, we insert the unzip instructions before \p inst,
5228 * insert the per-group instructions after \p inst (i.e. before
5229 * inst->next), and insert the zip instructions before the
5230 * instruction after \p inst. Since we are inserting instructions
5231 * after \p inst, inst->next is a moving target and we need to save
5232 * it off here so that we insert the zip instructions in the right
5233 * place.
5234 */
5235 exec_node *const after_inst = inst->next;
5236 for (unsigned i = 0; i < n; i++) {
5237 /* Emit a copy of the original instruction with the lowered width.
5238 * If the EOT flag was set throw it away except for the last
5239 * instruction to avoid killing the thread prematurely.
5240 */
5241 fs_inst split_inst = *inst;
5242 split_inst.exec_size = lower_width;
5243 split_inst.eot = inst->eot && i == 0;
5244
5245 /* Select the correct channel enables for the i-th group, then
5246 * transform the sources and destination and emit the lowered
5247 * instruction.
5248 */
5249 const fs_builder lbld = ibld.group(lower_width, i);
5250
5251 for (unsigned j = 0; j < inst->sources; j++)
5252 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
5253
5254 split_inst.dst = emit_zip(lbld.at(block, inst),
5255 lbld.at(block, after_inst), inst);
5256 split_inst.size_written =
5257 split_inst.dst.component_size(lower_width) * dst_size;
5258
5259 lbld.at(block, inst->next).emit(split_inst);
5260 }
5261
5262 inst->remove(block);
5263 progress = true;
5264 }
5265 }
5266
5267 if (progress)
5268 invalidate_live_intervals();
5269
5270 return progress;
5271 }
5272
5273 void
5274 fs_visitor::dump_instructions()
5275 {
5276 dump_instructions(NULL);
5277 }
5278
5279 void
5280 fs_visitor::dump_instructions(const char *name)
5281 {
5282 FILE *file = stderr;
5283 if (name && geteuid() != 0) {
5284 file = fopen(name, "w");
5285 if (!file)
5286 file = stderr;
5287 }
5288
5289 if (cfg) {
5290 calculate_register_pressure();
5291 int ip = 0, max_pressure = 0;
5292 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5293 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5294 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5295 dump_instruction(inst, file);
5296 ip++;
5297 }
5298 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5299 } else {
5300 int ip = 0;
5301 foreach_in_list(backend_instruction, inst, &instructions) {
5302 fprintf(file, "%4d: ", ip++);
5303 dump_instruction(inst, file);
5304 }
5305 }
5306
5307 if (file != stderr) {
5308 fclose(file);
5309 }
5310 }
5311
5312 void
5313 fs_visitor::dump_instruction(backend_instruction *be_inst)
5314 {
5315 dump_instruction(be_inst, stderr);
5316 }
5317
5318 void
5319 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5320 {
5321 fs_inst *inst = (fs_inst *)be_inst;
5322
5323 if (inst->predicate) {
5324 fprintf(file, "(%cf0.%d) ",
5325 inst->predicate_inverse ? '-' : '+',
5326 inst->flag_subreg);
5327 }
5328
5329 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5330 if (inst->saturate)
5331 fprintf(file, ".sat");
5332 if (inst->conditional_mod) {
5333 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5334 if (!inst->predicate &&
5335 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5336 inst->opcode != BRW_OPCODE_IF &&
5337 inst->opcode != BRW_OPCODE_WHILE))) {
5338 fprintf(file, ".f0.%d", inst->flag_subreg);
5339 }
5340 }
5341 fprintf(file, "(%d) ", inst->exec_size);
5342
5343 if (inst->mlen) {
5344 fprintf(file, "(mlen: %d) ", inst->mlen);
5345 }
5346
5347 if (inst->eot) {
5348 fprintf(file, "(EOT) ");
5349 }
5350
5351 switch (inst->dst.file) {
5352 case VGRF:
5353 fprintf(file, "vgrf%d", inst->dst.nr);
5354 break;
5355 case FIXED_GRF:
5356 fprintf(file, "g%d", inst->dst.nr);
5357 break;
5358 case MRF:
5359 fprintf(file, "m%d", inst->dst.nr);
5360 break;
5361 case BAD_FILE:
5362 fprintf(file, "(null)");
5363 break;
5364 case UNIFORM:
5365 fprintf(file, "***u%d***", inst->dst.nr);
5366 break;
5367 case ATTR:
5368 fprintf(file, "***attr%d***", inst->dst.nr);
5369 break;
5370 case ARF:
5371 switch (inst->dst.nr) {
5372 case BRW_ARF_NULL:
5373 fprintf(file, "null");
5374 break;
5375 case BRW_ARF_ADDRESS:
5376 fprintf(file, "a0.%d", inst->dst.subnr);
5377 break;
5378 case BRW_ARF_ACCUMULATOR:
5379 fprintf(file, "acc%d", inst->dst.subnr);
5380 break;
5381 case BRW_ARF_FLAG:
5382 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5383 break;
5384 default:
5385 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5386 break;
5387 }
5388 break;
5389 case IMM:
5390 unreachable("not reached");
5391 }
5392
5393 if (inst->dst.offset ||
5394 (inst->dst.file == VGRF &&
5395 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5396 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5397 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5398 inst->dst.offset % reg_size);
5399 }
5400
5401 if (inst->dst.stride != 1)
5402 fprintf(file, "<%u>", inst->dst.stride);
5403 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5404
5405 for (int i = 0; i < inst->sources; i++) {
5406 if (inst->src[i].negate)
5407 fprintf(file, "-");
5408 if (inst->src[i].abs)
5409 fprintf(file, "|");
5410 switch (inst->src[i].file) {
5411 case VGRF:
5412 fprintf(file, "vgrf%d", inst->src[i].nr);
5413 break;
5414 case FIXED_GRF:
5415 fprintf(file, "g%d", inst->src[i].nr);
5416 break;
5417 case MRF:
5418 fprintf(file, "***m%d***", inst->src[i].nr);
5419 break;
5420 case ATTR:
5421 fprintf(file, "attr%d", inst->src[i].nr);
5422 break;
5423 case UNIFORM:
5424 fprintf(file, "u%d", inst->src[i].nr);
5425 break;
5426 case BAD_FILE:
5427 fprintf(file, "(null)");
5428 break;
5429 case IMM:
5430 switch (inst->src[i].type) {
5431 case BRW_REGISTER_TYPE_F:
5432 fprintf(file, "%-gf", inst->src[i].f);
5433 break;
5434 case BRW_REGISTER_TYPE_DF:
5435 fprintf(file, "%fdf", inst->src[i].df);
5436 break;
5437 case BRW_REGISTER_TYPE_W:
5438 case BRW_REGISTER_TYPE_D:
5439 fprintf(file, "%dd", inst->src[i].d);
5440 break;
5441 case BRW_REGISTER_TYPE_UW:
5442 case BRW_REGISTER_TYPE_UD:
5443 fprintf(file, "%uu", inst->src[i].ud);
5444 break;
5445 case BRW_REGISTER_TYPE_VF:
5446 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5447 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5448 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5449 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5450 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5451 break;
5452 default:
5453 fprintf(file, "???");
5454 break;
5455 }
5456 break;
5457 case ARF:
5458 switch (inst->src[i].nr) {
5459 case BRW_ARF_NULL:
5460 fprintf(file, "null");
5461 break;
5462 case BRW_ARF_ADDRESS:
5463 fprintf(file, "a0.%d", inst->src[i].subnr);
5464 break;
5465 case BRW_ARF_ACCUMULATOR:
5466 fprintf(file, "acc%d", inst->src[i].subnr);
5467 break;
5468 case BRW_ARF_FLAG:
5469 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5470 break;
5471 default:
5472 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5473 break;
5474 }
5475 break;
5476 }
5477
5478 if (inst->src[i].offset ||
5479 (inst->src[i].file == VGRF &&
5480 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5481 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5482 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5483 inst->src[i].offset % reg_size);
5484 }
5485
5486 if (inst->src[i].abs)
5487 fprintf(file, "|");
5488
5489 if (inst->src[i].file != IMM) {
5490 unsigned stride;
5491 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5492 unsigned hstride = inst->src[i].hstride;
5493 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5494 } else {
5495 stride = inst->src[i].stride;
5496 }
5497 if (stride != 1)
5498 fprintf(file, "<%u>", stride);
5499
5500 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5501 }
5502
5503 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5504 fprintf(file, ", ");
5505 }
5506
5507 fprintf(file, " ");
5508
5509 if (inst->force_writemask_all)
5510 fprintf(file, "NoMask ");
5511
5512 if (inst->exec_size != dispatch_width)
5513 fprintf(file, "group%d ", inst->group);
5514
5515 fprintf(file, "\n");
5516 }
5517
5518 /**
5519 * Possibly returns an instruction that set up @param reg.
5520 *
5521 * Sometimes we want to take the result of some expression/variable
5522 * dereference tree and rewrite the instruction generating the result
5523 * of the tree. When processing the tree, we know that the
5524 * instructions generated are all writing temporaries that are dead
5525 * outside of this tree. So, if we have some instructions that write
5526 * a temporary, we're free to point that temp write somewhere else.
5527 *
5528 * Note that this doesn't guarantee that the instruction generated
5529 * only reg -- it might be the size=4 destination of a texture instruction.
5530 */
5531 fs_inst *
5532 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5533 fs_inst *end,
5534 const fs_reg &reg)
5535 {
5536 if (end == start ||
5537 end->is_partial_write() ||
5538 !reg.equals(end->dst)) {
5539 return NULL;
5540 } else {
5541 return end;
5542 }
5543 }
5544
5545 void
5546 fs_visitor::setup_fs_payload_gen6()
5547 {
5548 assert(stage == MESA_SHADER_FRAGMENT);
5549 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5550
5551 assert(devinfo->gen >= 6);
5552
5553 /* R0-1: masks, pixel X/Y coordinates. */
5554 payload.num_regs = 2;
5555 /* R2: only for 32-pixel dispatch.*/
5556
5557 /* R3-26: barycentric interpolation coordinates. These appear in the
5558 * same order that they appear in the brw_barycentric_mode
5559 * enum. Each set of coordinates occupies 2 registers if dispatch width
5560 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5561 * appear if they were enabled using the "Barycentric Interpolation
5562 * Mode" bits in WM_STATE.
5563 */
5564 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5565 if (prog_data->barycentric_interp_modes & (1 << i)) {
5566 payload.barycentric_coord_reg[i] = payload.num_regs;
5567 payload.num_regs += 2;
5568 if (dispatch_width == 16) {
5569 payload.num_regs += 2;
5570 }
5571 }
5572 }
5573
5574 /* R27: interpolated depth if uses source depth */
5575 prog_data->uses_src_depth =
5576 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5577 if (prog_data->uses_src_depth) {
5578 payload.source_depth_reg = payload.num_regs;
5579 payload.num_regs++;
5580 if (dispatch_width == 16) {
5581 /* R28: interpolated depth if not SIMD8. */
5582 payload.num_regs++;
5583 }
5584 }
5585
5586 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5587 prog_data->uses_src_w =
5588 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5589 if (prog_data->uses_src_w) {
5590 payload.source_w_reg = payload.num_regs;
5591 payload.num_regs++;
5592 if (dispatch_width == 16) {
5593 /* R30: interpolated W if not SIMD8. */
5594 payload.num_regs++;
5595 }
5596 }
5597
5598 /* R31: MSAA position offsets. */
5599 if (prog_data->persample_dispatch &&
5600 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5601 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5602 *
5603 * "MSDISPMODE_PERSAMPLE is required in order to select
5604 * POSOFFSET_SAMPLE"
5605 *
5606 * So we can only really get sample positions if we are doing real
5607 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5608 * persample dispatch, we hard-code it to 0.5.
5609 */
5610 prog_data->uses_pos_offset = true;
5611 payload.sample_pos_reg = payload.num_regs;
5612 payload.num_regs++;
5613 }
5614
5615 /* R32: MSAA input coverage mask */
5616 prog_data->uses_sample_mask =
5617 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5618 if (prog_data->uses_sample_mask) {
5619 assert(devinfo->gen >= 7);
5620 payload.sample_mask_in_reg = payload.num_regs;
5621 payload.num_regs++;
5622 if (dispatch_width == 16) {
5623 /* R33: input coverage mask if not SIMD8. */
5624 payload.num_regs++;
5625 }
5626 }
5627
5628 /* R34-: bary for 32-pixel. */
5629 /* R58-59: interp W for 32-pixel. */
5630
5631 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5632 source_depth_to_render_target = true;
5633 }
5634 }
5635
5636 void
5637 fs_visitor::setup_vs_payload()
5638 {
5639 /* R0: thread header, R1: urb handles */
5640 payload.num_regs = 2;
5641 }
5642
5643 void
5644 fs_visitor::setup_gs_payload()
5645 {
5646 assert(stage == MESA_SHADER_GEOMETRY);
5647
5648 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5649 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5650
5651 /* R0: thread header, R1: output URB handles */
5652 payload.num_regs = 2;
5653
5654 if (gs_prog_data->include_primitive_id) {
5655 /* R2: Primitive ID 0..7 */
5656 payload.num_regs++;
5657 }
5658
5659 /* Always enable VUE handles so we can safely use pull model if needed.
5660 *
5661 * The push model for a GS uses a ton of register space even for trivial
5662 * scenarios with just a few inputs, so just make things easier and a bit
5663 * safer by always having pull model available.
5664 */
5665 gs_prog_data->base.include_vue_handles = true;
5666
5667 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5668 payload.num_regs += nir->info.gs.vertices_in;
5669
5670 /* Use a maximum of 24 registers for push-model inputs. */
5671 const unsigned max_push_components = 24;
5672
5673 /* If pushing our inputs would take too many registers, reduce the URB read
5674 * length (which is in HWords, or 8 registers), and resort to pulling.
5675 *
5676 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5677 * have to multiply by VerticesIn to obtain the total storage requirement.
5678 */
5679 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5680 max_push_components) {
5681 vue_prog_data->urb_read_length =
5682 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5683 }
5684 }
5685
5686 void
5687 fs_visitor::setup_cs_payload()
5688 {
5689 assert(devinfo->gen >= 7);
5690 payload.num_regs = 1;
5691 }
5692
5693 void
5694 fs_visitor::calculate_register_pressure()
5695 {
5696 invalidate_live_intervals();
5697 calculate_live_intervals();
5698
5699 unsigned num_instructions = 0;
5700 foreach_block(block, cfg)
5701 num_instructions += block->instructions.length();
5702
5703 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5704
5705 for (unsigned reg = 0; reg < alloc.count; reg++) {
5706 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5707 regs_live_at_ip[ip] += alloc.sizes[reg];
5708 }
5709 }
5710
5711 /**
5712 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5713 *
5714 * The needs_unlit_centroid_workaround ends up producing one of these per
5715 * channel of centroid input, so it's good to clean them up.
5716 *
5717 * An assumption here is that nothing ever modifies the dispatched pixels
5718 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5719 * dictates that anyway.
5720 */
5721 bool
5722 fs_visitor::opt_drop_redundant_mov_to_flags()
5723 {
5724 bool flag_mov_found[2] = {false};
5725 bool progress = false;
5726
5727 /* Instructions removed by this pass can only be added if this were true */
5728 if (!devinfo->needs_unlit_centroid_workaround)
5729 return false;
5730
5731 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5732 if (inst->is_control_flow()) {
5733 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5734 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5735 if (!flag_mov_found[inst->flag_subreg]) {
5736 flag_mov_found[inst->flag_subreg] = true;
5737 } else {
5738 inst->remove(block);
5739 progress = true;
5740 }
5741 } else if (inst->flags_written()) {
5742 flag_mov_found[inst->flag_subreg] = false;
5743 }
5744 }
5745
5746 return progress;
5747 }
5748
5749 void
5750 fs_visitor::optimize()
5751 {
5752 /* Start by validating the shader we currently have. */
5753 validate();
5754
5755 /* bld is the common builder object pointing at the end of the program we
5756 * used to translate it into i965 IR. For the optimization and lowering
5757 * passes coming next, any code added after the end of the program without
5758 * having explicitly called fs_builder::at() clearly points at a mistake.
5759 * Ideally optimization passes wouldn't be part of the visitor so they
5760 * wouldn't have access to bld at all, but they do, so just in case some
5761 * pass forgets to ask for a location explicitly set it to NULL here to
5762 * make it trip. The dispatch width is initialized to a bogus value to
5763 * make sure that optimizations set the execution controls explicitly to
5764 * match the code they are manipulating instead of relying on the defaults.
5765 */
5766 bld = fs_builder(this, 64);
5767
5768 assign_constant_locations();
5769 lower_constant_loads();
5770
5771 validate();
5772
5773 split_virtual_grfs();
5774 validate();
5775
5776 #define OPT(pass, args...) ({ \
5777 pass_num++; \
5778 bool this_progress = pass(args); \
5779 \
5780 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5781 char filename[64]; \
5782 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5783 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5784 \
5785 backend_shader::dump_instructions(filename); \
5786 } \
5787 \
5788 validate(); \
5789 \
5790 progress = progress || this_progress; \
5791 this_progress; \
5792 })
5793
5794 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5795 char filename[64];
5796 snprintf(filename, 64, "%s%d-%s-00-00-start",
5797 stage_abbrev, dispatch_width, nir->info.name);
5798
5799 backend_shader::dump_instructions(filename);
5800 }
5801
5802 bool progress = false;
5803 int iteration = 0;
5804 int pass_num = 0;
5805
5806 OPT(opt_drop_redundant_mov_to_flags);
5807
5808 do {
5809 progress = false;
5810 pass_num = 0;
5811 iteration++;
5812
5813 OPT(remove_duplicate_mrf_writes);
5814
5815 OPT(opt_algebraic);
5816 OPT(opt_cse);
5817 OPT(opt_copy_propagation);
5818 OPT(opt_predicated_break, this);
5819 OPT(opt_cmod_propagation);
5820 OPT(dead_code_eliminate);
5821 OPT(opt_peephole_sel);
5822 OPT(dead_control_flow_eliminate, this);
5823 OPT(opt_register_renaming);
5824 OPT(opt_saturate_propagation);
5825 OPT(register_coalesce);
5826 OPT(compute_to_mrf);
5827 OPT(eliminate_find_live_channel);
5828
5829 OPT(compact_virtual_grfs);
5830 } while (progress);
5831
5832 progress = false;
5833 pass_num = 0;
5834
5835 if (OPT(lower_pack)) {
5836 OPT(register_coalesce);
5837 OPT(dead_code_eliminate);
5838 }
5839
5840 OPT(lower_simd_width);
5841
5842 /* After SIMD lowering just in case we had to unroll the EOT send. */
5843 OPT(opt_sampler_eot);
5844
5845 OPT(lower_logical_sends);
5846
5847 if (progress) {
5848 OPT(opt_copy_propagation);
5849 /* Only run after logical send lowering because it's easier to implement
5850 * in terms of physical sends.
5851 */
5852 if (OPT(opt_zero_samples))
5853 OPT(opt_copy_propagation);
5854 /* Run after logical send lowering to give it a chance to CSE the
5855 * LOAD_PAYLOAD instructions created to construct the payloads of
5856 * e.g. texturing messages in cases where it wasn't possible to CSE the
5857 * whole logical instruction.
5858 */
5859 OPT(opt_cse);
5860 OPT(register_coalesce);
5861 OPT(compute_to_mrf);
5862 OPT(dead_code_eliminate);
5863 OPT(remove_duplicate_mrf_writes);
5864 OPT(opt_peephole_sel);
5865 }
5866
5867 OPT(opt_redundant_discard_jumps);
5868
5869 if (OPT(lower_load_payload)) {
5870 split_virtual_grfs();
5871 OPT(register_coalesce);
5872 OPT(compute_to_mrf);
5873 OPT(dead_code_eliminate);
5874 }
5875
5876 OPT(opt_combine_constants);
5877 OPT(lower_integer_multiplication);
5878
5879 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5880 OPT(opt_cmod_propagation);
5881 OPT(opt_cse);
5882 OPT(opt_copy_propagation);
5883 OPT(dead_code_eliminate);
5884 }
5885
5886 if (OPT(lower_conversions)) {
5887 OPT(opt_copy_propagation);
5888 OPT(dead_code_eliminate);
5889 OPT(lower_simd_width);
5890 }
5891
5892 lower_uniform_pull_constant_loads();
5893
5894 validate();
5895 }
5896
5897 /**
5898 * Three source instruction must have a GRF/MRF destination register.
5899 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5900 */
5901 void
5902 fs_visitor::fixup_3src_null_dest()
5903 {
5904 bool progress = false;
5905
5906 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5907 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5908 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5909 inst->dst.type);
5910 progress = true;
5911 }
5912 }
5913
5914 if (progress)
5915 invalidate_live_intervals();
5916 }
5917
5918 void
5919 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
5920 {
5921 bool allocated_without_spills;
5922
5923 static const enum instruction_scheduler_mode pre_modes[] = {
5924 SCHEDULE_PRE,
5925 SCHEDULE_PRE_NON_LIFO,
5926 SCHEDULE_PRE_LIFO,
5927 };
5928
5929 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5930
5931 /* Try each scheduling heuristic to see if it can successfully register
5932 * allocate without spilling. They should be ordered by decreasing
5933 * performance but increasing likelihood of allocating.
5934 */
5935 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5936 schedule_instructions(pre_modes[i]);
5937
5938 if (0) {
5939 assign_regs_trivial();
5940 allocated_without_spills = true;
5941 } else {
5942 allocated_without_spills = assign_regs(false, spill_all);
5943 }
5944 if (allocated_without_spills)
5945 break;
5946 }
5947
5948 if (!allocated_without_spills) {
5949 if (!allow_spilling)
5950 fail("Failure to register allocate and spilling is not allowed.");
5951
5952 /* We assume that any spilling is worse than just dropping back to
5953 * SIMD8. There's probably actually some intermediate point where
5954 * SIMD16 with a couple of spills is still better.
5955 */
5956 if (dispatch_width > min_dispatch_width) {
5957 fail("Failure to register allocate. Reduce number of "
5958 "live scalar values to avoid this.");
5959 } else {
5960 compiler->shader_perf_log(log_data,
5961 "%s shader triggered register spilling. "
5962 "Try reducing the number of live scalar "
5963 "values to improve performance.\n",
5964 stage_name);
5965 }
5966
5967 /* Since we're out of heuristics, just go spill registers until we
5968 * get an allocation.
5969 */
5970 while (!assign_regs(true, spill_all)) {
5971 if (failed)
5972 break;
5973 }
5974 }
5975
5976 /* This must come after all optimization and register allocation, since
5977 * it inserts dead code that happens to have side effects, and it does
5978 * so based on the actual physical registers in use.
5979 */
5980 insert_gen4_send_dependency_workarounds();
5981
5982 if (failed)
5983 return;
5984
5985 schedule_instructions(SCHEDULE_POST);
5986
5987 if (last_scratch > 0) {
5988 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5989
5990 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5991
5992 if (stage == MESA_SHADER_COMPUTE) {
5993 if (devinfo->is_haswell) {
5994 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5995 * field documentation, Haswell supports a minimum of 2kB of
5996 * scratch space for compute shaders, unlike every other stage
5997 * and platform.
5998 */
5999 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
6000 } else if (devinfo->gen <= 7) {
6001 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6002 * field documentation, platforms prior to Haswell measure scratch
6003 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
6004 */
6005 prog_data->total_scratch = ALIGN(last_scratch, 1024);
6006 max_scratch_size = 12 * 1024;
6007 }
6008 }
6009
6010 /* We currently only support up to 2MB of scratch space. If we
6011 * need to support more eventually, the documentation suggests
6012 * that we could allocate a larger buffer, and partition it out
6013 * ourselves. We'd just have to undo the hardware's address
6014 * calculation by subtracting (FFTID * Per Thread Scratch Space)
6015 * and then add FFTID * (Larger Per Thread Scratch Space).
6016 *
6017 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
6018 * Thread Group Tracking > Local Memory/Scratch Space.
6019 */
6020 assert(prog_data->total_scratch < max_scratch_size);
6021 }
6022 }
6023
6024 bool
6025 fs_visitor::run_vs()
6026 {
6027 assert(stage == MESA_SHADER_VERTEX);
6028
6029 setup_vs_payload();
6030
6031 if (shader_time_index >= 0)
6032 emit_shader_time_begin();
6033
6034 emit_nir_code();
6035
6036 if (failed)
6037 return false;
6038
6039 compute_clip_distance();
6040
6041 emit_urb_writes();
6042
6043 if (shader_time_index >= 0)
6044 emit_shader_time_end();
6045
6046 calculate_cfg();
6047
6048 optimize();
6049
6050 assign_curb_setup();
6051 assign_vs_urb_setup();
6052
6053 fixup_3src_null_dest();
6054 allocate_registers(8, true);
6055
6056 return !failed;
6057 }
6058
6059 bool
6060 fs_visitor::run_tcs_single_patch()
6061 {
6062 assert(stage == MESA_SHADER_TESS_CTRL);
6063
6064 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6065
6066 /* r1-r4 contain the ICP handles. */
6067 payload.num_regs = 5;
6068
6069 if (shader_time_index >= 0)
6070 emit_shader_time_begin();
6071
6072 /* Initialize gl_InvocationID */
6073 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6074 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6075 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6076 bld.MOV(channels_ud, channels_uw);
6077
6078 if (tcs_prog_data->instances == 1) {
6079 invocation_id = channels_ud;
6080 } else {
6081 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6082
6083 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6084 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6085 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6086 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6087 brw_imm_ud(INTEL_MASK(23, 17)));
6088 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6089
6090 bld.ADD(invocation_id, instance_times_8, channels_ud);
6091 }
6092
6093 /* Fix the disptach mask */
6094 if (nir->info.tess.tcs_vertices_out % 8) {
6095 bld.CMP(bld.null_reg_ud(), invocation_id,
6096 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6097 bld.IF(BRW_PREDICATE_NORMAL);
6098 }
6099
6100 emit_nir_code();
6101
6102 if (nir->info.tess.tcs_vertices_out % 8) {
6103 bld.emit(BRW_OPCODE_ENDIF);
6104 }
6105
6106 /* Emit EOT write; set TR DS Cache bit */
6107 fs_reg srcs[3] = {
6108 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6109 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6110 fs_reg(brw_imm_ud(0)),
6111 };
6112 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6113 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6114
6115 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6116 bld.null_reg_ud(), payload);
6117 inst->mlen = 3;
6118 inst->eot = true;
6119
6120 if (shader_time_index >= 0)
6121 emit_shader_time_end();
6122
6123 if (failed)
6124 return false;
6125
6126 calculate_cfg();
6127
6128 optimize();
6129
6130 assign_curb_setup();
6131 assign_tcs_single_patch_urb_setup();
6132
6133 fixup_3src_null_dest();
6134 allocate_registers(8, true);
6135
6136 return !failed;
6137 }
6138
6139 bool
6140 fs_visitor::run_tes()
6141 {
6142 assert(stage == MESA_SHADER_TESS_EVAL);
6143
6144 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6145 payload.num_regs = 5;
6146
6147 if (shader_time_index >= 0)
6148 emit_shader_time_begin();
6149
6150 emit_nir_code();
6151
6152 if (failed)
6153 return false;
6154
6155 emit_urb_writes();
6156
6157 if (shader_time_index >= 0)
6158 emit_shader_time_end();
6159
6160 calculate_cfg();
6161
6162 optimize();
6163
6164 assign_curb_setup();
6165 assign_tes_urb_setup();
6166
6167 fixup_3src_null_dest();
6168 allocate_registers(8, true);
6169
6170 return !failed;
6171 }
6172
6173 bool
6174 fs_visitor::run_gs()
6175 {
6176 assert(stage == MESA_SHADER_GEOMETRY);
6177
6178 setup_gs_payload();
6179
6180 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6181
6182 if (gs_compile->control_data_header_size_bits > 0) {
6183 /* Create a VGRF to store accumulated control data bits. */
6184 this->control_data_bits = vgrf(glsl_type::uint_type);
6185
6186 /* If we're outputting more than 32 control data bits, then EmitVertex()
6187 * will set control_data_bits to 0 after emitting the first vertex.
6188 * Otherwise, we need to initialize it to 0 here.
6189 */
6190 if (gs_compile->control_data_header_size_bits <= 32) {
6191 const fs_builder abld = bld.annotate("initialize control data bits");
6192 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6193 }
6194 }
6195
6196 if (shader_time_index >= 0)
6197 emit_shader_time_begin();
6198
6199 emit_nir_code();
6200
6201 emit_gs_thread_end();
6202
6203 if (shader_time_index >= 0)
6204 emit_shader_time_end();
6205
6206 if (failed)
6207 return false;
6208
6209 calculate_cfg();
6210
6211 optimize();
6212
6213 assign_curb_setup();
6214 assign_gs_urb_setup();
6215
6216 fixup_3src_null_dest();
6217 allocate_registers(8, true);
6218
6219 return !failed;
6220 }
6221
6222 /* From the SKL PRM, Volume 16, Workarounds:
6223 *
6224 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
6225 * only header phases (R0-R2)
6226 *
6227 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
6228 * have been header only.
6229 *
6230 * Instead of enabling push constants one can alternatively enable one of the
6231 * inputs. Here one simply chooses "layer" which shouldn't impose much
6232 * overhead.
6233 */
6234 static void
6235 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
6236 {
6237 if (wm_prog_data->num_varying_inputs)
6238 return;
6239
6240 if (wm_prog_data->base.curb_read_length)
6241 return;
6242
6243 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
6244 wm_prog_data->num_varying_inputs = 1;
6245 }
6246
6247 bool
6248 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6249 {
6250 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6251 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6252
6253 assert(stage == MESA_SHADER_FRAGMENT);
6254
6255 if (devinfo->gen >= 6)
6256 setup_fs_payload_gen6();
6257 else
6258 setup_fs_payload_gen4();
6259
6260 if (0) {
6261 emit_dummy_fs();
6262 } else if (do_rep_send) {
6263 assert(dispatch_width == 16);
6264 emit_repclear_shader();
6265 } else {
6266 if (shader_time_index >= 0)
6267 emit_shader_time_begin();
6268
6269 calculate_urb_setup();
6270 if (nir->info.inputs_read > 0 ||
6271 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6272 if (devinfo->gen < 6)
6273 emit_interpolation_setup_gen4();
6274 else
6275 emit_interpolation_setup_gen6();
6276 }
6277
6278 /* We handle discards by keeping track of the still-live pixels in f0.1.
6279 * Initialize it with the dispatched pixels.
6280 */
6281 if (wm_prog_data->uses_kill) {
6282 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6283 discard_init->flag_subreg = 1;
6284 }
6285
6286 /* Generate FS IR for main(). (the visitor only descends into
6287 * functions called "main").
6288 */
6289 emit_nir_code();
6290
6291 if (failed)
6292 return false;
6293
6294 if (wm_prog_data->uses_kill)
6295 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6296
6297 if (wm_key->alpha_test_func)
6298 emit_alpha_test();
6299
6300 emit_fb_writes();
6301
6302 if (shader_time_index >= 0)
6303 emit_shader_time_end();
6304
6305 calculate_cfg();
6306
6307 optimize();
6308
6309 assign_curb_setup();
6310
6311 if (devinfo->gen >= 9)
6312 gen9_ps_header_only_workaround(wm_prog_data);
6313
6314 assign_urb_setup();
6315
6316 fixup_3src_null_dest();
6317 allocate_registers(8, allow_spilling);
6318
6319 if (failed)
6320 return false;
6321 }
6322
6323 return !failed;
6324 }
6325
6326 bool
6327 fs_visitor::run_cs(unsigned min_dispatch_width)
6328 {
6329 assert(stage == MESA_SHADER_COMPUTE);
6330 assert(dispatch_width >= min_dispatch_width);
6331
6332 setup_cs_payload();
6333
6334 if (shader_time_index >= 0)
6335 emit_shader_time_begin();
6336
6337 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6338 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6339 const fs_builder abld = bld.exec_all().group(1, 0);
6340 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6341 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6342 }
6343
6344 emit_nir_code();
6345
6346 if (failed)
6347 return false;
6348
6349 emit_cs_terminate();
6350
6351 if (shader_time_index >= 0)
6352 emit_shader_time_end();
6353
6354 calculate_cfg();
6355
6356 optimize();
6357
6358 assign_curb_setup();
6359
6360 fixup_3src_null_dest();
6361 allocate_registers(min_dispatch_width, true);
6362
6363 if (failed)
6364 return false;
6365
6366 return !failed;
6367 }
6368
6369 /**
6370 * Return a bitfield where bit n is set if barycentric interpolation mode n
6371 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6372 *
6373 * We examine the load_barycentric intrinsics rather than looking at input
6374 * variables so that we catch interpolateAtCentroid() messages too, which
6375 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6376 */
6377 static unsigned
6378 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6379 const nir_shader *shader)
6380 {
6381 unsigned barycentric_interp_modes = 0;
6382
6383 nir_foreach_function(f, shader) {
6384 if (!f->impl)
6385 continue;
6386
6387 nir_foreach_block(block, f->impl) {
6388 nir_foreach_instr(instr, block) {
6389 if (instr->type != nir_instr_type_intrinsic)
6390 continue;
6391
6392 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6393 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6394 continue;
6395
6396 /* Ignore WPOS; it doesn't require interpolation. */
6397 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6398 continue;
6399
6400 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6401 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6402 nir_intrinsic_interp_mode(intrin);
6403 nir_intrinsic_op bary_op = intrin->intrinsic;
6404 enum brw_barycentric_mode bary =
6405 brw_barycentric_mode(interp, bary_op);
6406
6407 barycentric_interp_modes |= 1 << bary;
6408
6409 if (devinfo->needs_unlit_centroid_workaround &&
6410 bary_op == nir_intrinsic_load_barycentric_centroid)
6411 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6412 }
6413 }
6414 }
6415
6416 return barycentric_interp_modes;
6417 }
6418
6419 static void
6420 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6421 const nir_shader *shader)
6422 {
6423 prog_data->flat_inputs = 0;
6424
6425 nir_foreach_variable(var, &shader->inputs) {
6426 int input_index = prog_data->urb_setup[var->data.location];
6427
6428 if (input_index < 0)
6429 continue;
6430
6431 /* flat shading */
6432 if (var->data.interpolation == INTERP_MODE_FLAT)
6433 prog_data->flat_inputs |= (1 << input_index);
6434 }
6435 }
6436
6437 static uint8_t
6438 computed_depth_mode(const nir_shader *shader)
6439 {
6440 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6441 switch (shader->info.fs.depth_layout) {
6442 case FRAG_DEPTH_LAYOUT_NONE:
6443 case FRAG_DEPTH_LAYOUT_ANY:
6444 return BRW_PSCDEPTH_ON;
6445 case FRAG_DEPTH_LAYOUT_GREATER:
6446 return BRW_PSCDEPTH_ON_GE;
6447 case FRAG_DEPTH_LAYOUT_LESS:
6448 return BRW_PSCDEPTH_ON_LE;
6449 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6450 return BRW_PSCDEPTH_OFF;
6451 }
6452 }
6453 return BRW_PSCDEPTH_OFF;
6454 }
6455
6456 /**
6457 * Move load_interpolated_input with simple (payload-based) barycentric modes
6458 * to the top of the program so we don't emit multiple PLNs for the same input.
6459 *
6460 * This works around CSE not being able to handle non-dominating cases
6461 * such as:
6462 *
6463 * if (...) {
6464 * interpolate input
6465 * } else {
6466 * interpolate the same exact input
6467 * }
6468 *
6469 * This should be replaced by global value numbering someday.
6470 */
6471 static bool
6472 move_interpolation_to_top(nir_shader *nir)
6473 {
6474 bool progress = false;
6475
6476 nir_foreach_function(f, nir) {
6477 if (!f->impl)
6478 continue;
6479
6480 nir_block *top = nir_start_block(f->impl);
6481 exec_node *cursor_node = NULL;
6482
6483 nir_foreach_block(block, f->impl) {
6484 if (block == top)
6485 continue;
6486
6487 nir_foreach_instr_safe(instr, block) {
6488 if (instr->type != nir_instr_type_intrinsic)
6489 continue;
6490
6491 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6492 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6493 continue;
6494 nir_intrinsic_instr *bary_intrinsic =
6495 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6496 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6497
6498 /* Leave interpolateAtSample/Offset() where they are. */
6499 if (op == nir_intrinsic_load_barycentric_at_sample ||
6500 op == nir_intrinsic_load_barycentric_at_offset)
6501 continue;
6502
6503 nir_instr *move[3] = {
6504 &bary_intrinsic->instr,
6505 intrin->src[1].ssa->parent_instr,
6506 instr
6507 };
6508
6509 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6510 if (move[i]->block != top) {
6511 move[i]->block = top;
6512 exec_node_remove(&move[i]->node);
6513 if (cursor_node) {
6514 exec_node_insert_after(cursor_node, &move[i]->node);
6515 } else {
6516 exec_list_push_head(&top->instr_list, &move[i]->node);
6517 }
6518 cursor_node = &move[i]->node;
6519 progress = true;
6520 }
6521 }
6522 }
6523 }
6524 nir_metadata_preserve(f->impl, (nir_metadata)
6525 ((unsigned) nir_metadata_block_index |
6526 (unsigned) nir_metadata_dominance));
6527 }
6528
6529 return progress;
6530 }
6531
6532 /**
6533 * Demote per-sample barycentric intrinsics to centroid.
6534 *
6535 * Useful when rendering to a non-multisampled buffer.
6536 */
6537 static bool
6538 demote_sample_qualifiers(nir_shader *nir)
6539 {
6540 bool progress = true;
6541
6542 nir_foreach_function(f, nir) {
6543 if (!f->impl)
6544 continue;
6545
6546 nir_builder b;
6547 nir_builder_init(&b, f->impl);
6548
6549 nir_foreach_block(block, f->impl) {
6550 nir_foreach_instr_safe(instr, block) {
6551 if (instr->type != nir_instr_type_intrinsic)
6552 continue;
6553
6554 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6555 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6556 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6557 continue;
6558
6559 b.cursor = nir_before_instr(instr);
6560 nir_ssa_def *centroid =
6561 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6562 nir_intrinsic_interp_mode(intrin));
6563 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6564 nir_src_for_ssa(centroid));
6565 nir_instr_remove(instr);
6566 progress = true;
6567 }
6568 }
6569
6570 nir_metadata_preserve(f->impl, (nir_metadata)
6571 ((unsigned) nir_metadata_block_index |
6572 (unsigned) nir_metadata_dominance));
6573 }
6574
6575 return progress;
6576 }
6577
6578 /**
6579 * Pre-gen6, the register file of the EUs was shared between threads,
6580 * and each thread used some subset allocated on a 16-register block
6581 * granularity. The unit states wanted these block counts.
6582 */
6583 static inline int
6584 brw_register_blocks(int reg_count)
6585 {
6586 return ALIGN(reg_count, 16) / 16 - 1;
6587 }
6588
6589 const unsigned *
6590 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6591 void *mem_ctx,
6592 const struct brw_wm_prog_key *key,
6593 struct brw_wm_prog_data *prog_data,
6594 const nir_shader *src_shader,
6595 struct gl_program *prog,
6596 int shader_time_index8, int shader_time_index16,
6597 bool allow_spilling,
6598 bool use_rep_send, struct brw_vue_map *vue_map,
6599 char **error_str)
6600 {
6601 const struct gen_device_info *devinfo = compiler->devinfo;
6602
6603 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6604 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6605 brw_nir_lower_fs_inputs(shader, devinfo, key);
6606 brw_nir_lower_fs_outputs(shader);
6607
6608 if (devinfo->gen < 6) {
6609 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6610 }
6611
6612 if (!key->multisample_fbo)
6613 NIR_PASS_V(shader, demote_sample_qualifiers);
6614 NIR_PASS_V(shader, move_interpolation_to_top);
6615 shader = brw_postprocess_nir(shader, compiler, true);
6616
6617 /* key->alpha_test_func means simulating alpha testing via discards,
6618 * so the shader definitely kills pixels.
6619 */
6620 prog_data->uses_kill = shader->info.fs.uses_discard ||
6621 key->alpha_test_func;
6622 prog_data->uses_omask = key->multisample_fbo &&
6623 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6624 prog_data->computed_depth_mode = computed_depth_mode(shader);
6625 prog_data->computed_stencil =
6626 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6627
6628 prog_data->persample_dispatch =
6629 key->multisample_fbo &&
6630 (key->persample_interp ||
6631 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6632 SYSTEM_BIT_SAMPLE_POS)) ||
6633 shader->info.fs.uses_sample_qualifier ||
6634 shader->info.outputs_read);
6635
6636 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
6637
6638 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6639 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6640 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6641
6642 prog_data->barycentric_interp_modes =
6643 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6644
6645 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6646 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6647 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6648
6649 fs_visitor v8(compiler, log_data, mem_ctx, key,
6650 &prog_data->base, prog, shader, 8,
6651 shader_time_index8);
6652 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6653 if (error_str)
6654 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6655
6656 return NULL;
6657 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6658 simd8_cfg = v8.cfg;
6659 simd8_grf_start = v8.payload.num_regs;
6660 simd8_grf_used = v8.grf_used;
6661 }
6662
6663 if (v8.max_dispatch_width >= 16 &&
6664 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6665 /* Try a SIMD16 compile */
6666 fs_visitor v16(compiler, log_data, mem_ctx, key,
6667 &prog_data->base, prog, shader, 16,
6668 shader_time_index16);
6669 v16.import_uniforms(&v8);
6670 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6671 compiler->shader_perf_log(log_data,
6672 "SIMD16 shader failed to compile: %s",
6673 v16.fail_msg);
6674 } else {
6675 simd16_cfg = v16.cfg;
6676 simd16_grf_start = v16.payload.num_regs;
6677 simd16_grf_used = v16.grf_used;
6678 }
6679 }
6680
6681 /* When the caller requests a repclear shader, they want SIMD16-only */
6682 if (use_rep_send)
6683 simd8_cfg = NULL;
6684
6685 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6686 * at the top to select the shader. We've never implemented that.
6687 * Instead, we just give them exactly one shader and we pick the widest one
6688 * available.
6689 */
6690 if (compiler->devinfo->gen < 5 && simd16_cfg)
6691 simd8_cfg = NULL;
6692
6693 if (prog_data->persample_dispatch) {
6694 /* Starting with SandyBridge (where we first get MSAA), the different
6695 * pixel dispatch combinations are grouped into classifications A
6696 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6697 * generations, the only configurations supporting persample dispatch
6698 * are are this in which only one dispatch width is enabled.
6699 *
6700 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6701 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6702 */
6703 if (compiler->devinfo->gen == 6 &&
6704 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6705 simd16_cfg = NULL;
6706 } else if (simd16_cfg) {
6707 simd8_cfg = NULL;
6708 }
6709 }
6710
6711 /* We have to compute the flat inputs after the visitor is finished running
6712 * because it relies on prog_data->urb_setup which is computed in
6713 * fs_visitor::calculate_urb_setup().
6714 */
6715 brw_compute_flat_inputs(prog_data, shader);
6716
6717 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6718 v8.promoted_constants, v8.runtime_check_aads_emit,
6719 MESA_SHADER_FRAGMENT);
6720
6721 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6722 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6723 shader->info.label ?
6724 shader->info.label : "unnamed",
6725 shader->info.name));
6726 }
6727
6728 if (simd8_cfg) {
6729 prog_data->dispatch_8 = true;
6730 g.generate_code(simd8_cfg, 8);
6731 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6732 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6733
6734 if (simd16_cfg) {
6735 prog_data->dispatch_16 = true;
6736 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6737 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6738 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6739 }
6740 } else if (simd16_cfg) {
6741 prog_data->dispatch_16 = true;
6742 g.generate_code(simd16_cfg, 16);
6743 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6744 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6745 }
6746
6747 return g.get_assembly(&prog_data->base.program_size);
6748 }
6749
6750 fs_reg *
6751 fs_visitor::emit_cs_work_group_id_setup()
6752 {
6753 assert(stage == MESA_SHADER_COMPUTE);
6754
6755 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6756
6757 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6758 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6759 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6760
6761 bld.MOV(*reg, r0_1);
6762 bld.MOV(offset(*reg, bld, 1), r0_6);
6763 bld.MOV(offset(*reg, bld, 2), r0_7);
6764
6765 return reg;
6766 }
6767
6768 static void
6769 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6770 {
6771 block->dwords = dwords;
6772 block->regs = DIV_ROUND_UP(dwords, 8);
6773 block->size = block->regs * 32;
6774 }
6775
6776 static void
6777 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6778 struct brw_cs_prog_data *cs_prog_data)
6779 {
6780 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6781 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
6782 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6783
6784 /* The thread ID should be stored in the last param dword */
6785 assert(subgroup_id_index == -1 ||
6786 subgroup_id_index == (int)prog_data->nr_params - 1);
6787
6788 unsigned cross_thread_dwords, per_thread_dwords;
6789 if (!cross_thread_supported) {
6790 cross_thread_dwords = 0u;
6791 per_thread_dwords = prog_data->nr_params;
6792 } else if (subgroup_id_index >= 0) {
6793 /* Fill all but the last register with cross-thread payload */
6794 cross_thread_dwords = 8 * (subgroup_id_index / 8);
6795 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6796 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6797 } else {
6798 /* Fill all data using cross-thread payload */
6799 cross_thread_dwords = prog_data->nr_params;
6800 per_thread_dwords = 0u;
6801 }
6802
6803 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6804 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6805
6806 unsigned total_dwords =
6807 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6808 cs_prog_data->push.cross_thread.size) / 4;
6809 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6810
6811 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6812 cs_prog_data->push.per_thread.size == 0);
6813 assert(cs_prog_data->push.cross_thread.dwords +
6814 cs_prog_data->push.per_thread.dwords ==
6815 prog_data->nr_params);
6816 }
6817
6818 static void
6819 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6820 {
6821 cs_prog_data->simd_size = size;
6822 unsigned group_size = cs_prog_data->local_size[0] *
6823 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6824 cs_prog_data->threads = (group_size + size - 1) / size;
6825 }
6826
6827 static nir_shader *
6828 compile_cs_to_nir(const struct brw_compiler *compiler,
6829 void *mem_ctx,
6830 const struct brw_cs_prog_key *key,
6831 struct brw_cs_prog_data *prog_data,
6832 const nir_shader *src_shader,
6833 unsigned dispatch_width)
6834 {
6835 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6836 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6837 brw_nir_lower_cs_intrinsics(shader, dispatch_width);
6838 return brw_postprocess_nir(shader, compiler, true);
6839 }
6840
6841 const unsigned *
6842 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6843 void *mem_ctx,
6844 const struct brw_cs_prog_key *key,
6845 struct brw_cs_prog_data *prog_data,
6846 const nir_shader *src_shader,
6847 int shader_time_index,
6848 char **error_str)
6849 {
6850 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
6851 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
6852 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
6853 unsigned local_workgroup_size =
6854 src_shader->info.cs.local_size[0] * src_shader->info.cs.local_size[1] *
6855 src_shader->info.cs.local_size[2];
6856
6857 unsigned min_dispatch_width =
6858 DIV_ROUND_UP(local_workgroup_size, compiler->devinfo->max_cs_threads);
6859 min_dispatch_width = MAX2(8, min_dispatch_width);
6860 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
6861 assert(min_dispatch_width <= 32);
6862
6863 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
6864 cfg_t *cfg = NULL;
6865 const char *fail_msg = NULL;
6866 unsigned promoted_constants;
6867
6868 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6869 */
6870 if (min_dispatch_width <= 8) {
6871 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
6872 prog_data, src_shader, 8);
6873 v8 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
6874 NULL, /* Never used in core profile */
6875 nir8, 8, shader_time_index);
6876 if (!v8->run_cs(min_dispatch_width)) {
6877 fail_msg = v8->fail_msg;
6878 } else {
6879 /* We should always be able to do SIMD32 for compute shaders */
6880 assert(v8->max_dispatch_width >= 32);
6881
6882 cfg = v8->cfg;
6883 cs_set_simd_size(prog_data, 8);
6884 cs_fill_push_const_info(compiler->devinfo, prog_data);
6885 promoted_constants = v8->promoted_constants;
6886 }
6887 }
6888
6889 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6890 !fail_msg && min_dispatch_width <= 16) {
6891 /* Try a SIMD16 compile */
6892 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
6893 prog_data, src_shader, 16);
6894 v16 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
6895 NULL, /* Never used in core profile */
6896 nir16, 16, shader_time_index);
6897 if (v8)
6898 v16->import_uniforms(v8);
6899
6900 if (!v16->run_cs(min_dispatch_width)) {
6901 compiler->shader_perf_log(log_data,
6902 "SIMD16 shader failed to compile: %s",
6903 v16->fail_msg);
6904 if (!cfg) {
6905 fail_msg =
6906 "Couldn't generate SIMD16 program and not "
6907 "enough threads for SIMD8";
6908 }
6909 } else {
6910 /* We should always be able to do SIMD32 for compute shaders */
6911 assert(v16->max_dispatch_width >= 32);
6912
6913 cfg = v16->cfg;
6914 cs_set_simd_size(prog_data, 16);
6915 cs_fill_push_const_info(compiler->devinfo, prog_data);
6916 promoted_constants = v16->promoted_constants;
6917 }
6918 }
6919
6920 /* We should always be able to do SIMD32 for compute shaders */
6921 assert(!v16 || v16->max_dispatch_width >= 32);
6922
6923 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6924 /* Try a SIMD32 compile */
6925 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
6926 prog_data, src_shader, 32);
6927 v32 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
6928 NULL, /* Never used in core profile */
6929 nir32, 32, shader_time_index);
6930 if (v8)
6931 v32->import_uniforms(v8);
6932 else if (v16)
6933 v32->import_uniforms(v16);
6934
6935 if (!v32->run_cs(min_dispatch_width)) {
6936 compiler->shader_perf_log(log_data,
6937 "SIMD32 shader failed to compile: %s",
6938 v16->fail_msg);
6939 if (!cfg) {
6940 fail_msg =
6941 "Couldn't generate SIMD32 program and not "
6942 "enough threads for SIMD16";
6943 }
6944 } else {
6945 cfg = v32->cfg;
6946 cs_set_simd_size(prog_data, 32);
6947 cs_fill_push_const_info(compiler->devinfo, prog_data);
6948 promoted_constants = v32->promoted_constants;
6949 }
6950 }
6951
6952 const unsigned *ret = NULL;
6953 if (unlikely(cfg == NULL)) {
6954 assert(fail_msg);
6955 if (error_str)
6956 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6957 } else {
6958 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6959 promoted_constants, false, MESA_SHADER_COMPUTE);
6960 if (INTEL_DEBUG & DEBUG_CS) {
6961 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6962 src_shader->info.label ?
6963 src_shader->info.label : "unnamed",
6964 src_shader->info.name);
6965 g.enable_debug(name);
6966 }
6967
6968 g.generate_code(cfg, prog_data->simd_size);
6969
6970 ret = g.get_assembly(&prog_data->base.program_size);
6971 }
6972
6973 delete v8;
6974 delete v16;
6975 delete v32;
6976
6977 return ret;
6978 }
6979
6980 /**
6981 * Test the dispatch mask packing assumptions of
6982 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6983 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6984 * executed with an unexpected dispatch mask.
6985 */
6986 static UNUSED void
6987 brw_fs_test_dispatch_packing(const fs_builder &bld)
6988 {
6989 const gl_shader_stage stage = bld.shader->stage;
6990
6991 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6992 bld.shader->stage_prog_data)) {
6993 const fs_builder ubld = bld.exec_all().group(1, 0);
6994 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6995 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6996 brw_dmask_reg());
6997
6998 ubld.ADD(tmp, mask, brw_imm_ud(1));
6999 ubld.AND(tmp, mask, tmp);
7000
7001 /* This will loop forever if the dispatch mask doesn't have the expected
7002 * form '2^n-1', in which case tmp will be non-zero.
7003 */
7004 bld.emit(BRW_OPCODE_DO);
7005 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
7006 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
7007 }
7008 }