intel/fs: Set src0 alpha present bit in header when provided in message payload.
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_fs_live_variables.h"
35 #include "brw_nir.h"
36 #include "brw_vec4_gs_visitor.h"
37 #include "brw_cfg.h"
38 #include "brw_dead_control_flow.h"
39 #include "dev/gen_debug.h"
40 #include "compiler/glsl_types.h"
41 #include "compiler/nir/nir_builder.h"
42 #include "program/prog_parameter.h"
43 #include "util/u_math.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset((void*)this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy((void*)this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable offset
176 * and a portion done using fs_reg::offset, which means that if you have
177 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179 * later notice that those loads are all the same and eliminate the
180 * redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196 shuffle_from_32bit_read(bld, dst, vec4_result,
197 (const_offset & 0xf) / type_sz(dst.type), 1);
198 }
199
200 /**
201 * A helper for MOV generation for fixing up broken hardware SEND dependency
202 * handling.
203 */
204 void
205 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
206 {
207 /* The caller always wants uncompressed to emit the minimal extra
208 * dependencies, and to avoid having to deal with aligning its regs to 2.
209 */
210 const fs_builder ubld = bld.annotate("send dependency resolve")
211 .half(0);
212
213 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
214 }
215
216 bool
217 fs_inst::is_send_from_grf() const
218 {
219 switch (opcode) {
220 case SHADER_OPCODE_SEND:
221 case SHADER_OPCODE_SHADER_TIME_ADD:
222 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
223 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
224 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
225 case SHADER_OPCODE_URB_WRITE_SIMD8:
226 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
227 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
228 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
229 case SHADER_OPCODE_URB_READ_SIMD8:
230 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
231 case SHADER_OPCODE_INTERLOCK:
232 case SHADER_OPCODE_MEMORY_FENCE:
233 case SHADER_OPCODE_BARRIER:
234 return true;
235 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
236 return src[1].file == VGRF;
237 case FS_OPCODE_FB_WRITE:
238 case FS_OPCODE_FB_READ:
239 return src[0].file == VGRF;
240 default:
241 if (is_tex())
242 return src[0].file == VGRF;
243
244 return false;
245 }
246 }
247
248 bool
249 fs_inst::is_control_source(unsigned arg) const
250 {
251 switch (opcode) {
252 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
253 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
254 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
255 return arg == 0;
256
257 case SHADER_OPCODE_BROADCAST:
258 case SHADER_OPCODE_SHUFFLE:
259 case SHADER_OPCODE_QUAD_SWIZZLE:
260 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
261 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
262 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
263 case SHADER_OPCODE_GET_BUFFER_SIZE:
264 return arg == 1;
265
266 case SHADER_OPCODE_MOV_INDIRECT:
267 case SHADER_OPCODE_CLUSTER_BROADCAST:
268 case SHADER_OPCODE_TEX:
269 case FS_OPCODE_TXB:
270 case SHADER_OPCODE_TXD:
271 case SHADER_OPCODE_TXF:
272 case SHADER_OPCODE_TXF_LZ:
273 case SHADER_OPCODE_TXF_CMS:
274 case SHADER_OPCODE_TXF_CMS_W:
275 case SHADER_OPCODE_TXF_UMS:
276 case SHADER_OPCODE_TXF_MCS:
277 case SHADER_OPCODE_TXL:
278 case SHADER_OPCODE_TXL_LZ:
279 case SHADER_OPCODE_TXS:
280 case SHADER_OPCODE_LOD:
281 case SHADER_OPCODE_TG4:
282 case SHADER_OPCODE_TG4_OFFSET:
283 case SHADER_OPCODE_SAMPLEINFO:
284 return arg == 1 || arg == 2;
285
286 case SHADER_OPCODE_SEND:
287 return arg == 0 || arg == 1;
288
289 default:
290 return false;
291 }
292 }
293
294 bool
295 fs_inst::is_payload(unsigned arg) const
296 {
297 switch (opcode) {
298 case FS_OPCODE_FB_WRITE:
299 case FS_OPCODE_FB_READ:
300 case SHADER_OPCODE_URB_WRITE_SIMD8:
301 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
302 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
303 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
304 case SHADER_OPCODE_URB_READ_SIMD8:
305 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
306 case VEC4_OPCODE_UNTYPED_ATOMIC:
307 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
308 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
309 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
310 case SHADER_OPCODE_SHADER_TIME_ADD:
311 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
312 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
313 case SHADER_OPCODE_INTERLOCK:
314 case SHADER_OPCODE_MEMORY_FENCE:
315 case SHADER_OPCODE_BARRIER:
316 return arg == 0;
317
318 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
319 return arg == 1;
320
321 case SHADER_OPCODE_SEND:
322 return arg == 2 || arg == 3;
323
324 default:
325 if (is_tex())
326 return arg == 0;
327 else
328 return false;
329 }
330 }
331
332 /**
333 * Returns true if this instruction's sources and destinations cannot
334 * safely be the same register.
335 *
336 * In most cases, a register can be written over safely by the same
337 * instruction that is its last use. For a single instruction, the
338 * sources are dereferenced before writing of the destination starts
339 * (naturally).
340 *
341 * However, there are a few cases where this can be problematic:
342 *
343 * - Virtual opcodes that translate to multiple instructions in the
344 * code generator: if src == dst and one instruction writes the
345 * destination before a later instruction reads the source, then
346 * src will have been clobbered.
347 *
348 * - SIMD16 compressed instructions with certain regioning (see below).
349 *
350 * The register allocator uses this information to set up conflicts between
351 * GRF sources and the destination.
352 */
353 bool
354 fs_inst::has_source_and_destination_hazard() const
355 {
356 switch (opcode) {
357 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
358 /* Multiple partial writes to the destination */
359 return true;
360 case SHADER_OPCODE_SHUFFLE:
361 /* This instruction returns an arbitrary channel from the source and
362 * gets split into smaller instructions in the generator. It's possible
363 * that one of the instructions will read from a channel corresponding
364 * to an earlier instruction.
365 */
366 case SHADER_OPCODE_SEL_EXEC:
367 /* This is implemented as
368 *
369 * mov(16) g4<1>D 0D { align1 WE_all 1H };
370 * mov(16) g4<1>D g5<8,8,1>D { align1 1H }
371 *
372 * Because the source is only read in the second instruction, the first
373 * may stomp all over it.
374 */
375 return true;
376 case SHADER_OPCODE_QUAD_SWIZZLE:
377 switch (src[1].ud) {
378 case BRW_SWIZZLE_XXXX:
379 case BRW_SWIZZLE_YYYY:
380 case BRW_SWIZZLE_ZZZZ:
381 case BRW_SWIZZLE_WWWW:
382 case BRW_SWIZZLE_XXZZ:
383 case BRW_SWIZZLE_YYWW:
384 case BRW_SWIZZLE_XYXY:
385 case BRW_SWIZZLE_ZWZW:
386 /* These can be implemented as a single Align1 region on all
387 * platforms, so there's never a hazard between source and
388 * destination. C.f. fs_generator::generate_quad_swizzle().
389 */
390 return false;
391 default:
392 return !is_uniform(src[0]);
393 }
394 default:
395 /* The SIMD16 compressed instruction
396 *
397 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
398 *
399 * is actually decoded in hardware as:
400 *
401 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
402 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
403 *
404 * Which is safe. However, if we have uniform accesses
405 * happening, we get into trouble:
406 *
407 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
408 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
409 *
410 * Now our destination for the first instruction overwrote the
411 * second instruction's src0, and we get garbage for those 8
412 * pixels. There's a similar issue for the pre-gen6
413 * pixel_x/pixel_y, which are registers of 16-bit values and thus
414 * would get stomped by the first decode as well.
415 */
416 if (exec_size == 16) {
417 for (int i = 0; i < sources; i++) {
418 if (src[i].file == VGRF && (src[i].stride == 0 ||
419 src[i].type == BRW_REGISTER_TYPE_UW ||
420 src[i].type == BRW_REGISTER_TYPE_W ||
421 src[i].type == BRW_REGISTER_TYPE_UB ||
422 src[i].type == BRW_REGISTER_TYPE_B)) {
423 return true;
424 }
425 }
426 }
427 return false;
428 }
429 }
430
431 bool
432 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo) const
433 {
434 if (devinfo->gen == 6 && is_math())
435 return false;
436
437 if (is_send_from_grf())
438 return false;
439
440 /* From GEN:BUG:1604601757:
441 *
442 * "When multiplying a DW and any lower precision integer, source modifier
443 * is not supported."
444 */
445 if (devinfo->gen >= 12 && (opcode == BRW_OPCODE_MUL ||
446 opcode == BRW_OPCODE_MAD)) {
447 const brw_reg_type exec_type = get_exec_type(this);
448 const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
449 MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
450 MIN2(type_sz(src[0].type), type_sz(src[1].type));
451
452 if (brw_reg_type_is_integer(exec_type) &&
453 type_sz(exec_type) >= 4 &&
454 type_sz(exec_type) != min_type_sz)
455 return false;
456 }
457
458 if (!backend_instruction::can_do_source_mods())
459 return false;
460
461 return true;
462 }
463
464 bool
465 fs_inst::can_do_cmod()
466 {
467 if (!backend_instruction::can_do_cmod())
468 return false;
469
470 /* The accumulator result appears to get used for the conditional modifier
471 * generation. When negating a UD value, there is a 33rd bit generated for
472 * the sign in the accumulator value, so now you can't check, for example,
473 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
474 */
475 for (unsigned i = 0; i < sources; i++) {
476 if (type_is_unsigned_int(src[i].type) && src[i].negate)
477 return false;
478 }
479
480 return true;
481 }
482
483 bool
484 fs_inst::can_change_types() const
485 {
486 return dst.type == src[0].type &&
487 !src[0].abs && !src[0].negate && !saturate &&
488 (opcode == BRW_OPCODE_MOV ||
489 (opcode == BRW_OPCODE_SEL &&
490 dst.type == src[1].type &&
491 predicate != BRW_PREDICATE_NONE &&
492 !src[1].abs && !src[1].negate));
493 }
494
495 void
496 fs_reg::init()
497 {
498 memset((void*)this, 0, sizeof(*this));
499 type = BRW_REGISTER_TYPE_UD;
500 stride = 1;
501 }
502
503 /** Generic unset register constructor. */
504 fs_reg::fs_reg()
505 {
506 init();
507 this->file = BAD_FILE;
508 }
509
510 fs_reg::fs_reg(struct ::brw_reg reg) :
511 backend_reg(reg)
512 {
513 this->offset = 0;
514 this->stride = 1;
515 if (this->file == IMM &&
516 (this->type != BRW_REGISTER_TYPE_V &&
517 this->type != BRW_REGISTER_TYPE_UV &&
518 this->type != BRW_REGISTER_TYPE_VF)) {
519 this->stride = 0;
520 }
521 }
522
523 bool
524 fs_reg::equals(const fs_reg &r) const
525 {
526 return (this->backend_reg::equals(r) &&
527 stride == r.stride);
528 }
529
530 bool
531 fs_reg::negative_equals(const fs_reg &r) const
532 {
533 return (this->backend_reg::negative_equals(r) &&
534 stride == r.stride);
535 }
536
537 bool
538 fs_reg::is_contiguous() const
539 {
540 switch (file) {
541 case ARF:
542 case FIXED_GRF:
543 return hstride == BRW_HORIZONTAL_STRIDE_1 &&
544 vstride == width + hstride;
545 case MRF:
546 case VGRF:
547 case ATTR:
548 return stride == 1;
549 case UNIFORM:
550 case IMM:
551 case BAD_FILE:
552 return true;
553 }
554
555 unreachable("Invalid register file");
556 }
557
558 unsigned
559 fs_reg::component_size(unsigned width) const
560 {
561 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
562 hstride == 0 ? 0 :
563 1 << (hstride - 1));
564 return MAX2(width * stride, 1) * type_sz(type);
565 }
566
567 /**
568 * Create a MOV to read the timestamp register.
569 */
570 fs_reg
571 fs_visitor::get_timestamp(const fs_builder &bld)
572 {
573 assert(devinfo->gen >= 7);
574
575 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
576 BRW_ARF_TIMESTAMP,
577 0),
578 BRW_REGISTER_TYPE_UD));
579
580 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
581
582 /* We want to read the 3 fields we care about even if it's not enabled in
583 * the dispatch.
584 */
585 bld.group(4, 0).exec_all().MOV(dst, ts);
586
587 return dst;
588 }
589
590 void
591 fs_visitor::emit_shader_time_begin()
592 {
593 /* We want only the low 32 bits of the timestamp. Since it's running
594 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
595 * which is plenty of time for our purposes. It is identical across the
596 * EUs, but since it's tracking GPU core speed it will increment at a
597 * varying rate as render P-states change.
598 */
599 shader_start_time = component(
600 get_timestamp(bld.annotate("shader time start")), 0);
601 }
602
603 void
604 fs_visitor::emit_shader_time_end()
605 {
606 /* Insert our code just before the final SEND with EOT. */
607 exec_node *end = this->instructions.get_tail();
608 assert(end && ((fs_inst *) end)->eot);
609 const fs_builder ibld = bld.annotate("shader time end")
610 .exec_all().at(NULL, end);
611 const fs_reg timestamp = get_timestamp(ibld);
612
613 /* We only use the low 32 bits of the timestamp - see
614 * emit_shader_time_begin()).
615 *
616 * We could also check if render P-states have changed (or anything
617 * else that might disrupt timing) by setting smear to 2 and checking if
618 * that field is != 0.
619 */
620 const fs_reg shader_end_time = component(timestamp, 0);
621
622 /* Check that there weren't any timestamp reset events (assuming these
623 * were the only two timestamp reads that happened).
624 */
625 const fs_reg reset = component(timestamp, 2);
626 set_condmod(BRW_CONDITIONAL_Z,
627 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
628 ibld.IF(BRW_PREDICATE_NORMAL);
629
630 fs_reg start = shader_start_time;
631 start.negate = true;
632 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
633 BRW_REGISTER_TYPE_UD),
634 0);
635 const fs_builder cbld = ibld.group(1, 0);
636 cbld.group(1, 0).ADD(diff, start, shader_end_time);
637
638 /* If there were no instructions between the two timestamp gets, the diff
639 * is 2 cycles. Remove that overhead, so I can forget about that when
640 * trying to determine the time taken for single instructions.
641 */
642 cbld.ADD(diff, diff, brw_imm_ud(-2u));
643 SHADER_TIME_ADD(cbld, 0, diff);
644 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
645 ibld.emit(BRW_OPCODE_ELSE);
646 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
647 ibld.emit(BRW_OPCODE_ENDIF);
648 }
649
650 void
651 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
652 int shader_time_subindex,
653 fs_reg value)
654 {
655 int index = shader_time_index * 3 + shader_time_subindex;
656 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
657
658 fs_reg payload;
659 if (dispatch_width == 8)
660 payload = vgrf(glsl_type::uvec2_type);
661 else
662 payload = vgrf(glsl_type::uint_type);
663
664 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
665 }
666
667 void
668 fs_visitor::vfail(const char *format, va_list va)
669 {
670 char *msg;
671
672 if (failed)
673 return;
674
675 failed = true;
676
677 msg = ralloc_vasprintf(mem_ctx, format, va);
678 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
679
680 this->fail_msg = msg;
681
682 if (debug_enabled) {
683 fprintf(stderr, "%s", msg);
684 }
685 }
686
687 void
688 fs_visitor::fail(const char *format, ...)
689 {
690 va_list va;
691
692 va_start(va, format);
693 vfail(format, va);
694 va_end(va);
695 }
696
697 /**
698 * Mark this program as impossible to compile with dispatch width greater
699 * than n.
700 *
701 * During the SIMD8 compile (which happens first), we can detect and flag
702 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
703 * SIMD16+ compile altogether.
704 *
705 * During a compile of dispatch width greater than n (if one happens anyway),
706 * this just calls fail().
707 */
708 void
709 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
710 {
711 if (dispatch_width > n) {
712 fail("%s", msg);
713 } else {
714 max_dispatch_width = n;
715 compiler->shader_perf_log(log_data,
716 "Shader dispatch width limited to SIMD%d: %s",
717 n, msg);
718 }
719 }
720
721 /**
722 * Returns true if the instruction has a flag that means it won't
723 * update an entire destination register.
724 *
725 * For example, dead code elimination and live variable analysis want to know
726 * when a write to a variable screens off any preceding values that were in
727 * it.
728 */
729 bool
730 fs_inst::is_partial_write() const
731 {
732 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
733 (this->exec_size * type_sz(this->dst.type)) < 32 ||
734 !this->dst.is_contiguous() ||
735 this->dst.offset % REG_SIZE != 0);
736 }
737
738 unsigned
739 fs_inst::components_read(unsigned i) const
740 {
741 /* Return zero if the source is not present. */
742 if (src[i].file == BAD_FILE)
743 return 0;
744
745 switch (opcode) {
746 case FS_OPCODE_LINTERP:
747 if (i == 0)
748 return 2;
749 else
750 return 1;
751
752 case FS_OPCODE_PIXEL_X:
753 case FS_OPCODE_PIXEL_Y:
754 assert(i == 0);
755 return 2;
756
757 case FS_OPCODE_FB_WRITE_LOGICAL:
758 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
759 /* First/second FB write color. */
760 if (i < 2)
761 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
762 else
763 return 1;
764
765 case SHADER_OPCODE_TEX_LOGICAL:
766 case SHADER_OPCODE_TXD_LOGICAL:
767 case SHADER_OPCODE_TXF_LOGICAL:
768 case SHADER_OPCODE_TXL_LOGICAL:
769 case SHADER_OPCODE_TXS_LOGICAL:
770 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
771 case FS_OPCODE_TXB_LOGICAL:
772 case SHADER_OPCODE_TXF_CMS_LOGICAL:
773 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
774 case SHADER_OPCODE_TXF_UMS_LOGICAL:
775 case SHADER_OPCODE_TXF_MCS_LOGICAL:
776 case SHADER_OPCODE_LOD_LOGICAL:
777 case SHADER_OPCODE_TG4_LOGICAL:
778 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
779 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
780 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
781 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
782 /* Texture coordinates. */
783 if (i == TEX_LOGICAL_SRC_COORDINATE)
784 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
785 /* Texture derivatives. */
786 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
787 opcode == SHADER_OPCODE_TXD_LOGICAL)
788 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
789 /* Texture offset. */
790 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
791 return 2;
792 /* MCS */
793 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
794 return 2;
795 else
796 return 1;
797
798 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
799 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
800 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
801 /* Surface coordinates. */
802 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
803 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
804 /* Surface operation source (ignored for reads). */
805 else if (i == SURFACE_LOGICAL_SRC_DATA)
806 return 0;
807 else
808 return 1;
809
810 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
811 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
812 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
813 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
814 /* Surface coordinates. */
815 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
816 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
817 /* Surface operation source. */
818 else if (i == SURFACE_LOGICAL_SRC_DATA)
819 return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
820 else
821 return 1;
822
823 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
824 assert(src[2].file == IMM);
825 return 1;
826
827 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
828 assert(src[2].file == IMM);
829 return i == 1 ? src[2].ud : 1;
830
831 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
832 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
833 assert(src[2].file == IMM);
834 if (i == 1) {
835 /* Data source */
836 const unsigned op = src[2].ud;
837 switch (op) {
838 case BRW_AOP_INC:
839 case BRW_AOP_DEC:
840 case BRW_AOP_PREDEC:
841 return 0;
842 case BRW_AOP_CMPWR:
843 return 2;
844 default:
845 return 1;
846 }
847 } else {
848 return 1;
849 }
850
851 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
852 assert(src[2].file == IMM);
853 if (i == 1) {
854 /* Data source */
855 const unsigned op = src[2].ud;
856 return op == BRW_AOP_FCMPWR ? 2 : 1;
857 } else {
858 return 1;
859 }
860
861 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
862 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
863 /* Scattered logical opcodes use the following params:
864 * src[0] Surface coordinates
865 * src[1] Surface operation source (ignored for reads)
866 * src[2] Surface
867 * src[3] IMM with always 1 dimension.
868 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
869 */
870 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
871 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
872 return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
873
874 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
875 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
876 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
877 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
878 return 1;
879
880 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
881 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
882 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
883 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
884 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
885 /* Surface coordinates. */
886 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
887 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
888 /* Surface operation source. */
889 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
890 return 2;
891 else if (i == SURFACE_LOGICAL_SRC_DATA &&
892 (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
893 return 0;
894 else
895 return 1;
896 }
897 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
898 return (i == 0 ? 2 : 1);
899
900 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
901 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
902 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
903 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
904 /* Surface coordinates. */
905 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
906 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
907 /* Surface operation source. */
908 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
909 return 2;
910 else
911 return 1;
912 }
913
914 default:
915 return 1;
916 }
917 }
918
919 unsigned
920 fs_inst::size_read(int arg) const
921 {
922 switch (opcode) {
923 case SHADER_OPCODE_SEND:
924 if (arg == 2) {
925 return mlen * REG_SIZE;
926 } else if (arg == 3) {
927 return ex_mlen * REG_SIZE;
928 }
929 break;
930
931 case FS_OPCODE_FB_WRITE:
932 case FS_OPCODE_REP_FB_WRITE:
933 if (arg == 0) {
934 if (base_mrf >= 0)
935 return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
936 else
937 return mlen * REG_SIZE;
938 }
939 break;
940
941 case FS_OPCODE_FB_READ:
942 case SHADER_OPCODE_URB_WRITE_SIMD8:
943 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
944 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
945 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
946 case SHADER_OPCODE_URB_READ_SIMD8:
947 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
948 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
949 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
950 if (arg == 0)
951 return mlen * REG_SIZE;
952 break;
953
954 case FS_OPCODE_SET_SAMPLE_ID:
955 if (arg == 1)
956 return 1;
957 break;
958
959 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
960 /* The payload is actually stored in src1 */
961 if (arg == 1)
962 return mlen * REG_SIZE;
963 break;
964
965 case FS_OPCODE_LINTERP:
966 if (arg == 1)
967 return 16;
968 break;
969
970 case SHADER_OPCODE_LOAD_PAYLOAD:
971 if (arg < this->header_size)
972 return REG_SIZE;
973 break;
974
975 case CS_OPCODE_CS_TERMINATE:
976 case SHADER_OPCODE_BARRIER:
977 return REG_SIZE;
978
979 case SHADER_OPCODE_MOV_INDIRECT:
980 if (arg == 0) {
981 assert(src[2].file == IMM);
982 return src[2].ud;
983 }
984 break;
985
986 default:
987 if (is_tex() && arg == 0 && src[0].file == VGRF)
988 return mlen * REG_SIZE;
989 break;
990 }
991
992 switch (src[arg].file) {
993 case UNIFORM:
994 case IMM:
995 return components_read(arg) * type_sz(src[arg].type);
996 case BAD_FILE:
997 case ARF:
998 case FIXED_GRF:
999 case VGRF:
1000 case ATTR:
1001 return components_read(arg) * src[arg].component_size(exec_size);
1002 case MRF:
1003 unreachable("MRF registers are not allowed as sources");
1004 }
1005 return 0;
1006 }
1007
1008 namespace {
1009 unsigned
1010 predicate_width(brw_predicate predicate)
1011 {
1012 switch (predicate) {
1013 case BRW_PREDICATE_NONE: return 1;
1014 case BRW_PREDICATE_NORMAL: return 1;
1015 case BRW_PREDICATE_ALIGN1_ANY2H: return 2;
1016 case BRW_PREDICATE_ALIGN1_ALL2H: return 2;
1017 case BRW_PREDICATE_ALIGN1_ANY4H: return 4;
1018 case BRW_PREDICATE_ALIGN1_ALL4H: return 4;
1019 case BRW_PREDICATE_ALIGN1_ANY8H: return 8;
1020 case BRW_PREDICATE_ALIGN1_ALL8H: return 8;
1021 case BRW_PREDICATE_ALIGN1_ANY16H: return 16;
1022 case BRW_PREDICATE_ALIGN1_ALL16H: return 16;
1023 case BRW_PREDICATE_ALIGN1_ANY32H: return 32;
1024 case BRW_PREDICATE_ALIGN1_ALL32H: return 32;
1025 default: unreachable("Unsupported predicate");
1026 }
1027 }
1028
1029 /* Return the subset of flag registers that an instruction could
1030 * potentially read or write based on the execution controls and flag
1031 * subregister number of the instruction.
1032 */
1033 unsigned
1034 flag_mask(const fs_inst *inst, unsigned width)
1035 {
1036 assert(util_is_power_of_two_nonzero(width));
1037 const unsigned start = (inst->flag_subreg * 16 + inst->group) &
1038 ~(width - 1);
1039 const unsigned end = start + ALIGN(inst->exec_size, width);
1040 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
1041 }
1042
1043 unsigned
1044 bit_mask(unsigned n)
1045 {
1046 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1047 }
1048
1049 unsigned
1050 flag_mask(const fs_reg &r, unsigned sz)
1051 {
1052 if (r.file == ARF) {
1053 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1054 const unsigned end = start + sz;
1055 return bit_mask(end) & ~bit_mask(start);
1056 } else {
1057 return 0;
1058 }
1059 }
1060 }
1061
1062 unsigned
1063 fs_inst::flags_read(const gen_device_info *devinfo) const
1064 {
1065 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1066 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1067 /* The vertical predication modes combine corresponding bits from
1068 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
1069 */
1070 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
1071 return flag_mask(this, 1) << shift | flag_mask(this, 1);
1072 } else if (predicate) {
1073 return flag_mask(this, predicate_width(predicate));
1074 } else {
1075 unsigned mask = 0;
1076 for (int i = 0; i < sources; i++) {
1077 mask |= flag_mask(src[i], size_read(i));
1078 }
1079 return mask;
1080 }
1081 }
1082
1083 unsigned
1084 fs_inst::flags_written() const
1085 {
1086 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
1087 opcode != BRW_OPCODE_CSEL &&
1088 opcode != BRW_OPCODE_IF &&
1089 opcode != BRW_OPCODE_WHILE)) ||
1090 opcode == FS_OPCODE_FB_WRITE) {
1091 return flag_mask(this, 1);
1092 } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1093 opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) {
1094 return flag_mask(this, 32);
1095 } else {
1096 return flag_mask(dst, size_written);
1097 }
1098 }
1099
1100 /**
1101 * Returns how many MRFs an FS opcode will write over.
1102 *
1103 * Note that this is not the 0 or 1 implied writes in an actual gen
1104 * instruction -- the FS opcodes often generate MOVs in addition.
1105 */
1106 unsigned
1107 fs_inst::implied_mrf_writes() const
1108 {
1109 if (mlen == 0)
1110 return 0;
1111
1112 if (base_mrf == -1)
1113 return 0;
1114
1115 switch (opcode) {
1116 case SHADER_OPCODE_RCP:
1117 case SHADER_OPCODE_RSQ:
1118 case SHADER_OPCODE_SQRT:
1119 case SHADER_OPCODE_EXP2:
1120 case SHADER_OPCODE_LOG2:
1121 case SHADER_OPCODE_SIN:
1122 case SHADER_OPCODE_COS:
1123 return 1 * exec_size / 8;
1124 case SHADER_OPCODE_POW:
1125 case SHADER_OPCODE_INT_QUOTIENT:
1126 case SHADER_OPCODE_INT_REMAINDER:
1127 return 2 * exec_size / 8;
1128 case SHADER_OPCODE_TEX:
1129 case FS_OPCODE_TXB:
1130 case SHADER_OPCODE_TXD:
1131 case SHADER_OPCODE_TXF:
1132 case SHADER_OPCODE_TXF_CMS:
1133 case SHADER_OPCODE_TXF_MCS:
1134 case SHADER_OPCODE_TG4:
1135 case SHADER_OPCODE_TG4_OFFSET:
1136 case SHADER_OPCODE_TXL:
1137 case SHADER_OPCODE_TXS:
1138 case SHADER_OPCODE_LOD:
1139 case SHADER_OPCODE_SAMPLEINFO:
1140 return 1;
1141 case FS_OPCODE_FB_WRITE:
1142 case FS_OPCODE_REP_FB_WRITE:
1143 return src[0].file == BAD_FILE ? 0 : 2;
1144 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1145 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1146 return 1;
1147 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1148 return mlen;
1149 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1150 return mlen;
1151 default:
1152 unreachable("not reached");
1153 }
1154 }
1155
1156 fs_reg
1157 fs_visitor::vgrf(const glsl_type *const type)
1158 {
1159 int reg_width = dispatch_width / 8;
1160 return fs_reg(VGRF,
1161 alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
1162 brw_type_for_base_type(type));
1163 }
1164
1165 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1166 {
1167 init();
1168 this->file = file;
1169 this->nr = nr;
1170 this->type = BRW_REGISTER_TYPE_F;
1171 this->stride = (file == UNIFORM ? 0 : 1);
1172 }
1173
1174 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1175 {
1176 init();
1177 this->file = file;
1178 this->nr = nr;
1179 this->type = type;
1180 this->stride = (file == UNIFORM ? 0 : 1);
1181 }
1182
1183 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1184 * This brings in those uniform definitions
1185 */
1186 void
1187 fs_visitor::import_uniforms(fs_visitor *v)
1188 {
1189 this->push_constant_loc = v->push_constant_loc;
1190 this->pull_constant_loc = v->pull_constant_loc;
1191 this->uniforms = v->uniforms;
1192 this->subgroup_id = v->subgroup_id;
1193 }
1194
1195 void
1196 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1197 {
1198 assert(stage == MESA_SHADER_FRAGMENT);
1199
1200 /* gl_FragCoord.x */
1201 bld.MOV(wpos, this->pixel_x);
1202 wpos = offset(wpos, bld, 1);
1203
1204 /* gl_FragCoord.y */
1205 bld.MOV(wpos, this->pixel_y);
1206 wpos = offset(wpos, bld, 1);
1207
1208 /* gl_FragCoord.z */
1209 if (devinfo->gen >= 6) {
1210 bld.MOV(wpos, fetch_payload_reg(bld, payload.source_depth_reg));
1211 } else {
1212 bld.emit(FS_OPCODE_LINTERP, wpos,
1213 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1214 component(interp_reg(VARYING_SLOT_POS, 2), 0));
1215 }
1216 wpos = offset(wpos, bld, 1);
1217
1218 /* gl_FragCoord.w: Already set up in emit_interpolation */
1219 bld.MOV(wpos, this->wpos_w);
1220 }
1221
1222 enum brw_barycentric_mode
1223 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1224 {
1225 /* Barycentric modes don't make sense for flat inputs. */
1226 assert(mode != INTERP_MODE_FLAT);
1227
1228 unsigned bary;
1229 switch (op) {
1230 case nir_intrinsic_load_barycentric_pixel:
1231 case nir_intrinsic_load_barycentric_at_offset:
1232 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1233 break;
1234 case nir_intrinsic_load_barycentric_centroid:
1235 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1236 break;
1237 case nir_intrinsic_load_barycentric_sample:
1238 case nir_intrinsic_load_barycentric_at_sample:
1239 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1240 break;
1241 default:
1242 unreachable("invalid intrinsic");
1243 }
1244
1245 if (mode == INTERP_MODE_NOPERSPECTIVE)
1246 bary += 3;
1247
1248 return (enum brw_barycentric_mode) bary;
1249 }
1250
1251 /**
1252 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1253 */
1254 static enum brw_barycentric_mode
1255 centroid_to_pixel(enum brw_barycentric_mode bary)
1256 {
1257 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1258 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1259 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1260 }
1261
1262 fs_reg *
1263 fs_visitor::emit_frontfacing_interpolation()
1264 {
1265 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1266
1267 if (devinfo->gen >= 12) {
1268 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
1269
1270 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_W);
1271 bld.ASR(tmp, g1, brw_imm_d(15));
1272 bld.NOT(*reg, tmp);
1273 } else if (devinfo->gen >= 6) {
1274 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1275 * a boolean result from this (~0/true or 0/false).
1276 *
1277 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1278 * this task in only one instruction:
1279 * - a negation source modifier will flip the bit; and
1280 * - a W -> D type conversion will sign extend the bit into the high
1281 * word of the destination.
1282 *
1283 * An ASR 15 fills the low word of the destination.
1284 */
1285 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1286 g0.negate = true;
1287
1288 bld.ASR(*reg, g0, brw_imm_d(15));
1289 } else {
1290 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1291 * a boolean result from this (1/true or 0/false).
1292 *
1293 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1294 * the negation source modifier to flip it. Unfortunately the SHR
1295 * instruction only operates on UD (or D with an abs source modifier)
1296 * sources without negation.
1297 *
1298 * Instead, use ASR (which will give ~0/true or 0/false).
1299 */
1300 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1301 g1_6.negate = true;
1302
1303 bld.ASR(*reg, g1_6, brw_imm_d(31));
1304 }
1305
1306 return reg;
1307 }
1308
1309 void
1310 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1311 {
1312 assert(stage == MESA_SHADER_FRAGMENT);
1313 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1314 assert(dst.type == BRW_REGISTER_TYPE_F);
1315
1316 if (wm_prog_data->persample_dispatch) {
1317 /* Convert int_sample_pos to floating point */
1318 bld.MOV(dst, int_sample_pos);
1319 /* Scale to the range [0, 1] */
1320 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1321 }
1322 else {
1323 /* From ARB_sample_shading specification:
1324 * "When rendering to a non-multisample buffer, or if multisample
1325 * rasterization is disabled, gl_SamplePosition will always be
1326 * (0.5, 0.5).
1327 */
1328 bld.MOV(dst, brw_imm_f(0.5f));
1329 }
1330 }
1331
1332 fs_reg *
1333 fs_visitor::emit_samplepos_setup()
1334 {
1335 assert(devinfo->gen >= 6);
1336
1337 const fs_builder abld = bld.annotate("compute sample position");
1338 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1339 fs_reg pos = *reg;
1340 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1341 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1342
1343 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1344 * mode will be enabled.
1345 *
1346 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1347 * R31.1:0 Position Offset X/Y for Slot[3:0]
1348 * R31.3:2 Position Offset X/Y for Slot[7:4]
1349 * .....
1350 *
1351 * The X, Y sample positions come in as bytes in thread payload. So, read
1352 * the positions using vstride=16, width=8, hstride=2.
1353 */
1354 const fs_reg sample_pos_reg =
1355 fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1356
1357 /* Compute gl_SamplePosition.x */
1358 abld.MOV(int_sample_x, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 0));
1359 compute_sample_position(offset(pos, abld, 0), int_sample_x);
1360
1361 /* Compute gl_SamplePosition.y */
1362 abld.MOV(int_sample_y, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 1));
1363 compute_sample_position(offset(pos, abld, 1), int_sample_y);
1364 return reg;
1365 }
1366
1367 fs_reg *
1368 fs_visitor::emit_sampleid_setup()
1369 {
1370 assert(stage == MESA_SHADER_FRAGMENT);
1371 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1372 assert(devinfo->gen >= 6);
1373
1374 const fs_builder abld = bld.annotate("compute sample id");
1375 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1376
1377 if (!key->multisample_fbo) {
1378 /* As per GL_ARB_sample_shading specification:
1379 * "When rendering to a non-multisample buffer, or if multisample
1380 * rasterization is disabled, gl_SampleID will always be zero."
1381 */
1382 abld.MOV(*reg, brw_imm_d(0));
1383 } else if (devinfo->gen >= 8) {
1384 /* Sample ID comes in as 4-bit numbers in g1.0:
1385 *
1386 * 15:12 Slot 3 SampleID (only used in SIMD16)
1387 * 11:8 Slot 2 SampleID (only used in SIMD16)
1388 * 7:4 Slot 1 SampleID
1389 * 3:0 Slot 0 SampleID
1390 *
1391 * Each slot corresponds to four channels, so we want to replicate each
1392 * half-byte value to 4 channels in a row:
1393 *
1394 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1395 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1396 *
1397 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1398 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1399 *
1400 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1401 * channels to read the first byte (7:0), and the second group of 8
1402 * channels to read the second byte (15:8). Then, we shift right by
1403 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1404 * values into place. Finally, we AND with 0xf to keep the low nibble.
1405 *
1406 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1407 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1408 *
1409 * TODO: These payload bits exist on Gen7 too, but they appear to always
1410 * be zero, so this code fails to work. We should find out why.
1411 */
1412 const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1413
1414 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1415 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1416 hbld.SHR(offset(tmp, hbld, i),
1417 stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1418 1, 8, 0),
1419 brw_imm_v(0x44440000));
1420 }
1421
1422 abld.AND(*reg, tmp, brw_imm_w(0xf));
1423 } else {
1424 const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1425 const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1426
1427 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1428 * 8x multisampling, subspan 0 will represent sample N (where N
1429 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1430 * 7. We can find the value of N by looking at R0.0 bits 7:6
1431 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1432 * (since samples are always delivered in pairs). That is, we
1433 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1434 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1435 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1436 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1437 * populating a temporary variable with the sequence (0, 1, 2, 3),
1438 * and then reading from it using vstride=1, width=4, hstride=0.
1439 * These computations hold good for 4x multisampling as well.
1440 *
1441 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1442 * the first four slots are sample 0 of subspan 0; the next four
1443 * are sample 1 of subspan 0; the third group is sample 0 of
1444 * subspan 1, and finally sample 1 of subspan 1.
1445 */
1446
1447 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1448 * accomodate 16x MSAA.
1449 */
1450 abld.exec_all().group(1, 0)
1451 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1452 brw_imm_ud(0xc0));
1453 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1454
1455 /* This works for SIMD8-SIMD16. It also works for SIMD32 but only if we
1456 * can assume 4x MSAA. Disallow it on IVB+
1457 *
1458 * FINISHME: One day, we could come up with a way to do this that
1459 * actually works on gen7.
1460 */
1461 if (devinfo->gen >= 7)
1462 limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gen7");
1463 abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1464
1465 /* This special instruction takes care of setting vstride=1,
1466 * width=4, hstride=0 of t2 during an ADD instruction.
1467 */
1468 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1469 }
1470
1471 return reg;
1472 }
1473
1474 fs_reg *
1475 fs_visitor::emit_samplemaskin_setup()
1476 {
1477 assert(stage == MESA_SHADER_FRAGMENT);
1478 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1479 assert(devinfo->gen >= 6);
1480
1481 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1482
1483 fs_reg coverage_mask =
1484 fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1485
1486 if (wm_prog_data->persample_dispatch) {
1487 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1488 * and a mask representing which sample is being processed by the
1489 * current shader invocation.
1490 *
1491 * From the OES_sample_variables specification:
1492 * "When per-sample shading is active due to the use of a fragment input
1493 * qualified by "sample" or due to the use of the gl_SampleID or
1494 * gl_SamplePosition variables, only the bit for the current sample is
1495 * set in gl_SampleMaskIn."
1496 */
1497 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1498
1499 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1500 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1501
1502 fs_reg one = vgrf(glsl_type::int_type);
1503 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1504 abld.MOV(one, brw_imm_d(1));
1505 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1506 abld.AND(*reg, enabled_mask, coverage_mask);
1507 } else {
1508 /* In per-pixel mode, the coverage mask is sufficient. */
1509 *reg = coverage_mask;
1510 }
1511 return reg;
1512 }
1513
1514 fs_reg
1515 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1516 {
1517 if (!src.abs && !src.negate)
1518 return src;
1519
1520 fs_reg temp = bld.vgrf(src.type);
1521 bld.MOV(temp, src);
1522
1523 return temp;
1524 }
1525
1526 void
1527 fs_visitor::emit_discard_jump()
1528 {
1529 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1530
1531 /* For performance, after a discard, jump to the end of the
1532 * shader if all relevant channels have been discarded.
1533 */
1534 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1535 discard_jump->flag_subreg = 1;
1536
1537 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1538 discard_jump->predicate_inverse = true;
1539 }
1540
1541 void
1542 fs_visitor::emit_gs_thread_end()
1543 {
1544 assert(stage == MESA_SHADER_GEOMETRY);
1545
1546 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1547
1548 if (gs_compile->control_data_header_size_bits > 0) {
1549 emit_gs_control_data_bits(this->final_gs_vertex_count);
1550 }
1551
1552 const fs_builder abld = bld.annotate("thread end");
1553 fs_inst *inst;
1554
1555 if (gs_prog_data->static_vertex_count != -1) {
1556 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1557 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1558 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1559 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1560 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1561 prev->eot = true;
1562
1563 /* Delete now dead instructions. */
1564 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1565 if (dead == prev)
1566 break;
1567 dead->remove();
1568 }
1569 return;
1570 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1571 break;
1572 }
1573 }
1574 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1575 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1576 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1577 inst->mlen = 1;
1578 } else {
1579 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1580 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1581 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1582 sources[1] = this->final_gs_vertex_count;
1583 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1584 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1585 inst->mlen = 2;
1586 }
1587 inst->eot = true;
1588 inst->offset = 0;
1589 }
1590
1591 void
1592 fs_visitor::assign_curb_setup()
1593 {
1594 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1595
1596 unsigned ubo_push_length = 0;
1597 unsigned ubo_push_start[4];
1598 for (int i = 0; i < 4; i++) {
1599 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1600 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1601 }
1602
1603 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1604
1605 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1606 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1607 for (unsigned int i = 0; i < inst->sources; i++) {
1608 if (inst->src[i].file == UNIFORM) {
1609 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1610 int constant_nr;
1611 if (inst->src[i].nr >= UBO_START) {
1612 /* constant_nr is in 32-bit units, the rest are in bytes */
1613 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1614 inst->src[i].offset / 4;
1615 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1616 constant_nr = push_constant_loc[uniform_nr];
1617 } else {
1618 /* Section 5.11 of the OpenGL 4.1 spec says:
1619 * "Out-of-bounds reads return undefined values, which include
1620 * values from other variables of the active program or zero."
1621 * Just return the first push constant.
1622 */
1623 constant_nr = 0;
1624 }
1625
1626 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1627 constant_nr / 8,
1628 constant_nr % 8);
1629 brw_reg.abs = inst->src[i].abs;
1630 brw_reg.negate = inst->src[i].negate;
1631
1632 assert(inst->src[i].stride == 0);
1633 inst->src[i] = byte_offset(
1634 retype(brw_reg, inst->src[i].type),
1635 inst->src[i].offset % 4);
1636 }
1637 }
1638 }
1639
1640 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1641 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1642 }
1643
1644 static void
1645 calculate_urb_setup(const struct gen_device_info *devinfo,
1646 const struct brw_wm_prog_key *key,
1647 struct brw_wm_prog_data *prog_data,
1648 const nir_shader *nir)
1649 {
1650 memset(prog_data->urb_setup, -1,
1651 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1652
1653 int urb_next = 0;
1654 /* Figure out where each of the incoming setup attributes lands. */
1655 if (devinfo->gen >= 6) {
1656 if (util_bitcount64(nir->info.inputs_read &
1657 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1658 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1659 * first 16 varying inputs, so we can put them wherever we want.
1660 * Just put them in order.
1661 *
1662 * This is useful because it means that (a) inputs not used by the
1663 * fragment shader won't take up valuable register space, and (b) we
1664 * won't have to recompile the fragment shader if it gets paired with
1665 * a different vertex (or geometry) shader.
1666 */
1667 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1668 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1669 BITFIELD64_BIT(i)) {
1670 prog_data->urb_setup[i] = urb_next++;
1671 }
1672 }
1673 } else {
1674 /* We have enough input varyings that the SF/SBE pipeline stage can't
1675 * arbitrarily rearrange them to suit our whim; we have to put them
1676 * in an order that matches the output of the previous pipeline stage
1677 * (geometry or vertex shader).
1678 */
1679 struct brw_vue_map prev_stage_vue_map;
1680 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1681 key->input_slots_valid,
1682 nir->info.separate_shader);
1683
1684 int first_slot =
1685 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1686 &prev_stage_vue_map);
1687
1688 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1689 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1690 slot++) {
1691 int varying = prev_stage_vue_map.slot_to_varying[slot];
1692 if (varying != BRW_VARYING_SLOT_PAD &&
1693 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1694 BITFIELD64_BIT(varying))) {
1695 prog_data->urb_setup[varying] = slot - first_slot;
1696 }
1697 }
1698 urb_next = prev_stage_vue_map.num_slots - first_slot;
1699 }
1700 } else {
1701 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1702 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1703 /* Point size is packed into the header, not as a general attribute */
1704 if (i == VARYING_SLOT_PSIZ)
1705 continue;
1706
1707 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1708 /* The back color slot is skipped when the front color is
1709 * also written to. In addition, some slots can be
1710 * written in the vertex shader and not read in the
1711 * fragment shader. So the register number must always be
1712 * incremented, mapped or not.
1713 */
1714 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1715 prog_data->urb_setup[i] = urb_next;
1716 urb_next++;
1717 }
1718 }
1719
1720 /*
1721 * It's a FS only attribute, and we did interpolation for this attribute
1722 * in SF thread. So, count it here, too.
1723 *
1724 * See compile_sf_prog() for more info.
1725 */
1726 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1727 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1728 }
1729
1730 prog_data->num_varying_inputs = urb_next;
1731 }
1732
1733 void
1734 fs_visitor::assign_urb_setup()
1735 {
1736 assert(stage == MESA_SHADER_FRAGMENT);
1737 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1738
1739 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1740
1741 /* Offset all the urb_setup[] index by the actual position of the
1742 * setup regs, now that the location of the constants has been chosen.
1743 */
1744 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1745 for (int i = 0; i < inst->sources; i++) {
1746 if (inst->src[i].file == ATTR) {
1747 /* ATTR regs in the FS are in units of logical scalar inputs each
1748 * of which consumes half of a GRF register.
1749 */
1750 assert(inst->src[i].offset < REG_SIZE / 2);
1751 const unsigned grf = urb_start + inst->src[i].nr / 2;
1752 const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1753 inst->src[i].offset;
1754 const unsigned width = inst->src[i].stride == 0 ?
1755 1 : MIN2(inst->exec_size, 8);
1756 struct brw_reg reg = stride(
1757 byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1758 offset),
1759 width * inst->src[i].stride,
1760 width, inst->src[i].stride);
1761 reg.abs = inst->src[i].abs;
1762 reg.negate = inst->src[i].negate;
1763 inst->src[i] = reg;
1764 }
1765 }
1766 }
1767
1768 /* Each attribute is 4 setup channels, each of which is half a reg. */
1769 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1770 }
1771
1772 void
1773 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1774 {
1775 for (int i = 0; i < inst->sources; i++) {
1776 if (inst->src[i].file == ATTR) {
1777 int grf = payload.num_regs +
1778 prog_data->curb_read_length +
1779 inst->src[i].nr +
1780 inst->src[i].offset / REG_SIZE;
1781
1782 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1783 *
1784 * VertStride must be used to cross GRF register boundaries. This
1785 * rule implies that elements within a 'Width' cannot cross GRF
1786 * boundaries.
1787 *
1788 * So, for registers that are large enough, we have to split the exec
1789 * size in two and trust the compression state to sort it out.
1790 */
1791 unsigned total_size = inst->exec_size *
1792 inst->src[i].stride *
1793 type_sz(inst->src[i].type);
1794
1795 assert(total_size <= 2 * REG_SIZE);
1796 const unsigned exec_size =
1797 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1798
1799 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1800 struct brw_reg reg =
1801 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1802 inst->src[i].offset % REG_SIZE),
1803 exec_size * inst->src[i].stride,
1804 width, inst->src[i].stride);
1805 reg.abs = inst->src[i].abs;
1806 reg.negate = inst->src[i].negate;
1807
1808 inst->src[i] = reg;
1809 }
1810 }
1811 }
1812
1813 void
1814 fs_visitor::assign_vs_urb_setup()
1815 {
1816 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1817
1818 assert(stage == MESA_SHADER_VERTEX);
1819
1820 /* Each attribute is 4 regs. */
1821 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1822
1823 assert(vs_prog_data->base.urb_read_length <= 15);
1824
1825 /* Rewrite all ATTR file references to the hw grf that they land in. */
1826 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1827 convert_attr_sources_to_hw_regs(inst);
1828 }
1829 }
1830
1831 void
1832 fs_visitor::assign_tcs_urb_setup()
1833 {
1834 assert(stage == MESA_SHADER_TESS_CTRL);
1835
1836 /* Rewrite all ATTR file references to HW_REGs. */
1837 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1838 convert_attr_sources_to_hw_regs(inst);
1839 }
1840 }
1841
1842 void
1843 fs_visitor::assign_tes_urb_setup()
1844 {
1845 assert(stage == MESA_SHADER_TESS_EVAL);
1846
1847 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1848
1849 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1850
1851 /* Rewrite all ATTR file references to HW_REGs. */
1852 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1853 convert_attr_sources_to_hw_regs(inst);
1854 }
1855 }
1856
1857 void
1858 fs_visitor::assign_gs_urb_setup()
1859 {
1860 assert(stage == MESA_SHADER_GEOMETRY);
1861
1862 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1863
1864 first_non_payload_grf +=
1865 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1866
1867 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1868 /* Rewrite all ATTR file references to GRFs. */
1869 convert_attr_sources_to_hw_regs(inst);
1870 }
1871 }
1872
1873
1874 /**
1875 * Split large virtual GRFs into separate components if we can.
1876 *
1877 * This is mostly duplicated with what brw_fs_vector_splitting does,
1878 * but that's really conservative because it's afraid of doing
1879 * splitting that doesn't result in real progress after the rest of
1880 * the optimization phases, which would cause infinite looping in
1881 * optimization. We can do it once here, safely. This also has the
1882 * opportunity to split interpolated values, or maybe even uniforms,
1883 * which we don't have at the IR level.
1884 *
1885 * We want to split, because virtual GRFs are what we register
1886 * allocate and spill (due to contiguousness requirements for some
1887 * instructions), and they're what we naturally generate in the
1888 * codegen process, but most virtual GRFs don't actually need to be
1889 * contiguous sets of GRFs. If we split, we'll end up with reduced
1890 * live intervals and better dead code elimination and coalescing.
1891 */
1892 void
1893 fs_visitor::split_virtual_grfs()
1894 {
1895 /* Compact the register file so we eliminate dead vgrfs. This
1896 * only defines split points for live registers, so if we have
1897 * too large dead registers they will hit assertions later.
1898 */
1899 compact_virtual_grfs();
1900
1901 int num_vars = this->alloc.count;
1902
1903 /* Count the total number of registers */
1904 int reg_count = 0;
1905 int vgrf_to_reg[num_vars];
1906 for (int i = 0; i < num_vars; i++) {
1907 vgrf_to_reg[i] = reg_count;
1908 reg_count += alloc.sizes[i];
1909 }
1910
1911 /* An array of "split points". For each register slot, this indicates
1912 * if this slot can be separated from the previous slot. Every time an
1913 * instruction uses multiple elements of a register (as a source or
1914 * destination), we mark the used slots as inseparable. Then we go
1915 * through and split the registers into the smallest pieces we can.
1916 */
1917 bool *split_points = new bool[reg_count];
1918 memset(split_points, 0, reg_count * sizeof(*split_points));
1919
1920 /* Mark all used registers as fully splittable */
1921 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1922 if (inst->dst.file == VGRF) {
1923 int reg = vgrf_to_reg[inst->dst.nr];
1924 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1925 split_points[reg + j] = true;
1926 }
1927
1928 for (int i = 0; i < inst->sources; i++) {
1929 if (inst->src[i].file == VGRF) {
1930 int reg = vgrf_to_reg[inst->src[i].nr];
1931 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1932 split_points[reg + j] = true;
1933 }
1934 }
1935 }
1936
1937 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1938 /* We fix up undef instructions later */
1939 if (inst->opcode == SHADER_OPCODE_UNDEF) {
1940 /* UNDEF instructions are currently only used to undef entire
1941 * registers. We need this invariant later when we split them.
1942 */
1943 assert(inst->dst.file == VGRF);
1944 assert(inst->dst.offset == 0);
1945 assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE);
1946 continue;
1947 }
1948
1949 if (inst->dst.file == VGRF) {
1950 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1951 for (unsigned j = 1; j < regs_written(inst); j++)
1952 split_points[reg + j] = false;
1953 }
1954 for (int i = 0; i < inst->sources; i++) {
1955 if (inst->src[i].file == VGRF) {
1956 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1957 for (unsigned j = 1; j < regs_read(inst, i); j++)
1958 split_points[reg + j] = false;
1959 }
1960 }
1961 }
1962
1963 int *new_virtual_grf = new int[reg_count];
1964 int *new_reg_offset = new int[reg_count];
1965
1966 int reg = 0;
1967 for (int i = 0; i < num_vars; i++) {
1968 /* The first one should always be 0 as a quick sanity check. */
1969 assert(split_points[reg] == false);
1970
1971 /* j = 0 case */
1972 new_reg_offset[reg] = 0;
1973 reg++;
1974 int offset = 1;
1975
1976 /* j > 0 case */
1977 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1978 /* If this is a split point, reset the offset to 0 and allocate a
1979 * new virtual GRF for the previous offset many registers
1980 */
1981 if (split_points[reg]) {
1982 assert(offset <= MAX_VGRF_SIZE);
1983 int grf = alloc.allocate(offset);
1984 for (int k = reg - offset; k < reg; k++)
1985 new_virtual_grf[k] = grf;
1986 offset = 0;
1987 }
1988 new_reg_offset[reg] = offset;
1989 offset++;
1990 reg++;
1991 }
1992
1993 /* The last one gets the original register number */
1994 assert(offset <= MAX_VGRF_SIZE);
1995 alloc.sizes[i] = offset;
1996 for (int k = reg - offset; k < reg; k++)
1997 new_virtual_grf[k] = i;
1998 }
1999 assert(reg == reg_count);
2000
2001 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2002 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2003 const fs_builder ibld(this, block, inst);
2004 assert(inst->size_written % REG_SIZE == 0);
2005 unsigned reg_offset = 0;
2006 while (reg_offset < inst->size_written / REG_SIZE) {
2007 reg = vgrf_to_reg[inst->dst.nr] + reg_offset;
2008 ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type));
2009 reg_offset += alloc.sizes[new_virtual_grf[reg]];
2010 }
2011 inst->remove(block);
2012 continue;
2013 }
2014
2015 if (inst->dst.file == VGRF) {
2016 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2017 inst->dst.nr = new_virtual_grf[reg];
2018 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
2019 inst->dst.offset % REG_SIZE;
2020 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2021 }
2022 for (int i = 0; i < inst->sources; i++) {
2023 if (inst->src[i].file == VGRF) {
2024 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2025 inst->src[i].nr = new_virtual_grf[reg];
2026 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
2027 inst->src[i].offset % REG_SIZE;
2028 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2029 }
2030 }
2031 }
2032 invalidate_live_intervals();
2033
2034 delete[] split_points;
2035 delete[] new_virtual_grf;
2036 delete[] new_reg_offset;
2037 }
2038
2039 /**
2040 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
2041 *
2042 * During code generation, we create tons of temporary variables, many of
2043 * which get immediately killed and are never used again. Yet, in later
2044 * optimization and analysis passes, such as compute_live_intervals, we need
2045 * to loop over all the virtual GRFs. Compacting them can save a lot of
2046 * overhead.
2047 */
2048 bool
2049 fs_visitor::compact_virtual_grfs()
2050 {
2051 bool progress = false;
2052 int *remap_table = new int[this->alloc.count];
2053 memset(remap_table, -1, this->alloc.count * sizeof(int));
2054
2055 /* Mark which virtual GRFs are used. */
2056 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2057 if (inst->dst.file == VGRF)
2058 remap_table[inst->dst.nr] = 0;
2059
2060 for (int i = 0; i < inst->sources; i++) {
2061 if (inst->src[i].file == VGRF)
2062 remap_table[inst->src[i].nr] = 0;
2063 }
2064 }
2065
2066 /* Compact the GRF arrays. */
2067 int new_index = 0;
2068 for (unsigned i = 0; i < this->alloc.count; i++) {
2069 if (remap_table[i] == -1) {
2070 /* We just found an unused register. This means that we are
2071 * actually going to compact something.
2072 */
2073 progress = true;
2074 } else {
2075 remap_table[i] = new_index;
2076 alloc.sizes[new_index] = alloc.sizes[i];
2077 invalidate_live_intervals();
2078 ++new_index;
2079 }
2080 }
2081
2082 this->alloc.count = new_index;
2083
2084 /* Patch all the instructions to use the newly renumbered registers */
2085 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2086 if (inst->dst.file == VGRF)
2087 inst->dst.nr = remap_table[inst->dst.nr];
2088
2089 for (int i = 0; i < inst->sources; i++) {
2090 if (inst->src[i].file == VGRF)
2091 inst->src[i].nr = remap_table[inst->src[i].nr];
2092 }
2093 }
2094
2095 /* Patch all the references to delta_xy, since they're used in register
2096 * allocation. If they're unused, switch them to BAD_FILE so we don't
2097 * think some random VGRF is delta_xy.
2098 */
2099 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2100 if (delta_xy[i].file == VGRF) {
2101 if (remap_table[delta_xy[i].nr] != -1) {
2102 delta_xy[i].nr = remap_table[delta_xy[i].nr];
2103 } else {
2104 delta_xy[i].file = BAD_FILE;
2105 }
2106 }
2107 }
2108
2109 delete[] remap_table;
2110
2111 return progress;
2112 }
2113
2114 static int
2115 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
2116 {
2117 if (prog_data->nr_params == 0)
2118 return -1;
2119
2120 /* The local thread id is always the last parameter in the list */
2121 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2122 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2123 return prog_data->nr_params - 1;
2124
2125 return -1;
2126 }
2127
2128 /**
2129 * Struct for handling complex alignments.
2130 *
2131 * A complex alignment is stored as multiplier and an offset. A value is
2132 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
2133 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
2134 * following:
2135 *
2136 * N | cplx_align_apply({8, 2}, N)
2137 * ----+-----------------------------
2138 * 4 | 6
2139 * 6 | 6
2140 * 8 | 14
2141 * 10 | 14
2142 * 12 | 14
2143 * 14 | 14
2144 * 16 | 22
2145 */
2146 struct cplx_align {
2147 unsigned mul:4;
2148 unsigned offset:4;
2149 };
2150
2151 #define CPLX_ALIGN_MAX_MUL 8
2152
2153 static void
2154 cplx_align_assert_sane(struct cplx_align a)
2155 {
2156 assert(a.mul > 0 && util_is_power_of_two_nonzero(a.mul));
2157 assert(a.offset < a.mul);
2158 }
2159
2160 /**
2161 * Combines two alignments to produce a least multiple of sorts.
2162 *
2163 * The returned alignment is the smallest (in terms of multiplier) such that
2164 * anything aligned to both a and b will be aligned to the new alignment.
2165 * This function will assert-fail if a and b are not compatible, i.e. if the
2166 * offset parameters are such that no common alignment is possible.
2167 */
2168 static struct cplx_align
2169 cplx_align_combine(struct cplx_align a, struct cplx_align b)
2170 {
2171 cplx_align_assert_sane(a);
2172 cplx_align_assert_sane(b);
2173
2174 /* Assert that the alignments agree. */
2175 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
2176
2177 return a.mul > b.mul ? a : b;
2178 }
2179
2180 /**
2181 * Apply a complex alignment
2182 *
2183 * This function will return the smallest number greater than or equal to
2184 * offset that is aligned to align.
2185 */
2186 static unsigned
2187 cplx_align_apply(struct cplx_align align, unsigned offset)
2188 {
2189 return ALIGN(offset - align.offset, align.mul) + align.offset;
2190 }
2191
2192 #define UNIFORM_SLOT_SIZE 4
2193
2194 struct uniform_slot_info {
2195 /** True if the given uniform slot is live */
2196 unsigned is_live:1;
2197
2198 /** True if this slot and the next slot must remain contiguous */
2199 unsigned contiguous:1;
2200
2201 struct cplx_align align;
2202 };
2203
2204 static void
2205 mark_uniform_slots_read(struct uniform_slot_info *slots,
2206 unsigned num_slots, unsigned alignment)
2207 {
2208 assert(alignment > 0 && util_is_power_of_two_nonzero(alignment));
2209 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2210
2211 /* We can't align a slot to anything less than the slot size */
2212 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2213
2214 struct cplx_align align = {alignment, 0};
2215 cplx_align_assert_sane(align);
2216
2217 for (unsigned i = 0; i < num_slots; i++) {
2218 slots[i].is_live = true;
2219 if (i < num_slots - 1)
2220 slots[i].contiguous = true;
2221
2222 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2223 if (slots[i].align.mul == 0) {
2224 slots[i].align = align;
2225 } else {
2226 slots[i].align = cplx_align_combine(slots[i].align, align);
2227 }
2228 }
2229 }
2230
2231 /**
2232 * Assign UNIFORM file registers to either push constants or pull constants.
2233 *
2234 * We allow a fragment shader to have more than the specified minimum
2235 * maximum number of fragment shader uniform components (64). If
2236 * there are too many of these, they'd fill up all of register space.
2237 * So, this will push some of them out to the pull constant buffer and
2238 * update the program to load them.
2239 */
2240 void
2241 fs_visitor::assign_constant_locations()
2242 {
2243 /* Only the first compile gets to decide on locations. */
2244 if (push_constant_loc) {
2245 assert(pull_constant_loc);
2246 return;
2247 }
2248
2249 if (compiler->compact_params) {
2250 struct uniform_slot_info slots[uniforms];
2251 memset(slots, 0, sizeof(slots));
2252
2253 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2254 for (int i = 0 ; i < inst->sources; i++) {
2255 if (inst->src[i].file != UNIFORM)
2256 continue;
2257
2258 /* NIR tightly packs things so the uniform number might not be
2259 * aligned (if we have a double right after a float, for
2260 * instance). This is fine because the process of re-arranging
2261 * them will ensure that things are properly aligned. The offset
2262 * into that uniform, however, must be aligned.
2263 *
2264 * In Vulkan, we have explicit offsets but everything is crammed
2265 * into a single "variable" so inst->src[i].nr will always be 0.
2266 * Everything will be properly aligned relative to that one base.
2267 */
2268 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2269
2270 unsigned u = inst->src[i].nr +
2271 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2272
2273 if (u >= uniforms)
2274 continue;
2275
2276 unsigned slots_read;
2277 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2278 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2279 } else {
2280 unsigned bytes_read = inst->components_read(i) *
2281 type_sz(inst->src[i].type);
2282 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2283 }
2284
2285 assert(u + slots_read <= uniforms);
2286 mark_uniform_slots_read(&slots[u], slots_read,
2287 type_sz(inst->src[i].type));
2288 }
2289 }
2290
2291 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2292
2293 /* Only allow 16 registers (128 uniform components) as push constants.
2294 *
2295 * Just demote the end of the list. We could probably do better
2296 * here, demoting things that are rarely used in the program first.
2297 *
2298 * If changing this value, note the limitation about total_regs in
2299 * brw_curbe.c.
2300 */
2301 unsigned int max_push_components = 16 * 8;
2302 if (subgroup_id_index >= 0)
2303 max_push_components--; /* Save a slot for the thread ID */
2304
2305 /* We push small arrays, but no bigger than 16 floats. This is big
2306 * enough for a vec4 but hopefully not large enough to push out other
2307 * stuff. We should probably use a better heuristic at some point.
2308 */
2309 const unsigned int max_chunk_size = 16;
2310
2311 unsigned int num_push_constants = 0;
2312 unsigned int num_pull_constants = 0;
2313
2314 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2315 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2316
2317 /* Default to -1 meaning no location */
2318 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2319 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2320
2321 int chunk_start = -1;
2322 struct cplx_align align;
2323 for (unsigned u = 0; u < uniforms; u++) {
2324 if (!slots[u].is_live) {
2325 assert(chunk_start == -1);
2326 continue;
2327 }
2328
2329 /* Skip subgroup_id_index to put it in the last push register. */
2330 if (subgroup_id_index == (int)u)
2331 continue;
2332
2333 if (chunk_start == -1) {
2334 chunk_start = u;
2335 align = slots[u].align;
2336 } else {
2337 /* Offset into the chunk */
2338 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2339
2340 /* Shift the slot alignment down by the chunk offset so it is
2341 * comparable with the base chunk alignment.
2342 */
2343 struct cplx_align slot_align = slots[u].align;
2344 slot_align.offset =
2345 (slot_align.offset - chunk_offset) & (align.mul - 1);
2346
2347 align = cplx_align_combine(align, slot_align);
2348 }
2349
2350 /* Sanity check the alignment */
2351 cplx_align_assert_sane(align);
2352
2353 if (slots[u].contiguous)
2354 continue;
2355
2356 /* Adjust the alignment to be in terms of slots, not bytes */
2357 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2358 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2359 align.mul /= UNIFORM_SLOT_SIZE;
2360 align.offset /= UNIFORM_SLOT_SIZE;
2361
2362 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2363 unsigned chunk_size = u - chunk_start + 1;
2364 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2365 (chunk_size < max_chunk_size &&
2366 push_start_align + chunk_size <= max_push_components)) {
2367 /* Align up the number of push constants */
2368 num_push_constants = push_start_align;
2369 for (unsigned i = 0; i < chunk_size; i++)
2370 push_constant_loc[chunk_start + i] = num_push_constants++;
2371 } else {
2372 /* We need to pull this one */
2373 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2374 for (unsigned i = 0; i < chunk_size; i++)
2375 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2376 }
2377
2378 /* Reset the chunk and start again */
2379 chunk_start = -1;
2380 }
2381
2382 /* Add the CS local thread ID uniform at the end of the push constants */
2383 if (subgroup_id_index >= 0)
2384 push_constant_loc[subgroup_id_index] = num_push_constants++;
2385
2386 /* As the uniforms are going to be reordered, stash the old array and
2387 * create two new arrays for push/pull params.
2388 */
2389 uint32_t *param = stage_prog_data->param;
2390 stage_prog_data->nr_params = num_push_constants;
2391 if (num_push_constants) {
2392 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2393 num_push_constants);
2394 } else {
2395 stage_prog_data->param = NULL;
2396 }
2397 assert(stage_prog_data->nr_pull_params == 0);
2398 assert(stage_prog_data->pull_param == NULL);
2399 if (num_pull_constants > 0) {
2400 stage_prog_data->nr_pull_params = num_pull_constants;
2401 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2402 num_pull_constants);
2403 }
2404
2405 /* Up until now, the param[] array has been indexed by reg + offset
2406 * of UNIFORM registers. Move pull constants into pull_param[] and
2407 * condense param[] to only contain the uniforms we chose to push.
2408 *
2409 * NOTE: Because we are condensing the params[] array, we know that
2410 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2411 * having to make a copy.
2412 */
2413 for (unsigned int i = 0; i < uniforms; i++) {
2414 uint32_t value = param[i];
2415 if (pull_constant_loc[i] != -1) {
2416 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2417 } else if (push_constant_loc[i] != -1) {
2418 stage_prog_data->param[push_constant_loc[i]] = value;
2419 }
2420 }
2421 ralloc_free(param);
2422 } else {
2423 /* If we don't want to compact anything, just set up dummy push/pull
2424 * arrays. All the rest of the compiler cares about are these arrays.
2425 */
2426 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2427 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2428
2429 for (unsigned u = 0; u < uniforms; u++)
2430 push_constant_loc[u] = u;
2431
2432 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2433 }
2434
2435 /* Now that we know how many regular uniforms we'll push, reduce the
2436 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2437 */
2438 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2439 for (int i = 0; i < 4; i++) {
2440 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2441
2442 if (push_length + range->length > 64)
2443 range->length = 64 - push_length;
2444
2445 push_length += range->length;
2446 }
2447 assert(push_length <= 64);
2448 }
2449
2450 bool
2451 fs_visitor::get_pull_locs(const fs_reg &src,
2452 unsigned *out_surf_index,
2453 unsigned *out_pull_index)
2454 {
2455 assert(src.file == UNIFORM);
2456
2457 if (src.nr >= UBO_START) {
2458 const struct brw_ubo_range *range =
2459 &prog_data->ubo_ranges[src.nr - UBO_START];
2460
2461 /* If this access is in our (reduced) range, use the push data. */
2462 if (src.offset / 32 < range->length)
2463 return false;
2464
2465 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2466 *out_pull_index = (32 * range->start + src.offset) / 4;
2467
2468 prog_data->has_ubo_pull = true;
2469 return true;
2470 }
2471
2472 const unsigned location = src.nr + src.offset / 4;
2473
2474 if (location < uniforms && pull_constant_loc[location] != -1) {
2475 /* A regular uniform push constant */
2476 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2477 *out_pull_index = pull_constant_loc[location];
2478
2479 prog_data->has_ubo_pull = true;
2480 return true;
2481 }
2482
2483 return false;
2484 }
2485
2486 /**
2487 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2488 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2489 */
2490 void
2491 fs_visitor::lower_constant_loads()
2492 {
2493 unsigned index, pull_index;
2494
2495 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2496 /* Set up the annotation tracking for new generated instructions. */
2497 const fs_builder ibld(this, block, inst);
2498
2499 for (int i = 0; i < inst->sources; i++) {
2500 if (inst->src[i].file != UNIFORM)
2501 continue;
2502
2503 /* We'll handle this case later */
2504 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2505 continue;
2506
2507 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2508 continue;
2509
2510 assert(inst->src[i].stride == 0);
2511
2512 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2513 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2514 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2515 const unsigned base = pull_index * 4;
2516
2517 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2518 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2519
2520 /* Rewrite the instruction to use the temporary VGRF. */
2521 inst->src[i].file = VGRF;
2522 inst->src[i].nr = dst.nr;
2523 inst->src[i].offset = (base & (block_sz - 1)) +
2524 inst->src[i].offset % 4;
2525 }
2526
2527 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2528 inst->src[0].file == UNIFORM) {
2529
2530 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2531 continue;
2532
2533 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2534 brw_imm_ud(index),
2535 inst->src[1],
2536 pull_index * 4);
2537 inst->remove(block);
2538 }
2539 }
2540 invalidate_live_intervals();
2541 }
2542
2543 bool
2544 fs_visitor::opt_algebraic()
2545 {
2546 bool progress = false;
2547
2548 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2549 switch (inst->opcode) {
2550 case BRW_OPCODE_MOV:
2551 if (!devinfo->has_64bit_float &&
2552 !devinfo->has_64bit_int &&
2553 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2554 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2555 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2556 assert(inst->dst.type == inst->src[0].type);
2557 assert(!inst->saturate);
2558 assert(!inst->src[0].abs);
2559 assert(!inst->src[0].negate);
2560 const brw::fs_builder ibld(this, block, inst);
2561
2562 if (inst->src[0].file == IMM) {
2563 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2564 brw_imm_ud(inst->src[0].u64 >> 32));
2565 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2566 brw_imm_ud(inst->src[0].u64));
2567 } else {
2568 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2569 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2570 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2571 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2572 }
2573
2574 inst->remove(block);
2575 progress = true;
2576 }
2577
2578 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2579 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2580 inst->dst.is_null() &&
2581 (inst->src[0].abs || inst->src[0].negate)) {
2582 inst->src[0].abs = false;
2583 inst->src[0].negate = false;
2584 progress = true;
2585 break;
2586 }
2587
2588 if (inst->src[0].file != IMM)
2589 break;
2590
2591 if (inst->saturate) {
2592 /* Full mixed-type saturates don't happen. However, we can end up
2593 * with things like:
2594 *
2595 * mov.sat(8) g21<1>DF -1F
2596 *
2597 * Other mixed-size-but-same-base-type cases may also be possible.
2598 */
2599 if (inst->dst.type != inst->src[0].type &&
2600 inst->dst.type != BRW_REGISTER_TYPE_DF &&
2601 inst->src[0].type != BRW_REGISTER_TYPE_F)
2602 assert(!"unimplemented: saturate mixed types");
2603
2604 if (brw_saturate_immediate(inst->src[0].type,
2605 &inst->src[0].as_brw_reg())) {
2606 inst->saturate = false;
2607 progress = true;
2608 }
2609 }
2610 break;
2611
2612 case BRW_OPCODE_MUL:
2613 if (inst->src[1].file != IMM)
2614 continue;
2615
2616 /* a * 1.0 = a */
2617 if (inst->src[1].is_one()) {
2618 inst->opcode = BRW_OPCODE_MOV;
2619 inst->src[1] = reg_undef;
2620 progress = true;
2621 break;
2622 }
2623
2624 /* a * -1.0 = -a */
2625 if (inst->src[1].is_negative_one()) {
2626 inst->opcode = BRW_OPCODE_MOV;
2627 inst->src[0].negate = !inst->src[0].negate;
2628 inst->src[1] = reg_undef;
2629 progress = true;
2630 break;
2631 }
2632
2633 if (inst->src[0].file == IMM) {
2634 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2635 inst->opcode = BRW_OPCODE_MOV;
2636 inst->src[0].f *= inst->src[1].f;
2637 inst->src[1] = reg_undef;
2638 progress = true;
2639 break;
2640 }
2641 break;
2642 case BRW_OPCODE_ADD:
2643 if (inst->src[1].file != IMM)
2644 continue;
2645
2646 if (inst->src[0].file == IMM) {
2647 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2648 inst->opcode = BRW_OPCODE_MOV;
2649 inst->src[0].f += inst->src[1].f;
2650 inst->src[1] = reg_undef;
2651 progress = true;
2652 break;
2653 }
2654 break;
2655 case BRW_OPCODE_OR:
2656 if (inst->src[0].equals(inst->src[1]) ||
2657 inst->src[1].is_zero()) {
2658 /* On Gen8+, the OR instruction can have a source modifier that
2659 * performs logical not on the operand. Cases of 'OR r0, ~r1, 0'
2660 * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2661 */
2662 if (inst->src[0].negate) {
2663 inst->opcode = BRW_OPCODE_NOT;
2664 inst->src[0].negate = false;
2665 } else {
2666 inst->opcode = BRW_OPCODE_MOV;
2667 }
2668 inst->src[1] = reg_undef;
2669 progress = true;
2670 break;
2671 }
2672 break;
2673 case BRW_OPCODE_CMP:
2674 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2675 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2676 inst->src[1].is_zero() &&
2677 (inst->src[0].abs || inst->src[0].negate)) {
2678 inst->src[0].abs = false;
2679 inst->src[0].negate = false;
2680 progress = true;
2681 break;
2682 }
2683 break;
2684 case BRW_OPCODE_SEL:
2685 if (!devinfo->has_64bit_float &&
2686 !devinfo->has_64bit_int &&
2687 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2688 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2689 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2690 assert(inst->dst.type == inst->src[0].type);
2691 assert(!inst->saturate);
2692 assert(!inst->src[0].abs && !inst->src[0].negate);
2693 assert(!inst->src[1].abs && !inst->src[1].negate);
2694 const brw::fs_builder ibld(this, block, inst);
2695
2696 set_predicate(inst->predicate,
2697 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2698 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2699 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2700 set_predicate(inst->predicate,
2701 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2702 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2703 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2704
2705 inst->remove(block);
2706 progress = true;
2707 }
2708 if (inst->src[0].equals(inst->src[1])) {
2709 inst->opcode = BRW_OPCODE_MOV;
2710 inst->src[1] = reg_undef;
2711 inst->predicate = BRW_PREDICATE_NONE;
2712 inst->predicate_inverse = false;
2713 progress = true;
2714 } else if (inst->saturate && inst->src[1].file == IMM) {
2715 switch (inst->conditional_mod) {
2716 case BRW_CONDITIONAL_LE:
2717 case BRW_CONDITIONAL_L:
2718 switch (inst->src[1].type) {
2719 case BRW_REGISTER_TYPE_F:
2720 if (inst->src[1].f >= 1.0f) {
2721 inst->opcode = BRW_OPCODE_MOV;
2722 inst->src[1] = reg_undef;
2723 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2724 progress = true;
2725 }
2726 break;
2727 default:
2728 break;
2729 }
2730 break;
2731 case BRW_CONDITIONAL_GE:
2732 case BRW_CONDITIONAL_G:
2733 switch (inst->src[1].type) {
2734 case BRW_REGISTER_TYPE_F:
2735 if (inst->src[1].f <= 0.0f) {
2736 inst->opcode = BRW_OPCODE_MOV;
2737 inst->src[1] = reg_undef;
2738 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2739 progress = true;
2740 }
2741 break;
2742 default:
2743 break;
2744 }
2745 default:
2746 break;
2747 }
2748 }
2749 break;
2750 case BRW_OPCODE_MAD:
2751 if (inst->src[0].type != BRW_REGISTER_TYPE_F ||
2752 inst->src[1].type != BRW_REGISTER_TYPE_F ||
2753 inst->src[2].type != BRW_REGISTER_TYPE_F)
2754 break;
2755 if (inst->src[1].is_one()) {
2756 inst->opcode = BRW_OPCODE_ADD;
2757 inst->src[1] = inst->src[2];
2758 inst->src[2] = reg_undef;
2759 progress = true;
2760 } else if (inst->src[2].is_one()) {
2761 inst->opcode = BRW_OPCODE_ADD;
2762 inst->src[2] = reg_undef;
2763 progress = true;
2764 }
2765 break;
2766 case SHADER_OPCODE_BROADCAST:
2767 if (is_uniform(inst->src[0])) {
2768 inst->opcode = BRW_OPCODE_MOV;
2769 inst->sources = 1;
2770 inst->force_writemask_all = true;
2771 progress = true;
2772 } else if (inst->src[1].file == IMM) {
2773 inst->opcode = BRW_OPCODE_MOV;
2774 /* It's possible that the selected component will be too large and
2775 * overflow the register. This can happen if someone does a
2776 * readInvocation() from GLSL or SPIR-V and provides an OOB
2777 * invocationIndex. If this happens and we some how manage
2778 * to constant fold it in and get here, then component() may cause
2779 * us to start reading outside of the VGRF which will lead to an
2780 * assert later. Instead, just let it wrap around if it goes over
2781 * exec_size.
2782 */
2783 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2784 inst->src[0] = component(inst->src[0], comp);
2785 inst->sources = 1;
2786 inst->force_writemask_all = true;
2787 progress = true;
2788 }
2789 break;
2790
2791 case SHADER_OPCODE_SHUFFLE:
2792 if (is_uniform(inst->src[0])) {
2793 inst->opcode = BRW_OPCODE_MOV;
2794 inst->sources = 1;
2795 progress = true;
2796 } else if (inst->src[1].file == IMM) {
2797 inst->opcode = BRW_OPCODE_MOV;
2798 inst->src[0] = component(inst->src[0],
2799 inst->src[1].ud);
2800 inst->sources = 1;
2801 progress = true;
2802 }
2803 break;
2804
2805 default:
2806 break;
2807 }
2808
2809 /* Swap if src[0] is immediate. */
2810 if (progress && inst->is_commutative()) {
2811 if (inst->src[0].file == IMM) {
2812 fs_reg tmp = inst->src[1];
2813 inst->src[1] = inst->src[0];
2814 inst->src[0] = tmp;
2815 }
2816 }
2817 }
2818 return progress;
2819 }
2820
2821 /**
2822 * Optimize sample messages that have constant zero values for the trailing
2823 * texture coordinates. We can just reduce the message length for these
2824 * instructions instead of reserving a register for it. Trailing parameters
2825 * that aren't sent default to zero anyway. This will cause the dead code
2826 * eliminator to remove the MOV instruction that would otherwise be emitted to
2827 * set up the zero value.
2828 */
2829 bool
2830 fs_visitor::opt_zero_samples()
2831 {
2832 /* Gen4 infers the texturing opcode based on the message length so we can't
2833 * change it.
2834 */
2835 if (devinfo->gen < 5)
2836 return false;
2837
2838 bool progress = false;
2839
2840 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2841 if (!inst->is_tex())
2842 continue;
2843
2844 fs_inst *load_payload = (fs_inst *) inst->prev;
2845
2846 if (load_payload->is_head_sentinel() ||
2847 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2848 continue;
2849
2850 /* We don't want to remove the message header or the first parameter.
2851 * Removing the first parameter is not allowed, see the Haswell PRM
2852 * volume 7, page 149:
2853 *
2854 * "Parameter 0 is required except for the sampleinfo message, which
2855 * has no parameter 0"
2856 */
2857 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2858 load_payload->src[(inst->mlen - inst->header_size) /
2859 (inst->exec_size / 8) +
2860 inst->header_size - 1].is_zero()) {
2861 inst->mlen -= inst->exec_size / 8;
2862 progress = true;
2863 }
2864 }
2865
2866 if (progress)
2867 invalidate_live_intervals();
2868
2869 return progress;
2870 }
2871
2872 /**
2873 * Optimize sample messages which are followed by the final RT write.
2874 *
2875 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2876 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2877 * final texturing results copied to the framebuffer write payload and modify
2878 * them to write to the framebuffer directly.
2879 */
2880 bool
2881 fs_visitor::opt_sampler_eot()
2882 {
2883 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2884
2885 if (stage != MESA_SHADER_FRAGMENT || dispatch_width > 16)
2886 return false;
2887
2888 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2889 return false;
2890
2891 /* FINISHME: It should be possible to implement this optimization when there
2892 * are multiple drawbuffers.
2893 */
2894 if (key->nr_color_regions != 1)
2895 return false;
2896
2897 /* Requires emitting a bunch of saturating MOV instructions during logical
2898 * send lowering to clamp the color payload, which the sampler unit isn't
2899 * going to do for us.
2900 */
2901 if (key->clamp_fragment_color)
2902 return false;
2903
2904 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2905 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2906 fs_inst *fb_write = (fs_inst *)block->end();
2907 assert(fb_write->eot);
2908 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2909
2910 /* There wasn't one; nothing to do. */
2911 if (unlikely(fb_write->prev->is_head_sentinel()))
2912 return false;
2913
2914 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2915
2916 /* 3D Sampler » Messages » Message Format
2917 *
2918 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2919 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2920 */
2921 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2922 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2923 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2924 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2925 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2926 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2927 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2928 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2929 return false;
2930
2931 /* XXX - This shouldn't be necessary. */
2932 if (tex_inst->prev->is_head_sentinel())
2933 return false;
2934
2935 /* Check that the FB write sources are fully initialized by the single
2936 * texturing instruction.
2937 */
2938 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2939 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2940 if (!fb_write->src[i].equals(tex_inst->dst) ||
2941 fb_write->size_read(i) != tex_inst->size_written)
2942 return false;
2943 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2944 if (fb_write->src[i].file != BAD_FILE)
2945 return false;
2946 }
2947 }
2948
2949 assert(!tex_inst->eot); /* We can't get here twice */
2950 assert((tex_inst->offset & (0xff << 24)) == 0);
2951
2952 const fs_builder ibld(this, block, tex_inst);
2953
2954 tex_inst->offset |= fb_write->target << 24;
2955 tex_inst->eot = true;
2956 tex_inst->dst = ibld.null_reg_ud();
2957 tex_inst->size_written = 0;
2958 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2959
2960 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2961 * flag and submit a header together with the sampler message as required
2962 * by the hardware.
2963 */
2964 invalidate_live_intervals();
2965 return true;
2966 }
2967
2968 bool
2969 fs_visitor::opt_register_renaming()
2970 {
2971 bool progress = false;
2972 int depth = 0;
2973
2974 unsigned remap[alloc.count];
2975 memset(remap, ~0u, sizeof(unsigned) * alloc.count);
2976
2977 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2978 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2979 depth++;
2980 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2981 inst->opcode == BRW_OPCODE_WHILE) {
2982 depth--;
2983 }
2984
2985 /* Rewrite instruction sources. */
2986 for (int i = 0; i < inst->sources; i++) {
2987 if (inst->src[i].file == VGRF &&
2988 remap[inst->src[i].nr] != ~0u &&
2989 remap[inst->src[i].nr] != inst->src[i].nr) {
2990 inst->src[i].nr = remap[inst->src[i].nr];
2991 progress = true;
2992 }
2993 }
2994
2995 const unsigned dst = inst->dst.nr;
2996
2997 if (depth == 0 &&
2998 inst->dst.file == VGRF &&
2999 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
3000 !inst->is_partial_write()) {
3001 if (remap[dst] == ~0u) {
3002 remap[dst] = dst;
3003 } else {
3004 remap[dst] = alloc.allocate(regs_written(inst));
3005 inst->dst.nr = remap[dst];
3006 progress = true;
3007 }
3008 } else if (inst->dst.file == VGRF &&
3009 remap[dst] != ~0u &&
3010 remap[dst] != dst) {
3011 inst->dst.nr = remap[dst];
3012 progress = true;
3013 }
3014 }
3015
3016 if (progress) {
3017 invalidate_live_intervals();
3018
3019 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
3020 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
3021 delta_xy[i].nr = remap[delta_xy[i].nr];
3022 }
3023 }
3024 }
3025
3026 return progress;
3027 }
3028
3029 /**
3030 * Remove redundant or useless discard jumps.
3031 *
3032 * For example, we can eliminate jumps in the following sequence:
3033 *
3034 * discard-jump (redundant with the next jump)
3035 * discard-jump (useless; jumps to the next instruction)
3036 * placeholder-halt
3037 */
3038 bool
3039 fs_visitor::opt_redundant_discard_jumps()
3040 {
3041 bool progress = false;
3042
3043 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
3044
3045 fs_inst *placeholder_halt = NULL;
3046 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
3047 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
3048 placeholder_halt = inst;
3049 break;
3050 }
3051 }
3052
3053 if (!placeholder_halt)
3054 return false;
3055
3056 /* Delete any HALTs immediately before the placeholder halt. */
3057 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
3058 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
3059 prev = (fs_inst *) placeholder_halt->prev) {
3060 prev->remove(last_bblock);
3061 progress = true;
3062 }
3063
3064 if (progress)
3065 invalidate_live_intervals();
3066
3067 return progress;
3068 }
3069
3070 /**
3071 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3072 * from \p r.offset which overlaps the region starting at \p s.offset and
3073 * spanning \p ds bytes.
3074 */
3075 static inline unsigned
3076 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3077 {
3078 const int rel_offset = reg_offset(s) - reg_offset(r);
3079 const int shift = rel_offset / REG_SIZE;
3080 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3081 assert(reg_space(r) == reg_space(s) &&
3082 shift >= 0 && shift < int(8 * sizeof(unsigned)));
3083 return ((1 << n) - 1) << shift;
3084 }
3085
3086 bool
3087 fs_visitor::compute_to_mrf()
3088 {
3089 bool progress = false;
3090 int next_ip = 0;
3091
3092 /* No MRFs on Gen >= 7. */
3093 if (devinfo->gen >= 7)
3094 return false;
3095
3096 calculate_live_intervals();
3097
3098 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3099 int ip = next_ip;
3100 next_ip++;
3101
3102 if (inst->opcode != BRW_OPCODE_MOV ||
3103 inst->is_partial_write() ||
3104 inst->dst.file != MRF || inst->src[0].file != VGRF ||
3105 inst->dst.type != inst->src[0].type ||
3106 inst->src[0].abs || inst->src[0].negate ||
3107 !inst->src[0].is_contiguous() ||
3108 inst->src[0].offset % REG_SIZE != 0)
3109 continue;
3110
3111 /* Can't compute-to-MRF this GRF if someone else was going to
3112 * read it later.
3113 */
3114 if (this->virtual_grf_end[inst->src[0].nr] > ip)
3115 continue;
3116
3117 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
3118 * things that computed the value of all GRFs of the source region. The
3119 * regs_left bitset keeps track of the registers we haven't yet found a
3120 * generating instruction for.
3121 */
3122 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3123
3124 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3125 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3126 inst->src[0], inst->size_read(0))) {
3127 /* Found the last thing to write our reg we want to turn
3128 * into a compute-to-MRF.
3129 */
3130
3131 /* If this one instruction didn't populate all the
3132 * channels, bail. We might be able to rewrite everything
3133 * that writes that reg, but it would require smarter
3134 * tracking.
3135 */
3136 if (scan_inst->is_partial_write())
3137 break;
3138
3139 /* Handling things not fully contained in the source of the copy
3140 * would need us to understand coalescing out more than one MOV at
3141 * a time.
3142 */
3143 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3144 inst->src[0], inst->size_read(0)))
3145 break;
3146
3147 /* SEND instructions can't have MRF as a destination. */
3148 if (scan_inst->mlen)
3149 break;
3150
3151 if (devinfo->gen == 6) {
3152 /* gen6 math instructions must have the destination be
3153 * GRF, so no compute-to-MRF for them.
3154 */
3155 if (scan_inst->is_math()) {
3156 break;
3157 }
3158 }
3159
3160 /* Clear the bits for any registers this instruction overwrites. */
3161 regs_left &= ~mask_relative_to(
3162 inst->src[0], scan_inst->dst, scan_inst->size_written);
3163 if (!regs_left)
3164 break;
3165 }
3166
3167 /* We don't handle control flow here. Most computation of
3168 * values that end up in MRFs are shortly before the MRF
3169 * write anyway.
3170 */
3171 if (block->start() == scan_inst)
3172 break;
3173
3174 /* You can't read from an MRF, so if someone else reads our
3175 * MRF's source GRF that we wanted to rewrite, that stops us.
3176 */
3177 bool interfered = false;
3178 for (int i = 0; i < scan_inst->sources; i++) {
3179 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3180 inst->src[0], inst->size_read(0))) {
3181 interfered = true;
3182 }
3183 }
3184 if (interfered)
3185 break;
3186
3187 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3188 inst->dst, inst->size_written)) {
3189 /* If somebody else writes our MRF here, we can't
3190 * compute-to-MRF before that.
3191 */
3192 break;
3193 }
3194
3195 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3196 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3197 inst->dst, inst->size_written)) {
3198 /* Found a SEND instruction, which means that there are
3199 * live values in MRFs from base_mrf to base_mrf +
3200 * scan_inst->mlen - 1. Don't go pushing our MRF write up
3201 * above it.
3202 */
3203 break;
3204 }
3205 }
3206
3207 if (regs_left)
3208 continue;
3209
3210 /* Found all generating instructions of our MRF's source value, so it
3211 * should be safe to rewrite them to point to the MRF directly.
3212 */
3213 regs_left = (1 << regs_read(inst, 0)) - 1;
3214
3215 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3216 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3217 inst->src[0], inst->size_read(0))) {
3218 /* Clear the bits for any registers this instruction overwrites. */
3219 regs_left &= ~mask_relative_to(
3220 inst->src[0], scan_inst->dst, scan_inst->size_written);
3221
3222 const unsigned rel_offset = reg_offset(scan_inst->dst) -
3223 reg_offset(inst->src[0]);
3224
3225 if (inst->dst.nr & BRW_MRF_COMPR4) {
3226 /* Apply the same address transformation done by the hardware
3227 * for COMPR4 MRF writes.
3228 */
3229 assert(rel_offset < 2 * REG_SIZE);
3230 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3231
3232 /* Clear the COMPR4 bit if the generating instruction is not
3233 * compressed.
3234 */
3235 if (scan_inst->size_written < 2 * REG_SIZE)
3236 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3237
3238 } else {
3239 /* Calculate the MRF number the result of this instruction is
3240 * ultimately written to.
3241 */
3242 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3243 }
3244
3245 scan_inst->dst.file = MRF;
3246 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3247 scan_inst->saturate |= inst->saturate;
3248 if (!regs_left)
3249 break;
3250 }
3251 }
3252
3253 assert(!regs_left);
3254 inst->remove(block);
3255 progress = true;
3256 }
3257
3258 if (progress)
3259 invalidate_live_intervals();
3260
3261 return progress;
3262 }
3263
3264 /**
3265 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3266 * flow. We could probably do better here with some form of divergence
3267 * analysis.
3268 */
3269 bool
3270 fs_visitor::eliminate_find_live_channel()
3271 {
3272 bool progress = false;
3273 unsigned depth = 0;
3274
3275 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3276 /* The optimization below assumes that channel zero is live on thread
3277 * dispatch, which may not be the case if the fixed function dispatches
3278 * threads sparsely.
3279 */
3280 return false;
3281 }
3282
3283 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3284 switch (inst->opcode) {
3285 case BRW_OPCODE_IF:
3286 case BRW_OPCODE_DO:
3287 depth++;
3288 break;
3289
3290 case BRW_OPCODE_ENDIF:
3291 case BRW_OPCODE_WHILE:
3292 depth--;
3293 break;
3294
3295 case FS_OPCODE_DISCARD_JUMP:
3296 /* This can potentially make control flow non-uniform until the end
3297 * of the program.
3298 */
3299 return progress;
3300
3301 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3302 if (depth == 0) {
3303 inst->opcode = BRW_OPCODE_MOV;
3304 inst->src[0] = brw_imm_ud(0u);
3305 inst->sources = 1;
3306 inst->force_writemask_all = true;
3307 progress = true;
3308 }
3309 break;
3310
3311 default:
3312 break;
3313 }
3314 }
3315
3316 return progress;
3317 }
3318
3319 /**
3320 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3321 * instructions to FS_OPCODE_REP_FB_WRITE.
3322 */
3323 void
3324 fs_visitor::emit_repclear_shader()
3325 {
3326 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3327 int base_mrf = 0;
3328 int color_mrf = base_mrf + 2;
3329 fs_inst *mov;
3330
3331 if (uniforms > 0) {
3332 mov = bld.exec_all().group(4, 0)
3333 .MOV(brw_message_reg(color_mrf),
3334 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3335 } else {
3336 struct brw_reg reg =
3337 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3338 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3339 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3340
3341 mov = bld.exec_all().group(4, 0)
3342 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3343 }
3344
3345 fs_inst *write = NULL;
3346 if (key->nr_color_regions == 1) {
3347 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3348 write->saturate = key->clamp_fragment_color;
3349 write->base_mrf = color_mrf;
3350 write->target = 0;
3351 write->header_size = 0;
3352 write->mlen = 1;
3353 } else {
3354 assume(key->nr_color_regions > 0);
3355
3356 struct brw_reg header =
3357 retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3358 bld.exec_all().group(16, 0)
3359 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3360
3361 for (int i = 0; i < key->nr_color_regions; ++i) {
3362 if (i > 0) {
3363 bld.exec_all().group(1, 0)
3364 .MOV(component(header, 2), brw_imm_ud(i));
3365 }
3366
3367 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3368 write->saturate = key->clamp_fragment_color;
3369 write->base_mrf = base_mrf;
3370 write->target = i;
3371 write->header_size = 2;
3372 write->mlen = 3;
3373 }
3374 }
3375 write->eot = true;
3376 write->last_rt = true;
3377
3378 calculate_cfg();
3379
3380 assign_constant_locations();
3381 assign_curb_setup();
3382
3383 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3384 if (uniforms > 0) {
3385 assert(mov->src[0].file == FIXED_GRF);
3386 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3387 }
3388
3389 lower_scoreboard();
3390 }
3391
3392 /**
3393 * Walks through basic blocks, looking for repeated MRF writes and
3394 * removing the later ones.
3395 */
3396 bool
3397 fs_visitor::remove_duplicate_mrf_writes()
3398 {
3399 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3400 bool progress = false;
3401
3402 /* Need to update the MRF tracking for compressed instructions. */
3403 if (dispatch_width >= 16)
3404 return false;
3405
3406 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3407
3408 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3409 if (inst->is_control_flow()) {
3410 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3411 }
3412
3413 if (inst->opcode == BRW_OPCODE_MOV &&
3414 inst->dst.file == MRF) {
3415 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3416 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3417 inst->dst.equals(prev_inst->dst) &&
3418 inst->src[0].equals(prev_inst->src[0]) &&
3419 inst->saturate == prev_inst->saturate &&
3420 inst->predicate == prev_inst->predicate &&
3421 inst->conditional_mod == prev_inst->conditional_mod &&
3422 inst->exec_size == prev_inst->exec_size) {
3423 inst->remove(block);
3424 progress = true;
3425 continue;
3426 }
3427 }
3428
3429 /* Clear out the last-write records for MRFs that were overwritten. */
3430 if (inst->dst.file == MRF) {
3431 last_mrf_move[inst->dst.nr] = NULL;
3432 }
3433
3434 if (inst->mlen > 0 && inst->base_mrf != -1) {
3435 /* Found a SEND instruction, which will include two or fewer
3436 * implied MRF writes. We could do better here.
3437 */
3438 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
3439 last_mrf_move[inst->base_mrf + i] = NULL;
3440 }
3441 }
3442
3443 /* Clear out any MRF move records whose sources got overwritten. */
3444 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3445 if (last_mrf_move[i] &&
3446 regions_overlap(inst->dst, inst->size_written,
3447 last_mrf_move[i]->src[0],
3448 last_mrf_move[i]->size_read(0))) {
3449 last_mrf_move[i] = NULL;
3450 }
3451 }
3452
3453 if (inst->opcode == BRW_OPCODE_MOV &&
3454 inst->dst.file == MRF &&
3455 inst->src[0].file != ARF &&
3456 !inst->is_partial_write()) {
3457 last_mrf_move[inst->dst.nr] = inst;
3458 }
3459 }
3460
3461 if (progress)
3462 invalidate_live_intervals();
3463
3464 return progress;
3465 }
3466
3467 /**
3468 * Rounding modes for conversion instructions are included for each
3469 * conversion, but right now it is a state. So once it is set,
3470 * we don't need to call it again for subsequent calls.
3471 *
3472 * This is useful for vector/matrices conversions, as setting the
3473 * mode once is enough for the full vector/matrix
3474 */
3475 bool
3476 fs_visitor::remove_extra_rounding_modes()
3477 {
3478 bool progress = false;
3479 unsigned execution_mode = this->nir->info.float_controls_execution_mode;
3480
3481 brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED;
3482 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
3483 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
3484 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
3485 execution_mode)
3486 base_mode = BRW_RND_MODE_RTNE;
3487 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
3488 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
3489 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
3490 execution_mode)
3491 base_mode = BRW_RND_MODE_RTZ;
3492
3493 foreach_block (block, cfg) {
3494 brw_rnd_mode prev_mode = base_mode;
3495
3496 foreach_inst_in_block_safe (fs_inst, inst, block) {
3497 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3498 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3499 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3500 if (mode == prev_mode) {
3501 inst->remove(block);
3502 progress = true;
3503 } else {
3504 prev_mode = mode;
3505 }
3506 }
3507 }
3508 }
3509
3510 if (progress)
3511 invalidate_live_intervals();
3512
3513 return progress;
3514 }
3515
3516 static void
3517 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3518 {
3519 /* Clear the flag for registers that actually got read (as expected). */
3520 for (int i = 0; i < inst->sources; i++) {
3521 int grf;
3522 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3523 grf = inst->src[i].nr;
3524 } else {
3525 continue;
3526 }
3527
3528 if (grf >= first_grf &&
3529 grf < first_grf + grf_len) {
3530 deps[grf - first_grf] = false;
3531 if (inst->exec_size == 16)
3532 deps[grf - first_grf + 1] = false;
3533 }
3534 }
3535 }
3536
3537 /**
3538 * Implements this workaround for the original 965:
3539 *
3540 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3541 * check for post destination dependencies on this instruction, software
3542 * must ensure that there is no destination hazard for the case of ‘write
3543 * followed by a posted write’ shown in the following example.
3544 *
3545 * 1. mov r3 0
3546 * 2. send r3.xy <rest of send instruction>
3547 * 3. mov r2 r3
3548 *
3549 * Due to no post-destination dependency check on the ‘send’, the above
3550 * code sequence could have two instructions (1 and 2) in flight at the
3551 * same time that both consider ‘r3’ as the target of their final writes.
3552 */
3553 void
3554 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3555 fs_inst *inst)
3556 {
3557 int write_len = regs_written(inst);
3558 int first_write_grf = inst->dst.nr;
3559 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3560 assert(write_len < (int)sizeof(needs_dep) - 1);
3561
3562 memset(needs_dep, false, sizeof(needs_dep));
3563 memset(needs_dep, true, write_len);
3564
3565 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3566
3567 /* Walk backwards looking for writes to registers we're writing which
3568 * aren't read since being written. If we hit the start of the program,
3569 * we assume that there are no outstanding dependencies on entry to the
3570 * program.
3571 */
3572 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3573 /* If we hit control flow, assume that there *are* outstanding
3574 * dependencies, and force their cleanup before our instruction.
3575 */
3576 if (block->start() == scan_inst && block->num != 0) {
3577 for (int i = 0; i < write_len; i++) {
3578 if (needs_dep[i])
3579 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3580 first_write_grf + i);
3581 }
3582 return;
3583 }
3584
3585 /* We insert our reads as late as possible on the assumption that any
3586 * instruction but a MOV that might have left us an outstanding
3587 * dependency has more latency than a MOV.
3588 */
3589 if (scan_inst->dst.file == VGRF) {
3590 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3591 int reg = scan_inst->dst.nr + i;
3592
3593 if (reg >= first_write_grf &&
3594 reg < first_write_grf + write_len &&
3595 needs_dep[reg - first_write_grf]) {
3596 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3597 needs_dep[reg - first_write_grf] = false;
3598 if (scan_inst->exec_size == 16)
3599 needs_dep[reg - first_write_grf + 1] = false;
3600 }
3601 }
3602 }
3603
3604 /* Clear the flag for registers that actually got read (as expected). */
3605 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3606
3607 /* Continue the loop only if we haven't resolved all the dependencies */
3608 int i;
3609 for (i = 0; i < write_len; i++) {
3610 if (needs_dep[i])
3611 break;
3612 }
3613 if (i == write_len)
3614 return;
3615 }
3616 }
3617
3618 /**
3619 * Implements this workaround for the original 965:
3620 *
3621 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3622 * used as a destination register until after it has been sourced by an
3623 * instruction with a different destination register.
3624 */
3625 void
3626 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3627 {
3628 int write_len = regs_written(inst);
3629 unsigned first_write_grf = inst->dst.nr;
3630 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3631 assert(write_len < (int)sizeof(needs_dep) - 1);
3632
3633 memset(needs_dep, false, sizeof(needs_dep));
3634 memset(needs_dep, true, write_len);
3635 /* Walk forwards looking for writes to registers we're writing which aren't
3636 * read before being written.
3637 */
3638 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3639 /* If we hit control flow, force resolve all remaining dependencies. */
3640 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3641 for (int i = 0; i < write_len; i++) {
3642 if (needs_dep[i])
3643 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3644 first_write_grf + i);
3645 }
3646 return;
3647 }
3648
3649 /* Clear the flag for registers that actually got read (as expected). */
3650 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3651
3652 /* We insert our reads as late as possible since they're reading the
3653 * result of a SEND, which has massive latency.
3654 */
3655 if (scan_inst->dst.file == VGRF &&
3656 scan_inst->dst.nr >= first_write_grf &&
3657 scan_inst->dst.nr < first_write_grf + write_len &&
3658 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3659 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3660 scan_inst->dst.nr);
3661 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3662 }
3663
3664 /* Continue the loop only if we haven't resolved all the dependencies */
3665 int i;
3666 for (i = 0; i < write_len; i++) {
3667 if (needs_dep[i])
3668 break;
3669 }
3670 if (i == write_len)
3671 return;
3672 }
3673 }
3674
3675 void
3676 fs_visitor::insert_gen4_send_dependency_workarounds()
3677 {
3678 if (devinfo->gen != 4 || devinfo->is_g4x)
3679 return;
3680
3681 bool progress = false;
3682
3683 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3684 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3685 insert_gen4_pre_send_dependency_workarounds(block, inst);
3686 insert_gen4_post_send_dependency_workarounds(block, inst);
3687 progress = true;
3688 }
3689 }
3690
3691 if (progress)
3692 invalidate_live_intervals();
3693 }
3694
3695 /**
3696 * Turns the generic expression-style uniform pull constant load instruction
3697 * into a hardware-specific series of instructions for loading a pull
3698 * constant.
3699 *
3700 * The expression style allows the CSE pass before this to optimize out
3701 * repeated loads from the same offset, and gives the pre-register-allocation
3702 * scheduling full flexibility, while the conversion to native instructions
3703 * allows the post-register-allocation scheduler the best information
3704 * possible.
3705 *
3706 * Note that execution masking for setting up pull constant loads is special:
3707 * the channels that need to be written are unrelated to the current execution
3708 * mask, since a later instruction will use one of the result channels as a
3709 * source operand for all 8 or 16 of its channels.
3710 */
3711 void
3712 fs_visitor::lower_uniform_pull_constant_loads()
3713 {
3714 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3715 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3716 continue;
3717
3718 if (devinfo->gen >= 7) {
3719 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3720 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3721
3722 ubld.group(8, 0).MOV(payload,
3723 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3724 ubld.group(1, 0).MOV(component(payload, 2),
3725 brw_imm_ud(inst->src[1].ud / 16));
3726
3727 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3728 inst->src[1] = payload;
3729 inst->header_size = 1;
3730 inst->mlen = 1;
3731
3732 invalidate_live_intervals();
3733 } else {
3734 /* Before register allocation, we didn't tell the scheduler about the
3735 * MRF we use. We know it's safe to use this MRF because nothing
3736 * else does except for register spill/unspill, which generates and
3737 * uses its MRF within a single IR instruction.
3738 */
3739 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3740 inst->mlen = 1;
3741 }
3742 }
3743 }
3744
3745 bool
3746 fs_visitor::lower_load_payload()
3747 {
3748 bool progress = false;
3749
3750 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3751 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3752 continue;
3753
3754 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3755 assert(inst->saturate == false);
3756 fs_reg dst = inst->dst;
3757
3758 /* Get rid of COMPR4. We'll add it back in if we need it */
3759 if (dst.file == MRF)
3760 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3761
3762 const fs_builder ibld(this, block, inst);
3763 const fs_builder ubld = ibld.exec_all();
3764
3765 for (uint8_t i = 0; i < inst->header_size;) {
3766 /* Number of header GRFs to initialize at once with a single MOV
3767 * instruction.
3768 */
3769 const unsigned n =
3770 (i + 1 < inst->header_size && inst->src[i].stride == 1 &&
3771 inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
3772 2 : 1;
3773
3774 if (inst->src[i].file != BAD_FILE)
3775 ubld.group(8 * n, 0).MOV(retype(dst, BRW_REGISTER_TYPE_UD),
3776 retype(inst->src[i], BRW_REGISTER_TYPE_UD));
3777
3778 dst = byte_offset(dst, n * REG_SIZE);
3779 i += n;
3780 }
3781
3782 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3783 inst->exec_size > 8) {
3784 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3785 * a straightforward copy. Instead, the result of the
3786 * LOAD_PAYLOAD is treated as interleaved and the first four
3787 * non-header sources are unpacked as:
3788 *
3789 * m + 0: r0
3790 * m + 1: g0
3791 * m + 2: b0
3792 * m + 3: a0
3793 * m + 4: r1
3794 * m + 5: g1
3795 * m + 6: b1
3796 * m + 7: a1
3797 *
3798 * This is used for gen <= 5 fb writes.
3799 */
3800 assert(inst->exec_size == 16);
3801 assert(inst->header_size + 4 <= inst->sources);
3802 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3803 if (inst->src[i].file != BAD_FILE) {
3804 if (devinfo->has_compr4) {
3805 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3806 compr4_dst.nr |= BRW_MRF_COMPR4;
3807 ibld.MOV(compr4_dst, inst->src[i]);
3808 } else {
3809 /* Platform doesn't have COMPR4. We have to fake it */
3810 fs_reg mov_dst = retype(dst, inst->src[i].type);
3811 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3812 mov_dst.nr += 4;
3813 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3814 }
3815 }
3816
3817 dst.nr++;
3818 }
3819
3820 /* The loop above only ever incremented us through the first set
3821 * of 4 registers. However, thanks to the magic of COMPR4, we
3822 * actually wrote to the first 8 registers, so we need to take
3823 * that into account now.
3824 */
3825 dst.nr += 4;
3826
3827 /* The COMPR4 code took care of the first 4 sources. We'll let
3828 * the regular path handle any remaining sources. Yes, we are
3829 * modifying the instruction but we're about to delete it so
3830 * this really doesn't hurt anything.
3831 */
3832 inst->header_size += 4;
3833 }
3834
3835 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3836 if (inst->src[i].file != BAD_FILE) {
3837 dst.type = inst->src[i].type;
3838 ibld.MOV(dst, inst->src[i]);
3839 } else {
3840 dst.type = BRW_REGISTER_TYPE_UD;
3841 }
3842 dst = offset(dst, ibld, 1);
3843 }
3844
3845 inst->remove(block);
3846 progress = true;
3847 }
3848
3849 if (progress)
3850 invalidate_live_intervals();
3851
3852 return progress;
3853 }
3854
3855 void
3856 fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block)
3857 {
3858 const fs_builder ibld(this, block, inst);
3859
3860 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3861 if (inst->src[1].file == IMM &&
3862 (( ud && inst->src[1].ud <= UINT16_MAX) ||
3863 (!ud && inst->src[1].d <= INT16_MAX && inst->src[1].d >= INT16_MIN))) {
3864 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3865 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3866 * src1 are used.
3867 *
3868 * If multiplying by an immediate value that fits in 16-bits, do a
3869 * single MUL instruction with that value in the proper location.
3870 */
3871 if (devinfo->gen < 7) {
3872 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
3873 ibld.MOV(imm, inst->src[1]);
3874 ibld.MUL(inst->dst, imm, inst->src[0]);
3875 } else {
3876 ibld.MUL(inst->dst, inst->src[0],
3877 ud ? brw_imm_uw(inst->src[1].ud)
3878 : brw_imm_w(inst->src[1].d));
3879 }
3880 } else {
3881 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3882 * do 32-bit integer multiplication in one instruction, but instead
3883 * must do a sequence (which actually calculates a 64-bit result):
3884 *
3885 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3886 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3887 * mov(8) g2<1>D acc0<8,8,1>D
3888 *
3889 * But on Gen > 6, the ability to use second accumulator register
3890 * (acc1) for non-float data types was removed, preventing a simple
3891 * implementation in SIMD16. A 16-channel result can be calculated by
3892 * executing the three instructions twice in SIMD8, once with quarter
3893 * control of 1Q for the first eight channels and again with 2Q for
3894 * the second eight channels.
3895 *
3896 * Which accumulator register is implicitly accessed (by AccWrEnable
3897 * for instance) is determined by the quarter control. Unfortunately
3898 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3899 * implicit accumulator access by an instruction with 2Q will access
3900 * acc1 regardless of whether the data type is usable in acc1.
3901 *
3902 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3903 * integer data types.
3904 *
3905 * Since we only want the low 32-bits of the result, we can do two
3906 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3907 * adjust the high result and add them (like the mach is doing):
3908 *
3909 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3910 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3911 * shl(8) g9<1>D g8<8,8,1>D 16D
3912 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3913 *
3914 * We avoid the shl instruction by realizing that we only want to add
3915 * the low 16-bits of the "high" result to the high 16-bits of the
3916 * "low" result and using proper regioning on the add:
3917 *
3918 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3919 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3920 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3921 *
3922 * Since it does not use the (single) accumulator register, we can
3923 * schedule multi-component multiplications much better.
3924 */
3925
3926 bool needs_mov = false;
3927 fs_reg orig_dst = inst->dst;
3928
3929 /* Get a new VGRF for the "low" 32x16-bit multiplication result if
3930 * reusing the original destination is impossible due to hardware
3931 * restrictions, source/destination overlap, or it being the null
3932 * register.
3933 */
3934 fs_reg low = inst->dst;
3935 if (orig_dst.is_null() || orig_dst.file == MRF ||
3936 regions_overlap(inst->dst, inst->size_written,
3937 inst->src[0], inst->size_read(0)) ||
3938 regions_overlap(inst->dst, inst->size_written,
3939 inst->src[1], inst->size_read(1)) ||
3940 inst->dst.stride >= 4) {
3941 needs_mov = true;
3942 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
3943 inst->dst.type);
3944 }
3945
3946 /* Get a new VGRF but keep the same stride as inst->dst */
3947 fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
3948 high.stride = inst->dst.stride;
3949 high.offset = inst->dst.offset % REG_SIZE;
3950
3951 if (devinfo->gen >= 7) {
3952 if (inst->src[1].abs)
3953 lower_src_modifiers(this, block, inst, 1);
3954
3955 if (inst->src[1].file == IMM) {
3956 ibld.MUL(low, inst->src[0],
3957 brw_imm_uw(inst->src[1].ud & 0xffff));
3958 ibld.MUL(high, inst->src[0],
3959 brw_imm_uw(inst->src[1].ud >> 16));
3960 } else {
3961 ibld.MUL(low, inst->src[0],
3962 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3963 ibld.MUL(high, inst->src[0],
3964 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3965 }
3966 } else {
3967 if (inst->src[0].abs)
3968 lower_src_modifiers(this, block, inst, 0);
3969
3970 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3971 inst->src[1]);
3972 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3973 inst->src[1]);
3974 }
3975
3976 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3977 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3978 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3979
3980 if (needs_mov || inst->conditional_mod)
3981 set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
3982 }
3983 }
3984
3985 void
3986 fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block)
3987 {
3988 const fs_builder ibld(this, block, inst);
3989
3990 /* Considering two 64-bit integers ab and cd where each letter ab
3991 * corresponds to 32 bits, we get a 128-bit result WXYZ. We * cd
3992 * only need to provide the YZ part of the result. -------
3993 * BD
3994 * Only BD needs to be 64 bits. For AD and BC we only care + AD
3995 * about the lower 32 bits (since they are part of the upper + BC
3996 * 32 bits of our result). AC is not needed since it starts + AC
3997 * on the 65th bit of the result. -------
3998 * WXYZ
3999 */
4000 unsigned int q_regs = regs_written(inst);
4001 unsigned int d_regs = (q_regs + 1) / 2;
4002
4003 fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ);
4004 fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4005 fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4006
4007 /* Here we need the full 64 bit result for 32b * 32b. */
4008 if (devinfo->has_integer_dword_mul) {
4009 ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4010 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4011 } else {
4012 fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4013 fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4014 fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD);
4015
4016 fs_inst *mul = ibld.MUL(acc,
4017 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4018 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4019 mul->writes_accumulator = true;
4020
4021 ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4022 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4023 ibld.MOV(bd_low, acc);
4024
4025 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low);
4026 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high);
4027 }
4028
4029 ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
4030 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4031 ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4032 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1));
4033
4034 ibld.ADD(ad, ad, bc);
4035 ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1),
4036 subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad);
4037
4038 ibld.MOV(inst->dst, bd);
4039 }
4040
4041 void
4042 fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block)
4043 {
4044 const fs_builder ibld(this, block, inst);
4045
4046 /* According to the BDW+ BSpec page for the "Multiply Accumulate
4047 * High" instruction:
4048 *
4049 * "An added preliminary mov is required for source modification on
4050 * src1:
4051 * mov (8) r3.0<1>:d -r3<8;8,1>:d
4052 * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4053 * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4054 */
4055 if (devinfo->gen >= 8 && (inst->src[1].negate || inst->src[1].abs))
4056 lower_src_modifiers(this, block, inst, 1);
4057
4058 /* Should have been lowered to 8-wide. */
4059 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
4060 const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type);
4061 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4062 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4063
4064 if (devinfo->gen >= 8) {
4065 /* Until Gen8, integer multiplies read 32-bits from one source,
4066 * and 16-bits from the other, and relying on the MACH instruction
4067 * to generate the high bits of the result.
4068 *
4069 * On Gen8, the multiply instruction does a full 32x32-bit
4070 * multiply, but in order to do a 64-bit multiply we can simulate
4071 * the previous behavior and then use a MACH instruction.
4072 */
4073 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4074 mul->src[1].type == BRW_REGISTER_TYPE_UD);
4075 mul->src[1].type = BRW_REGISTER_TYPE_UW;
4076 mul->src[1].stride *= 2;
4077
4078 if (mul->src[1].file == IMM) {
4079 mul->src[1] = brw_imm_uw(mul->src[1].ud);
4080 }
4081 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
4082 inst->group > 0) {
4083 /* Among other things the quarter control bits influence which
4084 * accumulator register is used by the hardware for instructions
4085 * that access the accumulator implicitly (e.g. MACH). A
4086 * second-half instruction would normally map to acc1, which
4087 * doesn't exist on Gen7 and up (the hardware does emulate it for
4088 * floating-point instructions *only* by taking advantage of the
4089 * extra precision of acc0 not normally used for floating point
4090 * arithmetic).
4091 *
4092 * HSW and up are careful enough not to try to access an
4093 * accumulator register that doesn't exist, but on earlier Gen7
4094 * hardware we need to make sure that the quarter control bits are
4095 * zero to avoid non-deterministic behaviour and emit an extra MOV
4096 * to get the result masked correctly according to the current
4097 * channel enables.
4098 */
4099 mach->group = 0;
4100 mach->force_writemask_all = true;
4101 mach->dst = ibld.vgrf(inst->dst.type);
4102 ibld.MOV(inst->dst, mach->dst);
4103 }
4104 }
4105
4106 bool
4107 fs_visitor::lower_integer_multiplication()
4108 {
4109 bool progress = false;
4110
4111 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4112 if (inst->opcode == BRW_OPCODE_MUL) {
4113 /* If the instruction is already in a form that does not need lowering,
4114 * return early.
4115 */
4116 if (devinfo->gen >= 7) {
4117 if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4)
4118 continue;
4119 } else {
4120 if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4)
4121 continue;
4122 }
4123
4124 if ((inst->dst.type == BRW_REGISTER_TYPE_Q ||
4125 inst->dst.type == BRW_REGISTER_TYPE_UQ) &&
4126 (inst->src[0].type == BRW_REGISTER_TYPE_Q ||
4127 inst->src[0].type == BRW_REGISTER_TYPE_UQ) &&
4128 (inst->src[1].type == BRW_REGISTER_TYPE_Q ||
4129 inst->src[1].type == BRW_REGISTER_TYPE_UQ)) {
4130 lower_mul_qword_inst(inst, block);
4131 inst->remove(block);
4132 progress = true;
4133 } else if (!inst->dst.is_accumulator() &&
4134 (inst->dst.type == BRW_REGISTER_TYPE_D ||
4135 inst->dst.type == BRW_REGISTER_TYPE_UD) &&
4136 !devinfo->has_integer_dword_mul) {
4137 lower_mul_dword_inst(inst, block);
4138 inst->remove(block);
4139 progress = true;
4140 }
4141 } else if (inst->opcode == SHADER_OPCODE_MULH) {
4142 lower_mulh_inst(inst, block);
4143 inst->remove(block);
4144 progress = true;
4145 }
4146
4147 }
4148
4149 if (progress)
4150 invalidate_live_intervals();
4151
4152 return progress;
4153 }
4154
4155 bool
4156 fs_visitor::lower_minmax()
4157 {
4158 assert(devinfo->gen < 6);
4159
4160 bool progress = false;
4161
4162 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4163 const fs_builder ibld(this, block, inst);
4164
4165 if (inst->opcode == BRW_OPCODE_SEL &&
4166 inst->predicate == BRW_PREDICATE_NONE) {
4167 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
4168 * the original SEL.L/GE instruction
4169 */
4170 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4171 inst->conditional_mod);
4172 inst->predicate = BRW_PREDICATE_NORMAL;
4173 inst->conditional_mod = BRW_CONDITIONAL_NONE;
4174
4175 progress = true;
4176 }
4177 }
4178
4179 if (progress)
4180 invalidate_live_intervals();
4181
4182 return progress;
4183 }
4184
4185 bool
4186 fs_visitor::lower_sub_sat()
4187 {
4188 bool progress = false;
4189
4190 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4191 const fs_builder ibld(this, block, inst);
4192
4193 if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
4194 inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4195 /* The fundamental problem is the hardware performs source negation
4196 * at the bit width of the source. If the source is 0x80000000D, the
4197 * negation is 0x80000000D. As a result, subtractSaturate(0,
4198 * 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There
4199 * are at least three ways to resolve this:
4200 *
4201 * 1. Use the accumulator for the negated source. The accumulator is
4202 * 33 bits, so our source 0x80000000 is sign-extended to
4203 * 0x1800000000. The negation of which is 0x080000000. This
4204 * doesn't help for 64-bit integers (which are already bigger than
4205 * 33 bits). There are also only 8 accumulators, so SIMD16 or
4206 * SIMD32 instructions would have to be split into multiple SIMD8
4207 * instructions.
4208 *
4209 * 2. Use slightly different math. For any n-bit value x, we know (x
4210 * >> 1) != -(x >> 1). We can use this fact to only do
4211 * subtractions involving (x >> 1). subtractSaturate(a, b) ==
4212 * subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
4213 *
4214 * 3. For unsigned sources, it is sufficient to replace the
4215 * subtractSaturate with (a > b) ? a - b : 0.
4216 *
4217 * It may also be possible to use the SUBB instruction. This
4218 * implicitly writes the accumulator, so it could only be used in the
4219 * same situations as #1 above. It is further limited by only
4220 * allowing UD sources.
4221 */
4222 if (inst->exec_size == 8 && inst->src[0].type != BRW_REGISTER_TYPE_Q &&
4223 inst->src[0].type != BRW_REGISTER_TYPE_UQ) {
4224 fs_reg acc(ARF, BRW_ARF_ACCUMULATOR, inst->src[1].type);
4225
4226 ibld.MOV(acc, inst->src[1]);
4227 fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
4228 add->saturate = true;
4229 add->src[0].negate = true;
4230 } else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4231 /* tmp = src1 >> 1;
4232 * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
4233 */
4234 fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
4235 fs_reg tmp2 = ibld.vgrf(inst->src[0].type);
4236 fs_reg tmp3 = ibld.vgrf(inst->src[0].type);
4237 fs_inst *add;
4238
4239 ibld.SHR(tmp1, inst->src[1], brw_imm_d(1));
4240
4241 add = ibld.ADD(tmp2, inst->src[1], tmp1);
4242 add->src[1].negate = true;
4243
4244 add = ibld.ADD(tmp3, inst->src[0], tmp1);
4245 add->src[1].negate = true;
4246 add->saturate = true;
4247
4248 add = ibld.ADD(inst->dst, tmp3, tmp2);
4249 add->src[1].negate = true;
4250 add->saturate = true;
4251 } else {
4252 /* a > b ? a - b : 0 */
4253 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4254 BRW_CONDITIONAL_G);
4255
4256 fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
4257 add->src[1].negate = !add->src[1].negate;
4258
4259 ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
4260 ->predicate = BRW_PREDICATE_NORMAL;
4261 }
4262
4263 inst->remove(block);
4264 progress = true;
4265 }
4266 }
4267
4268 if (progress)
4269 invalidate_live_intervals();
4270
4271 return progress;
4272 }
4273
4274 static void
4275 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
4276 fs_reg *dst, fs_reg color, unsigned components)
4277 {
4278 if (key->clamp_fragment_color) {
4279 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
4280 assert(color.type == BRW_REGISTER_TYPE_F);
4281
4282 for (unsigned i = 0; i < components; i++)
4283 set_saturate(true,
4284 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
4285
4286 color = tmp;
4287 }
4288
4289 for (unsigned i = 0; i < components; i++)
4290 dst[i] = offset(color, bld, i);
4291 }
4292
4293 uint32_t
4294 brw_fb_write_msg_control(const fs_inst *inst,
4295 const struct brw_wm_prog_data *prog_data)
4296 {
4297 uint32_t mctl;
4298
4299 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
4300 assert(inst->group == 0 && inst->exec_size == 16);
4301 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
4302 } else if (prog_data->dual_src_blend) {
4303 assert(inst->exec_size == 8);
4304
4305 if (inst->group % 16 == 0)
4306 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
4307 else if (inst->group % 16 == 8)
4308 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
4309 else
4310 unreachable("Invalid dual-source FB write instruction group");
4311 } else {
4312 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
4313
4314 if (inst->exec_size == 16)
4315 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
4316 else if (inst->exec_size == 8)
4317 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
4318 else
4319 unreachable("Invalid FB write execution size");
4320 }
4321
4322 return mctl;
4323 }
4324
4325 static void
4326 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
4327 const struct brw_wm_prog_data *prog_data,
4328 const brw_wm_prog_key *key,
4329 const fs_visitor::thread_payload &payload)
4330 {
4331 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
4332 const gen_device_info *devinfo = bld.shader->devinfo;
4333 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
4334 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
4335 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
4336 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
4337 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
4338 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
4339 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
4340 const unsigned components =
4341 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
4342
4343 assert(inst->target != 0 || src0_alpha.file == BAD_FILE);
4344
4345 /* We can potentially have a message length of up to 15, so we have to set
4346 * base_mrf to either 0 or 1 in order to fit in m0..m15.
4347 */
4348 fs_reg sources[15];
4349 int header_size = 2, payload_header_size;
4350 unsigned length = 0;
4351
4352 if (devinfo->gen < 6) {
4353 /* TODO: Support SIMD32 on gen4-5 */
4354 assert(bld.group() < 16);
4355
4356 /* For gen4-5, we always have a header consisting of g0 and g1. We have
4357 * an implied MOV from g0,g1 to the start of the message. The MOV from
4358 * g0 is handled by the hardware and the MOV from g1 is provided by the
4359 * generator. This is required because, on gen4-5, the generator may
4360 * generate two write messages with different message lengths in order
4361 * to handle AA data properly.
4362 *
4363 * Also, since the pixel mask goes in the g0 portion of the message and
4364 * since render target writes are the last thing in the shader, we write
4365 * the pixel mask directly into g0 and it will get copied as part of the
4366 * implied write.
4367 */
4368 if (prog_data->uses_kill) {
4369 bld.exec_all().group(1, 0)
4370 .MOV(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW),
4371 brw_flag_reg(0, 1));
4372 }
4373
4374 assert(length == 0);
4375 length = 2;
4376 } else if ((devinfo->gen <= 7 && !devinfo->is_haswell &&
4377 prog_data->uses_kill) ||
4378 (devinfo->gen < 11 &&
4379 (color1.file != BAD_FILE || key->nr_color_regions > 1))) {
4380 /* From the Sandy Bridge PRM, volume 4, page 198:
4381 *
4382 * "Dispatched Pixel Enables. One bit per pixel indicating
4383 * which pixels were originally enabled when the thread was
4384 * dispatched. This field is only required for the end-of-
4385 * thread message and on all dual-source messages."
4386 */
4387 const fs_builder ubld = bld.exec_all().group(8, 0);
4388
4389 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4390 if (bld.group() < 16) {
4391 /* The header starts off as g0 and g1 for the first half */
4392 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4393 BRW_REGISTER_TYPE_UD));
4394 } else {
4395 /* The header starts off as g0 and g2 for the second half */
4396 assert(bld.group() < 32);
4397 const fs_reg header_sources[2] = {
4398 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4399 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD),
4400 };
4401 ubld.LOAD_PAYLOAD(header, header_sources, 2, 0);
4402 }
4403
4404 uint32_t g00_bits = 0;
4405
4406 /* Set "Source0 Alpha Present to RenderTarget" bit in message
4407 * header.
4408 */
4409 if (src0_alpha.file != BAD_FILE)
4410 g00_bits |= 1 << 11;
4411
4412 /* Set computes stencil to render target */
4413 if (prog_data->computed_stencil)
4414 g00_bits |= 1 << 14;
4415
4416 if (g00_bits) {
4417 /* OR extra bits into g0.0 */
4418 ubld.group(1, 0).OR(component(header, 0),
4419 retype(brw_vec1_grf(0, 0),
4420 BRW_REGISTER_TYPE_UD),
4421 brw_imm_ud(g00_bits));
4422 }
4423
4424 /* Set the render target index for choosing BLEND_STATE. */
4425 if (inst->target > 0) {
4426 ubld.group(1, 0).MOV(component(header, 2), brw_imm_ud(inst->target));
4427 }
4428
4429 if (prog_data->uses_kill) {
4430 assert(bld.group() < 16);
4431 ubld.group(1, 0).MOV(retype(component(header, 15),
4432 BRW_REGISTER_TYPE_UW),
4433 brw_flag_reg(0, 1));
4434 }
4435
4436 assert(length == 0);
4437 sources[0] = header;
4438 sources[1] = horiz_offset(header, 8);
4439 length = 2;
4440 }
4441 assert(length == 0 || length == 2);
4442 header_size = length;
4443
4444 if (payload.aa_dest_stencil_reg[0]) {
4445 assert(inst->group < 16);
4446 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
4447 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
4448 .MOV(sources[length],
4449 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg[0], 0)));
4450 length++;
4451 }
4452
4453 if (src0_alpha.file != BAD_FILE) {
4454 for (unsigned i = 0; i < bld.dispatch_width() / 8; i++) {
4455 const fs_builder &ubld = bld.exec_all().group(8, i)
4456 .annotate("FB write src0 alpha");
4457 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_F);
4458 ubld.MOV(tmp, horiz_offset(src0_alpha, i * 8));
4459 setup_color_payload(ubld, key, &sources[length], tmp, 1);
4460 length++;
4461 }
4462 }
4463
4464 if (sample_mask.file != BAD_FILE) {
4465 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
4466 BRW_REGISTER_TYPE_UD);
4467
4468 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
4469 * relevant. Since it's unsigned single words one vgrf is always
4470 * 16-wide, but only the lower or higher 8 channels will be used by the
4471 * hardware when doing a SIMD8 write depending on whether we have
4472 * selected the subspans for the first or second half respectively.
4473 */
4474 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
4475 sample_mask.type = BRW_REGISTER_TYPE_UW;
4476 sample_mask.stride *= 2;
4477
4478 bld.exec_all().annotate("FB write oMask")
4479 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
4480 inst->group % 16),
4481 sample_mask);
4482 length++;
4483 }
4484
4485 payload_header_size = length;
4486
4487 setup_color_payload(bld, key, &sources[length], color0, components);
4488 length += 4;
4489
4490 if (color1.file != BAD_FILE) {
4491 setup_color_payload(bld, key, &sources[length], color1, components);
4492 length += 4;
4493 }
4494
4495 if (src_depth.file != BAD_FILE) {
4496 sources[length] = src_depth;
4497 length++;
4498 }
4499
4500 if (dst_depth.file != BAD_FILE) {
4501 sources[length] = dst_depth;
4502 length++;
4503 }
4504
4505 if (src_stencil.file != BAD_FILE) {
4506 assert(devinfo->gen >= 9);
4507 assert(bld.dispatch_width() == 8);
4508
4509 /* XXX: src_stencil is only available on gen9+. dst_depth is never
4510 * available on gen9+. As such it's impossible to have both enabled at the
4511 * same time and therefore length cannot overrun the array.
4512 */
4513 assert(length < 15);
4514
4515 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4516 bld.exec_all().annotate("FB write OS")
4517 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
4518 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
4519 length++;
4520 }
4521
4522 fs_inst *load;
4523 if (devinfo->gen >= 7) {
4524 /* Send from the GRF */
4525 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
4526 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
4527 payload.nr = bld.shader->alloc.allocate(regs_written(load));
4528 load->dst = payload;
4529
4530 uint32_t msg_ctl = brw_fb_write_msg_control(inst, prog_data);
4531 uint32_t ex_desc = 0;
4532
4533 inst->desc =
4534 (inst->group / 16) << 11 | /* rt slot group */
4535 brw_dp_write_desc(devinfo, inst->target, msg_ctl,
4536 GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE,
4537 inst->last_rt, false);
4538
4539 if (devinfo->gen >= 11) {
4540 /* Set the "Render Target Index" and "Src0 Alpha Present" fields
4541 * in the extended message descriptor, in lieu of using a header.
4542 */
4543 ex_desc = inst->target << 12 | (src0_alpha.file != BAD_FILE) << 15;
4544
4545 if (key->nr_color_regions == 0)
4546 ex_desc |= 1 << 20; /* Null Render Target */
4547 }
4548
4549 inst->opcode = SHADER_OPCODE_SEND;
4550 inst->resize_sources(3);
4551 inst->sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
4552 inst->src[0] = brw_imm_ud(inst->desc);
4553 inst->src[1] = brw_imm_ud(ex_desc);
4554 inst->src[2] = payload;
4555 inst->mlen = regs_written(load);
4556 inst->ex_mlen = 0;
4557 inst->header_size = header_size;
4558 inst->check_tdr = true;
4559 inst->send_has_side_effects = true;
4560 } else {
4561 /* Send from the MRF */
4562 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
4563 sources, length, payload_header_size);
4564
4565 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
4566 * will do this for us if we just give it a COMPR4 destination.
4567 */
4568 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
4569 load->dst.nr |= BRW_MRF_COMPR4;
4570
4571 if (devinfo->gen < 6) {
4572 /* Set up src[0] for the implied MOV from grf0-1 */
4573 inst->resize_sources(1);
4574 inst->src[0] = brw_vec8_grf(0, 0);
4575 } else {
4576 inst->resize_sources(0);
4577 }
4578 inst->base_mrf = 1;
4579 inst->opcode = FS_OPCODE_FB_WRITE;
4580 inst->mlen = regs_written(load);
4581 inst->header_size = header_size;
4582 }
4583 }
4584
4585 static void
4586 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
4587 {
4588 const fs_builder &ubld = bld.exec_all().group(8, 0);
4589 const unsigned length = 2;
4590 const fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, length);
4591
4592 if (bld.group() < 16) {
4593 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4594 BRW_REGISTER_TYPE_UD));
4595 } else {
4596 assert(bld.group() < 32);
4597 const fs_reg header_sources[] = {
4598 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4599 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD)
4600 };
4601 ubld.LOAD_PAYLOAD(header, header_sources, ARRAY_SIZE(header_sources), 0);
4602 }
4603
4604 inst->resize_sources(1);
4605 inst->src[0] = header;
4606 inst->opcode = FS_OPCODE_FB_READ;
4607 inst->mlen = length;
4608 inst->header_size = length;
4609 }
4610
4611 static void
4612 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
4613 const fs_reg &coordinate,
4614 const fs_reg &shadow_c,
4615 const fs_reg &lod, const fs_reg &lod2,
4616 const fs_reg &surface,
4617 const fs_reg &sampler,
4618 unsigned coord_components,
4619 unsigned grad_components)
4620 {
4621 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
4622 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
4623 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
4624 fs_reg msg_end = msg_begin;
4625
4626 /* g0 header. */
4627 msg_end = offset(msg_end, bld.group(8, 0), 1);
4628
4629 for (unsigned i = 0; i < coord_components; i++)
4630 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
4631 offset(coordinate, bld, i));
4632
4633 msg_end = offset(msg_end, bld, coord_components);
4634
4635 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
4636 * require all three components to be present and zero if they are unused.
4637 */
4638 if (coord_components > 0 &&
4639 (has_lod || shadow_c.file != BAD_FILE ||
4640 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
4641 for (unsigned i = coord_components; i < 3; i++)
4642 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
4643
4644 msg_end = offset(msg_end, bld, 3 - coord_components);
4645 }
4646
4647 if (op == SHADER_OPCODE_TXD) {
4648 /* TXD unsupported in SIMD16 mode. */
4649 assert(bld.dispatch_width() == 8);
4650
4651 /* the slots for u and v are always present, but r is optional */
4652 if (coord_components < 2)
4653 msg_end = offset(msg_end, bld, 2 - coord_components);
4654
4655 /* P = u, v, r
4656 * dPdx = dudx, dvdx, drdx
4657 * dPdy = dudy, dvdy, drdy
4658 *
4659 * 1-arg: Does not exist.
4660 *
4661 * 2-arg: dudx dvdx dudy dvdy
4662 * dPdx.x dPdx.y dPdy.x dPdy.y
4663 * m4 m5 m6 m7
4664 *
4665 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4666 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4667 * m5 m6 m7 m8 m9 m10
4668 */
4669 for (unsigned i = 0; i < grad_components; i++)
4670 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4671
4672 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4673
4674 for (unsigned i = 0; i < grad_components; i++)
4675 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4676
4677 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4678 }
4679
4680 if (has_lod) {
4681 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4682 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4683 */
4684 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4685 bld.dispatch_width() == 16);
4686
4687 const brw_reg_type type =
4688 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4689 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4690 bld.MOV(retype(msg_end, type), lod);
4691 msg_end = offset(msg_end, bld, 1);
4692 }
4693
4694 if (shadow_c.file != BAD_FILE) {
4695 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4696 /* There's no plain shadow compare message, so we use shadow
4697 * compare with a bias of 0.0.
4698 */
4699 bld.MOV(msg_end, brw_imm_f(0.0f));
4700 msg_end = offset(msg_end, bld, 1);
4701 }
4702
4703 bld.MOV(msg_end, shadow_c);
4704 msg_end = offset(msg_end, bld, 1);
4705 }
4706
4707 inst->opcode = op;
4708 inst->src[0] = reg_undef;
4709 inst->src[1] = surface;
4710 inst->src[2] = sampler;
4711 inst->resize_sources(3);
4712 inst->base_mrf = msg_begin.nr;
4713 inst->mlen = msg_end.nr - msg_begin.nr;
4714 inst->header_size = 1;
4715 }
4716
4717 static void
4718 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4719 const fs_reg &coordinate,
4720 const fs_reg &shadow_c,
4721 const fs_reg &lod, const fs_reg &lod2,
4722 const fs_reg &sample_index,
4723 const fs_reg &surface,
4724 const fs_reg &sampler,
4725 unsigned coord_components,
4726 unsigned grad_components)
4727 {
4728 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4729 fs_reg msg_coords = message;
4730 unsigned header_size = 0;
4731
4732 if (inst->offset != 0) {
4733 /* The offsets set up by the visitor are in the m1 header, so we can't
4734 * go headerless.
4735 */
4736 header_size = 1;
4737 message.nr--;
4738 }
4739
4740 for (unsigned i = 0; i < coord_components; i++)
4741 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4742 offset(coordinate, bld, i));
4743
4744 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4745 fs_reg msg_lod = offset(msg_coords, bld, 4);
4746
4747 if (shadow_c.file != BAD_FILE) {
4748 fs_reg msg_shadow = msg_lod;
4749 bld.MOV(msg_shadow, shadow_c);
4750 msg_lod = offset(msg_shadow, bld, 1);
4751 msg_end = msg_lod;
4752 }
4753
4754 switch (op) {
4755 case SHADER_OPCODE_TXL:
4756 case FS_OPCODE_TXB:
4757 bld.MOV(msg_lod, lod);
4758 msg_end = offset(msg_lod, bld, 1);
4759 break;
4760 case SHADER_OPCODE_TXD:
4761 /**
4762 * P = u, v, r
4763 * dPdx = dudx, dvdx, drdx
4764 * dPdy = dudy, dvdy, drdy
4765 *
4766 * Load up these values:
4767 * - dudx dudy dvdx dvdy drdx drdy
4768 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4769 */
4770 msg_end = msg_lod;
4771 for (unsigned i = 0; i < grad_components; i++) {
4772 bld.MOV(msg_end, offset(lod, bld, i));
4773 msg_end = offset(msg_end, bld, 1);
4774
4775 bld.MOV(msg_end, offset(lod2, bld, i));
4776 msg_end = offset(msg_end, bld, 1);
4777 }
4778 break;
4779 case SHADER_OPCODE_TXS:
4780 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4781 bld.MOV(msg_lod, lod);
4782 msg_end = offset(msg_lod, bld, 1);
4783 break;
4784 case SHADER_OPCODE_TXF:
4785 msg_lod = offset(msg_coords, bld, 3);
4786 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4787 msg_end = offset(msg_lod, bld, 1);
4788 break;
4789 case SHADER_OPCODE_TXF_CMS:
4790 msg_lod = offset(msg_coords, bld, 3);
4791 /* lod */
4792 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4793 /* sample index */
4794 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4795 msg_end = offset(msg_lod, bld, 2);
4796 break;
4797 default:
4798 break;
4799 }
4800
4801 inst->opcode = op;
4802 inst->src[0] = reg_undef;
4803 inst->src[1] = surface;
4804 inst->src[2] = sampler;
4805 inst->resize_sources(3);
4806 inst->base_mrf = message.nr;
4807 inst->mlen = msg_end.nr - message.nr;
4808 inst->header_size = header_size;
4809
4810 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4811 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4812 }
4813
4814 static bool
4815 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4816 {
4817 if (devinfo->gen < 8 && !devinfo->is_haswell)
4818 return false;
4819
4820 return sampler.file != IMM || sampler.ud >= 16;
4821 }
4822
4823 static unsigned
4824 sampler_msg_type(const gen_device_info *devinfo,
4825 opcode opcode, bool shadow_compare)
4826 {
4827 assert(devinfo->gen >= 5);
4828 switch (opcode) {
4829 case SHADER_OPCODE_TEX:
4830 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE :
4831 GEN5_SAMPLER_MESSAGE_SAMPLE;
4832 case FS_OPCODE_TXB:
4833 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE :
4834 GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
4835 case SHADER_OPCODE_TXL:
4836 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE :
4837 GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
4838 case SHADER_OPCODE_TXL_LZ:
4839 return shadow_compare ? GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ :
4840 GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
4841 case SHADER_OPCODE_TXS:
4842 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4843 return GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
4844 case SHADER_OPCODE_TXD:
4845 assert(!shadow_compare || devinfo->gen >= 8 || devinfo->is_haswell);
4846 return shadow_compare ? HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE :
4847 GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
4848 case SHADER_OPCODE_TXF:
4849 return GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4850 case SHADER_OPCODE_TXF_LZ:
4851 assert(devinfo->gen >= 9);
4852 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
4853 case SHADER_OPCODE_TXF_CMS_W:
4854 assert(devinfo->gen >= 9);
4855 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
4856 case SHADER_OPCODE_TXF_CMS:
4857 return devinfo->gen >= 7 ? GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS :
4858 GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4859 case SHADER_OPCODE_TXF_UMS:
4860 assert(devinfo->gen >= 7);
4861 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
4862 case SHADER_OPCODE_TXF_MCS:
4863 assert(devinfo->gen >= 7);
4864 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
4865 case SHADER_OPCODE_LOD:
4866 return GEN5_SAMPLER_MESSAGE_LOD;
4867 case SHADER_OPCODE_TG4:
4868 assert(devinfo->gen >= 7);
4869 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C :
4870 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
4871 break;
4872 case SHADER_OPCODE_TG4_OFFSET:
4873 assert(devinfo->gen >= 7);
4874 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C :
4875 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
4876 case SHADER_OPCODE_SAMPLEINFO:
4877 return GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
4878 default:
4879 unreachable("not reached");
4880 }
4881 }
4882
4883 static void
4884 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4885 const fs_reg &coordinate,
4886 const fs_reg &shadow_c,
4887 fs_reg lod, const fs_reg &lod2,
4888 const fs_reg &min_lod,
4889 const fs_reg &sample_index,
4890 const fs_reg &mcs,
4891 const fs_reg &surface,
4892 const fs_reg &sampler,
4893 const fs_reg &surface_handle,
4894 const fs_reg &sampler_handle,
4895 const fs_reg &tg4_offset,
4896 unsigned coord_components,
4897 unsigned grad_components)
4898 {
4899 const gen_device_info *devinfo = bld.shader->devinfo;
4900 const brw_stage_prog_data *prog_data = bld.shader->stage_prog_data;
4901 unsigned reg_width = bld.dispatch_width() / 8;
4902 unsigned header_size = 0, length = 0;
4903 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4904 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4905 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4906
4907 /* We must have exactly one of surface/sampler and surface/sampler_handle */
4908 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
4909 assert((sampler.file == BAD_FILE) != (sampler_handle.file == BAD_FILE));
4910
4911 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4912 inst->offset != 0 || inst->eot ||
4913 op == SHADER_OPCODE_SAMPLEINFO ||
4914 sampler_handle.file != BAD_FILE ||
4915 is_high_sampler(devinfo, sampler)) {
4916 /* For general texture offsets (no txf workaround), we need a header to
4917 * put them in.
4918 *
4919 * TG4 needs to place its channel select in the header, for interaction
4920 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4921 * larger sampler numbers we need to offset the Sampler State Pointer in
4922 * the header.
4923 */
4924 fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD);
4925 header_size = 1;
4926 length++;
4927
4928 /* If we're requesting fewer than four channels worth of response,
4929 * and we have an explicit header, we need to set up the sampler
4930 * writemask. It's reversed from normal: 1 means "don't write".
4931 */
4932 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4933 assert(regs_written(inst) % reg_width == 0);
4934 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4935 inst->offset |= mask << 12;
4936 }
4937
4938 /* Build the actual header */
4939 const fs_builder ubld = bld.exec_all().group(8, 0);
4940 const fs_builder ubld1 = ubld.group(1, 0);
4941 ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
4942 if (inst->offset) {
4943 ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset));
4944 } else if (bld.shader->stage != MESA_SHADER_VERTEX &&
4945 bld.shader->stage != MESA_SHADER_FRAGMENT) {
4946 /* The vertex and fragment stages have g0.2 set to 0, so
4947 * header0.2 is 0 when g0 is copied. Other stages may not, so we
4948 * must set it to 0 to avoid setting undesirable bits in the
4949 * message.
4950 */
4951 ubld1.MOV(component(header, 2), brw_imm_ud(0));
4952 }
4953
4954 if (sampler_handle.file != BAD_FILE) {
4955 /* Bindless sampler handles aren't relative to the sampler state
4956 * pointer passed into the shader through SAMPLER_STATE_POINTERS_*.
4957 * Instead, it's an absolute pointer relative to dynamic state base
4958 * address.
4959 *
4960 * Sampler states are 16 bytes each and the pointer we give here has
4961 * to be 32-byte aligned. In order to avoid more indirect messages
4962 * than required, we assume that all bindless sampler states are
4963 * 32-byte aligned. This sacrifices a bit of general state base
4964 * address space but means we can do something more efficient in the
4965 * shader.
4966 */
4967 ubld1.MOV(component(header, 3), sampler_handle);
4968 } else if (is_high_sampler(devinfo, sampler)) {
4969 if (sampler.file == BRW_IMMEDIATE_VALUE) {
4970 assert(sampler.ud >= 16);
4971 const int sampler_state_size = 16; /* 16 bytes */
4972
4973 ubld1.ADD(component(header, 3),
4974 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
4975 brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size));
4976 } else {
4977 fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
4978 ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0));
4979 ubld1.SHL(tmp, tmp, brw_imm_ud(4));
4980 ubld1.ADD(component(header, 3),
4981 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
4982 tmp);
4983 }
4984 }
4985 }
4986
4987 if (shadow_c.file != BAD_FILE) {
4988 bld.MOV(sources[length], shadow_c);
4989 length++;
4990 }
4991
4992 bool coordinate_done = false;
4993
4994 /* Set up the LOD info */
4995 switch (op) {
4996 case FS_OPCODE_TXB:
4997 case SHADER_OPCODE_TXL:
4998 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4999 op = SHADER_OPCODE_TXL_LZ;
5000 break;
5001 }
5002 bld.MOV(sources[length], lod);
5003 length++;
5004 break;
5005 case SHADER_OPCODE_TXD:
5006 /* TXD should have been lowered in SIMD16 mode. */
5007 assert(bld.dispatch_width() == 8);
5008
5009 /* Load dPdx and the coordinate together:
5010 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
5011 */
5012 for (unsigned i = 0; i < coord_components; i++) {
5013 bld.MOV(sources[length++], offset(coordinate, bld, i));
5014
5015 /* For cube map array, the coordinate is (u,v,r,ai) but there are
5016 * only derivatives for (u, v, r).
5017 */
5018 if (i < grad_components) {
5019 bld.MOV(sources[length++], offset(lod, bld, i));
5020 bld.MOV(sources[length++], offset(lod2, bld, i));
5021 }
5022 }
5023
5024 coordinate_done = true;
5025 break;
5026 case SHADER_OPCODE_TXS:
5027 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
5028 length++;
5029 break;
5030 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5031 /* We need an LOD; just use 0 */
5032 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
5033 length++;
5034 break;
5035 case SHADER_OPCODE_TXF:
5036 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
5037 * On Gen9 they are u, v, lod, r
5038 */
5039 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
5040
5041 if (devinfo->gen >= 9) {
5042 if (coord_components >= 2) {
5043 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
5044 offset(coordinate, bld, 1));
5045 } else {
5046 sources[length] = brw_imm_d(0);
5047 }
5048 length++;
5049 }
5050
5051 if (devinfo->gen >= 9 && lod.is_zero()) {
5052 op = SHADER_OPCODE_TXF_LZ;
5053 } else {
5054 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
5055 length++;
5056 }
5057
5058 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
5059 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5060 offset(coordinate, bld, i));
5061
5062 coordinate_done = true;
5063 break;
5064
5065 case SHADER_OPCODE_TXF_CMS:
5066 case SHADER_OPCODE_TXF_CMS_W:
5067 case SHADER_OPCODE_TXF_UMS:
5068 case SHADER_OPCODE_TXF_MCS:
5069 if (op == SHADER_OPCODE_TXF_UMS ||
5070 op == SHADER_OPCODE_TXF_CMS ||
5071 op == SHADER_OPCODE_TXF_CMS_W) {
5072 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
5073 length++;
5074 }
5075
5076 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
5077 /* Data from the multisample control surface. */
5078 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
5079 length++;
5080
5081 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
5082 * the MCS data.
5083 */
5084 if (op == SHADER_OPCODE_TXF_CMS_W) {
5085 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
5086 mcs.file == IMM ?
5087 mcs :
5088 offset(mcs, bld, 1));
5089 length++;
5090 }
5091 }
5092
5093 /* There is no offsetting for this message; just copy in the integer
5094 * texture coordinates.
5095 */
5096 for (unsigned i = 0; i < coord_components; i++)
5097 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5098 offset(coordinate, bld, i));
5099
5100 coordinate_done = true;
5101 break;
5102 case SHADER_OPCODE_TG4_OFFSET:
5103 /* More crazy intermixing */
5104 for (unsigned i = 0; i < 2; i++) /* u, v */
5105 bld.MOV(sources[length++], offset(coordinate, bld, i));
5106
5107 for (unsigned i = 0; i < 2; i++) /* offu, offv */
5108 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5109 offset(tg4_offset, bld, i));
5110
5111 if (coord_components == 3) /* r if present */
5112 bld.MOV(sources[length++], offset(coordinate, bld, 2));
5113
5114 coordinate_done = true;
5115 break;
5116 default:
5117 break;
5118 }
5119
5120 /* Set up the coordinate (except for cases where it was done above) */
5121 if (!coordinate_done) {
5122 for (unsigned i = 0; i < coord_components; i++)
5123 bld.MOV(sources[length++], offset(coordinate, bld, i));
5124 }
5125
5126 if (min_lod.file != BAD_FILE) {
5127 /* Account for all of the missing coordinate sources */
5128 length += 4 - coord_components;
5129 if (op == SHADER_OPCODE_TXD)
5130 length += (3 - grad_components) * 2;
5131
5132 bld.MOV(sources[length++], min_lod);
5133 }
5134
5135 unsigned mlen;
5136 if (reg_width == 2)
5137 mlen = length * reg_width - header_size;
5138 else
5139 mlen = length * reg_width;
5140
5141 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
5142 BRW_REGISTER_TYPE_F);
5143 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
5144
5145 /* Generate the SEND. */
5146 inst->opcode = SHADER_OPCODE_SEND;
5147 inst->mlen = mlen;
5148 inst->header_size = header_size;
5149
5150 const unsigned msg_type =
5151 sampler_msg_type(devinfo, op, inst->shadow_compare);
5152 const unsigned simd_mode =
5153 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5154 BRW_SAMPLER_SIMD_MODE_SIMD16;
5155
5156 uint32_t base_binding_table_index;
5157 switch (op) {
5158 case SHADER_OPCODE_TG4:
5159 case SHADER_OPCODE_TG4_OFFSET:
5160 base_binding_table_index = prog_data->binding_table.gather_texture_start;
5161 break;
5162 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5163 base_binding_table_index = prog_data->binding_table.image_start;
5164 break;
5165 default:
5166 base_binding_table_index = prog_data->binding_table.texture_start;
5167 break;
5168 }
5169
5170 inst->sfid = BRW_SFID_SAMPLER;
5171 if (surface.file == IMM &&
5172 (sampler.file == IMM || sampler_handle.file != BAD_FILE)) {
5173 inst->desc = brw_sampler_desc(devinfo,
5174 surface.ud + base_binding_table_index,
5175 sampler.file == IMM ? sampler.ud % 16 : 0,
5176 msg_type,
5177 simd_mode,
5178 0 /* return_format unused on gen7+ */);
5179 inst->src[0] = brw_imm_ud(0);
5180 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5181 } else if (surface_handle.file != BAD_FILE) {
5182 /* Bindless surface */
5183 assert(devinfo->gen >= 9);
5184 inst->desc = brw_sampler_desc(devinfo,
5185 GEN9_BTI_BINDLESS,
5186 sampler.file == IMM ? sampler.ud % 16 : 0,
5187 msg_type,
5188 simd_mode,
5189 0 /* return_format unused on gen7+ */);
5190
5191 /* For bindless samplers, the entire address is included in the message
5192 * header so we can leave the portion in the message descriptor 0.
5193 */
5194 if (sampler_handle.file != BAD_FILE || sampler.file == IMM) {
5195 inst->src[0] = brw_imm_ud(0);
5196 } else {
5197 const fs_builder ubld = bld.group(1, 0).exec_all();
5198 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5199 ubld.SHL(desc, sampler, brw_imm_ud(8));
5200 inst->src[0] = desc;
5201 }
5202
5203 /* We assume that the driver provided the handle in the top 20 bits so
5204 * we can use the surface handle directly as the extended descriptor.
5205 */
5206 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5207 } else {
5208 /* Immediate portion of the descriptor */
5209 inst->desc = brw_sampler_desc(devinfo,
5210 0, /* surface */
5211 0, /* sampler */
5212 msg_type,
5213 simd_mode,
5214 0 /* return_format unused on gen7+ */);
5215 const fs_builder ubld = bld.group(1, 0).exec_all();
5216 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5217 if (surface.equals(sampler)) {
5218 /* This case is common in GL */
5219 ubld.MUL(desc, surface, brw_imm_ud(0x101));
5220 } else {
5221 if (sampler_handle.file != BAD_FILE) {
5222 ubld.MOV(desc, surface);
5223 } else if (sampler.file == IMM) {
5224 ubld.OR(desc, surface, brw_imm_ud(sampler.ud << 8));
5225 } else {
5226 ubld.SHL(desc, sampler, brw_imm_ud(8));
5227 ubld.OR(desc, desc, surface);
5228 }
5229 }
5230 if (base_binding_table_index)
5231 ubld.ADD(desc, desc, brw_imm_ud(base_binding_table_index));
5232 ubld.AND(desc, desc, brw_imm_ud(0xfff));
5233
5234 inst->src[0] = component(desc, 0);
5235 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5236 }
5237
5238 inst->src[2] = src_payload;
5239 inst->resize_sources(3);
5240
5241 if (inst->eot) {
5242 /* EOT sampler messages don't make sense to split because it would
5243 * involve ending half of the thread early.
5244 */
5245 assert(inst->group == 0);
5246 /* We need to use SENDC for EOT sampler messages */
5247 inst->check_tdr = true;
5248 inst->send_has_side_effects = true;
5249 }
5250
5251 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
5252 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
5253 }
5254
5255 static void
5256 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
5257 {
5258 const gen_device_info *devinfo = bld.shader->devinfo;
5259 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
5260 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
5261 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
5262 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
5263 const fs_reg &min_lod = inst->src[TEX_LOGICAL_SRC_MIN_LOD];
5264 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
5265 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
5266 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
5267 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
5268 const fs_reg &surface_handle = inst->src[TEX_LOGICAL_SRC_SURFACE_HANDLE];
5269 const fs_reg &sampler_handle = inst->src[TEX_LOGICAL_SRC_SAMPLER_HANDLE];
5270 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
5271 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
5272 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
5273 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
5274 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
5275
5276 if (devinfo->gen >= 7) {
5277 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
5278 shadow_c, lod, lod2, min_lod,
5279 sample_index,
5280 mcs, surface, sampler,
5281 surface_handle, sampler_handle,
5282 tg4_offset,
5283 coord_components, grad_components);
5284 } else if (devinfo->gen >= 5) {
5285 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
5286 shadow_c, lod, lod2, sample_index,
5287 surface, sampler,
5288 coord_components, grad_components);
5289 } else {
5290 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
5291 shadow_c, lod, lod2,
5292 surface, sampler,
5293 coord_components, grad_components);
5294 }
5295 }
5296
5297 static void
5298 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
5299 {
5300 const gen_device_info *devinfo = bld.shader->devinfo;
5301
5302 /* Get the logical send arguments. */
5303 const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5304 const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5305 const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5306 const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
5307 const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS];
5308 const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
5309 assert(arg.file == IMM);
5310
5311 /* We must have exactly one of surface and surface_handle */
5312 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
5313
5314 /* Calculate the total number of components of the payload. */
5315 const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS);
5316 const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
5317
5318 const bool is_typed_access =
5319 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL ||
5320 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
5321 inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
5322
5323 const bool is_surface_access = is_typed_access ||
5324 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL ||
5325 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL ||
5326 inst->opcode == SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL;
5327
5328 const bool is_stateless =
5329 surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
5330 surface.ud == GEN8_BTI_STATELESS_NON_COHERENT);
5331
5332 const bool has_side_effects = inst->has_side_effects();
5333 fs_reg sample_mask = has_side_effects ? bld.sample_mask_reg() :
5334 fs_reg(brw_imm_d(0xffff));
5335
5336 /* From the BDW PRM Volume 7, page 147:
5337 *
5338 * "For the Data Cache Data Port*, the header must be present for the
5339 * following message types: [...] Typed read/write/atomics"
5340 *
5341 * Earlier generations have a similar wording. Because of this restriction
5342 * we don't attempt to implement sample masks via predication for such
5343 * messages prior to Gen9, since we have to provide a header anyway. On
5344 * Gen11+ the header has been removed so we can only use predication.
5345 *
5346 * For all stateless A32 messages, we also need a header
5347 */
5348 fs_reg header;
5349 if ((devinfo->gen < 9 && is_typed_access) || is_stateless) {
5350 fs_builder ubld = bld.exec_all().group(8, 0);
5351 header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5352 ubld.MOV(header, brw_imm_d(0));
5353 if (is_stateless) {
5354 /* Both the typed and scattered byte/dword A32 messages take a buffer
5355 * base address in R0.5:[31:0] (See MH1_A32_PSM for typed messages or
5356 * MH_A32_GO for byte/dword scattered messages in the SKL PRM Vol. 2d
5357 * for more details.) This is conveniently where the HW places the
5358 * scratch surface base address.
5359 *
5360 * From the SKL PRM Vol. 7 "Per-Thread Scratch Space":
5361 *
5362 * "When a thread becomes 'active' it is allocated a portion of
5363 * scratch space, sized according to PerThreadScratchSpace. The
5364 * starting location of each thread’s scratch space allocation,
5365 * ScratchSpaceOffset, is passed in the thread payload in
5366 * R0.5[31:10] and is specified as a 1KB-granular offset from the
5367 * GeneralStateBaseAddress. The computation of ScratchSpaceOffset
5368 * includes the starting address of the stage’s scratch space
5369 * allocation, as programmed by ScratchSpaceBasePointer."
5370 *
5371 * The base address is passed in bits R0.5[31:10] and the bottom 10
5372 * bits of R0.5 are used for other things. Therefore, we have to
5373 * mask off the bottom 10 bits so that we don't get a garbage base
5374 * address.
5375 */
5376 ubld.group(1, 0).AND(component(header, 5),
5377 retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
5378 brw_imm_ud(0xfffffc00));
5379 }
5380 if (is_surface_access)
5381 ubld.group(1, 0).MOV(component(header, 7), sample_mask);
5382 }
5383 const unsigned header_sz = header.file != BAD_FILE ? 1 : 0;
5384
5385 fs_reg payload, payload2;
5386 unsigned mlen, ex_mlen = 0;
5387 if (devinfo->gen >= 9 &&
5388 (src.file == BAD_FILE || header.file == BAD_FILE)) {
5389 /* We have split sends on gen9 and above */
5390 if (header.file == BAD_FILE) {
5391 payload = bld.move_to_vgrf(addr, addr_sz);
5392 payload2 = bld.move_to_vgrf(src, src_sz);
5393 mlen = addr_sz * (inst->exec_size / 8);
5394 ex_mlen = src_sz * (inst->exec_size / 8);
5395 } else {
5396 assert(src.file == BAD_FILE);
5397 payload = header;
5398 payload2 = bld.move_to_vgrf(addr, addr_sz);
5399 mlen = header_sz;
5400 ex_mlen = addr_sz * (inst->exec_size / 8);
5401 }
5402 } else {
5403 /* Allocate space for the payload. */
5404 const unsigned sz = header_sz + addr_sz + src_sz;
5405 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
5406 fs_reg *const components = new fs_reg[sz];
5407 unsigned n = 0;
5408
5409 /* Construct the payload. */
5410 if (header.file != BAD_FILE)
5411 components[n++] = header;
5412
5413 for (unsigned i = 0; i < addr_sz; i++)
5414 components[n++] = offset(addr, bld, i);
5415
5416 for (unsigned i = 0; i < src_sz; i++)
5417 components[n++] = offset(src, bld, i);
5418
5419 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
5420 mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
5421
5422 delete[] components;
5423 }
5424
5425 /* Predicate the instruction on the sample mask if no header is
5426 * provided.
5427 */
5428 if ((header.file == BAD_FILE || !is_surface_access) &&
5429 sample_mask.file != BAD_FILE && sample_mask.file != IMM) {
5430 const fs_builder ubld = bld.group(1, 0).exec_all();
5431 if (inst->predicate) {
5432 assert(inst->predicate == BRW_PREDICATE_NORMAL);
5433 assert(!inst->predicate_inverse);
5434 assert(inst->flag_subreg < 2);
5435 /* Combine the sample mask with the existing predicate by using a
5436 * vertical predication mode.
5437 */
5438 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
5439 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg + 2),
5440 sample_mask.type),
5441 sample_mask);
5442 } else {
5443 inst->flag_subreg = 2;
5444 inst->predicate = BRW_PREDICATE_NORMAL;
5445 inst->predicate_inverse = false;
5446 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg), sample_mask.type),
5447 sample_mask);
5448 }
5449 }
5450
5451 uint32_t sfid;
5452 switch (inst->opcode) {
5453 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5454 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5455 /* Byte scattered opcodes go through the normal data cache */
5456 sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
5457 break;
5458
5459 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5460 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5461 sfid = devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
5462 devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
5463 BRW_DATAPORT_READ_TARGET_RENDER_CACHE;
5464 break;
5465
5466 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5467 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5468 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5469 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5470 /* Untyped Surface messages go through the data cache but the SFID value
5471 * changed on Haswell.
5472 */
5473 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5474 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5475 GEN7_SFID_DATAPORT_DATA_CACHE);
5476 break;
5477
5478 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5479 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5480 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5481 /* Typed surface messages go through the render cache on IVB and the
5482 * data cache on HSW+.
5483 */
5484 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5485 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5486 GEN6_SFID_DATAPORT_RENDER_CACHE);
5487 break;
5488
5489 default:
5490 unreachable("Unsupported surface opcode");
5491 }
5492
5493 uint32_t desc;
5494 switch (inst->opcode) {
5495 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5496 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5497 arg.ud, /* num_channels */
5498 false /* write */);
5499 break;
5500
5501 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5502 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5503 arg.ud, /* num_channels */
5504 true /* write */);
5505 break;
5506
5507 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5508 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5509 arg.ud, /* bit_size */
5510 false /* write */);
5511 break;
5512
5513 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5514 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5515 arg.ud, /* bit_size */
5516 true /* write */);
5517 break;
5518
5519 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5520 assert(arg.ud == 32); /* bit_size */
5521 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5522 false /* write */);
5523 break;
5524
5525 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5526 assert(arg.ud == 32); /* bit_size */
5527 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5528 true /* write */);
5529 break;
5530
5531 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5532 desc = brw_dp_untyped_atomic_desc(devinfo, inst->exec_size,
5533 arg.ud, /* atomic_op */
5534 !inst->dst.is_null());
5535 break;
5536
5537 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5538 desc = brw_dp_untyped_atomic_float_desc(devinfo, inst->exec_size,
5539 arg.ud, /* atomic_op */
5540 !inst->dst.is_null());
5541 break;
5542
5543 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5544 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5545 arg.ud, /* num_channels */
5546 false /* write */);
5547 break;
5548
5549 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5550 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5551 arg.ud, /* num_channels */
5552 true /* write */);
5553 break;
5554
5555 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5556 desc = brw_dp_typed_atomic_desc(devinfo, inst->exec_size, inst->group,
5557 arg.ud, /* atomic_op */
5558 !inst->dst.is_null());
5559 break;
5560
5561 default:
5562 unreachable("Unknown surface logical instruction");
5563 }
5564
5565 /* Update the original instruction. */
5566 inst->opcode = SHADER_OPCODE_SEND;
5567 inst->mlen = mlen;
5568 inst->ex_mlen = ex_mlen;
5569 inst->header_size = header_sz;
5570 inst->send_has_side_effects = has_side_effects;
5571 inst->send_is_volatile = !has_side_effects;
5572
5573 /* Set up SFID and descriptors */
5574 inst->sfid = sfid;
5575 inst->desc = desc;
5576 if (surface.file == IMM) {
5577 inst->desc |= surface.ud & 0xff;
5578 inst->src[0] = brw_imm_ud(0);
5579 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5580 } else if (surface_handle.file != BAD_FILE) {
5581 /* Bindless surface */
5582 assert(devinfo->gen >= 9);
5583 inst->desc |= GEN9_BTI_BINDLESS;
5584 inst->src[0] = brw_imm_ud(0);
5585
5586 /* We assume that the driver provided the handle in the top 20 bits so
5587 * we can use the surface handle directly as the extended descriptor.
5588 */
5589 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5590 } else {
5591 const fs_builder ubld = bld.exec_all().group(1, 0);
5592 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5593 ubld.AND(tmp, surface, brw_imm_ud(0xff));
5594 inst->src[0] = component(tmp, 0);
5595 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5596 }
5597
5598 /* Finally, the payload */
5599 inst->src[2] = payload;
5600 inst->src[3] = payload2;
5601
5602 inst->resize_sources(4);
5603 }
5604
5605 static void
5606 lower_a64_logical_send(const fs_builder &bld, fs_inst *inst)
5607 {
5608 const gen_device_info *devinfo = bld.shader->devinfo;
5609
5610 const fs_reg &addr = inst->src[0];
5611 const fs_reg &src = inst->src[1];
5612 const unsigned src_comps = inst->components_read(1);
5613 assert(inst->src[2].file == IMM);
5614 const unsigned arg = inst->src[2].ud;
5615 const bool has_side_effects = inst->has_side_effects();
5616
5617 /* If the surface message has side effects and we're a fragment shader, we
5618 * have to predicate with the sample mask to avoid helper invocations.
5619 */
5620 if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT) {
5621 inst->flag_subreg = 2;
5622 inst->predicate = BRW_PREDICATE_NORMAL;
5623 inst->predicate_inverse = false;
5624
5625 fs_reg sample_mask = bld.sample_mask_reg();
5626 const fs_builder ubld = bld.group(1, 0).exec_all();
5627 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg), sample_mask.type),
5628 sample_mask);
5629 }
5630
5631 fs_reg payload, payload2;
5632 unsigned mlen, ex_mlen = 0;
5633 if (devinfo->gen >= 9) {
5634 /* On Skylake and above, we have SENDS */
5635 mlen = 2 * (inst->exec_size / 8);
5636 ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE;
5637 payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD);
5638 payload2 = retype(bld.move_to_vgrf(src, src_comps),
5639 BRW_REGISTER_TYPE_UD);
5640 } else {
5641 /* Add two because the address is 64-bit */
5642 const unsigned dwords = 2 + src_comps;
5643 mlen = dwords * (inst->exec_size / 8);
5644
5645 fs_reg sources[5];
5646
5647 sources[0] = addr;
5648
5649 for (unsigned i = 0; i < src_comps; i++)
5650 sources[1 + i] = offset(src, bld, i);
5651
5652 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, dwords);
5653 bld.LOAD_PAYLOAD(payload, sources, 1 + src_comps, 0);
5654 }
5655
5656 uint32_t desc;
5657 switch (inst->opcode) {
5658 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5659 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5660 arg, /* num_channels */
5661 false /* write */);
5662 break;
5663
5664 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5665 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5666 arg, /* num_channels */
5667 true /* write */);
5668 break;
5669
5670 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5671 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5672 arg, /* bit_size */
5673 false /* write */);
5674 break;
5675
5676 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5677 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5678 arg, /* bit_size */
5679 true /* write */);
5680 break;
5681
5682 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5683 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 32,
5684 arg, /* atomic_op */
5685 !inst->dst.is_null());
5686 break;
5687
5688 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5689 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 64,
5690 arg, /* atomic_op */
5691 !inst->dst.is_null());
5692 break;
5693
5694
5695 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5696 desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size,
5697 arg, /* atomic_op */
5698 !inst->dst.is_null());
5699 break;
5700
5701 default:
5702 unreachable("Unknown A64 logical instruction");
5703 }
5704
5705 /* Update the original instruction. */
5706 inst->opcode = SHADER_OPCODE_SEND;
5707 inst->mlen = mlen;
5708 inst->ex_mlen = ex_mlen;
5709 inst->header_size = 0;
5710 inst->send_has_side_effects = has_side_effects;
5711 inst->send_is_volatile = !has_side_effects;
5712
5713 /* Set up SFID and descriptors */
5714 inst->sfid = HSW_SFID_DATAPORT_DATA_CACHE_1;
5715 inst->desc = desc;
5716 inst->resize_sources(4);
5717 inst->src[0] = brw_imm_ud(0); /* desc */
5718 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5719 inst->src[2] = payload;
5720 inst->src[3] = payload2;
5721 }
5722
5723 static void
5724 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
5725 {
5726 const gen_device_info *devinfo = bld.shader->devinfo;
5727
5728 if (devinfo->gen >= 7) {
5729 fs_reg index = inst->src[0];
5730 /* We are switching the instruction from an ALU-like instruction to a
5731 * send-from-grf instruction. Since sends can't handle strides or
5732 * source modifiers, we have to make a copy of the offset source.
5733 */
5734 fs_reg offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
5735 bld.MOV(offset, inst->src[1]);
5736
5737 const unsigned simd_mode =
5738 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5739 BRW_SAMPLER_SIMD_MODE_SIMD16;
5740
5741 inst->opcode = SHADER_OPCODE_SEND;
5742 inst->mlen = inst->exec_size / 8;
5743 inst->resize_sources(3);
5744
5745 inst->sfid = BRW_SFID_SAMPLER;
5746 inst->desc = brw_sampler_desc(devinfo, 0, 0,
5747 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
5748 simd_mode, 0);
5749 if (index.file == IMM) {
5750 inst->desc |= index.ud & 0xff;
5751 inst->src[0] = brw_imm_ud(0);
5752 } else {
5753 const fs_builder ubld = bld.exec_all().group(1, 0);
5754 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5755 ubld.AND(tmp, index, brw_imm_ud(0xff));
5756 inst->src[0] = component(tmp, 0);
5757 }
5758 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5759 inst->src[2] = offset; /* payload */
5760 } else {
5761 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
5762 BRW_REGISTER_TYPE_UD);
5763
5764 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
5765
5766 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
5767 inst->resize_sources(1);
5768 inst->base_mrf = payload.nr;
5769 inst->header_size = 1;
5770 inst->mlen = 1 + inst->exec_size / 8;
5771 }
5772 }
5773
5774 static void
5775 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
5776 {
5777 assert(bld.shader->devinfo->gen < 6);
5778
5779 inst->base_mrf = 2;
5780 inst->mlen = inst->sources * inst->exec_size / 8;
5781
5782 if (inst->sources > 1) {
5783 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
5784 * "Message Payload":
5785 *
5786 * "Operand0[7]. For the INT DIV functions, this operand is the
5787 * denominator."
5788 * ...
5789 * "Operand1[7]. For the INT DIV functions, this operand is the
5790 * numerator."
5791 */
5792 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
5793 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
5794 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
5795
5796 inst->resize_sources(1);
5797 inst->src[0] = src0;
5798
5799 assert(inst->exec_size == 8);
5800 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
5801 }
5802 }
5803
5804 bool
5805 fs_visitor::lower_logical_sends()
5806 {
5807 bool progress = false;
5808
5809 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5810 const fs_builder ibld(this, block, inst);
5811
5812 switch (inst->opcode) {
5813 case FS_OPCODE_FB_WRITE_LOGICAL:
5814 assert(stage == MESA_SHADER_FRAGMENT);
5815 lower_fb_write_logical_send(ibld, inst,
5816 brw_wm_prog_data(prog_data),
5817 (const brw_wm_prog_key *)key,
5818 payload);
5819 break;
5820
5821 case FS_OPCODE_FB_READ_LOGICAL:
5822 lower_fb_read_logical_send(ibld, inst);
5823 break;
5824
5825 case SHADER_OPCODE_TEX_LOGICAL:
5826 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
5827 break;
5828
5829 case SHADER_OPCODE_TXD_LOGICAL:
5830 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
5831 break;
5832
5833 case SHADER_OPCODE_TXF_LOGICAL:
5834 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
5835 break;
5836
5837 case SHADER_OPCODE_TXL_LOGICAL:
5838 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
5839 break;
5840
5841 case SHADER_OPCODE_TXS_LOGICAL:
5842 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
5843 break;
5844
5845 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5846 lower_sampler_logical_send(ibld, inst,
5847 SHADER_OPCODE_IMAGE_SIZE_LOGICAL);
5848 break;
5849
5850 case FS_OPCODE_TXB_LOGICAL:
5851 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
5852 break;
5853
5854 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5855 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
5856 break;
5857
5858 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5859 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
5860 break;
5861
5862 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5863 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
5864 break;
5865
5866 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5867 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
5868 break;
5869
5870 case SHADER_OPCODE_LOD_LOGICAL:
5871 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
5872 break;
5873
5874 case SHADER_OPCODE_TG4_LOGICAL:
5875 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
5876 break;
5877
5878 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5879 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
5880 break;
5881
5882 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5883 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
5884 break;
5885
5886 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5887 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5888 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5889 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5890 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5891 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5892 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5893 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5894 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5895 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5896 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5897 lower_surface_logical_send(ibld, inst);
5898 break;
5899
5900 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5901 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5902 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5903 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5904 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5905 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5906 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5907 lower_a64_logical_send(ibld, inst);
5908 break;
5909
5910 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5911 lower_varying_pull_constant_logical_send(ibld, inst);
5912 break;
5913
5914 case SHADER_OPCODE_RCP:
5915 case SHADER_OPCODE_RSQ:
5916 case SHADER_OPCODE_SQRT:
5917 case SHADER_OPCODE_EXP2:
5918 case SHADER_OPCODE_LOG2:
5919 case SHADER_OPCODE_SIN:
5920 case SHADER_OPCODE_COS:
5921 case SHADER_OPCODE_POW:
5922 case SHADER_OPCODE_INT_QUOTIENT:
5923 case SHADER_OPCODE_INT_REMAINDER:
5924 /* The math opcodes are overloaded for the send-like and
5925 * expression-like instructions which seems kind of icky. Gen6+ has
5926 * a native (but rather quirky) MATH instruction so we don't need to
5927 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
5928 * logical instructions (which we can easily recognize because they
5929 * have mlen = 0) into send-like virtual instructions.
5930 */
5931 if (devinfo->gen < 6 && inst->mlen == 0) {
5932 lower_math_logical_send(ibld, inst);
5933 break;
5934
5935 } else {
5936 continue;
5937 }
5938
5939 default:
5940 continue;
5941 }
5942
5943 progress = true;
5944 }
5945
5946 if (progress)
5947 invalidate_live_intervals();
5948
5949 return progress;
5950 }
5951
5952 static bool
5953 is_mixed_float_with_fp32_dst(const fs_inst *inst)
5954 {
5955 /* This opcode sometimes uses :W type on the source even if the operand is
5956 * a :HF, because in gen7 there is no support for :HF, and thus it uses :W.
5957 */
5958 if (inst->opcode == BRW_OPCODE_F16TO32)
5959 return true;
5960
5961 if (inst->dst.type != BRW_REGISTER_TYPE_F)
5962 return false;
5963
5964 for (int i = 0; i < inst->sources; i++) {
5965 if (inst->src[i].type == BRW_REGISTER_TYPE_HF)
5966 return true;
5967 }
5968
5969 return false;
5970 }
5971
5972 static bool
5973 is_mixed_float_with_packed_fp16_dst(const fs_inst *inst)
5974 {
5975 /* This opcode sometimes uses :W type on the destination even if the
5976 * destination is a :HF, because in gen7 there is no support for :HF, and
5977 * thus it uses :W.
5978 */
5979 if (inst->opcode == BRW_OPCODE_F32TO16 &&
5980 inst->dst.stride == 1)
5981 return true;
5982
5983 if (inst->dst.type != BRW_REGISTER_TYPE_HF ||
5984 inst->dst.stride != 1)
5985 return false;
5986
5987 for (int i = 0; i < inst->sources; i++) {
5988 if (inst->src[i].type == BRW_REGISTER_TYPE_F)
5989 return true;
5990 }
5991
5992 return false;
5993 }
5994
5995 /**
5996 * Get the closest allowed SIMD width for instruction \p inst accounting for
5997 * some common regioning and execution control restrictions that apply to FPU
5998 * instructions. These restrictions don't necessarily have any relevance to
5999 * instructions not executed by the FPU pipeline like extended math, control
6000 * flow or send message instructions.
6001 *
6002 * For virtual opcodes it's really up to the instruction -- In some cases
6003 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
6004 * instructions) it may simplify virtual instruction lowering if we can
6005 * enforce FPU-like regioning restrictions already on the virtual instruction,
6006 * in other cases (e.g. virtual send-like instructions) this may be
6007 * excessively restrictive.
6008 */
6009 static unsigned
6010 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
6011 const fs_inst *inst)
6012 {
6013 /* Maximum execution size representable in the instruction controls. */
6014 unsigned max_width = MIN2(32, inst->exec_size);
6015
6016 /* According to the PRMs:
6017 * "A. In Direct Addressing mode, a source cannot span more than 2
6018 * adjacent GRF registers.
6019 * B. A destination cannot span more than 2 adjacent GRF registers."
6020 *
6021 * Look for the source or destination with the largest register region
6022 * which is the one that is going to limit the overall execution size of
6023 * the instruction due to this rule.
6024 */
6025 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6026
6027 for (unsigned i = 0; i < inst->sources; i++)
6028 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
6029
6030 /* Calculate the maximum execution size of the instruction based on the
6031 * factor by which it goes over the hardware limit of 2 GRFs.
6032 */
6033 if (reg_count > 2)
6034 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
6035
6036 /* According to the IVB PRMs:
6037 * "When destination spans two registers, the source MUST span two
6038 * registers. The exception to the above rule:
6039 *
6040 * - When source is scalar, the source registers are not incremented.
6041 * - When source is packed integer Word and destination is packed
6042 * integer DWord, the source register is not incremented but the
6043 * source sub register is incremented."
6044 *
6045 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
6046 * restrictions. The code below intentionally doesn't check whether the
6047 * destination type is integer because empirically the hardware doesn't
6048 * seem to care what the actual type is as long as it's dword-aligned.
6049 */
6050 if (devinfo->gen < 8) {
6051 for (unsigned i = 0; i < inst->sources; i++) {
6052 /* IVB implements DF scalars as <0;2,1> regions. */
6053 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
6054 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
6055 const bool is_packed_word_exception =
6056 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
6057 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
6058
6059 /* We check size_read(i) against size_written instead of REG_SIZE
6060 * because we want to properly handle SIMD32. In SIMD32, you can end
6061 * up with writes to 4 registers and a source that reads 2 registers
6062 * and we may still need to lower all the way to SIMD8 in that case.
6063 */
6064 if (inst->size_written > REG_SIZE &&
6065 inst->size_read(i) != 0 &&
6066 inst->size_read(i) < inst->size_written &&
6067 !is_scalar_exception && !is_packed_word_exception) {
6068 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6069 max_width = MIN2(max_width, inst->exec_size / reg_count);
6070 }
6071 }
6072 }
6073
6074 if (devinfo->gen < 6) {
6075 /* From the G45 PRM, Volume 4 Page 361:
6076 *
6077 * "Operand Alignment Rule: With the exceptions listed below, a
6078 * source/destination operand in general should be aligned to even
6079 * 256-bit physical register with a region size equal to two 256-bit
6080 * physical registers."
6081 *
6082 * Normally we enforce this by allocating virtual registers to the
6083 * even-aligned class. But we need to handle payload registers.
6084 */
6085 for (unsigned i = 0; i < inst->sources; i++) {
6086 if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
6087 inst->size_read(i) > REG_SIZE) {
6088 max_width = MIN2(max_width, 8);
6089 }
6090 }
6091 }
6092
6093 /* From the IVB PRMs:
6094 * "When an instruction is SIMD32, the low 16 bits of the execution mask
6095 * are applied for both halves of the SIMD32 instruction. If different
6096 * execution mask channels are required, split the instruction into two
6097 * SIMD16 instructions."
6098 *
6099 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
6100 * 32-wide control flow support in hardware and will behave similarly.
6101 */
6102 if (devinfo->gen < 8 && !inst->force_writemask_all)
6103 max_width = MIN2(max_width, 16);
6104
6105 /* From the IVB PRMs (applies to HSW too):
6106 * "Instructions with condition modifiers must not use SIMD32."
6107 *
6108 * From the BDW PRMs (applies to later hardware too):
6109 * "Ternary instruction with condition modifiers must not use SIMD32."
6110 */
6111 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
6112 max_width = MIN2(max_width, 16);
6113
6114 /* From the IVB PRMs (applies to other devices that don't have the
6115 * gen_device_info::supports_simd16_3src flag set):
6116 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
6117 * SIMD8 is not allowed for DF operations."
6118 */
6119 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
6120 max_width = MIN2(max_width, inst->exec_size / reg_count);
6121
6122 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
6123 * the 8-bit quarter of the execution mask signals specified in the
6124 * instruction control fields) for the second compressed half of any
6125 * single-precision instruction (for double-precision instructions
6126 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
6127 * the EU will apply the wrong execution controls for the second
6128 * sequential GRF write if the number of channels per GRF is not exactly
6129 * eight in single-precision mode (or four in double-float mode).
6130 *
6131 * In this situation we calculate the maximum size of the split
6132 * instructions so they only ever write to a single register.
6133 */
6134 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
6135 !inst->force_writemask_all) {
6136 const unsigned channels_per_grf = inst->exec_size /
6137 DIV_ROUND_UP(inst->size_written, REG_SIZE);
6138 const unsigned exec_type_size = get_exec_type_size(inst);
6139 assert(exec_type_size);
6140
6141 /* The hardware shifts exactly 8 channels per compressed half of the
6142 * instruction in single-precision mode and exactly 4 in double-precision.
6143 */
6144 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
6145 max_width = MIN2(max_width, channels_per_grf);
6146
6147 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
6148 * because HW applies the same channel enable signals to both halves of
6149 * the compressed instruction which will be just wrong under
6150 * non-uniform control flow.
6151 */
6152 if (devinfo->gen == 7 && !devinfo->is_haswell &&
6153 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
6154 max_width = MIN2(max_width, 4);
6155 }
6156
6157 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6158 * Float Operations:
6159 *
6160 * "No SIMD16 in mixed mode when destination is f32. Instruction
6161 * execution size must be no more than 8."
6162 *
6163 * FIXME: the simulator doesn't seem to complain if we don't do this and
6164 * empirical testing with existing CTS tests show that they pass just fine
6165 * without implementing this, however, since our interpretation of the PRM
6166 * is that conversion MOVs between HF and F are still mixed-float
6167 * instructions (and therefore subject to this restriction) we decided to
6168 * split them to be safe. Might be useful to do additional investigation to
6169 * lift the restriction if we can ensure that it is safe though, since these
6170 * conversions are common when half-float types are involved since many
6171 * instructions do not support HF types and conversions from/to F are
6172 * required.
6173 */
6174 if (is_mixed_float_with_fp32_dst(inst))
6175 max_width = MIN2(max_width, 8);
6176
6177 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6178 * Float Operations:
6179 *
6180 * "No SIMD16 in mixed mode when destination is packed f16 for both
6181 * Align1 and Align16."
6182 */
6183 if (is_mixed_float_with_packed_fp16_dst(inst))
6184 max_width = MIN2(max_width, 8);
6185
6186 /* Only power-of-two execution sizes are representable in the instruction
6187 * control fields.
6188 */
6189 return 1 << _mesa_logbase2(max_width);
6190 }
6191
6192 /**
6193 * Get the maximum allowed SIMD width for instruction \p inst accounting for
6194 * various payload size restrictions that apply to sampler message
6195 * instructions.
6196 *
6197 * This is only intended to provide a maximum theoretical bound for the
6198 * execution size of the message based on the number of argument components
6199 * alone, which in most cases will determine whether the SIMD8 or SIMD16
6200 * variant of the message can be used, though some messages may have
6201 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
6202 * the message length to determine the exact SIMD width and argument count,
6203 * which makes a number of sampler message combinations impossible to
6204 * represent).
6205 */
6206 static unsigned
6207 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
6208 const fs_inst *inst)
6209 {
6210 /* If we have a min_lod parameter on anything other than a simple sample
6211 * message, it will push it over 5 arguments and we have to fall back to
6212 * SIMD8.
6213 */
6214 if (inst->opcode != SHADER_OPCODE_TEX &&
6215 inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
6216 return 8;
6217
6218 /* Calculate the number of coordinate components that have to be present
6219 * assuming that additional arguments follow the texel coordinates in the
6220 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
6221 * need to pad to four or three components depending on the message,
6222 * pre-ILK we need to pad to at most three components.
6223 */
6224 const unsigned req_coord_components =
6225 (devinfo->gen >= 7 ||
6226 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
6227 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
6228 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
6229 3;
6230
6231 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
6232 * variant of the TXL or TXF message.
6233 */
6234 const bool implicit_lod = devinfo->gen >= 9 &&
6235 (inst->opcode == SHADER_OPCODE_TXL ||
6236 inst->opcode == SHADER_OPCODE_TXF) &&
6237 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
6238
6239 /* Calculate the total number of argument components that need to be passed
6240 * to the sampler unit.
6241 */
6242 const unsigned num_payload_components =
6243 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
6244 req_coord_components) +
6245 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
6246 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
6247 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
6248 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
6249 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
6250 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
6251 inst->components_read(TEX_LOGICAL_SRC_MCS);
6252
6253 /* SIMD16 messages with more than five arguments exceed the maximum message
6254 * size supported by the sampler, regardless of whether a header is
6255 * provided or not.
6256 */
6257 return MIN2(inst->exec_size,
6258 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
6259 }
6260
6261 /**
6262 * Get the closest native SIMD width supported by the hardware for instruction
6263 * \p inst. The instruction will be left untouched by
6264 * fs_visitor::lower_simd_width() if the returned value is equal to the
6265 * original execution size.
6266 */
6267 static unsigned
6268 get_lowered_simd_width(const struct gen_device_info *devinfo,
6269 const fs_inst *inst)
6270 {
6271 switch (inst->opcode) {
6272 case BRW_OPCODE_MOV:
6273 case BRW_OPCODE_SEL:
6274 case BRW_OPCODE_NOT:
6275 case BRW_OPCODE_AND:
6276 case BRW_OPCODE_OR:
6277 case BRW_OPCODE_XOR:
6278 case BRW_OPCODE_SHR:
6279 case BRW_OPCODE_SHL:
6280 case BRW_OPCODE_ASR:
6281 case BRW_OPCODE_ROR:
6282 case BRW_OPCODE_ROL:
6283 case BRW_OPCODE_CMPN:
6284 case BRW_OPCODE_CSEL:
6285 case BRW_OPCODE_F32TO16:
6286 case BRW_OPCODE_F16TO32:
6287 case BRW_OPCODE_BFREV:
6288 case BRW_OPCODE_BFE:
6289 case BRW_OPCODE_ADD:
6290 case BRW_OPCODE_MUL:
6291 case BRW_OPCODE_AVG:
6292 case BRW_OPCODE_FRC:
6293 case BRW_OPCODE_RNDU:
6294 case BRW_OPCODE_RNDD:
6295 case BRW_OPCODE_RNDE:
6296 case BRW_OPCODE_RNDZ:
6297 case BRW_OPCODE_LZD:
6298 case BRW_OPCODE_FBH:
6299 case BRW_OPCODE_FBL:
6300 case BRW_OPCODE_CBIT:
6301 case BRW_OPCODE_SAD2:
6302 case BRW_OPCODE_MAD:
6303 case BRW_OPCODE_LRP:
6304 case FS_OPCODE_PACK:
6305 case SHADER_OPCODE_SEL_EXEC:
6306 case SHADER_OPCODE_CLUSTER_BROADCAST:
6307 return get_fpu_lowered_simd_width(devinfo, inst);
6308
6309 case BRW_OPCODE_CMP: {
6310 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
6311 * when the destination is a GRF the dependency-clear bit on the flag
6312 * register is cleared early.
6313 *
6314 * Suggested workarounds are to disable coissuing CMP instructions
6315 * or to split CMP(16) instructions into two CMP(8) instructions.
6316 *
6317 * We choose to split into CMP(8) instructions since disabling
6318 * coissuing would affect CMP instructions not otherwise affected by
6319 * the errata.
6320 */
6321 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
6322 !inst->dst.is_null() ? 8 : ~0);
6323 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
6324 }
6325 case BRW_OPCODE_BFI1:
6326 case BRW_OPCODE_BFI2:
6327 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
6328 * should
6329 * "Force BFI instructions to be executed always in SIMD8."
6330 */
6331 return MIN2(devinfo->is_haswell ? 8 : ~0u,
6332 get_fpu_lowered_simd_width(devinfo, inst));
6333
6334 case BRW_OPCODE_IF:
6335 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
6336 return inst->exec_size;
6337
6338 case SHADER_OPCODE_RCP:
6339 case SHADER_OPCODE_RSQ:
6340 case SHADER_OPCODE_SQRT:
6341 case SHADER_OPCODE_EXP2:
6342 case SHADER_OPCODE_LOG2:
6343 case SHADER_OPCODE_SIN:
6344 case SHADER_OPCODE_COS: {
6345 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
6346 * Gen6. Extended Math Function is limited to SIMD8 with half-float.
6347 */
6348 if (devinfo->gen == 6 || (devinfo->gen == 4 && !devinfo->is_g4x))
6349 return MIN2(8, inst->exec_size);
6350 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6351 return MIN2(8, inst->exec_size);
6352 return MIN2(16, inst->exec_size);
6353 }
6354
6355 case SHADER_OPCODE_POW: {
6356 /* SIMD16 is only allowed on Gen7+. Extended Math Function is limited
6357 * to SIMD8 with half-float
6358 */
6359 if (devinfo->gen < 7)
6360 return MIN2(8, inst->exec_size);
6361 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6362 return MIN2(8, inst->exec_size);
6363 return MIN2(16, inst->exec_size);
6364 }
6365
6366 case SHADER_OPCODE_USUB_SAT:
6367 case SHADER_OPCODE_ISUB_SAT:
6368 return get_fpu_lowered_simd_width(devinfo, inst);
6369
6370 case SHADER_OPCODE_INT_QUOTIENT:
6371 case SHADER_OPCODE_INT_REMAINDER:
6372 /* Integer division is limited to SIMD8 on all generations. */
6373 return MIN2(8, inst->exec_size);
6374
6375 case FS_OPCODE_LINTERP:
6376 case SHADER_OPCODE_GET_BUFFER_SIZE:
6377 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
6378 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
6379 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6380 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6381 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
6382 return MIN2(16, inst->exec_size);
6383
6384 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
6385 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
6386 * message used to implement varying pull constant loads, so expand it
6387 * to SIMD16. An alternative with longer message payload length but
6388 * shorter return payload would be to use the SIMD8 sampler message that
6389 * takes (header, u, v, r) as parameters instead of (header, u).
6390 */
6391 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
6392
6393 case FS_OPCODE_DDX_COARSE:
6394 case FS_OPCODE_DDX_FINE:
6395 case FS_OPCODE_DDY_COARSE:
6396 case FS_OPCODE_DDY_FINE:
6397 /* The implementation of this virtual opcode may require emitting
6398 * compressed Align16 instructions, which are severely limited on some
6399 * generations.
6400 *
6401 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
6402 * Region Restrictions):
6403 *
6404 * "In Align16 access mode, SIMD16 is not allowed for DW operations
6405 * and SIMD8 is not allowed for DF operations."
6406 *
6407 * In this context, "DW operations" means "operations acting on 32-bit
6408 * values", so it includes operations on floats.
6409 *
6410 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
6411 * (Instruction Compression -> Rules and Restrictions):
6412 *
6413 * "A compressed instruction must be in Align1 access mode. Align16
6414 * mode instructions cannot be compressed."
6415 *
6416 * Similar text exists in the g45 PRM.
6417 *
6418 * Empirically, compressed align16 instructions using odd register
6419 * numbers don't appear to work on Sandybridge either.
6420 */
6421 return (devinfo->gen == 4 || devinfo->gen == 6 ||
6422 (devinfo->gen == 7 && !devinfo->is_haswell) ?
6423 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
6424
6425 case SHADER_OPCODE_MULH:
6426 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
6427 * is 8-wide on Gen7+.
6428 */
6429 return (devinfo->gen >= 7 ? 8 :
6430 get_fpu_lowered_simd_width(devinfo, inst));
6431
6432 case FS_OPCODE_FB_WRITE_LOGICAL:
6433 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
6434 * here.
6435 */
6436 assert(devinfo->gen != 6 ||
6437 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
6438 inst->exec_size == 8);
6439 /* Dual-source FB writes are unsupported in SIMD16 mode. */
6440 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
6441 8 : MIN2(16, inst->exec_size));
6442
6443 case FS_OPCODE_FB_READ_LOGICAL:
6444 return MIN2(16, inst->exec_size);
6445
6446 case SHADER_OPCODE_TEX_LOGICAL:
6447 case SHADER_OPCODE_TXF_CMS_LOGICAL:
6448 case SHADER_OPCODE_TXF_UMS_LOGICAL:
6449 case SHADER_OPCODE_TXF_MCS_LOGICAL:
6450 case SHADER_OPCODE_LOD_LOGICAL:
6451 case SHADER_OPCODE_TG4_LOGICAL:
6452 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
6453 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
6454 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
6455 return get_sampler_lowered_simd_width(devinfo, inst);
6456
6457 case SHADER_OPCODE_TXD_LOGICAL:
6458 /* TXD is unsupported in SIMD16 mode. */
6459 return 8;
6460
6461 case SHADER_OPCODE_TXL_LOGICAL:
6462 case FS_OPCODE_TXB_LOGICAL:
6463 /* Only one execution size is representable pre-ILK depending on whether
6464 * the shadow reference argument is present.
6465 */
6466 if (devinfo->gen == 4)
6467 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
6468 else
6469 return get_sampler_lowered_simd_width(devinfo, inst);
6470
6471 case SHADER_OPCODE_TXF_LOGICAL:
6472 case SHADER_OPCODE_TXS_LOGICAL:
6473 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
6474 * messages. Use SIMD16 instead.
6475 */
6476 if (devinfo->gen == 4)
6477 return 16;
6478 else
6479 return get_sampler_lowered_simd_width(devinfo, inst);
6480
6481 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6482 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6483 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6484 return 8;
6485
6486 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6487 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6488 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6489 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6490 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6491 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6492 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
6493 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
6494 return MIN2(16, inst->exec_size);
6495
6496 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6497 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6498 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6499 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6500 return devinfo->gen <= 8 ? 8 : MIN2(16, inst->exec_size);
6501
6502 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6503 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6504 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6505 return 8;
6506
6507 case SHADER_OPCODE_URB_READ_SIMD8:
6508 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
6509 case SHADER_OPCODE_URB_WRITE_SIMD8:
6510 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
6511 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
6512 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
6513 return MIN2(8, inst->exec_size);
6514
6515 case SHADER_OPCODE_QUAD_SWIZZLE: {
6516 const unsigned swiz = inst->src[1].ud;
6517 return (is_uniform(inst->src[0]) ?
6518 get_fpu_lowered_simd_width(devinfo, inst) :
6519 devinfo->gen < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
6520 swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
6521 get_fpu_lowered_simd_width(devinfo, inst));
6522 }
6523 case SHADER_OPCODE_MOV_INDIRECT: {
6524 /* From IVB and HSW PRMs:
6525 *
6526 * "2.When the destination requires two registers and the sources are
6527 * indirect, the sources must use 1x1 regioning mode.
6528 *
6529 * In case of DF instructions in HSW/IVB, the exec_size is limited by
6530 * the EU decompression logic not handling VxH indirect addressing
6531 * correctly.
6532 */
6533 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
6534 /* Prior to Broadwell, we only have 8 address subregisters. */
6535 return MIN3(devinfo->gen >= 8 ? 16 : 8,
6536 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
6537 inst->exec_size);
6538 }
6539
6540 case SHADER_OPCODE_LOAD_PAYLOAD: {
6541 const unsigned reg_count =
6542 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
6543
6544 if (reg_count > 2) {
6545 /* Only LOAD_PAYLOAD instructions with per-channel destination region
6546 * can be easily lowered (which excludes headers and heterogeneous
6547 * types).
6548 */
6549 assert(!inst->header_size);
6550 for (unsigned i = 0; i < inst->sources; i++)
6551 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
6552 inst->src[i].file == BAD_FILE);
6553
6554 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
6555 } else {
6556 return inst->exec_size;
6557 }
6558 }
6559 default:
6560 return inst->exec_size;
6561 }
6562 }
6563
6564 /**
6565 * Return true if splitting out the group of channels of instruction \p inst
6566 * given by lbld.group() requires allocating a temporary for the i-th source
6567 * of the lowered instruction.
6568 */
6569 static inline bool
6570 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
6571 {
6572 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
6573 (inst->components_read(i) == 1 &&
6574 lbld.dispatch_width() <= inst->exec_size)) ||
6575 (inst->flags_written() &
6576 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
6577 }
6578
6579 /**
6580 * Extract the data that would be consumed by the channel group given by
6581 * lbld.group() from the i-th source region of instruction \p inst and return
6582 * it as result in packed form.
6583 */
6584 static fs_reg
6585 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
6586 {
6587 assert(lbld.group() >= inst->group);
6588
6589 /* Specified channel group from the source region. */
6590 const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
6591
6592 if (needs_src_copy(lbld, inst, i)) {
6593 /* Builder of the right width to perform the copy avoiding uninitialized
6594 * data if the lowered execution size is greater than the original
6595 * execution size of the instruction.
6596 */
6597 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
6598 inst->exec_size), 0);
6599 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
6600
6601 for (unsigned k = 0; k < inst->components_read(i); ++k)
6602 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
6603
6604 return tmp;
6605
6606 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
6607 /* The source is invariant for all dispatch_width-wide groups of the
6608 * original region.
6609 */
6610 return inst->src[i];
6611
6612 } else {
6613 /* We can just point the lowered instruction at the right channel group
6614 * from the original region.
6615 */
6616 return src;
6617 }
6618 }
6619
6620 /**
6621 * Return true if splitting out the group of channels of instruction \p inst
6622 * given by lbld.group() requires allocating a temporary for the destination
6623 * of the lowered instruction and copying the data back to the original
6624 * destination region.
6625 */
6626 static inline bool
6627 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
6628 {
6629 /* If the instruction writes more than one component we'll have to shuffle
6630 * the results of multiple lowered instructions in order to make sure that
6631 * they end up arranged correctly in the original destination region.
6632 */
6633 if (inst->size_written > inst->dst.component_size(inst->exec_size))
6634 return true;
6635
6636 /* If the lowered execution size is larger than the original the result of
6637 * the instruction won't fit in the original destination, so we'll have to
6638 * allocate a temporary in any case.
6639 */
6640 if (lbld.dispatch_width() > inst->exec_size)
6641 return true;
6642
6643 for (unsigned i = 0; i < inst->sources; i++) {
6644 /* If we already made a copy of the source for other reasons there won't
6645 * be any overlap with the destination.
6646 */
6647 if (needs_src_copy(lbld, inst, i))
6648 continue;
6649
6650 /* In order to keep the logic simple we emit a copy whenever the
6651 * destination region doesn't exactly match an overlapping source, which
6652 * may point at the source and destination not being aligned group by
6653 * group which could cause one of the lowered instructions to overwrite
6654 * the data read from the same source by other lowered instructions.
6655 */
6656 if (regions_overlap(inst->dst, inst->size_written,
6657 inst->src[i], inst->size_read(i)) &&
6658 !inst->dst.equals(inst->src[i]))
6659 return true;
6660 }
6661
6662 return false;
6663 }
6664
6665 /**
6666 * Insert data from a packed temporary into the channel group given by
6667 * lbld.group() of the destination region of instruction \p inst and return
6668 * the temporary as result. Any copy instructions that are required for
6669 * unzipping the previous value (in the case of partial writes) will be
6670 * inserted using \p lbld_before and any copy instructions required for
6671 * zipping up the destination of \p inst will be inserted using \p lbld_after.
6672 */
6673 static fs_reg
6674 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
6675 fs_inst *inst)
6676 {
6677 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
6678 assert(lbld_before.group() == lbld_after.group());
6679 assert(lbld_after.group() >= inst->group);
6680
6681 /* Specified channel group from the destination region. */
6682 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
6683 const unsigned dst_size = inst->size_written /
6684 inst->dst.component_size(inst->exec_size);
6685
6686 if (needs_dst_copy(lbld_after, inst)) {
6687 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
6688
6689 if (inst->predicate) {
6690 /* Handle predication by copying the original contents of
6691 * the destination into the temporary before emitting the
6692 * lowered instruction.
6693 */
6694 const fs_builder gbld_before =
6695 lbld_before.group(MIN2(lbld_before.dispatch_width(),
6696 inst->exec_size), 0);
6697 for (unsigned k = 0; k < dst_size; ++k) {
6698 gbld_before.MOV(offset(tmp, lbld_before, k),
6699 offset(dst, inst->exec_size, k));
6700 }
6701 }
6702
6703 const fs_builder gbld_after =
6704 lbld_after.group(MIN2(lbld_after.dispatch_width(),
6705 inst->exec_size), 0);
6706 for (unsigned k = 0; k < dst_size; ++k) {
6707 /* Use a builder of the right width to perform the copy avoiding
6708 * uninitialized data if the lowered execution size is greater than
6709 * the original execution size of the instruction.
6710 */
6711 gbld_after.MOV(offset(dst, inst->exec_size, k),
6712 offset(tmp, lbld_after, k));
6713 }
6714
6715 return tmp;
6716
6717 } else {
6718 /* No need to allocate a temporary for the lowered instruction, just
6719 * take the right group of channels from the original region.
6720 */
6721 return dst;
6722 }
6723 }
6724
6725 bool
6726 fs_visitor::lower_simd_width()
6727 {
6728 bool progress = false;
6729
6730 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6731 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
6732
6733 if (lower_width != inst->exec_size) {
6734 /* Builder matching the original instruction. We may also need to
6735 * emit an instruction of width larger than the original, set the
6736 * execution size of the builder to the highest of both for now so
6737 * we're sure that both cases can be handled.
6738 */
6739 const unsigned max_width = MAX2(inst->exec_size, lower_width);
6740 const fs_builder ibld = bld.at(block, inst)
6741 .exec_all(inst->force_writemask_all)
6742 .group(max_width, inst->group / max_width);
6743
6744 /* Split the copies in chunks of the execution width of either the
6745 * original or the lowered instruction, whichever is lower.
6746 */
6747 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
6748 const unsigned dst_size = inst->size_written /
6749 inst->dst.component_size(inst->exec_size);
6750
6751 assert(!inst->writes_accumulator && !inst->mlen);
6752
6753 /* Inserting the zip, unzip, and duplicated instructions in all of
6754 * the right spots is somewhat tricky. All of the unzip and any
6755 * instructions from the zip which unzip the destination prior to
6756 * writing need to happen before all of the per-group instructions
6757 * and the zip instructions need to happen after. In order to sort
6758 * this all out, we insert the unzip instructions before \p inst,
6759 * insert the per-group instructions after \p inst (i.e. before
6760 * inst->next), and insert the zip instructions before the
6761 * instruction after \p inst. Since we are inserting instructions
6762 * after \p inst, inst->next is a moving target and we need to save
6763 * it off here so that we insert the zip instructions in the right
6764 * place.
6765 *
6766 * Since we're inserting split instructions after after_inst, the
6767 * instructions will end up in the reverse order that we insert them.
6768 * However, certain render target writes require that the low group
6769 * instructions come before the high group. From the Ivy Bridge PRM
6770 * Vol. 4, Pt. 1, Section 3.9.11:
6771 *
6772 * "If multiple SIMD8 Dual Source messages are delivered by the
6773 * pixel shader thread, each SIMD8_DUALSRC_LO message must be
6774 * issued before the SIMD8_DUALSRC_HI message with the same Slot
6775 * Group Select setting."
6776 *
6777 * And, from Section 3.9.11.1 of the same PRM:
6778 *
6779 * "When SIMD32 or SIMD16 PS threads send render target writes
6780 * with multiple SIMD8 and SIMD16 messages, the following must
6781 * hold:
6782 *
6783 * All the slots (as described above) must have a corresponding
6784 * render target write irrespective of the slot's validity. A slot
6785 * is considered valid when at least one sample is enabled. For
6786 * example, a SIMD16 PS thread must send two SIMD8 render target
6787 * writes to cover all the slots.
6788 *
6789 * PS thread must send SIMD render target write messages with
6790 * increasing slot numbers. For example, SIMD16 thread has
6791 * Slot[15:0] and if two SIMD8 render target writes are used, the
6792 * first SIMD8 render target write must send Slot[7:0] and the
6793 * next one must send Slot[15:8]."
6794 *
6795 * In order to make low group instructions come before high group
6796 * instructions (this is required for some render target writes), we
6797 * split from the highest group to lowest.
6798 */
6799 exec_node *const after_inst = inst->next;
6800 for (int i = n - 1; i >= 0; i--) {
6801 /* Emit a copy of the original instruction with the lowered width.
6802 * If the EOT flag was set throw it away except for the last
6803 * instruction to avoid killing the thread prematurely.
6804 */
6805 fs_inst split_inst = *inst;
6806 split_inst.exec_size = lower_width;
6807 split_inst.eot = inst->eot && i == int(n - 1);
6808
6809 /* Select the correct channel enables for the i-th group, then
6810 * transform the sources and destination and emit the lowered
6811 * instruction.
6812 */
6813 const fs_builder lbld = ibld.group(lower_width, i);
6814
6815 for (unsigned j = 0; j < inst->sources; j++)
6816 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
6817
6818 split_inst.dst = emit_zip(lbld.at(block, inst),
6819 lbld.at(block, after_inst), inst);
6820 split_inst.size_written =
6821 split_inst.dst.component_size(lower_width) * dst_size;
6822
6823 lbld.at(block, inst->next).emit(split_inst);
6824 }
6825
6826 inst->remove(block);
6827 progress = true;
6828 }
6829 }
6830
6831 if (progress)
6832 invalidate_live_intervals();
6833
6834 return progress;
6835 }
6836
6837 /**
6838 * Transform barycentric vectors into the interleaved form expected by the PLN
6839 * instruction and returned by the Gen7+ PI shared function.
6840 *
6841 * For channels 0-15 in SIMD16 mode they are expected to be laid out as
6842 * follows in the register file:
6843 *
6844 * rN+0: X[0-7]
6845 * rN+1: Y[0-7]
6846 * rN+2: X[8-15]
6847 * rN+3: Y[8-15]
6848 *
6849 * There is no need to handle SIMD32 here -- This is expected to be run after
6850 * SIMD lowering, since SIMD lowering relies on vectors having the standard
6851 * component layout.
6852 */
6853 bool
6854 fs_visitor::lower_barycentrics()
6855 {
6856 const bool has_interleaved_layout = devinfo->has_pln || devinfo->gen >= 7;
6857 bool progress = false;
6858
6859 if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout)
6860 return false;
6861
6862 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6863 if (inst->exec_size < 16)
6864 continue;
6865
6866 const fs_builder ibld(this, block, inst);
6867 const fs_builder ubld = ibld.exec_all().group(8, 0);
6868
6869 switch (inst->opcode) {
6870 case FS_OPCODE_LINTERP : {
6871 assert(inst->exec_size == 16);
6872 const fs_reg tmp = ibld.vgrf(inst->src[0].type, 2);
6873 fs_reg srcs[4];
6874
6875 for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
6876 srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2),
6877 8 * (i / 2));
6878
6879 ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
6880
6881 inst->src[0] = tmp;
6882 progress = true;
6883 break;
6884 }
6885 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6886 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6887 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
6888 assert(inst->exec_size == 16);
6889 const fs_reg tmp = ibld.vgrf(inst->dst.type, 2);
6890
6891 for (unsigned i = 0; i < 2; i++) {
6892 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
6893 fs_inst *mov = ibld.at(block, inst->next).group(8, g)
6894 .MOV(horiz_offset(offset(inst->dst, ibld, i),
6895 8 * g),
6896 offset(tmp, ubld, 2 * g + i));
6897 mov->predicate = inst->predicate;
6898 mov->predicate_inverse = inst->predicate_inverse;
6899 mov->flag_subreg = inst->flag_subreg;
6900 }
6901 }
6902
6903 inst->dst = tmp;
6904 progress = true;
6905 break;
6906 }
6907 default:
6908 break;
6909 }
6910 }
6911
6912 if (progress)
6913 invalidate_live_intervals();
6914
6915 return progress;
6916 }
6917
6918 void
6919 fs_visitor::dump_instructions()
6920 {
6921 dump_instructions(NULL);
6922 }
6923
6924 void
6925 fs_visitor::dump_instructions(const char *name)
6926 {
6927 FILE *file = stderr;
6928 if (name && geteuid() != 0) {
6929 file = fopen(name, "w");
6930 if (!file)
6931 file = stderr;
6932 }
6933
6934 if (cfg) {
6935 calculate_register_pressure();
6936 int ip = 0, max_pressure = 0;
6937 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
6938 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
6939 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
6940 dump_instruction(inst, file);
6941 ip++;
6942 }
6943 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
6944 } else {
6945 int ip = 0;
6946 foreach_in_list(backend_instruction, inst, &instructions) {
6947 fprintf(file, "%4d: ", ip++);
6948 dump_instruction(inst, file);
6949 }
6950 }
6951
6952 if (file != stderr) {
6953 fclose(file);
6954 }
6955 }
6956
6957 void
6958 fs_visitor::dump_instruction(backend_instruction *be_inst)
6959 {
6960 dump_instruction(be_inst, stderr);
6961 }
6962
6963 void
6964 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
6965 {
6966 fs_inst *inst = (fs_inst *)be_inst;
6967
6968 if (inst->predicate) {
6969 fprintf(file, "(%cf%d.%d) ",
6970 inst->predicate_inverse ? '-' : '+',
6971 inst->flag_subreg / 2,
6972 inst->flag_subreg % 2);
6973 }
6974
6975 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
6976 if (inst->saturate)
6977 fprintf(file, ".sat");
6978 if (inst->conditional_mod) {
6979 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
6980 if (!inst->predicate &&
6981 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
6982 inst->opcode != BRW_OPCODE_CSEL &&
6983 inst->opcode != BRW_OPCODE_IF &&
6984 inst->opcode != BRW_OPCODE_WHILE))) {
6985 fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
6986 inst->flag_subreg % 2);
6987 }
6988 }
6989 fprintf(file, "(%d) ", inst->exec_size);
6990
6991 if (inst->mlen) {
6992 fprintf(file, "(mlen: %d) ", inst->mlen);
6993 }
6994
6995 if (inst->ex_mlen) {
6996 fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
6997 }
6998
6999 if (inst->eot) {
7000 fprintf(file, "(EOT) ");
7001 }
7002
7003 switch (inst->dst.file) {
7004 case VGRF:
7005 fprintf(file, "vgrf%d", inst->dst.nr);
7006 break;
7007 case FIXED_GRF:
7008 fprintf(file, "g%d", inst->dst.nr);
7009 break;
7010 case MRF:
7011 fprintf(file, "m%d", inst->dst.nr);
7012 break;
7013 case BAD_FILE:
7014 fprintf(file, "(null)");
7015 break;
7016 case UNIFORM:
7017 fprintf(file, "***u%d***", inst->dst.nr);
7018 break;
7019 case ATTR:
7020 fprintf(file, "***attr%d***", inst->dst.nr);
7021 break;
7022 case ARF:
7023 switch (inst->dst.nr) {
7024 case BRW_ARF_NULL:
7025 fprintf(file, "null");
7026 break;
7027 case BRW_ARF_ADDRESS:
7028 fprintf(file, "a0.%d", inst->dst.subnr);
7029 break;
7030 case BRW_ARF_ACCUMULATOR:
7031 fprintf(file, "acc%d", inst->dst.subnr);
7032 break;
7033 case BRW_ARF_FLAG:
7034 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7035 break;
7036 default:
7037 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7038 break;
7039 }
7040 break;
7041 case IMM:
7042 unreachable("not reached");
7043 }
7044
7045 if (inst->dst.offset ||
7046 (inst->dst.file == VGRF &&
7047 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
7048 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
7049 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
7050 inst->dst.offset % reg_size);
7051 }
7052
7053 if (inst->dst.stride != 1)
7054 fprintf(file, "<%u>", inst->dst.stride);
7055 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
7056
7057 for (int i = 0; i < inst->sources; i++) {
7058 if (inst->src[i].negate)
7059 fprintf(file, "-");
7060 if (inst->src[i].abs)
7061 fprintf(file, "|");
7062 switch (inst->src[i].file) {
7063 case VGRF:
7064 fprintf(file, "vgrf%d", inst->src[i].nr);
7065 break;
7066 case FIXED_GRF:
7067 fprintf(file, "g%d", inst->src[i].nr);
7068 break;
7069 case MRF:
7070 fprintf(file, "***m%d***", inst->src[i].nr);
7071 break;
7072 case ATTR:
7073 fprintf(file, "attr%d", inst->src[i].nr);
7074 break;
7075 case UNIFORM:
7076 fprintf(file, "u%d", inst->src[i].nr);
7077 break;
7078 case BAD_FILE:
7079 fprintf(file, "(null)");
7080 break;
7081 case IMM:
7082 switch (inst->src[i].type) {
7083 case BRW_REGISTER_TYPE_F:
7084 fprintf(file, "%-gf", inst->src[i].f);
7085 break;
7086 case BRW_REGISTER_TYPE_DF:
7087 fprintf(file, "%fdf", inst->src[i].df);
7088 break;
7089 case BRW_REGISTER_TYPE_W:
7090 case BRW_REGISTER_TYPE_D:
7091 fprintf(file, "%dd", inst->src[i].d);
7092 break;
7093 case BRW_REGISTER_TYPE_UW:
7094 case BRW_REGISTER_TYPE_UD:
7095 fprintf(file, "%uu", inst->src[i].ud);
7096 break;
7097 case BRW_REGISTER_TYPE_Q:
7098 fprintf(file, "%" PRId64 "q", inst->src[i].d64);
7099 break;
7100 case BRW_REGISTER_TYPE_UQ:
7101 fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
7102 break;
7103 case BRW_REGISTER_TYPE_VF:
7104 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
7105 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
7106 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
7107 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
7108 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
7109 break;
7110 case BRW_REGISTER_TYPE_V:
7111 case BRW_REGISTER_TYPE_UV:
7112 fprintf(file, "%08x%s", inst->src[i].ud,
7113 inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
7114 break;
7115 default:
7116 fprintf(file, "???");
7117 break;
7118 }
7119 break;
7120 case ARF:
7121 switch (inst->src[i].nr) {
7122 case BRW_ARF_NULL:
7123 fprintf(file, "null");
7124 break;
7125 case BRW_ARF_ADDRESS:
7126 fprintf(file, "a0.%d", inst->src[i].subnr);
7127 break;
7128 case BRW_ARF_ACCUMULATOR:
7129 fprintf(file, "acc%d", inst->src[i].subnr);
7130 break;
7131 case BRW_ARF_FLAG:
7132 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7133 break;
7134 default:
7135 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7136 break;
7137 }
7138 break;
7139 }
7140
7141 if (inst->src[i].offset ||
7142 (inst->src[i].file == VGRF &&
7143 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
7144 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
7145 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
7146 inst->src[i].offset % reg_size);
7147 }
7148
7149 if (inst->src[i].abs)
7150 fprintf(file, "|");
7151
7152 if (inst->src[i].file != IMM) {
7153 unsigned stride;
7154 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
7155 unsigned hstride = inst->src[i].hstride;
7156 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
7157 } else {
7158 stride = inst->src[i].stride;
7159 }
7160 if (stride != 1)
7161 fprintf(file, "<%u>", stride);
7162
7163 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
7164 }
7165
7166 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
7167 fprintf(file, ", ");
7168 }
7169
7170 fprintf(file, " ");
7171
7172 if (inst->force_writemask_all)
7173 fprintf(file, "NoMask ");
7174
7175 if (inst->exec_size != dispatch_width)
7176 fprintf(file, "group%d ", inst->group);
7177
7178 fprintf(file, "\n");
7179 }
7180
7181 void
7182 fs_visitor::setup_fs_payload_gen6()
7183 {
7184 assert(stage == MESA_SHADER_FRAGMENT);
7185 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
7186 const unsigned payload_width = MIN2(16, dispatch_width);
7187 assert(dispatch_width % payload_width == 0);
7188 assert(devinfo->gen >= 6);
7189
7190 prog_data->uses_src_depth = prog_data->uses_src_w =
7191 (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) != 0;
7192
7193 prog_data->uses_sample_mask =
7194 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
7195
7196 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
7197 *
7198 * "MSDISPMODE_PERSAMPLE is required in order to select
7199 * POSOFFSET_SAMPLE"
7200 *
7201 * So we can only really get sample positions if we are doing real
7202 * per-sample dispatch. If we need gl_SamplePosition and we don't have
7203 * persample dispatch, we hard-code it to 0.5.
7204 */
7205 prog_data->uses_pos_offset = prog_data->persample_dispatch &&
7206 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS);
7207
7208 /* R0: PS thread payload header. */
7209 payload.num_regs++;
7210
7211 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7212 /* R1: masks, pixel X/Y coordinates. */
7213 payload.subspan_coord_reg[j] = payload.num_regs++;
7214 }
7215
7216 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7217 /* R3-26: barycentric interpolation coordinates. These appear in the
7218 * same order that they appear in the brw_barycentric_mode enum. Each
7219 * set of coordinates occupies 2 registers if dispatch width == 8 and 4
7220 * registers if dispatch width == 16. Coordinates only appear if they
7221 * were enabled using the "Barycentric Interpolation Mode" bits in
7222 * WM_STATE.
7223 */
7224 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
7225 if (prog_data->barycentric_interp_modes & (1 << i)) {
7226 payload.barycentric_coord_reg[i][j] = payload.num_regs;
7227 payload.num_regs += payload_width / 4;
7228 }
7229 }
7230
7231 /* R27-28: interpolated depth if uses source depth */
7232 if (prog_data->uses_src_depth) {
7233 payload.source_depth_reg[j] = payload.num_regs;
7234 payload.num_regs += payload_width / 8;
7235 }
7236
7237 /* R29-30: interpolated W set if GEN6_WM_USES_SOURCE_W. */
7238 if (prog_data->uses_src_w) {
7239 payload.source_w_reg[j] = payload.num_regs;
7240 payload.num_regs += payload_width / 8;
7241 }
7242
7243 /* R31: MSAA position offsets. */
7244 if (prog_data->uses_pos_offset) {
7245 payload.sample_pos_reg[j] = payload.num_regs;
7246 payload.num_regs++;
7247 }
7248
7249 /* R32-33: MSAA input coverage mask */
7250 if (prog_data->uses_sample_mask) {
7251 assert(devinfo->gen >= 7);
7252 payload.sample_mask_in_reg[j] = payload.num_regs;
7253 payload.num_regs += payload_width / 8;
7254 }
7255 }
7256
7257 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7258 source_depth_to_render_target = true;
7259 }
7260 }
7261
7262 void
7263 fs_visitor::setup_vs_payload()
7264 {
7265 /* R0: thread header, R1: urb handles */
7266 payload.num_regs = 2;
7267 }
7268
7269 void
7270 fs_visitor::setup_gs_payload()
7271 {
7272 assert(stage == MESA_SHADER_GEOMETRY);
7273
7274 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
7275 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7276
7277 /* R0: thread header, R1: output URB handles */
7278 payload.num_regs = 2;
7279
7280 if (gs_prog_data->include_primitive_id) {
7281 /* R2: Primitive ID 0..7 */
7282 payload.num_regs++;
7283 }
7284
7285 /* Always enable VUE handles so we can safely use pull model if needed.
7286 *
7287 * The push model for a GS uses a ton of register space even for trivial
7288 * scenarios with just a few inputs, so just make things easier and a bit
7289 * safer by always having pull model available.
7290 */
7291 gs_prog_data->base.include_vue_handles = true;
7292
7293 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
7294 payload.num_regs += nir->info.gs.vertices_in;
7295
7296 /* Use a maximum of 24 registers for push-model inputs. */
7297 const unsigned max_push_components = 24;
7298
7299 /* If pushing our inputs would take too many registers, reduce the URB read
7300 * length (which is in HWords, or 8 registers), and resort to pulling.
7301 *
7302 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
7303 * have to multiply by VerticesIn to obtain the total storage requirement.
7304 */
7305 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
7306 max_push_components) {
7307 vue_prog_data->urb_read_length =
7308 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
7309 }
7310 }
7311
7312 void
7313 fs_visitor::setup_cs_payload()
7314 {
7315 assert(devinfo->gen >= 7);
7316 payload.num_regs = 1;
7317 }
7318
7319 void
7320 fs_visitor::calculate_register_pressure()
7321 {
7322 invalidate_live_intervals();
7323 calculate_live_intervals();
7324
7325 unsigned num_instructions = 0;
7326 foreach_block(block, cfg)
7327 num_instructions += block->instructions.length();
7328
7329 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
7330
7331 for (unsigned reg = 0; reg < alloc.count; reg++) {
7332 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
7333 regs_live_at_ip[ip] += alloc.sizes[reg];
7334 }
7335 }
7336
7337 void
7338 fs_visitor::optimize()
7339 {
7340 /* Start by validating the shader we currently have. */
7341 validate();
7342
7343 /* bld is the common builder object pointing at the end of the program we
7344 * used to translate it into i965 IR. For the optimization and lowering
7345 * passes coming next, any code added after the end of the program without
7346 * having explicitly called fs_builder::at() clearly points at a mistake.
7347 * Ideally optimization passes wouldn't be part of the visitor so they
7348 * wouldn't have access to bld at all, but they do, so just in case some
7349 * pass forgets to ask for a location explicitly set it to NULL here to
7350 * make it trip. The dispatch width is initialized to a bogus value to
7351 * make sure that optimizations set the execution controls explicitly to
7352 * match the code they are manipulating instead of relying on the defaults.
7353 */
7354 bld = fs_builder(this, 64);
7355
7356 assign_constant_locations();
7357 lower_constant_loads();
7358
7359 validate();
7360
7361 split_virtual_grfs();
7362 validate();
7363
7364 #define OPT(pass, args...) ({ \
7365 pass_num++; \
7366 bool this_progress = pass(args); \
7367 \
7368 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
7369 char filename[64]; \
7370 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
7371 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
7372 \
7373 backend_shader::dump_instructions(filename); \
7374 } \
7375 \
7376 validate(); \
7377 \
7378 progress = progress || this_progress; \
7379 this_progress; \
7380 })
7381
7382 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
7383 char filename[64];
7384 snprintf(filename, 64, "%s%d-%s-00-00-start",
7385 stage_abbrev, dispatch_width, nir->info.name);
7386
7387 backend_shader::dump_instructions(filename);
7388 }
7389
7390 bool progress = false;
7391 int iteration = 0;
7392 int pass_num = 0;
7393
7394 /* Before anything else, eliminate dead code. The results of some NIR
7395 * instructions may effectively be calculated twice. Once when the
7396 * instruction is encountered, and again when the user of that result is
7397 * encountered. Wipe those away before algebraic optimizations and
7398 * especially copy propagation can mix things up.
7399 */
7400 OPT(dead_code_eliminate);
7401
7402 OPT(remove_extra_rounding_modes);
7403
7404 do {
7405 progress = false;
7406 pass_num = 0;
7407 iteration++;
7408
7409 OPT(remove_duplicate_mrf_writes);
7410
7411 OPT(opt_algebraic);
7412 OPT(opt_cse);
7413 OPT(opt_copy_propagation);
7414 OPT(opt_predicated_break, this);
7415 OPT(opt_cmod_propagation);
7416 OPT(dead_code_eliminate);
7417 OPT(opt_peephole_sel);
7418 OPT(dead_control_flow_eliminate, this);
7419 OPT(opt_register_renaming);
7420 OPT(opt_saturate_propagation);
7421 OPT(register_coalesce);
7422 OPT(compute_to_mrf);
7423 OPT(eliminate_find_live_channel);
7424
7425 OPT(compact_virtual_grfs);
7426 } while (progress);
7427
7428 progress = false;
7429 pass_num = 0;
7430
7431 if (OPT(lower_pack)) {
7432 OPT(register_coalesce);
7433 OPT(dead_code_eliminate);
7434 }
7435
7436 OPT(lower_simd_width);
7437 OPT(lower_barycentrics);
7438
7439 /* After SIMD lowering just in case we had to unroll the EOT send. */
7440 OPT(opt_sampler_eot);
7441
7442 OPT(lower_logical_sends);
7443
7444 /* After logical SEND lowering. */
7445 OPT(fixup_nomask_control_flow);
7446
7447 if (progress) {
7448 OPT(opt_copy_propagation);
7449 /* Only run after logical send lowering because it's easier to implement
7450 * in terms of physical sends.
7451 */
7452 if (OPT(opt_zero_samples))
7453 OPT(opt_copy_propagation);
7454 /* Run after logical send lowering to give it a chance to CSE the
7455 * LOAD_PAYLOAD instructions created to construct the payloads of
7456 * e.g. texturing messages in cases where it wasn't possible to CSE the
7457 * whole logical instruction.
7458 */
7459 OPT(opt_cse);
7460 OPT(register_coalesce);
7461 OPT(compute_to_mrf);
7462 OPT(dead_code_eliminate);
7463 OPT(remove_duplicate_mrf_writes);
7464 OPT(opt_peephole_sel);
7465 }
7466
7467 OPT(opt_redundant_discard_jumps);
7468
7469 if (OPT(lower_load_payload)) {
7470 split_virtual_grfs();
7471
7472 /* Lower 64 bit MOVs generated by payload lowering. */
7473 if (!devinfo->has_64bit_float && !devinfo->has_64bit_int)
7474 OPT(opt_algebraic);
7475
7476 OPT(register_coalesce);
7477 OPT(lower_simd_width);
7478 OPT(compute_to_mrf);
7479 OPT(dead_code_eliminate);
7480 }
7481
7482 OPT(opt_combine_constants);
7483 OPT(lower_integer_multiplication);
7484 OPT(lower_sub_sat);
7485
7486 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
7487 OPT(opt_cmod_propagation);
7488 OPT(opt_cse);
7489 OPT(opt_copy_propagation);
7490 OPT(dead_code_eliminate);
7491 }
7492
7493 if (OPT(lower_regioning)) {
7494 OPT(opt_copy_propagation);
7495 OPT(dead_code_eliminate);
7496 OPT(lower_simd_width);
7497 }
7498
7499 OPT(fixup_sends_duplicate_payload);
7500
7501 lower_uniform_pull_constant_loads();
7502
7503 validate();
7504 }
7505
7506 /**
7507 * From the Skylake PRM Vol. 2a docs for sends:
7508 *
7509 * "It is required that the second block of GRFs does not overlap with the
7510 * first block."
7511 *
7512 * There are plenty of cases where we may accidentally violate this due to
7513 * having, for instance, both sources be the constant 0. This little pass
7514 * just adds a new vgrf for the second payload and copies it over.
7515 */
7516 bool
7517 fs_visitor::fixup_sends_duplicate_payload()
7518 {
7519 bool progress = false;
7520
7521 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7522 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
7523 regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
7524 inst->src[3], inst->ex_mlen * REG_SIZE)) {
7525 fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
7526 BRW_REGISTER_TYPE_UD);
7527 /* Sadly, we've lost all notion of channels and bit sizes at this
7528 * point. Just WE_all it.
7529 */
7530 const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
7531 fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
7532 fs_reg copy_dst = tmp;
7533 for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
7534 if (inst->ex_mlen == i + 1) {
7535 /* Only one register left; do SIMD8 */
7536 ibld.group(8, 0).MOV(copy_dst, copy_src);
7537 } else {
7538 ibld.MOV(copy_dst, copy_src);
7539 }
7540 copy_src = offset(copy_src, ibld, 1);
7541 copy_dst = offset(copy_dst, ibld, 1);
7542 }
7543 inst->src[3] = tmp;
7544 progress = true;
7545 }
7546 }
7547
7548 if (progress)
7549 invalidate_live_intervals();
7550
7551 return progress;
7552 }
7553
7554 /**
7555 * Three source instruction must have a GRF/MRF destination register.
7556 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
7557 */
7558 void
7559 fs_visitor::fixup_3src_null_dest()
7560 {
7561 bool progress = false;
7562
7563 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7564 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
7565 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
7566 inst->dst.type);
7567 progress = true;
7568 }
7569 }
7570
7571 if (progress)
7572 invalidate_live_intervals();
7573 }
7574
7575 /**
7576 * Find the first instruction in the program that might start a region of
7577 * divergent control flow due to a HALT jump. There is no
7578 * find_halt_control_flow_region_end(), the region of divergence extends until
7579 * the only FS_OPCODE_PLACEHOLDER_HALT in the program.
7580 */
7581 static const fs_inst *
7582 find_halt_control_flow_region_start(const fs_visitor *v)
7583 {
7584 if (brw_wm_prog_data(v->prog_data)->uses_kill) {
7585 foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
7586 if (inst->opcode == FS_OPCODE_DISCARD_JUMP ||
7587 inst->opcode == FS_OPCODE_PLACEHOLDER_HALT)
7588 return inst;
7589 }
7590 }
7591
7592 return NULL;
7593 }
7594
7595 /**
7596 * Work around the Gen12 hardware bug filed as GEN:BUG:1407528679. EU fusion
7597 * can cause a BB to be executed with all channels disabled, which will lead
7598 * to the execution of any NoMask instructions in it, even though any
7599 * execution-masked instructions will be correctly shot down. This may break
7600 * assumptions of some NoMask SEND messages whose descriptor depends on data
7601 * generated by live invocations of the shader.
7602 *
7603 * This avoids the problem by predicating certain instructions on an ANY
7604 * horizontal predicate that makes sure that their execution is omitted when
7605 * all channels of the program are disabled.
7606 */
7607 bool
7608 fs_visitor::fixup_nomask_control_flow()
7609 {
7610 if (devinfo->gen != 12)
7611 return false;
7612
7613 const brw_predicate pred = dispatch_width > 16 ? BRW_PREDICATE_ALIGN1_ANY32H :
7614 dispatch_width > 8 ? BRW_PREDICATE_ALIGN1_ANY16H :
7615 BRW_PREDICATE_ALIGN1_ANY8H;
7616 const fs_inst *halt_start = find_halt_control_flow_region_start(this);
7617 unsigned depth = 0;
7618 bool progress = false;
7619
7620 calculate_live_intervals();
7621
7622 /* Scan the program backwards in order to be able to easily determine
7623 * whether the flag register is live at any point.
7624 */
7625 foreach_block_reverse_safe(block, cfg) {
7626 BITSET_WORD flag_liveout = live_intervals->block_data[block->num]
7627 .flag_liveout[0];
7628 STATIC_ASSERT(ARRAY_SIZE(live_intervals->block_data[0].flag_liveout) == 1);
7629
7630 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
7631 if (!inst->predicate && inst->exec_size >= 8)
7632 flag_liveout &= ~inst->flags_written();
7633
7634 switch (inst->opcode) {
7635 case BRW_OPCODE_DO:
7636 case BRW_OPCODE_IF:
7637 /* Note that this doesn't handle FS_OPCODE_DISCARD_JUMP since only
7638 * the first one in the program closes the region of divergent
7639 * control flow due to any HALT instructions -- Instead this is
7640 * handled with the halt_start check below.
7641 */
7642 depth--;
7643 break;
7644
7645 case BRW_OPCODE_WHILE:
7646 case BRW_OPCODE_ENDIF:
7647 case FS_OPCODE_PLACEHOLDER_HALT:
7648 depth++;
7649 break;
7650
7651 default:
7652 /* Note that the vast majority of NoMask SEND instructions in the
7653 * program are harmless while executed in a block with all
7654 * channels disabled, since any instructions with side effects we
7655 * could hit here should be execution-masked.
7656 *
7657 * The main concern is NoMask SEND instructions where the message
7658 * descriptor or header depends on data generated by live
7659 * invocations of the shader (RESINFO and
7660 * FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD with a dynamically
7661 * computed surface index seem to be the only examples right now
7662 * where this could easily lead to GPU hangs). Unfortunately we
7663 * have no straightforward way to detect that currently, so just
7664 * predicate any NoMask SEND instructions we find under control
7665 * flow.
7666 *
7667 * If this proves to have a measurable performance impact it can
7668 * be easily extended with a whitelist of messages we know we can
7669 * safely omit the predication for.
7670 */
7671 if (depth && inst->force_writemask_all &&
7672 is_send(inst) && !inst->predicate) {
7673 /* We need to load the execution mask into the flag register by
7674 * using a builder with channel group matching the whole shader
7675 * (rather than the default which is derived from the original
7676 * instruction), in order to avoid getting a right-shifted
7677 * value.
7678 */
7679 const fs_builder ubld = fs_builder(this, block, inst)
7680 .exec_all().group(dispatch_width, 0);
7681 const fs_reg flag = retype(brw_flag_reg(0, 0),
7682 BRW_REGISTER_TYPE_UD);
7683
7684 /* Due to the lack of flag register allocation we need to save
7685 * and restore the flag register if it's live.
7686 */
7687 const bool save_flag = flag_liveout &
7688 flag_mask(flag, dispatch_width / 8);
7689 const fs_reg tmp = ubld.group(1, 0).vgrf(flag.type);
7690
7691 if (save_flag)
7692 ubld.group(1, 0).MOV(tmp, flag);
7693
7694 ubld.emit(FS_OPCODE_LOAD_LIVE_CHANNELS);
7695
7696 set_predicate(pred, inst);
7697 inst->flag_subreg = 0;
7698
7699 if (save_flag)
7700 ubld.group(1, 0).at(block, inst->next).MOV(flag, tmp);
7701
7702 progress = true;
7703 }
7704 break;
7705 }
7706
7707 if (inst == halt_start)
7708 depth--;
7709
7710 flag_liveout |= inst->flags_read(devinfo);
7711 }
7712 }
7713
7714 if (progress)
7715 invalidate_live_intervals();
7716
7717 return progress;
7718 }
7719
7720 void
7721 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
7722 {
7723 bool allocated;
7724
7725 static const enum instruction_scheduler_mode pre_modes[] = {
7726 SCHEDULE_PRE,
7727 SCHEDULE_PRE_NON_LIFO,
7728 SCHEDULE_PRE_LIFO,
7729 };
7730
7731 static const char *scheduler_mode_name[] = {
7732 "top-down",
7733 "non-lifo",
7734 "lifo"
7735 };
7736
7737 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
7738
7739 /* Try each scheduling heuristic to see if it can successfully register
7740 * allocate without spilling. They should be ordered by decreasing
7741 * performance but increasing likelihood of allocating.
7742 */
7743 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
7744 schedule_instructions(pre_modes[i]);
7745 this->shader_stats.scheduler_mode = scheduler_mode_name[i];
7746
7747 if (0) {
7748 assign_regs_trivial();
7749 allocated = true;
7750 break;
7751 }
7752
7753 /* We only allow spilling for the last schedule mode and only if the
7754 * allow_spilling parameter and dispatch width work out ok.
7755 */
7756 bool can_spill = allow_spilling &&
7757 (i == ARRAY_SIZE(pre_modes) - 1) &&
7758 dispatch_width == min_dispatch_width;
7759
7760 /* We should only spill registers on the last scheduling. */
7761 assert(!spilled_any_registers);
7762
7763 allocated = assign_regs(can_spill, spill_all);
7764 if (allocated)
7765 break;
7766 }
7767
7768 if (!allocated) {
7769 if (!allow_spilling)
7770 fail("Failure to register allocate and spilling is not allowed.");
7771
7772 /* We assume that any spilling is worse than just dropping back to
7773 * SIMD8. There's probably actually some intermediate point where
7774 * SIMD16 with a couple of spills is still better.
7775 */
7776 if (dispatch_width > min_dispatch_width) {
7777 fail("Failure to register allocate. Reduce number of "
7778 "live scalar values to avoid this.");
7779 }
7780
7781 /* If we failed to allocate, we must have a reason */
7782 assert(failed);
7783 } else if (spilled_any_registers) {
7784 compiler->shader_perf_log(log_data,
7785 "%s shader triggered register spilling. "
7786 "Try reducing the number of live scalar "
7787 "values to improve performance.\n",
7788 stage_name);
7789 }
7790
7791 /* This must come after all optimization and register allocation, since
7792 * it inserts dead code that happens to have side effects, and it does
7793 * so based on the actual physical registers in use.
7794 */
7795 insert_gen4_send_dependency_workarounds();
7796
7797 if (failed)
7798 return;
7799
7800 opt_bank_conflicts();
7801
7802 schedule_instructions(SCHEDULE_POST);
7803
7804 if (last_scratch > 0) {
7805 ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
7806
7807 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
7808
7809 if (stage == MESA_SHADER_COMPUTE) {
7810 if (devinfo->is_haswell) {
7811 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7812 * field documentation, Haswell supports a minimum of 2kB of
7813 * scratch space for compute shaders, unlike every other stage
7814 * and platform.
7815 */
7816 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
7817 } else if (devinfo->gen <= 7) {
7818 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7819 * field documentation, platforms prior to Haswell measure scratch
7820 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
7821 */
7822 prog_data->total_scratch = ALIGN(last_scratch, 1024);
7823 max_scratch_size = 12 * 1024;
7824 }
7825 }
7826
7827 /* We currently only support up to 2MB of scratch space. If we
7828 * need to support more eventually, the documentation suggests
7829 * that we could allocate a larger buffer, and partition it out
7830 * ourselves. We'd just have to undo the hardware's address
7831 * calculation by subtracting (FFTID * Per Thread Scratch Space)
7832 * and then add FFTID * (Larger Per Thread Scratch Space).
7833 *
7834 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
7835 * Thread Group Tracking > Local Memory/Scratch Space.
7836 */
7837 assert(prog_data->total_scratch < max_scratch_size);
7838 }
7839
7840 lower_scoreboard();
7841 }
7842
7843 bool
7844 fs_visitor::run_vs()
7845 {
7846 assert(stage == MESA_SHADER_VERTEX);
7847
7848 setup_vs_payload();
7849
7850 if (shader_time_index >= 0)
7851 emit_shader_time_begin();
7852
7853 emit_nir_code();
7854
7855 if (failed)
7856 return false;
7857
7858 emit_urb_writes();
7859
7860 if (shader_time_index >= 0)
7861 emit_shader_time_end();
7862
7863 calculate_cfg();
7864
7865 optimize();
7866
7867 assign_curb_setup();
7868 assign_vs_urb_setup();
7869
7870 fixup_3src_null_dest();
7871 allocate_registers(8, true);
7872
7873 return !failed;
7874 }
7875
7876 void
7877 fs_visitor::set_tcs_invocation_id()
7878 {
7879 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7880 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
7881
7882 const unsigned instance_id_mask =
7883 devinfo->gen >= 11 ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
7884 const unsigned instance_id_shift =
7885 devinfo->gen >= 11 ? 16 : 17;
7886
7887 /* Get instance number from g0.2 bits 22:16 or 23:17 */
7888 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
7889 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
7890 brw_imm_ud(instance_id_mask));
7891
7892 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
7893
7894 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) {
7895 /* gl_InvocationID is just the thread number */
7896 bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
7897 return;
7898 }
7899
7900 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH);
7901
7902 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
7903 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
7904 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
7905 bld.MOV(channels_ud, channels_uw);
7906
7907 if (tcs_prog_data->instances == 1) {
7908 invocation_id = channels_ud;
7909 } else {
7910 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
7911 bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
7912 bld.ADD(invocation_id, instance_times_8, channels_ud);
7913 }
7914 }
7915
7916 bool
7917 fs_visitor::run_tcs()
7918 {
7919 assert(stage == MESA_SHADER_TESS_CTRL);
7920
7921 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7922 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7923 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
7924
7925 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH ||
7926 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7927
7928 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
7929 /* r1-r4 contain the ICP handles. */
7930 payload.num_regs = 5;
7931 } else {
7932 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7933 assert(tcs_key->input_vertices > 0);
7934 /* r1 contains output handles, r2 may contain primitive ID, then the
7935 * ICP handles occupy the next 1-32 registers.
7936 */
7937 payload.num_regs = 2 + tcs_prog_data->include_primitive_id +
7938 tcs_key->input_vertices;
7939 }
7940
7941 if (shader_time_index >= 0)
7942 emit_shader_time_begin();
7943
7944 /* Initialize gl_InvocationID */
7945 set_tcs_invocation_id();
7946
7947 const bool fix_dispatch_mask =
7948 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH &&
7949 (nir->info.tess.tcs_vertices_out % 8) != 0;
7950
7951 /* Fix the disptach mask */
7952 if (fix_dispatch_mask) {
7953 bld.CMP(bld.null_reg_ud(), invocation_id,
7954 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
7955 bld.IF(BRW_PREDICATE_NORMAL);
7956 }
7957
7958 emit_nir_code();
7959
7960 if (fix_dispatch_mask) {
7961 bld.emit(BRW_OPCODE_ENDIF);
7962 }
7963
7964 /* Emit EOT write; set TR DS Cache bit */
7965 fs_reg srcs[3] = {
7966 fs_reg(get_tcs_output_urb_handle()),
7967 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
7968 fs_reg(brw_imm_ud(0)),
7969 };
7970 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
7971 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
7972
7973 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
7974 bld.null_reg_ud(), payload);
7975 inst->mlen = 3;
7976 inst->eot = true;
7977
7978 if (shader_time_index >= 0)
7979 emit_shader_time_end();
7980
7981 if (failed)
7982 return false;
7983
7984 calculate_cfg();
7985
7986 optimize();
7987
7988 assign_curb_setup();
7989 assign_tcs_urb_setup();
7990
7991 fixup_3src_null_dest();
7992 allocate_registers(8, true);
7993
7994 return !failed;
7995 }
7996
7997 bool
7998 fs_visitor::run_tes()
7999 {
8000 assert(stage == MESA_SHADER_TESS_EVAL);
8001
8002 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
8003 payload.num_regs = 5;
8004
8005 if (shader_time_index >= 0)
8006 emit_shader_time_begin();
8007
8008 emit_nir_code();
8009
8010 if (failed)
8011 return false;
8012
8013 emit_urb_writes();
8014
8015 if (shader_time_index >= 0)
8016 emit_shader_time_end();
8017
8018 calculate_cfg();
8019
8020 optimize();
8021
8022 assign_curb_setup();
8023 assign_tes_urb_setup();
8024
8025 fixup_3src_null_dest();
8026 allocate_registers(8, true);
8027
8028 return !failed;
8029 }
8030
8031 bool
8032 fs_visitor::run_gs()
8033 {
8034 assert(stage == MESA_SHADER_GEOMETRY);
8035
8036 setup_gs_payload();
8037
8038 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
8039
8040 if (gs_compile->control_data_header_size_bits > 0) {
8041 /* Create a VGRF to store accumulated control data bits. */
8042 this->control_data_bits = vgrf(glsl_type::uint_type);
8043
8044 /* If we're outputting more than 32 control data bits, then EmitVertex()
8045 * will set control_data_bits to 0 after emitting the first vertex.
8046 * Otherwise, we need to initialize it to 0 here.
8047 */
8048 if (gs_compile->control_data_header_size_bits <= 32) {
8049 const fs_builder abld = bld.annotate("initialize control data bits");
8050 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
8051 }
8052 }
8053
8054 if (shader_time_index >= 0)
8055 emit_shader_time_begin();
8056
8057 emit_nir_code();
8058
8059 emit_gs_thread_end();
8060
8061 if (shader_time_index >= 0)
8062 emit_shader_time_end();
8063
8064 if (failed)
8065 return false;
8066
8067 calculate_cfg();
8068
8069 optimize();
8070
8071 assign_curb_setup();
8072 assign_gs_urb_setup();
8073
8074 fixup_3src_null_dest();
8075 allocate_registers(8, true);
8076
8077 return !failed;
8078 }
8079
8080 /* From the SKL PRM, Volume 16, Workarounds:
8081 *
8082 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
8083 * only header phases (R0-R2)
8084 *
8085 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
8086 * have been header only.
8087 *
8088 * Instead of enabling push constants one can alternatively enable one of the
8089 * inputs. Here one simply chooses "layer" which shouldn't impose much
8090 * overhead.
8091 */
8092 static void
8093 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
8094 {
8095 if (wm_prog_data->num_varying_inputs)
8096 return;
8097
8098 if (wm_prog_data->base.curb_read_length)
8099 return;
8100
8101 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
8102 wm_prog_data->num_varying_inputs = 1;
8103 }
8104
8105 bool
8106 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
8107 {
8108 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
8109 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
8110
8111 assert(stage == MESA_SHADER_FRAGMENT);
8112
8113 if (devinfo->gen >= 6)
8114 setup_fs_payload_gen6();
8115 else
8116 setup_fs_payload_gen4();
8117
8118 if (0) {
8119 emit_dummy_fs();
8120 } else if (do_rep_send) {
8121 assert(dispatch_width == 16);
8122 emit_repclear_shader();
8123 } else {
8124 if (shader_time_index >= 0)
8125 emit_shader_time_begin();
8126
8127 if (nir->info.inputs_read > 0 ||
8128 (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) ||
8129 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
8130 if (devinfo->gen < 6)
8131 emit_interpolation_setup_gen4();
8132 else
8133 emit_interpolation_setup_gen6();
8134 }
8135
8136 /* We handle discards by keeping track of the still-live pixels in f0.1.
8137 * Initialize it with the dispatched pixels.
8138 */
8139 if (wm_prog_data->uses_kill) {
8140 const fs_reg dispatch_mask =
8141 devinfo->gen >= 6 ? brw_vec1_grf(1, 7) : brw_vec1_grf(0, 0);
8142 bld.exec_all().group(1, 0)
8143 .MOV(retype(brw_flag_reg(0, 1), BRW_REGISTER_TYPE_UW),
8144 retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
8145 }
8146
8147 emit_nir_code();
8148
8149 if (failed)
8150 return false;
8151
8152 if (wm_prog_data->uses_kill)
8153 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
8154
8155 if (wm_key->alpha_test_func)
8156 emit_alpha_test();
8157
8158 emit_fb_writes();
8159
8160 if (shader_time_index >= 0)
8161 emit_shader_time_end();
8162
8163 calculate_cfg();
8164
8165 optimize();
8166
8167 assign_curb_setup();
8168
8169 if (devinfo->gen >= 9)
8170 gen9_ps_header_only_workaround(wm_prog_data);
8171
8172 assign_urb_setup();
8173
8174 fixup_3src_null_dest();
8175 allocate_registers(8, allow_spilling);
8176
8177 if (failed)
8178 return false;
8179 }
8180
8181 return !failed;
8182 }
8183
8184 bool
8185 fs_visitor::run_cs(unsigned min_dispatch_width)
8186 {
8187 assert(stage == MESA_SHADER_COMPUTE);
8188 assert(dispatch_width >= min_dispatch_width);
8189
8190 setup_cs_payload();
8191
8192 if (shader_time_index >= 0)
8193 emit_shader_time_begin();
8194
8195 if (devinfo->is_haswell && prog_data->total_shared > 0) {
8196 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
8197 const fs_builder abld = bld.exec_all().group(1, 0);
8198 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
8199 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
8200 }
8201
8202 emit_nir_code();
8203
8204 if (failed)
8205 return false;
8206
8207 emit_cs_terminate();
8208
8209 if (shader_time_index >= 0)
8210 emit_shader_time_end();
8211
8212 calculate_cfg();
8213
8214 optimize();
8215
8216 assign_curb_setup();
8217
8218 fixup_3src_null_dest();
8219 allocate_registers(min_dispatch_width, true);
8220
8221 if (failed)
8222 return false;
8223
8224 return !failed;
8225 }
8226
8227 static bool
8228 is_used_in_not_interp_frag_coord(nir_ssa_def *def)
8229 {
8230 nir_foreach_use(src, def) {
8231 if (src->parent_instr->type != nir_instr_type_intrinsic)
8232 return true;
8233
8234 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
8235 if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
8236 return true;
8237 }
8238
8239 nir_foreach_if_use(src, def)
8240 return true;
8241
8242 return false;
8243 }
8244
8245 /**
8246 * Return a bitfield where bit n is set if barycentric interpolation mode n
8247 * (see enum brw_barycentric_mode) is needed by the fragment shader.
8248 *
8249 * We examine the load_barycentric intrinsics rather than looking at input
8250 * variables so that we catch interpolateAtCentroid() messages too, which
8251 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
8252 */
8253 static unsigned
8254 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
8255 const nir_shader *shader)
8256 {
8257 unsigned barycentric_interp_modes = 0;
8258
8259 nir_foreach_function(f, shader) {
8260 if (!f->impl)
8261 continue;
8262
8263 nir_foreach_block(block, f->impl) {
8264 nir_foreach_instr(instr, block) {
8265 if (instr->type != nir_instr_type_intrinsic)
8266 continue;
8267
8268 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8269 switch (intrin->intrinsic) {
8270 case nir_intrinsic_load_barycentric_pixel:
8271 case nir_intrinsic_load_barycentric_centroid:
8272 case nir_intrinsic_load_barycentric_sample:
8273 break;
8274 default:
8275 continue;
8276 }
8277
8278 /* Ignore WPOS; it doesn't require interpolation. */
8279 assert(intrin->dest.is_ssa);
8280 if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa))
8281 continue;
8282
8283 enum glsl_interp_mode interp = (enum glsl_interp_mode)
8284 nir_intrinsic_interp_mode(intrin);
8285 nir_intrinsic_op bary_op = intrin->intrinsic;
8286 enum brw_barycentric_mode bary =
8287 brw_barycentric_mode(interp, bary_op);
8288
8289 barycentric_interp_modes |= 1 << bary;
8290
8291 if (devinfo->needs_unlit_centroid_workaround &&
8292 bary_op == nir_intrinsic_load_barycentric_centroid)
8293 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
8294 }
8295 }
8296 }
8297
8298 return barycentric_interp_modes;
8299 }
8300
8301 static void
8302 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
8303 const nir_shader *shader)
8304 {
8305 prog_data->flat_inputs = 0;
8306
8307 nir_foreach_variable(var, &shader->inputs) {
8308 unsigned slots = glsl_count_attribute_slots(var->type, false);
8309 for (unsigned s = 0; s < slots; s++) {
8310 int input_index = prog_data->urb_setup[var->data.location + s];
8311
8312 if (input_index < 0)
8313 continue;
8314
8315 /* flat shading */
8316 if (var->data.interpolation == INTERP_MODE_FLAT)
8317 prog_data->flat_inputs |= 1 << input_index;
8318 }
8319 }
8320 }
8321
8322 static uint8_t
8323 computed_depth_mode(const nir_shader *shader)
8324 {
8325 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
8326 switch (shader->info.fs.depth_layout) {
8327 case FRAG_DEPTH_LAYOUT_NONE:
8328 case FRAG_DEPTH_LAYOUT_ANY:
8329 return BRW_PSCDEPTH_ON;
8330 case FRAG_DEPTH_LAYOUT_GREATER:
8331 return BRW_PSCDEPTH_ON_GE;
8332 case FRAG_DEPTH_LAYOUT_LESS:
8333 return BRW_PSCDEPTH_ON_LE;
8334 case FRAG_DEPTH_LAYOUT_UNCHANGED:
8335 return BRW_PSCDEPTH_OFF;
8336 }
8337 }
8338 return BRW_PSCDEPTH_OFF;
8339 }
8340
8341 /**
8342 * Move load_interpolated_input with simple (payload-based) barycentric modes
8343 * to the top of the program so we don't emit multiple PLNs for the same input.
8344 *
8345 * This works around CSE not being able to handle non-dominating cases
8346 * such as:
8347 *
8348 * if (...) {
8349 * interpolate input
8350 * } else {
8351 * interpolate the same exact input
8352 * }
8353 *
8354 * This should be replaced by global value numbering someday.
8355 */
8356 static bool
8357 move_interpolation_to_top(nir_shader *nir)
8358 {
8359 bool progress = false;
8360
8361 nir_foreach_function(f, nir) {
8362 if (!f->impl)
8363 continue;
8364
8365 nir_block *top = nir_start_block(f->impl);
8366 exec_node *cursor_node = NULL;
8367
8368 nir_foreach_block(block, f->impl) {
8369 if (block == top)
8370 continue;
8371
8372 nir_foreach_instr_safe(instr, block) {
8373 if (instr->type != nir_instr_type_intrinsic)
8374 continue;
8375
8376 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8377 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
8378 continue;
8379 nir_intrinsic_instr *bary_intrinsic =
8380 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
8381 nir_intrinsic_op op = bary_intrinsic->intrinsic;
8382
8383 /* Leave interpolateAtSample/Offset() where they are. */
8384 if (op == nir_intrinsic_load_barycentric_at_sample ||
8385 op == nir_intrinsic_load_barycentric_at_offset)
8386 continue;
8387
8388 nir_instr *move[3] = {
8389 &bary_intrinsic->instr,
8390 intrin->src[1].ssa->parent_instr,
8391 instr
8392 };
8393
8394 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
8395 if (move[i]->block != top) {
8396 move[i]->block = top;
8397 exec_node_remove(&move[i]->node);
8398 if (cursor_node) {
8399 exec_node_insert_after(cursor_node, &move[i]->node);
8400 } else {
8401 exec_list_push_head(&top->instr_list, &move[i]->node);
8402 }
8403 cursor_node = &move[i]->node;
8404 progress = true;
8405 }
8406 }
8407 }
8408 }
8409 nir_metadata_preserve(f->impl, (nir_metadata)
8410 ((unsigned) nir_metadata_block_index |
8411 (unsigned) nir_metadata_dominance));
8412 }
8413
8414 return progress;
8415 }
8416
8417 /**
8418 * Demote per-sample barycentric intrinsics to centroid.
8419 *
8420 * Useful when rendering to a non-multisampled buffer.
8421 */
8422 static bool
8423 demote_sample_qualifiers(nir_shader *nir)
8424 {
8425 bool progress = true;
8426
8427 nir_foreach_function(f, nir) {
8428 if (!f->impl)
8429 continue;
8430
8431 nir_builder b;
8432 nir_builder_init(&b, f->impl);
8433
8434 nir_foreach_block(block, f->impl) {
8435 nir_foreach_instr_safe(instr, block) {
8436 if (instr->type != nir_instr_type_intrinsic)
8437 continue;
8438
8439 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8440 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
8441 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
8442 continue;
8443
8444 b.cursor = nir_before_instr(instr);
8445 nir_ssa_def *centroid =
8446 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
8447 nir_intrinsic_interp_mode(intrin));
8448 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
8449 nir_src_for_ssa(centroid));
8450 nir_instr_remove(instr);
8451 progress = true;
8452 }
8453 }
8454
8455 nir_metadata_preserve(f->impl, (nir_metadata)
8456 ((unsigned) nir_metadata_block_index |
8457 (unsigned) nir_metadata_dominance));
8458 }
8459
8460 return progress;
8461 }
8462
8463 /**
8464 * Pre-gen6, the register file of the EUs was shared between threads,
8465 * and each thread used some subset allocated on a 16-register block
8466 * granularity. The unit states wanted these block counts.
8467 */
8468 static inline int
8469 brw_register_blocks(int reg_count)
8470 {
8471 return ALIGN(reg_count, 16) / 16 - 1;
8472 }
8473
8474 const unsigned *
8475 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
8476 void *mem_ctx,
8477 const struct brw_wm_prog_key *key,
8478 struct brw_wm_prog_data *prog_data,
8479 nir_shader *shader,
8480 int shader_time_index8, int shader_time_index16,
8481 int shader_time_index32, bool allow_spilling,
8482 bool use_rep_send, struct brw_vue_map *vue_map,
8483 struct brw_compile_stats *stats,
8484 char **error_str)
8485 {
8486 const struct gen_device_info *devinfo = compiler->devinfo;
8487
8488 unsigned max_subgroup_size = unlikely(INTEL_DEBUG & DEBUG_DO32) ? 32 : 16;
8489
8490 brw_nir_apply_key(shader, compiler, &key->base, max_subgroup_size, true);
8491 brw_nir_lower_fs_inputs(shader, devinfo, key);
8492 brw_nir_lower_fs_outputs(shader);
8493
8494 if (devinfo->gen < 6)
8495 brw_setup_vue_interpolation(vue_map, shader, prog_data);
8496
8497 /* From the SKL PRM, Volume 7, "Alpha Coverage":
8498 * "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
8499 * hardware, regardless of the state setting for this feature."
8500 */
8501 if (devinfo->gen > 6 && key->alpha_to_coverage) {
8502 /* Run constant fold optimization in order to get the correct source
8503 * offset to determine render target 0 store instruction in
8504 * emit_alpha_to_coverage pass.
8505 */
8506 NIR_PASS_V(shader, nir_opt_constant_folding);
8507 NIR_PASS_V(shader, brw_nir_lower_alpha_to_coverage);
8508 }
8509
8510 if (!key->multisample_fbo)
8511 NIR_PASS_V(shader, demote_sample_qualifiers);
8512 NIR_PASS_V(shader, move_interpolation_to_top);
8513 brw_postprocess_nir(shader, compiler, true);
8514
8515 /* key->alpha_test_func means simulating alpha testing via discards,
8516 * so the shader definitely kills pixels.
8517 */
8518 prog_data->uses_kill = shader->info.fs.uses_discard ||
8519 key->alpha_test_func;
8520 prog_data->uses_omask = key->multisample_fbo &&
8521 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
8522 prog_data->computed_depth_mode = computed_depth_mode(shader);
8523 prog_data->computed_stencil =
8524 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
8525
8526 prog_data->persample_dispatch =
8527 key->multisample_fbo &&
8528 (key->persample_interp ||
8529 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
8530 SYSTEM_BIT_SAMPLE_POS)) ||
8531 shader->info.fs.uses_sample_qualifier ||
8532 shader->info.outputs_read);
8533
8534 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
8535
8536 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
8537 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
8538 prog_data->inner_coverage = shader->info.fs.inner_coverage;
8539
8540 prog_data->barycentric_interp_modes =
8541 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
8542
8543 calculate_urb_setup(devinfo, key, prog_data, shader);
8544 brw_compute_flat_inputs(prog_data, shader);
8545
8546 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
8547
8548 fs_visitor v8(compiler, log_data, mem_ctx, &key->base,
8549 &prog_data->base, shader, 8,
8550 shader_time_index8);
8551 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
8552 if (error_str)
8553 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
8554
8555 return NULL;
8556 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
8557 simd8_cfg = v8.cfg;
8558 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
8559 prog_data->reg_blocks_8 = brw_register_blocks(v8.grf_used);
8560 }
8561
8562 /* Limit dispatch width to simd8 with dual source blending on gen8.
8563 * See: https://gitlab.freedesktop.org/mesa/mesa/issues/1917
8564 */
8565 if (devinfo->gen == 8 && prog_data->dual_src_blend &&
8566 !(INTEL_DEBUG & DEBUG_NO8)) {
8567 assert(!use_rep_send);
8568 v8.limit_dispatch_width(8, "gen8 workaround: "
8569 "using SIMD8 when dual src blending.\n");
8570 }
8571
8572 if (v8.max_dispatch_width >= 16 &&
8573 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
8574 /* Try a SIMD16 compile */
8575 fs_visitor v16(compiler, log_data, mem_ctx, &key->base,
8576 &prog_data->base, shader, 16,
8577 shader_time_index16);
8578 v16.import_uniforms(&v8);
8579 if (!v16.run_fs(allow_spilling, use_rep_send)) {
8580 compiler->shader_perf_log(log_data,
8581 "SIMD16 shader failed to compile: %s",
8582 v16.fail_msg);
8583 } else {
8584 simd16_cfg = v16.cfg;
8585 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
8586 prog_data->reg_blocks_16 = brw_register_blocks(v16.grf_used);
8587 }
8588 }
8589
8590 /* Currently, the compiler only supports SIMD32 on SNB+ */
8591 if (v8.max_dispatch_width >= 32 && !use_rep_send &&
8592 compiler->devinfo->gen >= 6 &&
8593 unlikely(INTEL_DEBUG & DEBUG_DO32)) {
8594 /* Try a SIMD32 compile */
8595 fs_visitor v32(compiler, log_data, mem_ctx, &key->base,
8596 &prog_data->base, shader, 32,
8597 shader_time_index32);
8598 v32.import_uniforms(&v8);
8599 if (!v32.run_fs(allow_spilling, false)) {
8600 compiler->shader_perf_log(log_data,
8601 "SIMD32 shader failed to compile: %s",
8602 v32.fail_msg);
8603 } else {
8604 simd32_cfg = v32.cfg;
8605 prog_data->dispatch_grf_start_reg_32 = v32.payload.num_regs;
8606 prog_data->reg_blocks_32 = brw_register_blocks(v32.grf_used);
8607 }
8608 }
8609
8610 /* When the caller requests a repclear shader, they want SIMD16-only */
8611 if (use_rep_send)
8612 simd8_cfg = NULL;
8613
8614 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
8615 * at the top to select the shader. We've never implemented that.
8616 * Instead, we just give them exactly one shader and we pick the widest one
8617 * available.
8618 */
8619 if (compiler->devinfo->gen < 5) {
8620 if (simd32_cfg || simd16_cfg)
8621 simd8_cfg = NULL;
8622 if (simd32_cfg)
8623 simd16_cfg = NULL;
8624 }
8625
8626 /* If computed depth is enabled SNB only allows SIMD8. */
8627 if (compiler->devinfo->gen == 6 &&
8628 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
8629 assert(simd16_cfg == NULL && simd32_cfg == NULL);
8630
8631 if (compiler->devinfo->gen <= 5 && !simd8_cfg) {
8632 /* Iron lake and earlier only have one Dispatch GRF start field. Make
8633 * the data available in the base prog data struct for convenience.
8634 */
8635 if (simd16_cfg) {
8636 prog_data->base.dispatch_grf_start_reg =
8637 prog_data->dispatch_grf_start_reg_16;
8638 } else if (simd32_cfg) {
8639 prog_data->base.dispatch_grf_start_reg =
8640 prog_data->dispatch_grf_start_reg_32;
8641 }
8642 }
8643
8644 if (prog_data->persample_dispatch) {
8645 /* Starting with SandyBridge (where we first get MSAA), the different
8646 * pixel dispatch combinations are grouped into classifications A
8647 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
8648 * generations, the only configurations supporting persample dispatch
8649 * are are this in which only one dispatch width is enabled.
8650 */
8651 if (simd32_cfg || simd16_cfg)
8652 simd8_cfg = NULL;
8653 if (simd32_cfg)
8654 simd16_cfg = NULL;
8655 }
8656
8657 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8658 v8.shader_stats, v8.runtime_check_aads_emit,
8659 MESA_SHADER_FRAGMENT);
8660
8661 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
8662 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
8663 shader->info.label ?
8664 shader->info.label : "unnamed",
8665 shader->info.name));
8666 }
8667
8668 if (simd8_cfg) {
8669 prog_data->dispatch_8 = true;
8670 g.generate_code(simd8_cfg, 8, stats);
8671 stats = stats ? stats + 1 : NULL;
8672 }
8673
8674 if (simd16_cfg) {
8675 prog_data->dispatch_16 = true;
8676 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16, stats);
8677 stats = stats ? stats + 1 : NULL;
8678 }
8679
8680 if (simd32_cfg) {
8681 prog_data->dispatch_32 = true;
8682 prog_data->prog_offset_32 = g.generate_code(simd32_cfg, 32, stats);
8683 stats = stats ? stats + 1 : NULL;
8684 }
8685
8686 return g.get_assembly();
8687 }
8688
8689 fs_reg *
8690 fs_visitor::emit_cs_work_group_id_setup()
8691 {
8692 assert(stage == MESA_SHADER_COMPUTE);
8693
8694 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
8695
8696 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
8697 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
8698 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
8699
8700 bld.MOV(*reg, r0_1);
8701 bld.MOV(offset(*reg, bld, 1), r0_6);
8702 bld.MOV(offset(*reg, bld, 2), r0_7);
8703
8704 return reg;
8705 }
8706
8707 static void
8708 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
8709 {
8710 block->dwords = dwords;
8711 block->regs = DIV_ROUND_UP(dwords, 8);
8712 block->size = block->regs * 32;
8713 }
8714
8715 static void
8716 cs_fill_push_const_info(const struct gen_device_info *devinfo,
8717 struct brw_cs_prog_data *cs_prog_data)
8718 {
8719 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
8720 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
8721 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
8722
8723 /* The thread ID should be stored in the last param dword */
8724 assert(subgroup_id_index == -1 ||
8725 subgroup_id_index == (int)prog_data->nr_params - 1);
8726
8727 unsigned cross_thread_dwords, per_thread_dwords;
8728 if (!cross_thread_supported) {
8729 cross_thread_dwords = 0u;
8730 per_thread_dwords = prog_data->nr_params;
8731 } else if (subgroup_id_index >= 0) {
8732 /* Fill all but the last register with cross-thread payload */
8733 cross_thread_dwords = 8 * (subgroup_id_index / 8);
8734 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
8735 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
8736 } else {
8737 /* Fill all data using cross-thread payload */
8738 cross_thread_dwords = prog_data->nr_params;
8739 per_thread_dwords = 0u;
8740 }
8741
8742 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
8743 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
8744
8745 unsigned total_dwords =
8746 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
8747 cs_prog_data->push.cross_thread.size) / 4;
8748 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
8749
8750 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
8751 cs_prog_data->push.per_thread.size == 0);
8752 assert(cs_prog_data->push.cross_thread.dwords +
8753 cs_prog_data->push.per_thread.dwords ==
8754 prog_data->nr_params);
8755 }
8756
8757 static void
8758 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
8759 {
8760 cs_prog_data->simd_size = size;
8761 unsigned group_size = cs_prog_data->local_size[0] *
8762 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
8763 cs_prog_data->threads = (group_size + size - 1) / size;
8764 }
8765
8766 static nir_shader *
8767 compile_cs_to_nir(const struct brw_compiler *compiler,
8768 void *mem_ctx,
8769 const struct brw_cs_prog_key *key,
8770 const nir_shader *src_shader,
8771 unsigned dispatch_width)
8772 {
8773 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
8774 brw_nir_apply_key(shader, compiler, &key->base, dispatch_width, true);
8775
8776 NIR_PASS_V(shader, brw_nir_lower_cs_intrinsics, dispatch_width);
8777
8778 /* Clean up after the local index and ID calculations. */
8779 NIR_PASS_V(shader, nir_opt_constant_folding);
8780 NIR_PASS_V(shader, nir_opt_dce);
8781
8782 brw_postprocess_nir(shader, compiler, true);
8783
8784 return shader;
8785 }
8786
8787 const unsigned *
8788 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
8789 void *mem_ctx,
8790 const struct brw_cs_prog_key *key,
8791 struct brw_cs_prog_data *prog_data,
8792 const nir_shader *src_shader,
8793 int shader_time_index,
8794 struct brw_compile_stats *stats,
8795 char **error_str)
8796 {
8797 prog_data->base.total_shared = src_shader->info.cs.shared_size;
8798 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
8799 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
8800 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
8801 prog_data->slm_size = src_shader->num_shared;
8802 unsigned local_workgroup_size =
8803 src_shader->info.cs.local_size[0] * src_shader->info.cs.local_size[1] *
8804 src_shader->info.cs.local_size[2];
8805
8806 unsigned min_dispatch_width =
8807 DIV_ROUND_UP(local_workgroup_size, compiler->devinfo->max_cs_threads);
8808 min_dispatch_width = MAX2(8, min_dispatch_width);
8809 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
8810 assert(min_dispatch_width <= 32);
8811 unsigned max_dispatch_width = 32;
8812
8813 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
8814 fs_visitor *v = NULL;
8815 const char *fail_msg = NULL;
8816
8817 if ((int)key->base.subgroup_size_type >= (int)BRW_SUBGROUP_SIZE_REQUIRE_8) {
8818 /* These enum values are expressly chosen to be equal to the subgroup
8819 * size that they require.
8820 */
8821 const unsigned required_dispatch_width =
8822 (unsigned)key->base.subgroup_size_type;
8823 assert(required_dispatch_width == 8 ||
8824 required_dispatch_width == 16 ||
8825 required_dispatch_width == 32);
8826 if (required_dispatch_width < min_dispatch_width ||
8827 required_dispatch_width > max_dispatch_width) {
8828 fail_msg = "Cannot satisfy explicit subgroup size";
8829 } else {
8830 min_dispatch_width = max_dispatch_width = required_dispatch_width;
8831 }
8832 }
8833
8834 /* Now the main event: Visit the shader IR and generate our CS IR for it.
8835 */
8836 if (!fail_msg && min_dispatch_width <= 8 && max_dispatch_width >= 8) {
8837 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
8838 src_shader, 8);
8839 v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8840 &prog_data->base,
8841 nir8, 8, shader_time_index);
8842 if (!v8->run_cs(min_dispatch_width)) {
8843 fail_msg = v8->fail_msg;
8844 } else {
8845 /* We should always be able to do SIMD32 for compute shaders */
8846 assert(v8->max_dispatch_width >= 32);
8847
8848 v = v8;
8849 cs_set_simd_size(prog_data, 8);
8850 cs_fill_push_const_info(compiler->devinfo, prog_data);
8851 }
8852 }
8853
8854 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
8855 !fail_msg && min_dispatch_width <= 16 && max_dispatch_width >= 16) {
8856 /* Try a SIMD16 compile */
8857 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
8858 src_shader, 16);
8859 v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8860 &prog_data->base,
8861 nir16, 16, shader_time_index);
8862 if (v8)
8863 v16->import_uniforms(v8);
8864
8865 if (!v16->run_cs(min_dispatch_width)) {
8866 compiler->shader_perf_log(log_data,
8867 "SIMD16 shader failed to compile: %s",
8868 v16->fail_msg);
8869 if (!v) {
8870 fail_msg =
8871 "Couldn't generate SIMD16 program and not "
8872 "enough threads for SIMD8";
8873 }
8874 } else {
8875 /* We should always be able to do SIMD32 for compute shaders */
8876 assert(v16->max_dispatch_width >= 32);
8877
8878 v = v16;
8879 cs_set_simd_size(prog_data, 16);
8880 cs_fill_push_const_info(compiler->devinfo, prog_data);
8881 }
8882 }
8883
8884 /* We should always be able to do SIMD32 for compute shaders */
8885 assert(!v16 || v16->max_dispatch_width >= 32);
8886
8887 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32)) &&
8888 max_dispatch_width >= 32) {
8889 /* Try a SIMD32 compile */
8890 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
8891 src_shader, 32);
8892 v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8893 &prog_data->base,
8894 nir32, 32, shader_time_index);
8895 if (v8)
8896 v32->import_uniforms(v8);
8897 else if (v16)
8898 v32->import_uniforms(v16);
8899
8900 if (!v32->run_cs(min_dispatch_width)) {
8901 compiler->shader_perf_log(log_data,
8902 "SIMD32 shader failed to compile: %s",
8903 v32->fail_msg);
8904 if (!v) {
8905 fail_msg =
8906 "Couldn't generate SIMD32 program and not "
8907 "enough threads for SIMD16";
8908 }
8909 } else {
8910 v = v32;
8911 cs_set_simd_size(prog_data, 32);
8912 cs_fill_push_const_info(compiler->devinfo, prog_data);
8913 }
8914 }
8915
8916 const unsigned *ret = NULL;
8917 if (unlikely(v == NULL)) {
8918 assert(fail_msg);
8919 if (error_str)
8920 *error_str = ralloc_strdup(mem_ctx, fail_msg);
8921 } else {
8922 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8923 v->shader_stats, v->runtime_check_aads_emit,
8924 MESA_SHADER_COMPUTE);
8925 if (INTEL_DEBUG & DEBUG_CS) {
8926 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
8927 src_shader->info.label ?
8928 src_shader->info.label : "unnamed",
8929 src_shader->info.name);
8930 g.enable_debug(name);
8931 }
8932
8933 g.generate_code(v->cfg, prog_data->simd_size, stats);
8934
8935 ret = g.get_assembly();
8936 }
8937
8938 delete v8;
8939 delete v16;
8940 delete v32;
8941
8942 return ret;
8943 }
8944
8945 /**
8946 * Test the dispatch mask packing assumptions of
8947 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
8948 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
8949 * executed with an unexpected dispatch mask.
8950 */
8951 static UNUSED void
8952 brw_fs_test_dispatch_packing(const fs_builder &bld)
8953 {
8954 const gl_shader_stage stage = bld.shader->stage;
8955
8956 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
8957 bld.shader->stage_prog_data)) {
8958 const fs_builder ubld = bld.exec_all().group(1, 0);
8959 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
8960 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
8961 brw_dmask_reg());
8962
8963 ubld.ADD(tmp, mask, brw_imm_ud(1));
8964 ubld.AND(tmp, mask, tmp);
8965
8966 /* This will loop forever if the dispatch mask doesn't have the expected
8967 * form '2^n-1', in which case tmp will be non-zero.
8968 */
8969 bld.emit(BRW_OPCODE_DO);
8970 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
8971 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
8972 }
8973 }
8974
8975 unsigned
8976 fs_visitor::workgroup_size() const
8977 {
8978 assert(stage == MESA_SHADER_COMPUTE);
8979 const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data);
8980 return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
8981 }