i965: skip reading unused slots at the begining of the URB for the FS
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 if (type_sz(dst.type) == 8) {
195 shuffle_32bit_load_result_to_64bit_data(
196 bld, retype(vec4_result, dst.type), vec4_result, 2);
197 }
198
199 vec4_result.type = dst.type;
200 bld.MOV(dst, offset(vec4_result, bld,
201 (const_offset & 0xf) / type_sz(vec4_result.type)));
202 }
203
204 /**
205 * A helper for MOV generation for fixing up broken hardware SEND dependency
206 * handling.
207 */
208 void
209 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
210 {
211 /* The caller always wants uncompressed to emit the minimal extra
212 * dependencies, and to avoid having to deal with aligning its regs to 2.
213 */
214 const fs_builder ubld = bld.annotate("send dependency resolve")
215 .half(0);
216
217 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
218 }
219
220 bool
221 fs_inst::equals(fs_inst *inst) const
222 {
223 return (opcode == inst->opcode &&
224 dst.equals(inst->dst) &&
225 src[0].equals(inst->src[0]) &&
226 src[1].equals(inst->src[1]) &&
227 src[2].equals(inst->src[2]) &&
228 saturate == inst->saturate &&
229 predicate == inst->predicate &&
230 conditional_mod == inst->conditional_mod &&
231 mlen == inst->mlen &&
232 base_mrf == inst->base_mrf &&
233 target == inst->target &&
234 eot == inst->eot &&
235 header_size == inst->header_size &&
236 shadow_compare == inst->shadow_compare &&
237 exec_size == inst->exec_size &&
238 offset == inst->offset);
239 }
240
241 bool
242 fs_inst::is_send_from_grf() const
243 {
244 switch (opcode) {
245 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
246 case SHADER_OPCODE_SHADER_TIME_ADD:
247 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
248 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
249 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
250 case SHADER_OPCODE_UNTYPED_ATOMIC:
251 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
252 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
253 case SHADER_OPCODE_TYPED_ATOMIC:
254 case SHADER_OPCODE_TYPED_SURFACE_READ:
255 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
256 case SHADER_OPCODE_URB_WRITE_SIMD8:
257 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
258 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
260 case SHADER_OPCODE_URB_READ_SIMD8:
261 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
262 return true;
263 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
264 return src[1].file == VGRF;
265 case FS_OPCODE_FB_WRITE:
266 case FS_OPCODE_FB_READ:
267 return src[0].file == VGRF;
268 default:
269 if (is_tex())
270 return src[0].file == VGRF;
271
272 return false;
273 }
274 }
275
276 /**
277 * Returns true if this instruction's sources and destinations cannot
278 * safely be the same register.
279 *
280 * In most cases, a register can be written over safely by the same
281 * instruction that is its last use. For a single instruction, the
282 * sources are dereferenced before writing of the destination starts
283 * (naturally).
284 *
285 * However, there are a few cases where this can be problematic:
286 *
287 * - Virtual opcodes that translate to multiple instructions in the
288 * code generator: if src == dst and one instruction writes the
289 * destination before a later instruction reads the source, then
290 * src will have been clobbered.
291 *
292 * - SIMD16 compressed instructions with certain regioning (see below).
293 *
294 * The register allocator uses this information to set up conflicts between
295 * GRF sources and the destination.
296 */
297 bool
298 fs_inst::has_source_and_destination_hazard() const
299 {
300 switch (opcode) {
301 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
302 /* Multiple partial writes to the destination */
303 return true;
304 default:
305 /* The SIMD16 compressed instruction
306 *
307 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
308 *
309 * is actually decoded in hardware as:
310 *
311 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
312 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
313 *
314 * Which is safe. However, if we have uniform accesses
315 * happening, we get into trouble:
316 *
317 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
318 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
319 *
320 * Now our destination for the first instruction overwrote the
321 * second instruction's src0, and we get garbage for those 8
322 * pixels. There's a similar issue for the pre-gen6
323 * pixel_x/pixel_y, which are registers of 16-bit values and thus
324 * would get stomped by the first decode as well.
325 */
326 if (exec_size == 16) {
327 for (int i = 0; i < sources; i++) {
328 if (src[i].file == VGRF && (src[i].stride == 0 ||
329 src[i].type == BRW_REGISTER_TYPE_UW ||
330 src[i].type == BRW_REGISTER_TYPE_W ||
331 src[i].type == BRW_REGISTER_TYPE_UB ||
332 src[i].type == BRW_REGISTER_TYPE_B)) {
333 return true;
334 }
335 }
336 }
337 return false;
338 }
339 }
340
341 bool
342 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
343 {
344 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
345 return false;
346
347 fs_reg reg = this->src[0];
348 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
349 return false;
350
351 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
352 return false;
353
354 for (int i = 0; i < this->sources; i++) {
355 reg.type = this->src[i].type;
356 if (!this->src[i].equals(reg))
357 return false;
358
359 if (i < this->header_size) {
360 reg.offset += REG_SIZE;
361 } else {
362 reg = horiz_offset(reg, this->exec_size);
363 }
364 }
365
366 return true;
367 }
368
369 bool
370 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
371 {
372 if (devinfo->gen == 6 && is_math())
373 return false;
374
375 if (is_send_from_grf())
376 return false;
377
378 if (!backend_instruction::can_do_source_mods())
379 return false;
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_change_types() const
386 {
387 return dst.type == src[0].type &&
388 !src[0].abs && !src[0].negate && !saturate &&
389 (opcode == BRW_OPCODE_MOV ||
390 (opcode == BRW_OPCODE_SEL &&
391 dst.type == src[1].type &&
392 predicate != BRW_PREDICATE_NONE &&
393 !src[1].abs && !src[1].negate));
394 }
395
396 bool
397 fs_inst::has_side_effects() const
398 {
399 return this->eot || backend_instruction::has_side_effects();
400 }
401
402 void
403 fs_reg::init()
404 {
405 memset(this, 0, sizeof(*this));
406 type = BRW_REGISTER_TYPE_UD;
407 stride = 1;
408 }
409
410 /** Generic unset register constructor. */
411 fs_reg::fs_reg()
412 {
413 init();
414 this->file = BAD_FILE;
415 }
416
417 fs_reg::fs_reg(struct ::brw_reg reg) :
418 backend_reg(reg)
419 {
420 this->offset = 0;
421 this->stride = 1;
422 if (this->file == IMM &&
423 (this->type != BRW_REGISTER_TYPE_V &&
424 this->type != BRW_REGISTER_TYPE_UV &&
425 this->type != BRW_REGISTER_TYPE_VF)) {
426 this->stride = 0;
427 }
428 }
429
430 bool
431 fs_reg::equals(const fs_reg &r) const
432 {
433 return (this->backend_reg::equals(r) &&
434 stride == r.stride);
435 }
436
437 bool
438 fs_reg::is_contiguous() const
439 {
440 return stride == 1;
441 }
442
443 unsigned
444 fs_reg::component_size(unsigned width) const
445 {
446 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
447 hstride == 0 ? 0 :
448 1 << (hstride - 1));
449 return MAX2(width * stride, 1) * type_sz(type);
450 }
451
452 extern "C" int
453 type_size_scalar(const struct glsl_type *type)
454 {
455 unsigned int size, i;
456
457 switch (type->base_type) {
458 case GLSL_TYPE_UINT:
459 case GLSL_TYPE_INT:
460 case GLSL_TYPE_FLOAT:
461 case GLSL_TYPE_BOOL:
462 return type->components();
463 case GLSL_TYPE_DOUBLE:
464 case GLSL_TYPE_UINT64:
465 case GLSL_TYPE_INT64:
466 return type->components() * 2;
467 case GLSL_TYPE_ARRAY:
468 return type_size_scalar(type->fields.array) * type->length;
469 case GLSL_TYPE_STRUCT:
470 size = 0;
471 for (i = 0; i < type->length; i++) {
472 size += type_size_scalar(type->fields.structure[i].type);
473 }
474 return size;
475 case GLSL_TYPE_SAMPLER:
476 /* Samplers take up no register space, since they're baked in at
477 * link time.
478 */
479 return 0;
480 case GLSL_TYPE_ATOMIC_UINT:
481 return 0;
482 case GLSL_TYPE_SUBROUTINE:
483 return 1;
484 case GLSL_TYPE_IMAGE:
485 return BRW_IMAGE_PARAM_SIZE;
486 case GLSL_TYPE_VOID:
487 case GLSL_TYPE_ERROR:
488 case GLSL_TYPE_INTERFACE:
489 case GLSL_TYPE_FUNCTION:
490 unreachable("not reached");
491 }
492
493 return 0;
494 }
495
496 /**
497 * Create a MOV to read the timestamp register.
498 *
499 * The caller is responsible for emitting the MOV. The return value is
500 * the destination of the MOV, with extra parameters set.
501 */
502 fs_reg
503 fs_visitor::get_timestamp(const fs_builder &bld)
504 {
505 assert(devinfo->gen >= 7);
506
507 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
508 BRW_ARF_TIMESTAMP,
509 0),
510 BRW_REGISTER_TYPE_UD));
511
512 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
513
514 /* We want to read the 3 fields we care about even if it's not enabled in
515 * the dispatch.
516 */
517 bld.group(4, 0).exec_all().MOV(dst, ts);
518
519 return dst;
520 }
521
522 void
523 fs_visitor::emit_shader_time_begin()
524 {
525 /* We want only the low 32 bits of the timestamp. Since it's running
526 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
527 * which is plenty of time for our purposes. It is identical across the
528 * EUs, but since it's tracking GPU core speed it will increment at a
529 * varying rate as render P-states change.
530 */
531 shader_start_time = component(
532 get_timestamp(bld.annotate("shader time start")), 0);
533 }
534
535 void
536 fs_visitor::emit_shader_time_end()
537 {
538 /* Insert our code just before the final SEND with EOT. */
539 exec_node *end = this->instructions.get_tail();
540 assert(end && ((fs_inst *) end)->eot);
541 const fs_builder ibld = bld.annotate("shader time end")
542 .exec_all().at(NULL, end);
543 const fs_reg timestamp = get_timestamp(ibld);
544
545 /* We only use the low 32 bits of the timestamp - see
546 * emit_shader_time_begin()).
547 *
548 * We could also check if render P-states have changed (or anything
549 * else that might disrupt timing) by setting smear to 2 and checking if
550 * that field is != 0.
551 */
552 const fs_reg shader_end_time = component(timestamp, 0);
553
554 /* Check that there weren't any timestamp reset events (assuming these
555 * were the only two timestamp reads that happened).
556 */
557 const fs_reg reset = component(timestamp, 2);
558 set_condmod(BRW_CONDITIONAL_Z,
559 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
560 ibld.IF(BRW_PREDICATE_NORMAL);
561
562 fs_reg start = shader_start_time;
563 start.negate = true;
564 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
565 BRW_REGISTER_TYPE_UD),
566 0);
567 const fs_builder cbld = ibld.group(1, 0);
568 cbld.group(1, 0).ADD(diff, start, shader_end_time);
569
570 /* If there were no instructions between the two timestamp gets, the diff
571 * is 2 cycles. Remove that overhead, so I can forget about that when
572 * trying to determine the time taken for single instructions.
573 */
574 cbld.ADD(diff, diff, brw_imm_ud(-2u));
575 SHADER_TIME_ADD(cbld, 0, diff);
576 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
577 ibld.emit(BRW_OPCODE_ELSE);
578 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
579 ibld.emit(BRW_OPCODE_ENDIF);
580 }
581
582 void
583 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
584 int shader_time_subindex,
585 fs_reg value)
586 {
587 int index = shader_time_index * 3 + shader_time_subindex;
588 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
589
590 fs_reg payload;
591 if (dispatch_width == 8)
592 payload = vgrf(glsl_type::uvec2_type);
593 else
594 payload = vgrf(glsl_type::uint_type);
595
596 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
597 }
598
599 void
600 fs_visitor::vfail(const char *format, va_list va)
601 {
602 char *msg;
603
604 if (failed)
605 return;
606
607 failed = true;
608
609 msg = ralloc_vasprintf(mem_ctx, format, va);
610 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
611
612 this->fail_msg = msg;
613
614 if (debug_enabled) {
615 fprintf(stderr, "%s", msg);
616 }
617 }
618
619 void
620 fs_visitor::fail(const char *format, ...)
621 {
622 va_list va;
623
624 va_start(va, format);
625 vfail(format, va);
626 va_end(va);
627 }
628
629 /**
630 * Mark this program as impossible to compile with dispatch width greater
631 * than n.
632 *
633 * During the SIMD8 compile (which happens first), we can detect and flag
634 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
635 * SIMD16+ compile altogether.
636 *
637 * During a compile of dispatch width greater than n (if one happens anyway),
638 * this just calls fail().
639 */
640 void
641 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
642 {
643 if (dispatch_width > n) {
644 fail("%s", msg);
645 } else {
646 max_dispatch_width = n;
647 compiler->shader_perf_log(log_data,
648 "Shader dispatch width limited to SIMD%d: %s",
649 n, msg);
650 }
651 }
652
653 /**
654 * Returns true if the instruction has a flag that means it won't
655 * update an entire destination register.
656 *
657 * For example, dead code elimination and live variable analysis want to know
658 * when a write to a variable screens off any preceding values that were in
659 * it.
660 */
661 bool
662 fs_inst::is_partial_write() const
663 {
664 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
665 (this->exec_size * type_sz(this->dst.type)) < 32 ||
666 !this->dst.is_contiguous() ||
667 this->dst.offset % REG_SIZE != 0);
668 }
669
670 unsigned
671 fs_inst::components_read(unsigned i) const
672 {
673 /* Return zero if the source is not present. */
674 if (src[i].file == BAD_FILE)
675 return 0;
676
677 switch (opcode) {
678 case FS_OPCODE_LINTERP:
679 if (i == 0)
680 return 2;
681 else
682 return 1;
683
684 case FS_OPCODE_PIXEL_X:
685 case FS_OPCODE_PIXEL_Y:
686 assert(i == 0);
687 return 2;
688
689 case FS_OPCODE_FB_WRITE_LOGICAL:
690 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
691 /* First/second FB write color. */
692 if (i < 2)
693 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
694 else
695 return 1;
696
697 case SHADER_OPCODE_TEX_LOGICAL:
698 case SHADER_OPCODE_TXD_LOGICAL:
699 case SHADER_OPCODE_TXF_LOGICAL:
700 case SHADER_OPCODE_TXL_LOGICAL:
701 case SHADER_OPCODE_TXS_LOGICAL:
702 case FS_OPCODE_TXB_LOGICAL:
703 case SHADER_OPCODE_TXF_CMS_LOGICAL:
704 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
705 case SHADER_OPCODE_TXF_UMS_LOGICAL:
706 case SHADER_OPCODE_TXF_MCS_LOGICAL:
707 case SHADER_OPCODE_LOD_LOGICAL:
708 case SHADER_OPCODE_TG4_LOGICAL:
709 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
710 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
711 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
712 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
713 /* Texture coordinates. */
714 if (i == TEX_LOGICAL_SRC_COORDINATE)
715 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
716 /* Texture derivatives. */
717 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
718 opcode == SHADER_OPCODE_TXD_LOGICAL)
719 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
720 /* Texture offset. */
721 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
722 return 2;
723 /* MCS */
724 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
725 return 2;
726 else
727 return 1;
728
729 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
730 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
731 assert(src[3].file == IMM);
732 /* Surface coordinates. */
733 if (i == 0)
734 return src[3].ud;
735 /* Surface operation source (ignored for reads). */
736 else if (i == 1)
737 return 0;
738 else
739 return 1;
740
741 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
742 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
743 assert(src[3].file == IMM &&
744 src[4].file == IMM);
745 /* Surface coordinates. */
746 if (i == 0)
747 return src[3].ud;
748 /* Surface operation source. */
749 else if (i == 1)
750 return src[4].ud;
751 else
752 return 1;
753
754 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
755 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
756 assert(src[3].file == IMM &&
757 src[4].file == IMM);
758 const unsigned op = src[4].ud;
759 /* Surface coordinates. */
760 if (i == 0)
761 return src[3].ud;
762 /* Surface operation source. */
763 else if (i == 1 && op == BRW_AOP_CMPWR)
764 return 2;
765 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
766 op == BRW_AOP_PREDEC))
767 return 0;
768 else
769 return 1;
770 }
771
772 default:
773 return 1;
774 }
775 }
776
777 unsigned
778 fs_inst::size_read(int arg) const
779 {
780 switch (opcode) {
781 case FS_OPCODE_FB_WRITE:
782 case FS_OPCODE_FB_READ:
783 case SHADER_OPCODE_URB_WRITE_SIMD8:
784 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
785 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
786 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
787 case SHADER_OPCODE_URB_READ_SIMD8:
788 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
789 case SHADER_OPCODE_UNTYPED_ATOMIC:
790 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
791 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
792 case SHADER_OPCODE_TYPED_ATOMIC:
793 case SHADER_OPCODE_TYPED_SURFACE_READ:
794 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
795 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
796 if (arg == 0)
797 return mlen * REG_SIZE;
798 break;
799
800 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
801 /* The payload is actually stored in src1 */
802 if (arg == 1)
803 return mlen * REG_SIZE;
804 break;
805
806 case FS_OPCODE_LINTERP:
807 if (arg == 1)
808 return 16;
809 break;
810
811 case SHADER_OPCODE_LOAD_PAYLOAD:
812 if (arg < this->header_size)
813 return REG_SIZE;
814 break;
815
816 case CS_OPCODE_CS_TERMINATE:
817 case SHADER_OPCODE_BARRIER:
818 return REG_SIZE;
819
820 case SHADER_OPCODE_MOV_INDIRECT:
821 if (arg == 0) {
822 assert(src[2].file == IMM);
823 return src[2].ud;
824 }
825 break;
826
827 default:
828 if (is_tex() && arg == 0 && src[0].file == VGRF)
829 return mlen * REG_SIZE;
830 break;
831 }
832
833 switch (src[arg].file) {
834 case UNIFORM:
835 case IMM:
836 return components_read(arg) * type_sz(src[arg].type);
837 case BAD_FILE:
838 case ARF:
839 case FIXED_GRF:
840 case VGRF:
841 case ATTR:
842 return components_read(arg) * src[arg].component_size(exec_size);
843 case MRF:
844 unreachable("MRF registers are not allowed as sources");
845 }
846 return 0;
847 }
848
849 namespace {
850 /* Return the subset of flag registers that an instruction could
851 * potentially read or write based on the execution controls and flag
852 * subregister number of the instruction.
853 */
854 unsigned
855 flag_mask(const fs_inst *inst)
856 {
857 const unsigned start = inst->flag_subreg * 16 + inst->group;
858 const unsigned end = start + inst->exec_size;
859 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
860 }
861
862 unsigned
863 bit_mask(unsigned n)
864 {
865 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
866 }
867
868 unsigned
869 flag_mask(const fs_reg &r, unsigned sz)
870 {
871 if (r.file == ARF) {
872 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
873 const unsigned end = start + sz;
874 return bit_mask(end) & ~bit_mask(start);
875 } else {
876 return 0;
877 }
878 }
879 }
880
881 unsigned
882 fs_inst::flags_read(const gen_device_info *devinfo) const
883 {
884 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
885 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
886 /* The vertical predication modes combine corresponding bits from
887 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
888 */
889 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
890 return flag_mask(this) << shift | flag_mask(this);
891 } else if (predicate) {
892 return flag_mask(this);
893 } else {
894 unsigned mask = 0;
895 for (int i = 0; i < sources; i++) {
896 mask |= flag_mask(src[i], size_read(i));
897 }
898 return mask;
899 }
900 }
901
902 unsigned
903 fs_inst::flags_written() const
904 {
905 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
906 opcode != BRW_OPCODE_IF &&
907 opcode != BRW_OPCODE_WHILE)) ||
908 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
909 return flag_mask(this);
910 } else {
911 return flag_mask(dst, size_written);
912 }
913 }
914
915 /**
916 * Returns how many MRFs an FS opcode will write over.
917 *
918 * Note that this is not the 0 or 1 implied writes in an actual gen
919 * instruction -- the FS opcodes often generate MOVs in addition.
920 */
921 int
922 fs_visitor::implied_mrf_writes(fs_inst *inst)
923 {
924 if (inst->mlen == 0)
925 return 0;
926
927 if (inst->base_mrf == -1)
928 return 0;
929
930 switch (inst->opcode) {
931 case SHADER_OPCODE_RCP:
932 case SHADER_OPCODE_RSQ:
933 case SHADER_OPCODE_SQRT:
934 case SHADER_OPCODE_EXP2:
935 case SHADER_OPCODE_LOG2:
936 case SHADER_OPCODE_SIN:
937 case SHADER_OPCODE_COS:
938 return 1 * dispatch_width / 8;
939 case SHADER_OPCODE_POW:
940 case SHADER_OPCODE_INT_QUOTIENT:
941 case SHADER_OPCODE_INT_REMAINDER:
942 return 2 * dispatch_width / 8;
943 case SHADER_OPCODE_TEX:
944 case FS_OPCODE_TXB:
945 case SHADER_OPCODE_TXD:
946 case SHADER_OPCODE_TXF:
947 case SHADER_OPCODE_TXF_CMS:
948 case SHADER_OPCODE_TXF_MCS:
949 case SHADER_OPCODE_TG4:
950 case SHADER_OPCODE_TG4_OFFSET:
951 case SHADER_OPCODE_TXL:
952 case SHADER_OPCODE_TXS:
953 case SHADER_OPCODE_LOD:
954 case SHADER_OPCODE_SAMPLEINFO:
955 return 1;
956 case FS_OPCODE_FB_WRITE:
957 return 2;
958 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
959 case SHADER_OPCODE_GEN4_SCRATCH_READ:
960 return 1;
961 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
962 return inst->mlen;
963 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
964 return inst->mlen;
965 default:
966 unreachable("not reached");
967 }
968 }
969
970 fs_reg
971 fs_visitor::vgrf(const glsl_type *const type)
972 {
973 int reg_width = dispatch_width / 8;
974 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
975 brw_type_for_base_type(type));
976 }
977
978 fs_reg::fs_reg(enum brw_reg_file file, int nr)
979 {
980 init();
981 this->file = file;
982 this->nr = nr;
983 this->type = BRW_REGISTER_TYPE_F;
984 this->stride = (file == UNIFORM ? 0 : 1);
985 }
986
987 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
988 {
989 init();
990 this->file = file;
991 this->nr = nr;
992 this->type = type;
993 this->stride = (file == UNIFORM ? 0 : 1);
994 }
995
996 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
997 * This brings in those uniform definitions
998 */
999 void
1000 fs_visitor::import_uniforms(fs_visitor *v)
1001 {
1002 this->push_constant_loc = v->push_constant_loc;
1003 this->pull_constant_loc = v->pull_constant_loc;
1004 this->uniforms = v->uniforms;
1005 }
1006
1007 void
1008 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1009 {
1010 assert(stage == MESA_SHADER_FRAGMENT);
1011
1012 /* gl_FragCoord.x */
1013 bld.MOV(wpos, this->pixel_x);
1014 wpos = offset(wpos, bld, 1);
1015
1016 /* gl_FragCoord.y */
1017 bld.MOV(wpos, this->pixel_y);
1018 wpos = offset(wpos, bld, 1);
1019
1020 /* gl_FragCoord.z */
1021 if (devinfo->gen >= 6) {
1022 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1023 } else {
1024 bld.emit(FS_OPCODE_LINTERP, wpos,
1025 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1026 interp_reg(VARYING_SLOT_POS, 2));
1027 }
1028 wpos = offset(wpos, bld, 1);
1029
1030 /* gl_FragCoord.w: Already set up in emit_interpolation */
1031 bld.MOV(wpos, this->wpos_w);
1032 }
1033
1034 enum brw_barycentric_mode
1035 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1036 {
1037 /* Barycentric modes don't make sense for flat inputs. */
1038 assert(mode != INTERP_MODE_FLAT);
1039
1040 unsigned bary;
1041 switch (op) {
1042 case nir_intrinsic_load_barycentric_pixel:
1043 case nir_intrinsic_load_barycentric_at_offset:
1044 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1045 break;
1046 case nir_intrinsic_load_barycentric_centroid:
1047 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1048 break;
1049 case nir_intrinsic_load_barycentric_sample:
1050 case nir_intrinsic_load_barycentric_at_sample:
1051 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1052 break;
1053 default:
1054 unreachable("invalid intrinsic");
1055 }
1056
1057 if (mode == INTERP_MODE_NOPERSPECTIVE)
1058 bary += 3;
1059
1060 return (enum brw_barycentric_mode) bary;
1061 }
1062
1063 /**
1064 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1065 */
1066 static enum brw_barycentric_mode
1067 centroid_to_pixel(enum brw_barycentric_mode bary)
1068 {
1069 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1070 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1071 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1072 }
1073
1074 fs_reg *
1075 fs_visitor::emit_frontfacing_interpolation()
1076 {
1077 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1078
1079 if (devinfo->gen >= 6) {
1080 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1081 * a boolean result from this (~0/true or 0/false).
1082 *
1083 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1084 * this task in only one instruction:
1085 * - a negation source modifier will flip the bit; and
1086 * - a W -> D type conversion will sign extend the bit into the high
1087 * word of the destination.
1088 *
1089 * An ASR 15 fills the low word of the destination.
1090 */
1091 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1092 g0.negate = true;
1093
1094 bld.ASR(*reg, g0, brw_imm_d(15));
1095 } else {
1096 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1097 * a boolean result from this (1/true or 0/false).
1098 *
1099 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1100 * the negation source modifier to flip it. Unfortunately the SHR
1101 * instruction only operates on UD (or D with an abs source modifier)
1102 * sources without negation.
1103 *
1104 * Instead, use ASR (which will give ~0/true or 0/false).
1105 */
1106 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1107 g1_6.negate = true;
1108
1109 bld.ASR(*reg, g1_6, brw_imm_d(31));
1110 }
1111
1112 return reg;
1113 }
1114
1115 void
1116 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1117 {
1118 assert(stage == MESA_SHADER_FRAGMENT);
1119 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1120 assert(dst.type == BRW_REGISTER_TYPE_F);
1121
1122 if (wm_prog_data->persample_dispatch) {
1123 /* Convert int_sample_pos to floating point */
1124 bld.MOV(dst, int_sample_pos);
1125 /* Scale to the range [0, 1] */
1126 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1127 }
1128 else {
1129 /* From ARB_sample_shading specification:
1130 * "When rendering to a non-multisample buffer, or if multisample
1131 * rasterization is disabled, gl_SamplePosition will always be
1132 * (0.5, 0.5).
1133 */
1134 bld.MOV(dst, brw_imm_f(0.5f));
1135 }
1136 }
1137
1138 fs_reg *
1139 fs_visitor::emit_samplepos_setup()
1140 {
1141 assert(devinfo->gen >= 6);
1142
1143 const fs_builder abld = bld.annotate("compute sample position");
1144 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1145 fs_reg pos = *reg;
1146 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1147 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1148
1149 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1150 * mode will be enabled.
1151 *
1152 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1153 * R31.1:0 Position Offset X/Y for Slot[3:0]
1154 * R31.3:2 Position Offset X/Y for Slot[7:4]
1155 * .....
1156 *
1157 * The X, Y sample positions come in as bytes in thread payload. So, read
1158 * the positions using vstride=16, width=8, hstride=2.
1159 */
1160 struct brw_reg sample_pos_reg =
1161 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1162 BRW_REGISTER_TYPE_B), 16, 8, 2);
1163
1164 if (dispatch_width == 8) {
1165 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1166 } else {
1167 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1168 abld.half(1).MOV(half(int_sample_x, 1),
1169 fs_reg(suboffset(sample_pos_reg, 16)));
1170 }
1171 /* Compute gl_SamplePosition.x */
1172 compute_sample_position(pos, int_sample_x);
1173 pos = offset(pos, abld, 1);
1174 if (dispatch_width == 8) {
1175 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1176 } else {
1177 abld.half(0).MOV(half(int_sample_y, 0),
1178 fs_reg(suboffset(sample_pos_reg, 1)));
1179 abld.half(1).MOV(half(int_sample_y, 1),
1180 fs_reg(suboffset(sample_pos_reg, 17)));
1181 }
1182 /* Compute gl_SamplePosition.y */
1183 compute_sample_position(pos, int_sample_y);
1184 return reg;
1185 }
1186
1187 fs_reg *
1188 fs_visitor::emit_sampleid_setup()
1189 {
1190 assert(stage == MESA_SHADER_FRAGMENT);
1191 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1192 assert(devinfo->gen >= 6);
1193
1194 const fs_builder abld = bld.annotate("compute sample id");
1195 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1196
1197 if (!key->multisample_fbo) {
1198 /* As per GL_ARB_sample_shading specification:
1199 * "When rendering to a non-multisample buffer, or if multisample
1200 * rasterization is disabled, gl_SampleID will always be zero."
1201 */
1202 abld.MOV(*reg, brw_imm_d(0));
1203 } else if (devinfo->gen >= 8) {
1204 /* Sample ID comes in as 4-bit numbers in g1.0:
1205 *
1206 * 15:12 Slot 3 SampleID (only used in SIMD16)
1207 * 11:8 Slot 2 SampleID (only used in SIMD16)
1208 * 7:4 Slot 1 SampleID
1209 * 3:0 Slot 0 SampleID
1210 *
1211 * Each slot corresponds to four channels, so we want to replicate each
1212 * half-byte value to 4 channels in a row:
1213 *
1214 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1215 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1216 *
1217 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1218 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1219 *
1220 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1221 * channels to read the first byte (7:0), and the second group of 8
1222 * channels to read the second byte (15:8). Then, we shift right by
1223 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1224 * values into place. Finally, we AND with 0xf to keep the low nibble.
1225 *
1226 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1227 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1228 *
1229 * TODO: These payload bits exist on Gen7 too, but they appear to always
1230 * be zero, so this code fails to work. We should find out why.
1231 */
1232 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1233
1234 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1235 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1236 brw_imm_v(0x44440000));
1237 abld.AND(*reg, tmp, brw_imm_w(0xf));
1238 } else {
1239 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1240 BRW_REGISTER_TYPE_D), 0);
1241 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1242
1243 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1244 * 8x multisampling, subspan 0 will represent sample N (where N
1245 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1246 * 7. We can find the value of N by looking at R0.0 bits 7:6
1247 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1248 * (since samples are always delivered in pairs). That is, we
1249 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1250 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1251 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1252 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1253 * populating a temporary variable with the sequence (0, 1, 2, 3),
1254 * and then reading from it using vstride=1, width=4, hstride=0.
1255 * These computations hold good for 4x multisampling as well.
1256 *
1257 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1258 * the first four slots are sample 0 of subspan 0; the next four
1259 * are sample 1 of subspan 0; the third group is sample 0 of
1260 * subspan 1, and finally sample 1 of subspan 1.
1261 */
1262
1263 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1264 * accomodate 16x MSAA.
1265 */
1266 abld.exec_all().group(1, 0)
1267 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1268 brw_imm_ud(0xc0));
1269 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1270
1271 /* This works for both SIMD8 and SIMD16 */
1272 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1273
1274 /* This special instruction takes care of setting vstride=1,
1275 * width=4, hstride=0 of t2 during an ADD instruction.
1276 */
1277 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1278 }
1279
1280 return reg;
1281 }
1282
1283 fs_reg *
1284 fs_visitor::emit_samplemaskin_setup()
1285 {
1286 assert(stage == MESA_SHADER_FRAGMENT);
1287 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1288 assert(devinfo->gen >= 6);
1289
1290 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1291
1292 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1293 BRW_REGISTER_TYPE_D));
1294
1295 if (wm_prog_data->persample_dispatch) {
1296 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1297 * and a mask representing which sample is being processed by the
1298 * current shader invocation.
1299 *
1300 * From the OES_sample_variables specification:
1301 * "When per-sample shading is active due to the use of a fragment input
1302 * qualified by "sample" or due to the use of the gl_SampleID or
1303 * gl_SamplePosition variables, only the bit for the current sample is
1304 * set in gl_SampleMaskIn."
1305 */
1306 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1307
1308 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1309 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1310
1311 fs_reg one = vgrf(glsl_type::int_type);
1312 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1313 abld.MOV(one, brw_imm_d(1));
1314 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1315 abld.AND(*reg, enabled_mask, coverage_mask);
1316 } else {
1317 /* In per-pixel mode, the coverage mask is sufficient. */
1318 *reg = coverage_mask;
1319 }
1320 return reg;
1321 }
1322
1323 fs_reg
1324 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1325 {
1326 if (!src.abs && !src.negate)
1327 return src;
1328
1329 fs_reg temp = bld.vgrf(src.type);
1330 bld.MOV(temp, src);
1331
1332 return temp;
1333 }
1334
1335 void
1336 fs_visitor::emit_discard_jump()
1337 {
1338 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1339
1340 /* For performance, after a discard, jump to the end of the
1341 * shader if all relevant channels have been discarded.
1342 */
1343 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1344 discard_jump->flag_subreg = 1;
1345
1346 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1347 discard_jump->predicate_inverse = true;
1348 }
1349
1350 void
1351 fs_visitor::emit_gs_thread_end()
1352 {
1353 assert(stage == MESA_SHADER_GEOMETRY);
1354
1355 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1356
1357 if (gs_compile->control_data_header_size_bits > 0) {
1358 emit_gs_control_data_bits(this->final_gs_vertex_count);
1359 }
1360
1361 const fs_builder abld = bld.annotate("thread end");
1362 fs_inst *inst;
1363
1364 if (gs_prog_data->static_vertex_count != -1) {
1365 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1366 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1367 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1368 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1369 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1370 prev->eot = true;
1371
1372 /* Delete now dead instructions. */
1373 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1374 if (dead == prev)
1375 break;
1376 dead->remove();
1377 }
1378 return;
1379 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1380 break;
1381 }
1382 }
1383 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1384 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1385 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1386 inst->mlen = 1;
1387 } else {
1388 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1389 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1390 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1391 sources[1] = this->final_gs_vertex_count;
1392 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1393 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1394 inst->mlen = 2;
1395 }
1396 inst->eot = true;
1397 inst->offset = 0;
1398 }
1399
1400 void
1401 fs_visitor::assign_curb_setup()
1402 {
1403 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1404
1405 unsigned ubo_push_length = 0;
1406 unsigned ubo_push_start[4];
1407 for (int i = 0; i < 4; i++) {
1408 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1409 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1410 }
1411
1412 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1413
1414 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1415 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1416 for (unsigned int i = 0; i < inst->sources; i++) {
1417 if (inst->src[i].file == UNIFORM) {
1418 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1419 int constant_nr;
1420 if (inst->src[i].nr >= UBO_START) {
1421 /* constant_nr is in 32-bit units, the rest are in bytes */
1422 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1423 inst->src[i].offset / 4;
1424 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1425 constant_nr = push_constant_loc[uniform_nr];
1426 } else {
1427 /* Section 5.11 of the OpenGL 4.1 spec says:
1428 * "Out-of-bounds reads return undefined values, which include
1429 * values from other variables of the active program or zero."
1430 * Just return the first push constant.
1431 */
1432 constant_nr = 0;
1433 }
1434
1435 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1436 constant_nr / 8,
1437 constant_nr % 8);
1438 brw_reg.abs = inst->src[i].abs;
1439 brw_reg.negate = inst->src[i].negate;
1440
1441 assert(inst->src[i].stride == 0);
1442 inst->src[i] = byte_offset(
1443 retype(brw_reg, inst->src[i].type),
1444 inst->src[i].offset % 4);
1445 }
1446 }
1447 }
1448
1449 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1450 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1451 }
1452
1453 void
1454 fs_visitor::calculate_urb_setup()
1455 {
1456 assert(stage == MESA_SHADER_FRAGMENT);
1457 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1458 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1459
1460 memset(prog_data->urb_setup, -1,
1461 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1462
1463 int urb_next = 0;
1464 /* Figure out where each of the incoming setup attributes lands. */
1465 if (devinfo->gen >= 6) {
1466 if (_mesa_bitcount_64(nir->info.inputs_read &
1467 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1468 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1469 * first 16 varying inputs, so we can put them wherever we want.
1470 * Just put them in order.
1471 *
1472 * This is useful because it means that (a) inputs not used by the
1473 * fragment shader won't take up valuable register space, and (b) we
1474 * won't have to recompile the fragment shader if it gets paired with
1475 * a different vertex (or geometry) shader.
1476 */
1477 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1478 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1479 BITFIELD64_BIT(i)) {
1480 prog_data->urb_setup[i] = urb_next++;
1481 }
1482 }
1483 } else {
1484 /* We have enough input varyings that the SF/SBE pipeline stage can't
1485 * arbitrarily rearrange them to suit our whim; we have to put them
1486 * in an order that matches the output of the previous pipeline stage
1487 * (geometry or vertex shader).
1488 */
1489 struct brw_vue_map prev_stage_vue_map;
1490 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1491 key->input_slots_valid,
1492 nir->info.separate_shader);
1493
1494 int first_slot =
1495 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1496 &prev_stage_vue_map);
1497
1498 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1499 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1500 slot++) {
1501 int varying = prev_stage_vue_map.slot_to_varying[slot];
1502 if (varying != BRW_VARYING_SLOT_PAD &&
1503 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1504 BITFIELD64_BIT(varying))) {
1505 prog_data->urb_setup[varying] = slot - first_slot;
1506 }
1507 }
1508 urb_next = prev_stage_vue_map.num_slots - first_slot;
1509 }
1510 } else {
1511 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1512 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1513 /* Point size is packed into the header, not as a general attribute */
1514 if (i == VARYING_SLOT_PSIZ)
1515 continue;
1516
1517 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1518 /* The back color slot is skipped when the front color is
1519 * also written to. In addition, some slots can be
1520 * written in the vertex shader and not read in the
1521 * fragment shader. So the register number must always be
1522 * incremented, mapped or not.
1523 */
1524 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1525 prog_data->urb_setup[i] = urb_next;
1526 urb_next++;
1527 }
1528 }
1529
1530 /*
1531 * It's a FS only attribute, and we did interpolation for this attribute
1532 * in SF thread. So, count it here, too.
1533 *
1534 * See compile_sf_prog() for more info.
1535 */
1536 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1537 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1538 }
1539
1540 prog_data->num_varying_inputs = urb_next;
1541 }
1542
1543 void
1544 fs_visitor::assign_urb_setup()
1545 {
1546 assert(stage == MESA_SHADER_FRAGMENT);
1547 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1548
1549 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1550
1551 /* Offset all the urb_setup[] index by the actual position of the
1552 * setup regs, now that the location of the constants has been chosen.
1553 */
1554 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1555 if (inst->opcode == FS_OPCODE_LINTERP) {
1556 assert(inst->src[1].file == FIXED_GRF);
1557 inst->src[1].nr += urb_start;
1558 }
1559
1560 if (inst->opcode == FS_OPCODE_CINTERP) {
1561 assert(inst->src[0].file == FIXED_GRF);
1562 inst->src[0].nr += urb_start;
1563 }
1564 }
1565
1566 /* Each attribute is 4 setup channels, each of which is half a reg. */
1567 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1568 }
1569
1570 void
1571 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1572 {
1573 for (int i = 0; i < inst->sources; i++) {
1574 if (inst->src[i].file == ATTR) {
1575 int grf = payload.num_regs +
1576 prog_data->curb_read_length +
1577 inst->src[i].nr +
1578 inst->src[i].offset / REG_SIZE;
1579
1580 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1581 *
1582 * VertStride must be used to cross GRF register boundaries. This
1583 * rule implies that elements within a 'Width' cannot cross GRF
1584 * boundaries.
1585 *
1586 * So, for registers that are large enough, we have to split the exec
1587 * size in two and trust the compression state to sort it out.
1588 */
1589 unsigned total_size = inst->exec_size *
1590 inst->src[i].stride *
1591 type_sz(inst->src[i].type);
1592
1593 assert(total_size <= 2 * REG_SIZE);
1594 const unsigned exec_size =
1595 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1596
1597 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1598 struct brw_reg reg =
1599 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1600 inst->src[i].offset % REG_SIZE),
1601 exec_size * inst->src[i].stride,
1602 width, inst->src[i].stride);
1603 reg.abs = inst->src[i].abs;
1604 reg.negate = inst->src[i].negate;
1605
1606 inst->src[i] = reg;
1607 }
1608 }
1609 }
1610
1611 void
1612 fs_visitor::assign_vs_urb_setup()
1613 {
1614 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1615
1616 assert(stage == MESA_SHADER_VERTEX);
1617
1618 /* Each attribute is 4 regs. */
1619 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1620
1621 assert(vs_prog_data->base.urb_read_length <= 15);
1622
1623 /* Rewrite all ATTR file references to the hw grf that they land in. */
1624 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1625 convert_attr_sources_to_hw_regs(inst);
1626 }
1627 }
1628
1629 void
1630 fs_visitor::assign_tcs_single_patch_urb_setup()
1631 {
1632 assert(stage == MESA_SHADER_TESS_CTRL);
1633
1634 /* Rewrite all ATTR file references to HW_REGs. */
1635 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1636 convert_attr_sources_to_hw_regs(inst);
1637 }
1638 }
1639
1640 void
1641 fs_visitor::assign_tes_urb_setup()
1642 {
1643 assert(stage == MESA_SHADER_TESS_EVAL);
1644
1645 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1646
1647 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1648
1649 /* Rewrite all ATTR file references to HW_REGs. */
1650 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1651 convert_attr_sources_to_hw_regs(inst);
1652 }
1653 }
1654
1655 void
1656 fs_visitor::assign_gs_urb_setup()
1657 {
1658 assert(stage == MESA_SHADER_GEOMETRY);
1659
1660 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1661
1662 first_non_payload_grf +=
1663 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1664
1665 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1666 /* Rewrite all ATTR file references to GRFs. */
1667 convert_attr_sources_to_hw_regs(inst);
1668 }
1669 }
1670
1671
1672 /**
1673 * Split large virtual GRFs into separate components if we can.
1674 *
1675 * This is mostly duplicated with what brw_fs_vector_splitting does,
1676 * but that's really conservative because it's afraid of doing
1677 * splitting that doesn't result in real progress after the rest of
1678 * the optimization phases, which would cause infinite looping in
1679 * optimization. We can do it once here, safely. This also has the
1680 * opportunity to split interpolated values, or maybe even uniforms,
1681 * which we don't have at the IR level.
1682 *
1683 * We want to split, because virtual GRFs are what we register
1684 * allocate and spill (due to contiguousness requirements for some
1685 * instructions), and they're what we naturally generate in the
1686 * codegen process, but most virtual GRFs don't actually need to be
1687 * contiguous sets of GRFs. If we split, we'll end up with reduced
1688 * live intervals and better dead code elimination and coalescing.
1689 */
1690 void
1691 fs_visitor::split_virtual_grfs()
1692 {
1693 /* Compact the register file so we eliminate dead vgrfs. This
1694 * only defines split points for live registers, so if we have
1695 * too large dead registers they will hit assertions later.
1696 */
1697 compact_virtual_grfs();
1698
1699 int num_vars = this->alloc.count;
1700
1701 /* Count the total number of registers */
1702 int reg_count = 0;
1703 int vgrf_to_reg[num_vars];
1704 for (int i = 0; i < num_vars; i++) {
1705 vgrf_to_reg[i] = reg_count;
1706 reg_count += alloc.sizes[i];
1707 }
1708
1709 /* An array of "split points". For each register slot, this indicates
1710 * if this slot can be separated from the previous slot. Every time an
1711 * instruction uses multiple elements of a register (as a source or
1712 * destination), we mark the used slots as inseparable. Then we go
1713 * through and split the registers into the smallest pieces we can.
1714 */
1715 bool split_points[reg_count];
1716 memset(split_points, 0, sizeof(split_points));
1717
1718 /* Mark all used registers as fully splittable */
1719 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1720 if (inst->dst.file == VGRF) {
1721 int reg = vgrf_to_reg[inst->dst.nr];
1722 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1723 split_points[reg + j] = true;
1724 }
1725
1726 for (int i = 0; i < inst->sources; i++) {
1727 if (inst->src[i].file == VGRF) {
1728 int reg = vgrf_to_reg[inst->src[i].nr];
1729 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1730 split_points[reg + j] = true;
1731 }
1732 }
1733 }
1734
1735 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1736 if (inst->dst.file == VGRF) {
1737 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1738 for (unsigned j = 1; j < regs_written(inst); j++)
1739 split_points[reg + j] = false;
1740 }
1741 for (int i = 0; i < inst->sources; i++) {
1742 if (inst->src[i].file == VGRF) {
1743 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1744 for (unsigned j = 1; j < regs_read(inst, i); j++)
1745 split_points[reg + j] = false;
1746 }
1747 }
1748 }
1749
1750 int new_virtual_grf[reg_count];
1751 int new_reg_offset[reg_count];
1752
1753 int reg = 0;
1754 for (int i = 0; i < num_vars; i++) {
1755 /* The first one should always be 0 as a quick sanity check. */
1756 assert(split_points[reg] == false);
1757
1758 /* j = 0 case */
1759 new_reg_offset[reg] = 0;
1760 reg++;
1761 int offset = 1;
1762
1763 /* j > 0 case */
1764 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1765 /* If this is a split point, reset the offset to 0 and allocate a
1766 * new virtual GRF for the previous offset many registers
1767 */
1768 if (split_points[reg]) {
1769 assert(offset <= MAX_VGRF_SIZE);
1770 int grf = alloc.allocate(offset);
1771 for (int k = reg - offset; k < reg; k++)
1772 new_virtual_grf[k] = grf;
1773 offset = 0;
1774 }
1775 new_reg_offset[reg] = offset;
1776 offset++;
1777 reg++;
1778 }
1779
1780 /* The last one gets the original register number */
1781 assert(offset <= MAX_VGRF_SIZE);
1782 alloc.sizes[i] = offset;
1783 for (int k = reg - offset; k < reg; k++)
1784 new_virtual_grf[k] = i;
1785 }
1786 assert(reg == reg_count);
1787
1788 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1789 if (inst->dst.file == VGRF) {
1790 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1791 inst->dst.nr = new_virtual_grf[reg];
1792 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1793 inst->dst.offset % REG_SIZE;
1794 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1795 }
1796 for (int i = 0; i < inst->sources; i++) {
1797 if (inst->src[i].file == VGRF) {
1798 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1799 inst->src[i].nr = new_virtual_grf[reg];
1800 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1801 inst->src[i].offset % REG_SIZE;
1802 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1803 }
1804 }
1805 }
1806 invalidate_live_intervals();
1807 }
1808
1809 /**
1810 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1811 *
1812 * During code generation, we create tons of temporary variables, many of
1813 * which get immediately killed and are never used again. Yet, in later
1814 * optimization and analysis passes, such as compute_live_intervals, we need
1815 * to loop over all the virtual GRFs. Compacting them can save a lot of
1816 * overhead.
1817 */
1818 bool
1819 fs_visitor::compact_virtual_grfs()
1820 {
1821 bool progress = false;
1822 int remap_table[this->alloc.count];
1823 memset(remap_table, -1, sizeof(remap_table));
1824
1825 /* Mark which virtual GRFs are used. */
1826 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1827 if (inst->dst.file == VGRF)
1828 remap_table[inst->dst.nr] = 0;
1829
1830 for (int i = 0; i < inst->sources; i++) {
1831 if (inst->src[i].file == VGRF)
1832 remap_table[inst->src[i].nr] = 0;
1833 }
1834 }
1835
1836 /* Compact the GRF arrays. */
1837 int new_index = 0;
1838 for (unsigned i = 0; i < this->alloc.count; i++) {
1839 if (remap_table[i] == -1) {
1840 /* We just found an unused register. This means that we are
1841 * actually going to compact something.
1842 */
1843 progress = true;
1844 } else {
1845 remap_table[i] = new_index;
1846 alloc.sizes[new_index] = alloc.sizes[i];
1847 invalidate_live_intervals();
1848 ++new_index;
1849 }
1850 }
1851
1852 this->alloc.count = new_index;
1853
1854 /* Patch all the instructions to use the newly renumbered registers */
1855 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1856 if (inst->dst.file == VGRF)
1857 inst->dst.nr = remap_table[inst->dst.nr];
1858
1859 for (int i = 0; i < inst->sources; i++) {
1860 if (inst->src[i].file == VGRF)
1861 inst->src[i].nr = remap_table[inst->src[i].nr];
1862 }
1863 }
1864
1865 /* Patch all the references to delta_xy, since they're used in register
1866 * allocation. If they're unused, switch them to BAD_FILE so we don't
1867 * think some random VGRF is delta_xy.
1868 */
1869 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1870 if (delta_xy[i].file == VGRF) {
1871 if (remap_table[delta_xy[i].nr] != -1) {
1872 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1873 } else {
1874 delta_xy[i].file = BAD_FILE;
1875 }
1876 }
1877 }
1878
1879 return progress;
1880 }
1881
1882 static void
1883 set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1884 unsigned *max_chunk_bitsize,
1885 bool contiguous, unsigned bitsize,
1886 const unsigned target_bitsize,
1887 int *push_constant_loc, int *pull_constant_loc,
1888 unsigned *num_push_constants,
1889 unsigned *num_pull_constants,
1890 const unsigned max_push_components,
1891 const unsigned max_chunk_size,
1892 struct brw_stage_prog_data *stage_prog_data)
1893 {
1894 /* This is the first live uniform in the chunk */
1895 if (*chunk_start < 0)
1896 *chunk_start = uniform;
1897
1898 /* Keep track of the maximum bit size access in contiguous uniforms */
1899 *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1900
1901 /* If this element does not need to be contiguous with the next, we
1902 * split at this point and everything between chunk_start and u forms a
1903 * single chunk.
1904 */
1905 if (!contiguous) {
1906 /* If bitsize doesn't match the target one, skip it */
1907 if (*max_chunk_bitsize != target_bitsize) {
1908 /* FIXME: right now we only support 32 and 64-bit accesses */
1909 assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1910 *max_chunk_bitsize = 0;
1911 *chunk_start = -1;
1912 return;
1913 }
1914
1915 unsigned chunk_size = uniform - *chunk_start + 1;
1916
1917 /* Decide whether we should push or pull this parameter. In the
1918 * Vulkan driver, push constants are explicitly exposed via the API
1919 * so we push everything. In GL, we only push small arrays.
1920 */
1921 if (stage_prog_data->pull_param == NULL ||
1922 (*num_push_constants + chunk_size <= max_push_components &&
1923 chunk_size <= max_chunk_size)) {
1924 assert(*num_push_constants + chunk_size <= max_push_components);
1925 for (unsigned j = *chunk_start; j <= uniform; j++)
1926 push_constant_loc[j] = (*num_push_constants)++;
1927 } else {
1928 for (unsigned j = *chunk_start; j <= uniform; j++)
1929 pull_constant_loc[j] = (*num_pull_constants)++;
1930 }
1931
1932 *max_chunk_bitsize = 0;
1933 *chunk_start = -1;
1934 }
1935 }
1936
1937 /**
1938 * Assign UNIFORM file registers to either push constants or pull constants.
1939 *
1940 * We allow a fragment shader to have more than the specified minimum
1941 * maximum number of fragment shader uniform components (64). If
1942 * there are too many of these, they'd fill up all of register space.
1943 * So, this will push some of them out to the pull constant buffer and
1944 * update the program to load them.
1945 */
1946 void
1947 fs_visitor::assign_constant_locations()
1948 {
1949 /* Only the first compile gets to decide on locations. */
1950 if (dispatch_width != min_dispatch_width)
1951 return;
1952
1953 bool is_live[uniforms];
1954 memset(is_live, 0, sizeof(is_live));
1955 unsigned bitsize_access[uniforms];
1956 memset(bitsize_access, 0, sizeof(bitsize_access));
1957
1958 /* For each uniform slot, a value of true indicates that the given slot and
1959 * the next slot must remain contiguous. This is used to keep us from
1960 * splitting arrays apart.
1961 */
1962 bool contiguous[uniforms];
1963 memset(contiguous, 0, sizeof(contiguous));
1964
1965 int thread_local_id_index =
1966 (stage == MESA_SHADER_COMPUTE) ?
1967 brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1968
1969 /* First, we walk through the instructions and do two things:
1970 *
1971 * 1) Figure out which uniforms are live.
1972 *
1973 * 2) Mark any indirectly used ranges of registers as contiguous.
1974 *
1975 * Note that we don't move constant-indexed accesses to arrays. No
1976 * testing has been done of the performance impact of this choice.
1977 */
1978 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1979 for (int i = 0 ; i < inst->sources; i++) {
1980 if (inst->src[i].file != UNIFORM)
1981 continue;
1982
1983 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1984
1985 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1986 assert(inst->src[2].ud % 4 == 0);
1987 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1988 assert(last < uniforms);
1989
1990 for (unsigned j = constant_nr; j < last; j++) {
1991 is_live[j] = true;
1992 contiguous[j] = true;
1993 bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
1994 }
1995 is_live[last] = true;
1996 bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
1997 } else {
1998 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1999 int regs_read = inst->components_read(i) *
2000 type_sz(inst->src[i].type) / 4;
2001 for (int j = 0; j < regs_read; j++) {
2002 is_live[constant_nr + j] = true;
2003 bitsize_access[constant_nr + j] =
2004 MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
2005 }
2006 }
2007 }
2008 }
2009 }
2010
2011 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
2012 thread_local_id_index = -1;
2013
2014 /* Only allow 16 registers (128 uniform components) as push constants.
2015 *
2016 * Just demote the end of the list. We could probably do better
2017 * here, demoting things that are rarely used in the program first.
2018 *
2019 * If changing this value, note the limitation about total_regs in
2020 * brw_curbe.c.
2021 */
2022 unsigned int max_push_components = 16 * 8;
2023 if (thread_local_id_index >= 0)
2024 max_push_components--; /* Save a slot for the thread ID */
2025
2026 /* We push small arrays, but no bigger than 16 floats. This is big enough
2027 * for a vec4 but hopefully not large enough to push out other stuff. We
2028 * should probably use a better heuristic at some point.
2029 */
2030 const unsigned int max_chunk_size = 16;
2031
2032 unsigned int num_push_constants = 0;
2033 unsigned int num_pull_constants = 0;
2034
2035 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2036 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2037
2038 /* Default to -1 meaning no location */
2039 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2040 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2041
2042 int chunk_start = -1;
2043 unsigned max_chunk_bitsize = 0;
2044
2045 /* First push 64-bit uniforms to ensure they are properly aligned */
2046 const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2047 for (unsigned u = 0; u < uniforms; u++) {
2048 if (!is_live[u])
2049 continue;
2050
2051 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2052 contiguous[u], bitsize_access[u],
2053 uniform_64_bit_size,
2054 push_constant_loc, pull_constant_loc,
2055 &num_push_constants, &num_pull_constants,
2056 max_push_components, max_chunk_size,
2057 stage_prog_data);
2058
2059 }
2060
2061 /* Then push the rest of uniforms */
2062 const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2063 for (unsigned u = 0; u < uniforms; u++) {
2064 if (!is_live[u])
2065 continue;
2066
2067 /* Skip thread_local_id_index to put it in the last push register. */
2068 if (thread_local_id_index == (int)u)
2069 continue;
2070
2071 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2072 contiguous[u], bitsize_access[u],
2073 uniform_32_bit_size,
2074 push_constant_loc, pull_constant_loc,
2075 &num_push_constants, &num_pull_constants,
2076 max_push_components, max_chunk_size,
2077 stage_prog_data);
2078 }
2079
2080 /* Add the CS local thread ID uniform at the end of the push constants */
2081 if (thread_local_id_index >= 0)
2082 push_constant_loc[thread_local_id_index] = num_push_constants++;
2083
2084 /* As the uniforms are going to be reordered, take the data from a temporary
2085 * copy of the original param[].
2086 */
2087 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2088 stage_prog_data->nr_params);
2089 memcpy(param, stage_prog_data->param,
2090 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2091 stage_prog_data->nr_params = num_push_constants;
2092 stage_prog_data->nr_pull_params = num_pull_constants;
2093
2094 /* Now that we know how many regular uniforms we'll push, reduce the
2095 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2096 */
2097 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2098 for (int i = 0; i < 4; i++) {
2099 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2100
2101 if (push_length + range->length > 64)
2102 range->length = 64 - push_length;
2103
2104 push_length += range->length;
2105 }
2106 assert(push_length <= 64);
2107
2108 /* Up until now, the param[] array has been indexed by reg + offset
2109 * of UNIFORM registers. Move pull constants into pull_param[] and
2110 * condense param[] to only contain the uniforms we chose to push.
2111 *
2112 * NOTE: Because we are condensing the params[] array, we know that
2113 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2114 * having to make a copy.
2115 */
2116 int new_thread_local_id_index = -1;
2117 for (unsigned int i = 0; i < uniforms; i++) {
2118 const gl_constant_value *value = param[i];
2119
2120 if (pull_constant_loc[i] != -1) {
2121 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2122 } else if (push_constant_loc[i] != -1) {
2123 stage_prog_data->param[push_constant_loc[i]] = value;
2124 if (thread_local_id_index == (int)i)
2125 new_thread_local_id_index = push_constant_loc[i];
2126 }
2127 }
2128 ralloc_free(param);
2129
2130 if (stage == MESA_SHADER_COMPUTE)
2131 brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2132 new_thread_local_id_index;
2133 }
2134
2135 bool
2136 fs_visitor::get_pull_locs(const fs_reg &src,
2137 unsigned *out_surf_index,
2138 unsigned *out_pull_index)
2139 {
2140 assert(src.file == UNIFORM);
2141
2142 if (src.nr >= UBO_START) {
2143 const struct brw_ubo_range *range =
2144 &prog_data->ubo_ranges[src.nr - UBO_START];
2145
2146 /* If this access is in our (reduced) range, use the push data. */
2147 if (src.offset / 32 < range->length)
2148 return false;
2149
2150 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2151 *out_pull_index = (32 * range->start + src.offset) / 4;
2152 return true;
2153 }
2154
2155 const unsigned location = src.nr + src.offset / 4;
2156
2157 if (location < uniforms && pull_constant_loc[location] != -1) {
2158 /* A regular uniform push constant */
2159 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2160 *out_pull_index = pull_constant_loc[location];
2161 return true;
2162 }
2163
2164 return false;
2165 }
2166
2167 /**
2168 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2169 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2170 */
2171 void
2172 fs_visitor::lower_constant_loads()
2173 {
2174 unsigned index, pull_index;
2175
2176 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2177 /* Set up the annotation tracking for new generated instructions. */
2178 const fs_builder ibld(this, block, inst);
2179
2180 for (int i = 0; i < inst->sources; i++) {
2181 if (inst->src[i].file != UNIFORM)
2182 continue;
2183
2184 /* We'll handle this case later */
2185 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2186 continue;
2187
2188 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2189 continue;
2190
2191 assert(inst->src[i].stride == 0);
2192
2193 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2194 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2195 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2196 const unsigned base = pull_index * 4;
2197
2198 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2199 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2200
2201 /* Rewrite the instruction to use the temporary VGRF. */
2202 inst->src[i].file = VGRF;
2203 inst->src[i].nr = dst.nr;
2204 inst->src[i].offset = (base & (block_sz - 1)) +
2205 inst->src[i].offset % 4;
2206
2207 brw_mark_surface_used(prog_data, index);
2208 }
2209
2210 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2211 inst->src[0].file == UNIFORM) {
2212
2213 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2214 continue;
2215
2216 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2217 brw_imm_ud(index),
2218 inst->src[1],
2219 pull_index * 4);
2220 inst->remove(block);
2221
2222 brw_mark_surface_used(prog_data, index);
2223 }
2224 }
2225 invalidate_live_intervals();
2226 }
2227
2228 bool
2229 fs_visitor::opt_algebraic()
2230 {
2231 bool progress = false;
2232
2233 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2234 switch (inst->opcode) {
2235 case BRW_OPCODE_MOV:
2236 if (inst->src[0].file != IMM)
2237 break;
2238
2239 if (inst->saturate) {
2240 if (inst->dst.type != inst->src[0].type)
2241 assert(!"unimplemented: saturate mixed types");
2242
2243 if (brw_saturate_immediate(inst->dst.type,
2244 &inst->src[0].as_brw_reg())) {
2245 inst->saturate = false;
2246 progress = true;
2247 }
2248 }
2249 break;
2250
2251 case BRW_OPCODE_MUL:
2252 if (inst->src[1].file != IMM)
2253 continue;
2254
2255 /* a * 1.0 = a */
2256 if (inst->src[1].is_one()) {
2257 inst->opcode = BRW_OPCODE_MOV;
2258 inst->src[1] = reg_undef;
2259 progress = true;
2260 break;
2261 }
2262
2263 /* a * -1.0 = -a */
2264 if (inst->src[1].is_negative_one()) {
2265 inst->opcode = BRW_OPCODE_MOV;
2266 inst->src[0].negate = !inst->src[0].negate;
2267 inst->src[1] = reg_undef;
2268 progress = true;
2269 break;
2270 }
2271
2272 /* a * 0.0 = 0.0 */
2273 if (inst->src[1].is_zero()) {
2274 inst->opcode = BRW_OPCODE_MOV;
2275 inst->src[0] = inst->src[1];
2276 inst->src[1] = reg_undef;
2277 progress = true;
2278 break;
2279 }
2280
2281 if (inst->src[0].file == IMM) {
2282 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2283 inst->opcode = BRW_OPCODE_MOV;
2284 inst->src[0].f *= inst->src[1].f;
2285 inst->src[1] = reg_undef;
2286 progress = true;
2287 break;
2288 }
2289 break;
2290 case BRW_OPCODE_ADD:
2291 if (inst->src[1].file != IMM)
2292 continue;
2293
2294 /* a + 0.0 = a */
2295 if (inst->src[1].is_zero()) {
2296 inst->opcode = BRW_OPCODE_MOV;
2297 inst->src[1] = reg_undef;
2298 progress = true;
2299 break;
2300 }
2301
2302 if (inst->src[0].file == IMM) {
2303 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2304 inst->opcode = BRW_OPCODE_MOV;
2305 inst->src[0].f += inst->src[1].f;
2306 inst->src[1] = reg_undef;
2307 progress = true;
2308 break;
2309 }
2310 break;
2311 case BRW_OPCODE_OR:
2312 if (inst->src[0].equals(inst->src[1])) {
2313 inst->opcode = BRW_OPCODE_MOV;
2314 inst->src[1] = reg_undef;
2315 progress = true;
2316 break;
2317 }
2318 break;
2319 case BRW_OPCODE_LRP:
2320 if (inst->src[1].equals(inst->src[2])) {
2321 inst->opcode = BRW_OPCODE_MOV;
2322 inst->src[0] = inst->src[1];
2323 inst->src[1] = reg_undef;
2324 inst->src[2] = reg_undef;
2325 progress = true;
2326 break;
2327 }
2328 break;
2329 case BRW_OPCODE_CMP:
2330 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2331 inst->src[0].abs &&
2332 inst->src[0].negate &&
2333 inst->src[1].is_zero()) {
2334 inst->src[0].abs = false;
2335 inst->src[0].negate = false;
2336 inst->conditional_mod = BRW_CONDITIONAL_Z;
2337 progress = true;
2338 break;
2339 }
2340 break;
2341 case BRW_OPCODE_SEL:
2342 if (inst->src[0].equals(inst->src[1])) {
2343 inst->opcode = BRW_OPCODE_MOV;
2344 inst->src[1] = reg_undef;
2345 inst->predicate = BRW_PREDICATE_NONE;
2346 inst->predicate_inverse = false;
2347 progress = true;
2348 } else if (inst->saturate && inst->src[1].file == IMM) {
2349 switch (inst->conditional_mod) {
2350 case BRW_CONDITIONAL_LE:
2351 case BRW_CONDITIONAL_L:
2352 switch (inst->src[1].type) {
2353 case BRW_REGISTER_TYPE_F:
2354 if (inst->src[1].f >= 1.0f) {
2355 inst->opcode = BRW_OPCODE_MOV;
2356 inst->src[1] = reg_undef;
2357 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2358 progress = true;
2359 }
2360 break;
2361 default:
2362 break;
2363 }
2364 break;
2365 case BRW_CONDITIONAL_GE:
2366 case BRW_CONDITIONAL_G:
2367 switch (inst->src[1].type) {
2368 case BRW_REGISTER_TYPE_F:
2369 if (inst->src[1].f <= 0.0f) {
2370 inst->opcode = BRW_OPCODE_MOV;
2371 inst->src[1] = reg_undef;
2372 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2373 progress = true;
2374 }
2375 break;
2376 default:
2377 break;
2378 }
2379 default:
2380 break;
2381 }
2382 }
2383 break;
2384 case BRW_OPCODE_MAD:
2385 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2386 inst->opcode = BRW_OPCODE_MOV;
2387 inst->src[1] = reg_undef;
2388 inst->src[2] = reg_undef;
2389 progress = true;
2390 } else if (inst->src[0].is_zero()) {
2391 inst->opcode = BRW_OPCODE_MUL;
2392 inst->src[0] = inst->src[2];
2393 inst->src[2] = reg_undef;
2394 progress = true;
2395 } else if (inst->src[1].is_one()) {
2396 inst->opcode = BRW_OPCODE_ADD;
2397 inst->src[1] = inst->src[2];
2398 inst->src[2] = reg_undef;
2399 progress = true;
2400 } else if (inst->src[2].is_one()) {
2401 inst->opcode = BRW_OPCODE_ADD;
2402 inst->src[2] = reg_undef;
2403 progress = true;
2404 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2405 inst->opcode = BRW_OPCODE_ADD;
2406 inst->src[1].f *= inst->src[2].f;
2407 inst->src[2] = reg_undef;
2408 progress = true;
2409 }
2410 break;
2411 case SHADER_OPCODE_BROADCAST:
2412 if (is_uniform(inst->src[0])) {
2413 inst->opcode = BRW_OPCODE_MOV;
2414 inst->sources = 1;
2415 inst->force_writemask_all = true;
2416 progress = true;
2417 } else if (inst->src[1].file == IMM) {
2418 inst->opcode = BRW_OPCODE_MOV;
2419 inst->src[0] = component(inst->src[0],
2420 inst->src[1].ud);
2421 inst->sources = 1;
2422 inst->force_writemask_all = true;
2423 progress = true;
2424 }
2425 break;
2426
2427 default:
2428 break;
2429 }
2430
2431 /* Swap if src[0] is immediate. */
2432 if (progress && inst->is_commutative()) {
2433 if (inst->src[0].file == IMM) {
2434 fs_reg tmp = inst->src[1];
2435 inst->src[1] = inst->src[0];
2436 inst->src[0] = tmp;
2437 }
2438 }
2439 }
2440 return progress;
2441 }
2442
2443 /**
2444 * Optimize sample messages that have constant zero values for the trailing
2445 * texture coordinates. We can just reduce the message length for these
2446 * instructions instead of reserving a register for it. Trailing parameters
2447 * that aren't sent default to zero anyway. This will cause the dead code
2448 * eliminator to remove the MOV instruction that would otherwise be emitted to
2449 * set up the zero value.
2450 */
2451 bool
2452 fs_visitor::opt_zero_samples()
2453 {
2454 /* Gen4 infers the texturing opcode based on the message length so we can't
2455 * change it.
2456 */
2457 if (devinfo->gen < 5)
2458 return false;
2459
2460 bool progress = false;
2461
2462 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2463 if (!inst->is_tex())
2464 continue;
2465
2466 fs_inst *load_payload = (fs_inst *) inst->prev;
2467
2468 if (load_payload->is_head_sentinel() ||
2469 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2470 continue;
2471
2472 /* We don't want to remove the message header or the first parameter.
2473 * Removing the first parameter is not allowed, see the Haswell PRM
2474 * volume 7, page 149:
2475 *
2476 * "Parameter 0 is required except for the sampleinfo message, which
2477 * has no parameter 0"
2478 */
2479 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2480 load_payload->src[(inst->mlen - inst->header_size) /
2481 (inst->exec_size / 8) +
2482 inst->header_size - 1].is_zero()) {
2483 inst->mlen -= inst->exec_size / 8;
2484 progress = true;
2485 }
2486 }
2487
2488 if (progress)
2489 invalidate_live_intervals();
2490
2491 return progress;
2492 }
2493
2494 /**
2495 * Optimize sample messages which are followed by the final RT write.
2496 *
2497 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2498 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2499 * final texturing results copied to the framebuffer write payload and modify
2500 * them to write to the framebuffer directly.
2501 */
2502 bool
2503 fs_visitor::opt_sampler_eot()
2504 {
2505 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2506
2507 if (stage != MESA_SHADER_FRAGMENT)
2508 return false;
2509
2510 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2511 return false;
2512
2513 /* FINISHME: It should be possible to implement this optimization when there
2514 * are multiple drawbuffers.
2515 */
2516 if (key->nr_color_regions != 1)
2517 return false;
2518
2519 /* Requires emitting a bunch of saturating MOV instructions during logical
2520 * send lowering to clamp the color payload, which the sampler unit isn't
2521 * going to do for us.
2522 */
2523 if (key->clamp_fragment_color)
2524 return false;
2525
2526 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2527 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2528 fs_inst *fb_write = (fs_inst *)block->end();
2529 assert(fb_write->eot);
2530 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2531
2532 /* There wasn't one; nothing to do. */
2533 if (unlikely(fb_write->prev->is_head_sentinel()))
2534 return false;
2535
2536 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2537
2538 /* 3D Sampler » Messages » Message Format
2539 *
2540 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2541 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2542 */
2543 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2544 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2545 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2546 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2547 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2548 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2549 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2550 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2551 return false;
2552
2553 /* XXX - This shouldn't be necessary. */
2554 if (tex_inst->prev->is_head_sentinel())
2555 return false;
2556
2557 /* Check that the FB write sources are fully initialized by the single
2558 * texturing instruction.
2559 */
2560 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2561 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2562 if (!fb_write->src[i].equals(tex_inst->dst) ||
2563 fb_write->size_read(i) != tex_inst->size_written)
2564 return false;
2565 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2566 if (fb_write->src[i].file != BAD_FILE)
2567 return false;
2568 }
2569 }
2570
2571 assert(!tex_inst->eot); /* We can't get here twice */
2572 assert((tex_inst->offset & (0xff << 24)) == 0);
2573
2574 const fs_builder ibld(this, block, tex_inst);
2575
2576 tex_inst->offset |= fb_write->target << 24;
2577 tex_inst->eot = true;
2578 tex_inst->dst = ibld.null_reg_ud();
2579 tex_inst->size_written = 0;
2580 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2581
2582 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2583 * flag and submit a header together with the sampler message as required
2584 * by the hardware.
2585 */
2586 invalidate_live_intervals();
2587 return true;
2588 }
2589
2590 bool
2591 fs_visitor::opt_register_renaming()
2592 {
2593 bool progress = false;
2594 int depth = 0;
2595
2596 int remap[alloc.count];
2597 memset(remap, -1, sizeof(int) * alloc.count);
2598
2599 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2600 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2601 depth++;
2602 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2603 inst->opcode == BRW_OPCODE_WHILE) {
2604 depth--;
2605 }
2606
2607 /* Rewrite instruction sources. */
2608 for (int i = 0; i < inst->sources; i++) {
2609 if (inst->src[i].file == VGRF &&
2610 remap[inst->src[i].nr] != -1 &&
2611 remap[inst->src[i].nr] != inst->src[i].nr) {
2612 inst->src[i].nr = remap[inst->src[i].nr];
2613 progress = true;
2614 }
2615 }
2616
2617 const int dst = inst->dst.nr;
2618
2619 if (depth == 0 &&
2620 inst->dst.file == VGRF &&
2621 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2622 !inst->is_partial_write()) {
2623 if (remap[dst] == -1) {
2624 remap[dst] = dst;
2625 } else {
2626 remap[dst] = alloc.allocate(regs_written(inst));
2627 inst->dst.nr = remap[dst];
2628 progress = true;
2629 }
2630 } else if (inst->dst.file == VGRF &&
2631 remap[dst] != -1 &&
2632 remap[dst] != dst) {
2633 inst->dst.nr = remap[dst];
2634 progress = true;
2635 }
2636 }
2637
2638 if (progress) {
2639 invalidate_live_intervals();
2640
2641 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2642 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2643 delta_xy[i].nr = remap[delta_xy[i].nr];
2644 }
2645 }
2646 }
2647
2648 return progress;
2649 }
2650
2651 /**
2652 * Remove redundant or useless discard jumps.
2653 *
2654 * For example, we can eliminate jumps in the following sequence:
2655 *
2656 * discard-jump (redundant with the next jump)
2657 * discard-jump (useless; jumps to the next instruction)
2658 * placeholder-halt
2659 */
2660 bool
2661 fs_visitor::opt_redundant_discard_jumps()
2662 {
2663 bool progress = false;
2664
2665 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2666
2667 fs_inst *placeholder_halt = NULL;
2668 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2669 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2670 placeholder_halt = inst;
2671 break;
2672 }
2673 }
2674
2675 if (!placeholder_halt)
2676 return false;
2677
2678 /* Delete any HALTs immediately before the placeholder halt. */
2679 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2680 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2681 prev = (fs_inst *) placeholder_halt->prev) {
2682 prev->remove(last_bblock);
2683 progress = true;
2684 }
2685
2686 if (progress)
2687 invalidate_live_intervals();
2688
2689 return progress;
2690 }
2691
2692 /**
2693 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2694 * from \p r.offset which overlaps the region starting at \p s.offset and
2695 * spanning \p ds bytes.
2696 */
2697 static inline unsigned
2698 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2699 {
2700 const int rel_offset = reg_offset(s) - reg_offset(r);
2701 const int shift = rel_offset / REG_SIZE;
2702 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2703 assert(reg_space(r) == reg_space(s) &&
2704 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2705 return ((1 << n) - 1) << shift;
2706 }
2707
2708 bool
2709 fs_visitor::compute_to_mrf()
2710 {
2711 bool progress = false;
2712 int next_ip = 0;
2713
2714 /* No MRFs on Gen >= 7. */
2715 if (devinfo->gen >= 7)
2716 return false;
2717
2718 calculate_live_intervals();
2719
2720 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2721 int ip = next_ip;
2722 next_ip++;
2723
2724 if (inst->opcode != BRW_OPCODE_MOV ||
2725 inst->is_partial_write() ||
2726 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2727 inst->dst.type != inst->src[0].type ||
2728 inst->src[0].abs || inst->src[0].negate ||
2729 !inst->src[0].is_contiguous() ||
2730 inst->src[0].offset % REG_SIZE != 0)
2731 continue;
2732
2733 /* Can't compute-to-MRF this GRF if someone else was going to
2734 * read it later.
2735 */
2736 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2737 continue;
2738
2739 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2740 * things that computed the value of all GRFs of the source region. The
2741 * regs_left bitset keeps track of the registers we haven't yet found a
2742 * generating instruction for.
2743 */
2744 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2745
2746 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2747 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2748 inst->src[0], inst->size_read(0))) {
2749 /* Found the last thing to write our reg we want to turn
2750 * into a compute-to-MRF.
2751 */
2752
2753 /* If this one instruction didn't populate all the
2754 * channels, bail. We might be able to rewrite everything
2755 * that writes that reg, but it would require smarter
2756 * tracking.
2757 */
2758 if (scan_inst->is_partial_write())
2759 break;
2760
2761 /* Handling things not fully contained in the source of the copy
2762 * would need us to understand coalescing out more than one MOV at
2763 * a time.
2764 */
2765 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2766 inst->src[0], inst->size_read(0)))
2767 break;
2768
2769 /* SEND instructions can't have MRF as a destination. */
2770 if (scan_inst->mlen)
2771 break;
2772
2773 if (devinfo->gen == 6) {
2774 /* gen6 math instructions must have the destination be
2775 * GRF, so no compute-to-MRF for them.
2776 */
2777 if (scan_inst->is_math()) {
2778 break;
2779 }
2780 }
2781
2782 /* Clear the bits for any registers this instruction overwrites. */
2783 regs_left &= ~mask_relative_to(
2784 inst->src[0], scan_inst->dst, scan_inst->size_written);
2785 if (!regs_left)
2786 break;
2787 }
2788
2789 /* We don't handle control flow here. Most computation of
2790 * values that end up in MRFs are shortly before the MRF
2791 * write anyway.
2792 */
2793 if (block->start() == scan_inst)
2794 break;
2795
2796 /* You can't read from an MRF, so if someone else reads our
2797 * MRF's source GRF that we wanted to rewrite, that stops us.
2798 */
2799 bool interfered = false;
2800 for (int i = 0; i < scan_inst->sources; i++) {
2801 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2802 inst->src[0], inst->size_read(0))) {
2803 interfered = true;
2804 }
2805 }
2806 if (interfered)
2807 break;
2808
2809 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2810 inst->dst, inst->size_written)) {
2811 /* If somebody else writes our MRF here, we can't
2812 * compute-to-MRF before that.
2813 */
2814 break;
2815 }
2816
2817 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2818 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2819 inst->dst, inst->size_written)) {
2820 /* Found a SEND instruction, which means that there are
2821 * live values in MRFs from base_mrf to base_mrf +
2822 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2823 * above it.
2824 */
2825 break;
2826 }
2827 }
2828
2829 if (regs_left)
2830 continue;
2831
2832 /* Found all generating instructions of our MRF's source value, so it
2833 * should be safe to rewrite them to point to the MRF directly.
2834 */
2835 regs_left = (1 << regs_read(inst, 0)) - 1;
2836
2837 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2838 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2839 inst->src[0], inst->size_read(0))) {
2840 /* Clear the bits for any registers this instruction overwrites. */
2841 regs_left &= ~mask_relative_to(
2842 inst->src[0], scan_inst->dst, scan_inst->size_written);
2843
2844 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2845 reg_offset(inst->src[0]);
2846
2847 if (inst->dst.nr & BRW_MRF_COMPR4) {
2848 /* Apply the same address transformation done by the hardware
2849 * for COMPR4 MRF writes.
2850 */
2851 assert(rel_offset < 2 * REG_SIZE);
2852 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2853
2854 /* Clear the COMPR4 bit if the generating instruction is not
2855 * compressed.
2856 */
2857 if (scan_inst->size_written < 2 * REG_SIZE)
2858 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2859
2860 } else {
2861 /* Calculate the MRF number the result of this instruction is
2862 * ultimately written to.
2863 */
2864 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2865 }
2866
2867 scan_inst->dst.file = MRF;
2868 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2869 scan_inst->saturate |= inst->saturate;
2870 if (!regs_left)
2871 break;
2872 }
2873 }
2874
2875 assert(!regs_left);
2876 inst->remove(block);
2877 progress = true;
2878 }
2879
2880 if (progress)
2881 invalidate_live_intervals();
2882
2883 return progress;
2884 }
2885
2886 /**
2887 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2888 * flow. We could probably do better here with some form of divergence
2889 * analysis.
2890 */
2891 bool
2892 fs_visitor::eliminate_find_live_channel()
2893 {
2894 bool progress = false;
2895 unsigned depth = 0;
2896
2897 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2898 /* The optimization below assumes that channel zero is live on thread
2899 * dispatch, which may not be the case if the fixed function dispatches
2900 * threads sparsely.
2901 */
2902 return false;
2903 }
2904
2905 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2906 switch (inst->opcode) {
2907 case BRW_OPCODE_IF:
2908 case BRW_OPCODE_DO:
2909 depth++;
2910 break;
2911
2912 case BRW_OPCODE_ENDIF:
2913 case BRW_OPCODE_WHILE:
2914 depth--;
2915 break;
2916
2917 case FS_OPCODE_DISCARD_JUMP:
2918 /* This can potentially make control flow non-uniform until the end
2919 * of the program.
2920 */
2921 return progress;
2922
2923 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2924 if (depth == 0) {
2925 inst->opcode = BRW_OPCODE_MOV;
2926 inst->src[0] = brw_imm_ud(0u);
2927 inst->sources = 1;
2928 inst->force_writemask_all = true;
2929 progress = true;
2930 }
2931 break;
2932
2933 default:
2934 break;
2935 }
2936 }
2937
2938 return progress;
2939 }
2940
2941 /**
2942 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2943 * instructions to FS_OPCODE_REP_FB_WRITE.
2944 */
2945 void
2946 fs_visitor::emit_repclear_shader()
2947 {
2948 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2949 int base_mrf = 0;
2950 int color_mrf = base_mrf + 2;
2951 fs_inst *mov;
2952
2953 if (uniforms > 0) {
2954 mov = bld.exec_all().group(4, 0)
2955 .MOV(brw_message_reg(color_mrf),
2956 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2957 } else {
2958 struct brw_reg reg =
2959 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2960 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2961 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2962
2963 mov = bld.exec_all().group(4, 0)
2964 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2965 }
2966
2967 fs_inst *write;
2968 if (key->nr_color_regions == 1) {
2969 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2970 write->saturate = key->clamp_fragment_color;
2971 write->base_mrf = color_mrf;
2972 write->target = 0;
2973 write->header_size = 0;
2974 write->mlen = 1;
2975 } else {
2976 assume(key->nr_color_regions > 0);
2977 for (int i = 0; i < key->nr_color_regions; ++i) {
2978 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2979 write->saturate = key->clamp_fragment_color;
2980 write->base_mrf = base_mrf;
2981 write->target = i;
2982 write->header_size = 2;
2983 write->mlen = 3;
2984 }
2985 }
2986 write->eot = true;
2987
2988 calculate_cfg();
2989
2990 assign_constant_locations();
2991 assign_curb_setup();
2992
2993 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2994 if (uniforms > 0) {
2995 assert(mov->src[0].file == FIXED_GRF);
2996 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2997 }
2998 }
2999
3000 /**
3001 * Walks through basic blocks, looking for repeated MRF writes and
3002 * removing the later ones.
3003 */
3004 bool
3005 fs_visitor::remove_duplicate_mrf_writes()
3006 {
3007 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3008 bool progress = false;
3009
3010 /* Need to update the MRF tracking for compressed instructions. */
3011 if (dispatch_width >= 16)
3012 return false;
3013
3014 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3015
3016 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3017 if (inst->is_control_flow()) {
3018 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3019 }
3020
3021 if (inst->opcode == BRW_OPCODE_MOV &&
3022 inst->dst.file == MRF) {
3023 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3024 if (prev_inst && inst->equals(prev_inst)) {
3025 inst->remove(block);
3026 progress = true;
3027 continue;
3028 }
3029 }
3030
3031 /* Clear out the last-write records for MRFs that were overwritten. */
3032 if (inst->dst.file == MRF) {
3033 last_mrf_move[inst->dst.nr] = NULL;
3034 }
3035
3036 if (inst->mlen > 0 && inst->base_mrf != -1) {
3037 /* Found a SEND instruction, which will include two or fewer
3038 * implied MRF writes. We could do better here.
3039 */
3040 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3041 last_mrf_move[inst->base_mrf + i] = NULL;
3042 }
3043 }
3044
3045 /* Clear out any MRF move records whose sources got overwritten. */
3046 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3047 if (last_mrf_move[i] &&
3048 regions_overlap(inst->dst, inst->size_written,
3049 last_mrf_move[i]->src[0],
3050 last_mrf_move[i]->size_read(0))) {
3051 last_mrf_move[i] = NULL;
3052 }
3053 }
3054
3055 if (inst->opcode == BRW_OPCODE_MOV &&
3056 inst->dst.file == MRF &&
3057 inst->src[0].file != ARF &&
3058 !inst->is_partial_write()) {
3059 last_mrf_move[inst->dst.nr] = inst;
3060 }
3061 }
3062
3063 if (progress)
3064 invalidate_live_intervals();
3065
3066 return progress;
3067 }
3068
3069 static void
3070 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3071 {
3072 /* Clear the flag for registers that actually got read (as expected). */
3073 for (int i = 0; i < inst->sources; i++) {
3074 int grf;
3075 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3076 grf = inst->src[i].nr;
3077 } else {
3078 continue;
3079 }
3080
3081 if (grf >= first_grf &&
3082 grf < first_grf + grf_len) {
3083 deps[grf - first_grf] = false;
3084 if (inst->exec_size == 16)
3085 deps[grf - first_grf + 1] = false;
3086 }
3087 }
3088 }
3089
3090 /**
3091 * Implements this workaround for the original 965:
3092 *
3093 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3094 * check for post destination dependencies on this instruction, software
3095 * must ensure that there is no destination hazard for the case of ‘write
3096 * followed by a posted write’ shown in the following example.
3097 *
3098 * 1. mov r3 0
3099 * 2. send r3.xy <rest of send instruction>
3100 * 3. mov r2 r3
3101 *
3102 * Due to no post-destination dependency check on the ‘send’, the above
3103 * code sequence could have two instructions (1 and 2) in flight at the
3104 * same time that both consider ‘r3’ as the target of their final writes.
3105 */
3106 void
3107 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3108 fs_inst *inst)
3109 {
3110 int write_len = regs_written(inst);
3111 int first_write_grf = inst->dst.nr;
3112 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3113 assert(write_len < (int)sizeof(needs_dep) - 1);
3114
3115 memset(needs_dep, false, sizeof(needs_dep));
3116 memset(needs_dep, true, write_len);
3117
3118 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3119
3120 /* Walk backwards looking for writes to registers we're writing which
3121 * aren't read since being written. If we hit the start of the program,
3122 * we assume that there are no outstanding dependencies on entry to the
3123 * program.
3124 */
3125 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3126 /* If we hit control flow, assume that there *are* outstanding
3127 * dependencies, and force their cleanup before our instruction.
3128 */
3129 if (block->start() == scan_inst && block->num != 0) {
3130 for (int i = 0; i < write_len; i++) {
3131 if (needs_dep[i])
3132 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3133 first_write_grf + i);
3134 }
3135 return;
3136 }
3137
3138 /* We insert our reads as late as possible on the assumption that any
3139 * instruction but a MOV that might have left us an outstanding
3140 * dependency has more latency than a MOV.
3141 */
3142 if (scan_inst->dst.file == VGRF) {
3143 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3144 int reg = scan_inst->dst.nr + i;
3145
3146 if (reg >= first_write_grf &&
3147 reg < first_write_grf + write_len &&
3148 needs_dep[reg - first_write_grf]) {
3149 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3150 needs_dep[reg - first_write_grf] = false;
3151 if (scan_inst->exec_size == 16)
3152 needs_dep[reg - first_write_grf + 1] = false;
3153 }
3154 }
3155 }
3156
3157 /* Clear the flag for registers that actually got read (as expected). */
3158 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3159
3160 /* Continue the loop only if we haven't resolved all the dependencies */
3161 int i;
3162 for (i = 0; i < write_len; i++) {
3163 if (needs_dep[i])
3164 break;
3165 }
3166 if (i == write_len)
3167 return;
3168 }
3169 }
3170
3171 /**
3172 * Implements this workaround for the original 965:
3173 *
3174 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3175 * used as a destination register until after it has been sourced by an
3176 * instruction with a different destination register.
3177 */
3178 void
3179 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3180 {
3181 int write_len = regs_written(inst);
3182 int first_write_grf = inst->dst.nr;
3183 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3184 assert(write_len < (int)sizeof(needs_dep) - 1);
3185
3186 memset(needs_dep, false, sizeof(needs_dep));
3187 memset(needs_dep, true, write_len);
3188 /* Walk forwards looking for writes to registers we're writing which aren't
3189 * read before being written.
3190 */
3191 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3192 /* If we hit control flow, force resolve all remaining dependencies. */
3193 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3194 for (int i = 0; i < write_len; i++) {
3195 if (needs_dep[i])
3196 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3197 first_write_grf + i);
3198 }
3199 return;
3200 }
3201
3202 /* Clear the flag for registers that actually got read (as expected). */
3203 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3204
3205 /* We insert our reads as late as possible since they're reading the
3206 * result of a SEND, which has massive latency.
3207 */
3208 if (scan_inst->dst.file == VGRF &&
3209 scan_inst->dst.nr >= first_write_grf &&
3210 scan_inst->dst.nr < first_write_grf + write_len &&
3211 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3212 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3213 scan_inst->dst.nr);
3214 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3215 }
3216
3217 /* Continue the loop only if we haven't resolved all the dependencies */
3218 int i;
3219 for (i = 0; i < write_len; i++) {
3220 if (needs_dep[i])
3221 break;
3222 }
3223 if (i == write_len)
3224 return;
3225 }
3226 }
3227
3228 void
3229 fs_visitor::insert_gen4_send_dependency_workarounds()
3230 {
3231 if (devinfo->gen != 4 || devinfo->is_g4x)
3232 return;
3233
3234 bool progress = false;
3235
3236 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3237 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3238 insert_gen4_pre_send_dependency_workarounds(block, inst);
3239 insert_gen4_post_send_dependency_workarounds(block, inst);
3240 progress = true;
3241 }
3242 }
3243
3244 if (progress)
3245 invalidate_live_intervals();
3246 }
3247
3248 /**
3249 * Turns the generic expression-style uniform pull constant load instruction
3250 * into a hardware-specific series of instructions for loading a pull
3251 * constant.
3252 *
3253 * The expression style allows the CSE pass before this to optimize out
3254 * repeated loads from the same offset, and gives the pre-register-allocation
3255 * scheduling full flexibility, while the conversion to native instructions
3256 * allows the post-register-allocation scheduler the best information
3257 * possible.
3258 *
3259 * Note that execution masking for setting up pull constant loads is special:
3260 * the channels that need to be written are unrelated to the current execution
3261 * mask, since a later instruction will use one of the result channels as a
3262 * source operand for all 8 or 16 of its channels.
3263 */
3264 void
3265 fs_visitor::lower_uniform_pull_constant_loads()
3266 {
3267 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3268 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3269 continue;
3270
3271 if (devinfo->gen >= 7) {
3272 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3273 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3274
3275 ubld.group(8, 0).MOV(payload,
3276 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3277 ubld.group(1, 0).MOV(component(payload, 2),
3278 brw_imm_ud(inst->src[1].ud / 16));
3279
3280 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3281 inst->src[1] = payload;
3282 inst->header_size = 1;
3283 inst->mlen = 1;
3284
3285 invalidate_live_intervals();
3286 } else {
3287 /* Before register allocation, we didn't tell the scheduler about the
3288 * MRF we use. We know it's safe to use this MRF because nothing
3289 * else does except for register spill/unspill, which generates and
3290 * uses its MRF within a single IR instruction.
3291 */
3292 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3293 inst->mlen = 1;
3294 }
3295 }
3296 }
3297
3298 bool
3299 fs_visitor::lower_load_payload()
3300 {
3301 bool progress = false;
3302
3303 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3304 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3305 continue;
3306
3307 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3308 assert(inst->saturate == false);
3309 fs_reg dst = inst->dst;
3310
3311 /* Get rid of COMPR4. We'll add it back in if we need it */
3312 if (dst.file == MRF)
3313 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3314
3315 const fs_builder ibld(this, block, inst);
3316 const fs_builder hbld = ibld.exec_all().group(8, 0);
3317
3318 for (uint8_t i = 0; i < inst->header_size; i++) {
3319 if (inst->src[i].file != BAD_FILE) {
3320 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3321 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3322 hbld.MOV(mov_dst, mov_src);
3323 }
3324 dst = offset(dst, hbld, 1);
3325 }
3326
3327 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3328 inst->exec_size > 8) {
3329 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3330 * a straightforward copy. Instead, the result of the
3331 * LOAD_PAYLOAD is treated as interleaved and the first four
3332 * non-header sources are unpacked as:
3333 *
3334 * m + 0: r0
3335 * m + 1: g0
3336 * m + 2: b0
3337 * m + 3: a0
3338 * m + 4: r1
3339 * m + 5: g1
3340 * m + 6: b1
3341 * m + 7: a1
3342 *
3343 * This is used for gen <= 5 fb writes.
3344 */
3345 assert(inst->exec_size == 16);
3346 assert(inst->header_size + 4 <= inst->sources);
3347 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3348 if (inst->src[i].file != BAD_FILE) {
3349 if (devinfo->has_compr4) {
3350 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3351 compr4_dst.nr |= BRW_MRF_COMPR4;
3352 ibld.MOV(compr4_dst, inst->src[i]);
3353 } else {
3354 /* Platform doesn't have COMPR4. We have to fake it */
3355 fs_reg mov_dst = retype(dst, inst->src[i].type);
3356 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3357 mov_dst.nr += 4;
3358 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3359 }
3360 }
3361
3362 dst.nr++;
3363 }
3364
3365 /* The loop above only ever incremented us through the first set
3366 * of 4 registers. However, thanks to the magic of COMPR4, we
3367 * actually wrote to the first 8 registers, so we need to take
3368 * that into account now.
3369 */
3370 dst.nr += 4;
3371
3372 /* The COMPR4 code took care of the first 4 sources. We'll let
3373 * the regular path handle any remaining sources. Yes, we are
3374 * modifying the instruction but we're about to delete it so
3375 * this really doesn't hurt anything.
3376 */
3377 inst->header_size += 4;
3378 }
3379
3380 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3381 if (inst->src[i].file != BAD_FILE)
3382 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3383 dst = offset(dst, ibld, 1);
3384 }
3385
3386 inst->remove(block);
3387 progress = true;
3388 }
3389
3390 if (progress)
3391 invalidate_live_intervals();
3392
3393 return progress;
3394 }
3395
3396 bool
3397 fs_visitor::lower_integer_multiplication()
3398 {
3399 bool progress = false;
3400
3401 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3402 const fs_builder ibld(this, block, inst);
3403
3404 if (inst->opcode == BRW_OPCODE_MUL) {
3405 if (inst->dst.is_accumulator() ||
3406 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3407 inst->dst.type != BRW_REGISTER_TYPE_UD))
3408 continue;
3409
3410 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3411 * operation directly, but CHV/BXT cannot.
3412 */
3413 if (devinfo->gen >= 8 &&
3414 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3415 continue;
3416
3417 if (inst->src[1].file == IMM &&
3418 inst->src[1].ud < (1 << 16)) {
3419 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3420 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3421 * src1 are used.
3422 *
3423 * If multiplying by an immediate value that fits in 16-bits, do a
3424 * single MUL instruction with that value in the proper location.
3425 */
3426 if (devinfo->gen < 7) {
3427 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3428 inst->dst.type);
3429 ibld.MOV(imm, inst->src[1]);
3430 ibld.MUL(inst->dst, imm, inst->src[0]);
3431 } else {
3432 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3433 ibld.MUL(inst->dst, inst->src[0],
3434 ud ? brw_imm_uw(inst->src[1].ud)
3435 : brw_imm_w(inst->src[1].d));
3436 }
3437 } else {
3438 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3439 * do 32-bit integer multiplication in one instruction, but instead
3440 * must do a sequence (which actually calculates a 64-bit result):
3441 *
3442 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3443 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3444 * mov(8) g2<1>D acc0<8,8,1>D
3445 *
3446 * But on Gen > 6, the ability to use second accumulator register
3447 * (acc1) for non-float data types was removed, preventing a simple
3448 * implementation in SIMD16. A 16-channel result can be calculated by
3449 * executing the three instructions twice in SIMD8, once with quarter
3450 * control of 1Q for the first eight channels and again with 2Q for
3451 * the second eight channels.
3452 *
3453 * Which accumulator register is implicitly accessed (by AccWrEnable
3454 * for instance) is determined by the quarter control. Unfortunately
3455 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3456 * implicit accumulator access by an instruction with 2Q will access
3457 * acc1 regardless of whether the data type is usable in acc1.
3458 *
3459 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3460 * integer data types.
3461 *
3462 * Since we only want the low 32-bits of the result, we can do two
3463 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3464 * adjust the high result and add them (like the mach is doing):
3465 *
3466 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3467 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3468 * shl(8) g9<1>D g8<8,8,1>D 16D
3469 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3470 *
3471 * We avoid the shl instruction by realizing that we only want to add
3472 * the low 16-bits of the "high" result to the high 16-bits of the
3473 * "low" result and using proper regioning on the add:
3474 *
3475 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3476 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3477 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3478 *
3479 * Since it does not use the (single) accumulator register, we can
3480 * schedule multi-component multiplications much better.
3481 */
3482
3483 fs_reg orig_dst = inst->dst;
3484 if (orig_dst.is_null() || orig_dst.file == MRF) {
3485 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3486 inst->dst.type);
3487 }
3488 fs_reg low = inst->dst;
3489 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3490 inst->dst.type);
3491
3492 if (devinfo->gen >= 7) {
3493 if (inst->src[1].file == IMM) {
3494 ibld.MUL(low, inst->src[0],
3495 brw_imm_uw(inst->src[1].ud & 0xffff));
3496 ibld.MUL(high, inst->src[0],
3497 brw_imm_uw(inst->src[1].ud >> 16));
3498 } else {
3499 ibld.MUL(low, inst->src[0],
3500 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3501 ibld.MUL(high, inst->src[0],
3502 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3503 }
3504 } else {
3505 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3506 inst->src[1]);
3507 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3508 inst->src[1]);
3509 }
3510
3511 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3512 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3513 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3514
3515 if (inst->conditional_mod || orig_dst.file == MRF) {
3516 set_condmod(inst->conditional_mod,
3517 ibld.MOV(orig_dst, inst->dst));
3518 }
3519 }
3520
3521 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3522 /* Should have been lowered to 8-wide. */
3523 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3524 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3525 inst->dst.type);
3526 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3527 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3528
3529 if (devinfo->gen >= 8) {
3530 /* Until Gen8, integer multiplies read 32-bits from one source,
3531 * and 16-bits from the other, and relying on the MACH instruction
3532 * to generate the high bits of the result.
3533 *
3534 * On Gen8, the multiply instruction does a full 32x32-bit
3535 * multiply, but in order to do a 64-bit multiply we can simulate
3536 * the previous behavior and then use a MACH instruction.
3537 *
3538 * FINISHME: Don't use source modifiers on src1.
3539 */
3540 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3541 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3542 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3543 mul->src[1].stride *= 2;
3544
3545 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3546 inst->group > 0) {
3547 /* Among other things the quarter control bits influence which
3548 * accumulator register is used by the hardware for instructions
3549 * that access the accumulator implicitly (e.g. MACH). A
3550 * second-half instruction would normally map to acc1, which
3551 * doesn't exist on Gen7 and up (the hardware does emulate it for
3552 * floating-point instructions *only* by taking advantage of the
3553 * extra precision of acc0 not normally used for floating point
3554 * arithmetic).
3555 *
3556 * HSW and up are careful enough not to try to access an
3557 * accumulator register that doesn't exist, but on earlier Gen7
3558 * hardware we need to make sure that the quarter control bits are
3559 * zero to avoid non-deterministic behaviour and emit an extra MOV
3560 * to get the result masked correctly according to the current
3561 * channel enables.
3562 */
3563 mach->group = 0;
3564 mach->force_writemask_all = true;
3565 mach->dst = ibld.vgrf(inst->dst.type);
3566 ibld.MOV(inst->dst, mach->dst);
3567 }
3568 } else {
3569 continue;
3570 }
3571
3572 inst->remove(block);
3573 progress = true;
3574 }
3575
3576 if (progress)
3577 invalidate_live_intervals();
3578
3579 return progress;
3580 }
3581
3582 bool
3583 fs_visitor::lower_minmax()
3584 {
3585 assert(devinfo->gen < 6);
3586
3587 bool progress = false;
3588
3589 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3590 const fs_builder ibld(this, block, inst);
3591
3592 if (inst->opcode == BRW_OPCODE_SEL &&
3593 inst->predicate == BRW_PREDICATE_NONE) {
3594 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3595 * the original SEL.L/GE instruction
3596 */
3597 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3598 inst->conditional_mod);
3599 inst->predicate = BRW_PREDICATE_NORMAL;
3600 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3601
3602 progress = true;
3603 }
3604 }
3605
3606 if (progress)
3607 invalidate_live_intervals();
3608
3609 return progress;
3610 }
3611
3612 static void
3613 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3614 fs_reg *dst, fs_reg color, unsigned components)
3615 {
3616 if (key->clamp_fragment_color) {
3617 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3618 assert(color.type == BRW_REGISTER_TYPE_F);
3619
3620 for (unsigned i = 0; i < components; i++)
3621 set_saturate(true,
3622 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3623
3624 color = tmp;
3625 }
3626
3627 for (unsigned i = 0; i < components; i++)
3628 dst[i] = offset(color, bld, i);
3629 }
3630
3631 static void
3632 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3633 const struct brw_wm_prog_data *prog_data,
3634 const brw_wm_prog_key *key,
3635 const fs_visitor::thread_payload &payload)
3636 {
3637 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3638 const gen_device_info *devinfo = bld.shader->devinfo;
3639 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3640 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3641 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3642 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3643 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3644 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3645 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3646 const unsigned components =
3647 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3648
3649 /* We can potentially have a message length of up to 15, so we have to set
3650 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3651 */
3652 fs_reg sources[15];
3653 int header_size = 2, payload_header_size;
3654 unsigned length = 0;
3655
3656 /* From the Sandy Bridge PRM, volume 4, page 198:
3657 *
3658 * "Dispatched Pixel Enables. One bit per pixel indicating
3659 * which pixels were originally enabled when the thread was
3660 * dispatched. This field is only required for the end-of-
3661 * thread message and on all dual-source messages."
3662 */
3663 if (devinfo->gen >= 6 &&
3664 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3665 color1.file == BAD_FILE &&
3666 key->nr_color_regions == 1) {
3667 header_size = 0;
3668 }
3669
3670 if (header_size != 0) {
3671 assert(header_size == 2);
3672 /* Allocate 2 registers for a header */
3673 length += 2;
3674 }
3675
3676 if (payload.aa_dest_stencil_reg) {
3677 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3678 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3679 .MOV(sources[length],
3680 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3681 length++;
3682 }
3683
3684 if (sample_mask.file != BAD_FILE) {
3685 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3686 BRW_REGISTER_TYPE_UD);
3687
3688 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3689 * relevant. Since it's unsigned single words one vgrf is always
3690 * 16-wide, but only the lower or higher 8 channels will be used by the
3691 * hardware when doing a SIMD8 write depending on whether we have
3692 * selected the subspans for the first or second half respectively.
3693 */
3694 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3695 sample_mask.type = BRW_REGISTER_TYPE_UW;
3696 sample_mask.stride *= 2;
3697
3698 bld.exec_all().annotate("FB write oMask")
3699 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3700 inst->group),
3701 sample_mask);
3702 length++;
3703 }
3704
3705 payload_header_size = length;
3706
3707 if (src0_alpha.file != BAD_FILE) {
3708 /* FIXME: This is being passed at the wrong location in the payload and
3709 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3710 * It's supposed to be immediately before oMask but there seems to be no
3711 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3712 * requires header sources to form a contiguous segment at the beginning
3713 * of the message and src0_alpha has per-channel semantics.
3714 */
3715 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3716 length++;
3717 } else if (key->replicate_alpha && inst->target != 0) {
3718 /* Handle the case when fragment shader doesn't write to draw buffer
3719 * zero. No need to call setup_color_payload() for src0_alpha because
3720 * alpha value will be undefined.
3721 */
3722 length++;
3723 }
3724
3725 setup_color_payload(bld, key, &sources[length], color0, components);
3726 length += 4;
3727
3728 if (color1.file != BAD_FILE) {
3729 setup_color_payload(bld, key, &sources[length], color1, components);
3730 length += 4;
3731 }
3732
3733 if (src_depth.file != BAD_FILE) {
3734 sources[length] = src_depth;
3735 length++;
3736 }
3737
3738 if (dst_depth.file != BAD_FILE) {
3739 sources[length] = dst_depth;
3740 length++;
3741 }
3742
3743 if (src_stencil.file != BAD_FILE) {
3744 assert(devinfo->gen >= 9);
3745 assert(bld.dispatch_width() != 16);
3746
3747 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3748 * available on gen9+. As such it's impossible to have both enabled at the
3749 * same time and therefore length cannot overrun the array.
3750 */
3751 assert(length < 15);
3752
3753 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3754 bld.exec_all().annotate("FB write OS")
3755 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3756 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3757 length++;
3758 }
3759
3760 fs_inst *load;
3761 if (devinfo->gen >= 7) {
3762 /* Send from the GRF */
3763 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3764 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3765 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3766 load->dst = payload;
3767
3768 inst->src[0] = payload;
3769 inst->resize_sources(1);
3770 } else {
3771 /* Send from the MRF */
3772 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3773 sources, length, payload_header_size);
3774
3775 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3776 * will do this for us if we just give it a COMPR4 destination.
3777 */
3778 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3779 load->dst.nr |= BRW_MRF_COMPR4;
3780
3781 inst->resize_sources(0);
3782 inst->base_mrf = 1;
3783 }
3784
3785 inst->opcode = FS_OPCODE_FB_WRITE;
3786 inst->mlen = regs_written(load);
3787 inst->header_size = header_size;
3788 }
3789
3790 static void
3791 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3792 {
3793 const fs_builder &ubld = bld.exec_all();
3794 const unsigned length = 2;
3795 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3796
3797 ubld.group(16, 0)
3798 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3799
3800 inst->resize_sources(1);
3801 inst->src[0] = header;
3802 inst->opcode = FS_OPCODE_FB_READ;
3803 inst->mlen = length;
3804 inst->header_size = length;
3805 }
3806
3807 static void
3808 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3809 const fs_reg &coordinate,
3810 const fs_reg &shadow_c,
3811 const fs_reg &lod, const fs_reg &lod2,
3812 const fs_reg &surface,
3813 const fs_reg &sampler,
3814 unsigned coord_components,
3815 unsigned grad_components)
3816 {
3817 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3818 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3819 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3820 fs_reg msg_end = msg_begin;
3821
3822 /* g0 header. */
3823 msg_end = offset(msg_end, bld.group(8, 0), 1);
3824
3825 for (unsigned i = 0; i < coord_components; i++)
3826 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3827 offset(coordinate, bld, i));
3828
3829 msg_end = offset(msg_end, bld, coord_components);
3830
3831 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3832 * require all three components to be present and zero if they are unused.
3833 */
3834 if (coord_components > 0 &&
3835 (has_lod || shadow_c.file != BAD_FILE ||
3836 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3837 for (unsigned i = coord_components; i < 3; i++)
3838 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3839
3840 msg_end = offset(msg_end, bld, 3 - coord_components);
3841 }
3842
3843 if (op == SHADER_OPCODE_TXD) {
3844 /* TXD unsupported in SIMD16 mode. */
3845 assert(bld.dispatch_width() == 8);
3846
3847 /* the slots for u and v are always present, but r is optional */
3848 if (coord_components < 2)
3849 msg_end = offset(msg_end, bld, 2 - coord_components);
3850
3851 /* P = u, v, r
3852 * dPdx = dudx, dvdx, drdx
3853 * dPdy = dudy, dvdy, drdy
3854 *
3855 * 1-arg: Does not exist.
3856 *
3857 * 2-arg: dudx dvdx dudy dvdy
3858 * dPdx.x dPdx.y dPdy.x dPdy.y
3859 * m4 m5 m6 m7
3860 *
3861 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3862 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3863 * m5 m6 m7 m8 m9 m10
3864 */
3865 for (unsigned i = 0; i < grad_components; i++)
3866 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3867
3868 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3869
3870 for (unsigned i = 0; i < grad_components; i++)
3871 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3872
3873 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3874 }
3875
3876 if (has_lod) {
3877 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3878 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3879 */
3880 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3881 bld.dispatch_width() == 16);
3882
3883 const brw_reg_type type =
3884 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3885 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3886 bld.MOV(retype(msg_end, type), lod);
3887 msg_end = offset(msg_end, bld, 1);
3888 }
3889
3890 if (shadow_c.file != BAD_FILE) {
3891 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3892 /* There's no plain shadow compare message, so we use shadow
3893 * compare with a bias of 0.0.
3894 */
3895 bld.MOV(msg_end, brw_imm_f(0.0f));
3896 msg_end = offset(msg_end, bld, 1);
3897 }
3898
3899 bld.MOV(msg_end, shadow_c);
3900 msg_end = offset(msg_end, bld, 1);
3901 }
3902
3903 inst->opcode = op;
3904 inst->src[0] = reg_undef;
3905 inst->src[1] = surface;
3906 inst->src[2] = sampler;
3907 inst->resize_sources(3);
3908 inst->base_mrf = msg_begin.nr;
3909 inst->mlen = msg_end.nr - msg_begin.nr;
3910 inst->header_size = 1;
3911 }
3912
3913 static void
3914 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3915 const fs_reg &coordinate,
3916 const fs_reg &shadow_c,
3917 const fs_reg &lod, const fs_reg &lod2,
3918 const fs_reg &sample_index,
3919 const fs_reg &surface,
3920 const fs_reg &sampler,
3921 unsigned coord_components,
3922 unsigned grad_components)
3923 {
3924 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3925 fs_reg msg_coords = message;
3926 unsigned header_size = 0;
3927
3928 if (inst->offset != 0) {
3929 /* The offsets set up by the visitor are in the m1 header, so we can't
3930 * go headerless.
3931 */
3932 header_size = 1;
3933 message.nr--;
3934 }
3935
3936 for (unsigned i = 0; i < coord_components; i++)
3937 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3938 offset(coordinate, bld, i));
3939
3940 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3941 fs_reg msg_lod = offset(msg_coords, bld, 4);
3942
3943 if (shadow_c.file != BAD_FILE) {
3944 fs_reg msg_shadow = msg_lod;
3945 bld.MOV(msg_shadow, shadow_c);
3946 msg_lod = offset(msg_shadow, bld, 1);
3947 msg_end = msg_lod;
3948 }
3949
3950 switch (op) {
3951 case SHADER_OPCODE_TXL:
3952 case FS_OPCODE_TXB:
3953 bld.MOV(msg_lod, lod);
3954 msg_end = offset(msg_lod, bld, 1);
3955 break;
3956 case SHADER_OPCODE_TXD:
3957 /**
3958 * P = u, v, r
3959 * dPdx = dudx, dvdx, drdx
3960 * dPdy = dudy, dvdy, drdy
3961 *
3962 * Load up these values:
3963 * - dudx dudy dvdx dvdy drdx drdy
3964 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3965 */
3966 msg_end = msg_lod;
3967 for (unsigned i = 0; i < grad_components; i++) {
3968 bld.MOV(msg_end, offset(lod, bld, i));
3969 msg_end = offset(msg_end, bld, 1);
3970
3971 bld.MOV(msg_end, offset(lod2, bld, i));
3972 msg_end = offset(msg_end, bld, 1);
3973 }
3974 break;
3975 case SHADER_OPCODE_TXS:
3976 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3977 bld.MOV(msg_lod, lod);
3978 msg_end = offset(msg_lod, bld, 1);
3979 break;
3980 case SHADER_OPCODE_TXF:
3981 msg_lod = offset(msg_coords, bld, 3);
3982 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3983 msg_end = offset(msg_lod, bld, 1);
3984 break;
3985 case SHADER_OPCODE_TXF_CMS:
3986 msg_lod = offset(msg_coords, bld, 3);
3987 /* lod */
3988 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3989 /* sample index */
3990 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3991 msg_end = offset(msg_lod, bld, 2);
3992 break;
3993 default:
3994 break;
3995 }
3996
3997 inst->opcode = op;
3998 inst->src[0] = reg_undef;
3999 inst->src[1] = surface;
4000 inst->src[2] = sampler;
4001 inst->resize_sources(3);
4002 inst->base_mrf = message.nr;
4003 inst->mlen = msg_end.nr - message.nr;
4004 inst->header_size = header_size;
4005
4006 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4007 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4008 }
4009
4010 static bool
4011 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4012 {
4013 if (devinfo->gen < 8 && !devinfo->is_haswell)
4014 return false;
4015
4016 return sampler.file != IMM || sampler.ud >= 16;
4017 }
4018
4019 static void
4020 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4021 const fs_reg &coordinate,
4022 const fs_reg &shadow_c,
4023 fs_reg lod, const fs_reg &lod2,
4024 const fs_reg &sample_index,
4025 const fs_reg &mcs,
4026 const fs_reg &surface,
4027 const fs_reg &sampler,
4028 const fs_reg &tg4_offset,
4029 unsigned coord_components,
4030 unsigned grad_components)
4031 {
4032 const gen_device_info *devinfo = bld.shader->devinfo;
4033 unsigned reg_width = bld.dispatch_width() / 8;
4034 unsigned header_size = 0, length = 0;
4035 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4036 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4037 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4038
4039 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4040 inst->offset != 0 || inst->eot ||
4041 op == SHADER_OPCODE_SAMPLEINFO ||
4042 is_high_sampler(devinfo, sampler)) {
4043 /* For general texture offsets (no txf workaround), we need a header to
4044 * put them in. Note that we're only reserving space for it in the
4045 * message payload as it will be initialized implicitly by the
4046 * generator.
4047 *
4048 * TG4 needs to place its channel select in the header, for interaction
4049 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4050 * larger sampler numbers we need to offset the Sampler State Pointer in
4051 * the header.
4052 */
4053 header_size = 1;
4054 sources[0] = fs_reg();
4055 length++;
4056
4057 /* If we're requesting fewer than four channels worth of response,
4058 * and we have an explicit header, we need to set up the sampler
4059 * writemask. It's reversed from normal: 1 means "don't write".
4060 */
4061 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4062 assert(regs_written(inst) % reg_width == 0);
4063 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4064 inst->offset |= mask << 12;
4065 }
4066 }
4067
4068 if (shadow_c.file != BAD_FILE) {
4069 bld.MOV(sources[length], shadow_c);
4070 length++;
4071 }
4072
4073 bool coordinate_done = false;
4074
4075 /* Set up the LOD info */
4076 switch (op) {
4077 case FS_OPCODE_TXB:
4078 case SHADER_OPCODE_TXL:
4079 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4080 op = SHADER_OPCODE_TXL_LZ;
4081 break;
4082 }
4083 bld.MOV(sources[length], lod);
4084 length++;
4085 break;
4086 case SHADER_OPCODE_TXD:
4087 /* TXD should have been lowered in SIMD16 mode. */
4088 assert(bld.dispatch_width() == 8);
4089
4090 /* Load dPdx and the coordinate together:
4091 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4092 */
4093 for (unsigned i = 0; i < coord_components; i++) {
4094 bld.MOV(sources[length++], offset(coordinate, bld, i));
4095
4096 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4097 * only derivatives for (u, v, r).
4098 */
4099 if (i < grad_components) {
4100 bld.MOV(sources[length++], offset(lod, bld, i));
4101 bld.MOV(sources[length++], offset(lod2, bld, i));
4102 }
4103 }
4104
4105 coordinate_done = true;
4106 break;
4107 case SHADER_OPCODE_TXS:
4108 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4109 length++;
4110 break;
4111 case SHADER_OPCODE_TXF:
4112 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4113 * On Gen9 they are u, v, lod, r
4114 */
4115 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4116
4117 if (devinfo->gen >= 9) {
4118 if (coord_components >= 2) {
4119 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4120 offset(coordinate, bld, 1));
4121 } else {
4122 sources[length] = brw_imm_d(0);
4123 }
4124 length++;
4125 }
4126
4127 if (devinfo->gen >= 9 && lod.is_zero()) {
4128 op = SHADER_OPCODE_TXF_LZ;
4129 } else {
4130 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4131 length++;
4132 }
4133
4134 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4135 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4136 offset(coordinate, bld, i));
4137
4138 coordinate_done = true;
4139 break;
4140
4141 case SHADER_OPCODE_TXF_CMS:
4142 case SHADER_OPCODE_TXF_CMS_W:
4143 case SHADER_OPCODE_TXF_UMS:
4144 case SHADER_OPCODE_TXF_MCS:
4145 if (op == SHADER_OPCODE_TXF_UMS ||
4146 op == SHADER_OPCODE_TXF_CMS ||
4147 op == SHADER_OPCODE_TXF_CMS_W) {
4148 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4149 length++;
4150 }
4151
4152 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4153 /* Data from the multisample control surface. */
4154 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4155 length++;
4156
4157 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4158 * the MCS data.
4159 */
4160 if (op == SHADER_OPCODE_TXF_CMS_W) {
4161 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4162 mcs.file == IMM ?
4163 mcs :
4164 offset(mcs, bld, 1));
4165 length++;
4166 }
4167 }
4168
4169 /* There is no offsetting for this message; just copy in the integer
4170 * texture coordinates.
4171 */
4172 for (unsigned i = 0; i < coord_components; i++)
4173 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4174 offset(coordinate, bld, i));
4175
4176 coordinate_done = true;
4177 break;
4178 case SHADER_OPCODE_TG4_OFFSET:
4179 /* More crazy intermixing */
4180 for (unsigned i = 0; i < 2; i++) /* u, v */
4181 bld.MOV(sources[length++], offset(coordinate, bld, i));
4182
4183 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4184 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4185 offset(tg4_offset, bld, i));
4186
4187 if (coord_components == 3) /* r if present */
4188 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4189
4190 coordinate_done = true;
4191 break;
4192 default:
4193 break;
4194 }
4195
4196 /* Set up the coordinate (except for cases where it was done above) */
4197 if (!coordinate_done) {
4198 for (unsigned i = 0; i < coord_components; i++)
4199 bld.MOV(sources[length++], offset(coordinate, bld, i));
4200 }
4201
4202 int mlen;
4203 if (reg_width == 2)
4204 mlen = length * reg_width - header_size;
4205 else
4206 mlen = length * reg_width;
4207
4208 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4209 BRW_REGISTER_TYPE_F);
4210 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4211
4212 /* Generate the SEND. */
4213 inst->opcode = op;
4214 inst->src[0] = src_payload;
4215 inst->src[1] = surface;
4216 inst->src[2] = sampler;
4217 inst->resize_sources(3);
4218 inst->mlen = mlen;
4219 inst->header_size = header_size;
4220
4221 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4222 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4223 }
4224
4225 static void
4226 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4227 {
4228 const gen_device_info *devinfo = bld.shader->devinfo;
4229 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4230 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4231 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4232 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4233 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4234 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4235 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4236 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4237 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4238 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4239 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4240 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4241 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4242
4243 if (devinfo->gen >= 7) {
4244 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4245 shadow_c, lod, lod2, sample_index,
4246 mcs, surface, sampler, tg4_offset,
4247 coord_components, grad_components);
4248 } else if (devinfo->gen >= 5) {
4249 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4250 shadow_c, lod, lod2, sample_index,
4251 surface, sampler,
4252 coord_components, grad_components);
4253 } else {
4254 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4255 shadow_c, lod, lod2,
4256 surface, sampler,
4257 coord_components, grad_components);
4258 }
4259 }
4260
4261 /**
4262 * Initialize the header present in some typed and untyped surface
4263 * messages.
4264 */
4265 static fs_reg
4266 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4267 {
4268 fs_builder ubld = bld.exec_all().group(8, 0);
4269 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4270 ubld.MOV(dst, brw_imm_d(0));
4271 ubld.MOV(component(dst, 7), sample_mask);
4272 return dst;
4273 }
4274
4275 static void
4276 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4277 const fs_reg &sample_mask)
4278 {
4279 /* Get the logical send arguments. */
4280 const fs_reg &addr = inst->src[0];
4281 const fs_reg &src = inst->src[1];
4282 const fs_reg &surface = inst->src[2];
4283 const UNUSED fs_reg &dims = inst->src[3];
4284 const fs_reg &arg = inst->src[4];
4285
4286 /* Calculate the total number of components of the payload. */
4287 const unsigned addr_sz = inst->components_read(0);
4288 const unsigned src_sz = inst->components_read(1);
4289 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4290 const unsigned sz = header_sz + addr_sz + src_sz;
4291
4292 /* Allocate space for the payload. */
4293 fs_reg *const components = new fs_reg[sz];
4294 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4295 unsigned n = 0;
4296
4297 /* Construct the payload. */
4298 if (header_sz)
4299 components[n++] = emit_surface_header(bld, sample_mask);
4300
4301 for (unsigned i = 0; i < addr_sz; i++)
4302 components[n++] = offset(addr, bld, i);
4303
4304 for (unsigned i = 0; i < src_sz; i++)
4305 components[n++] = offset(src, bld, i);
4306
4307 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4308
4309 /* Update the original instruction. */
4310 inst->opcode = op;
4311 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4312 inst->header_size = header_sz;
4313
4314 inst->src[0] = payload;
4315 inst->src[1] = surface;
4316 inst->src[2] = arg;
4317 inst->resize_sources(3);
4318
4319 delete[] components;
4320 }
4321
4322 static void
4323 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4324 {
4325 const gen_device_info *devinfo = bld.shader->devinfo;
4326
4327 if (devinfo->gen >= 7) {
4328 /* We are switching the instruction from an ALU-like instruction to a
4329 * send-from-grf instruction. Since sends can't handle strides or
4330 * source modifiers, we have to make a copy of the offset source.
4331 */
4332 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4333 bld.MOV(tmp, inst->src[1]);
4334 inst->src[1] = tmp;
4335
4336 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4337
4338 } else {
4339 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4340 BRW_REGISTER_TYPE_UD);
4341
4342 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4343
4344 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4345 inst->resize_sources(1);
4346 inst->base_mrf = payload.nr;
4347 inst->header_size = 1;
4348 inst->mlen = 1 + inst->exec_size / 8;
4349 }
4350 }
4351
4352 static void
4353 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4354 {
4355 assert(bld.shader->devinfo->gen < 6);
4356
4357 inst->base_mrf = 2;
4358 inst->mlen = inst->sources * inst->exec_size / 8;
4359
4360 if (inst->sources > 1) {
4361 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4362 * "Message Payload":
4363 *
4364 * "Operand0[7]. For the INT DIV functions, this operand is the
4365 * denominator."
4366 * ...
4367 * "Operand1[7]. For the INT DIV functions, this operand is the
4368 * numerator."
4369 */
4370 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4371 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4372 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4373
4374 inst->resize_sources(1);
4375 inst->src[0] = src0;
4376
4377 assert(inst->exec_size == 8);
4378 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4379 }
4380 }
4381
4382 bool
4383 fs_visitor::lower_logical_sends()
4384 {
4385 bool progress = false;
4386
4387 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4388 const fs_builder ibld(this, block, inst);
4389
4390 switch (inst->opcode) {
4391 case FS_OPCODE_FB_WRITE_LOGICAL:
4392 assert(stage == MESA_SHADER_FRAGMENT);
4393 lower_fb_write_logical_send(ibld, inst,
4394 brw_wm_prog_data(prog_data),
4395 (const brw_wm_prog_key *)key,
4396 payload);
4397 break;
4398
4399 case FS_OPCODE_FB_READ_LOGICAL:
4400 lower_fb_read_logical_send(ibld, inst);
4401 break;
4402
4403 case SHADER_OPCODE_TEX_LOGICAL:
4404 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4405 break;
4406
4407 case SHADER_OPCODE_TXD_LOGICAL:
4408 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4409 break;
4410
4411 case SHADER_OPCODE_TXF_LOGICAL:
4412 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4413 break;
4414
4415 case SHADER_OPCODE_TXL_LOGICAL:
4416 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4417 break;
4418
4419 case SHADER_OPCODE_TXS_LOGICAL:
4420 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4421 break;
4422
4423 case FS_OPCODE_TXB_LOGICAL:
4424 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4425 break;
4426
4427 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4428 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4429 break;
4430
4431 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4432 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4433 break;
4434
4435 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4436 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4437 break;
4438
4439 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4440 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4441 break;
4442
4443 case SHADER_OPCODE_LOD_LOGICAL:
4444 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4445 break;
4446
4447 case SHADER_OPCODE_TG4_LOGICAL:
4448 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4449 break;
4450
4451 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4452 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4453 break;
4454
4455 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4456 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4457 break;
4458
4459 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4460 lower_surface_logical_send(ibld, inst,
4461 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4462 fs_reg());
4463 break;
4464
4465 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4466 lower_surface_logical_send(ibld, inst,
4467 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4468 ibld.sample_mask_reg());
4469 break;
4470
4471 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4472 lower_surface_logical_send(ibld, inst,
4473 SHADER_OPCODE_UNTYPED_ATOMIC,
4474 ibld.sample_mask_reg());
4475 break;
4476
4477 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4478 lower_surface_logical_send(ibld, inst,
4479 SHADER_OPCODE_TYPED_SURFACE_READ,
4480 brw_imm_d(0xffff));
4481 break;
4482
4483 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4484 lower_surface_logical_send(ibld, inst,
4485 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4486 ibld.sample_mask_reg());
4487 break;
4488
4489 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4490 lower_surface_logical_send(ibld, inst,
4491 SHADER_OPCODE_TYPED_ATOMIC,
4492 ibld.sample_mask_reg());
4493 break;
4494
4495 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4496 lower_varying_pull_constant_logical_send(ibld, inst);
4497 break;
4498
4499 case SHADER_OPCODE_RCP:
4500 case SHADER_OPCODE_RSQ:
4501 case SHADER_OPCODE_SQRT:
4502 case SHADER_OPCODE_EXP2:
4503 case SHADER_OPCODE_LOG2:
4504 case SHADER_OPCODE_SIN:
4505 case SHADER_OPCODE_COS:
4506 case SHADER_OPCODE_POW:
4507 case SHADER_OPCODE_INT_QUOTIENT:
4508 case SHADER_OPCODE_INT_REMAINDER:
4509 /* The math opcodes are overloaded for the send-like and
4510 * expression-like instructions which seems kind of icky. Gen6+ has
4511 * a native (but rather quirky) MATH instruction so we don't need to
4512 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4513 * logical instructions (which we can easily recognize because they
4514 * have mlen = 0) into send-like virtual instructions.
4515 */
4516 if (devinfo->gen < 6 && inst->mlen == 0) {
4517 lower_math_logical_send(ibld, inst);
4518 break;
4519
4520 } else {
4521 continue;
4522 }
4523
4524 default:
4525 continue;
4526 }
4527
4528 progress = true;
4529 }
4530
4531 if (progress)
4532 invalidate_live_intervals();
4533
4534 return progress;
4535 }
4536
4537 /**
4538 * Get the closest allowed SIMD width for instruction \p inst accounting for
4539 * some common regioning and execution control restrictions that apply to FPU
4540 * instructions. These restrictions don't necessarily have any relevance to
4541 * instructions not executed by the FPU pipeline like extended math, control
4542 * flow or send message instructions.
4543 *
4544 * For virtual opcodes it's really up to the instruction -- In some cases
4545 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4546 * instructions) it may simplify virtual instruction lowering if we can
4547 * enforce FPU-like regioning restrictions already on the virtual instruction,
4548 * in other cases (e.g. virtual send-like instructions) this may be
4549 * excessively restrictive.
4550 */
4551 static unsigned
4552 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4553 const fs_inst *inst)
4554 {
4555 /* Maximum execution size representable in the instruction controls. */
4556 unsigned max_width = MIN2(32, inst->exec_size);
4557
4558 /* According to the PRMs:
4559 * "A. In Direct Addressing mode, a source cannot span more than 2
4560 * adjacent GRF registers.
4561 * B. A destination cannot span more than 2 adjacent GRF registers."
4562 *
4563 * Look for the source or destination with the largest register region
4564 * which is the one that is going to limit the overall execution size of
4565 * the instruction due to this rule.
4566 */
4567 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4568
4569 for (unsigned i = 0; i < inst->sources; i++)
4570 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4571
4572 /* Calculate the maximum execution size of the instruction based on the
4573 * factor by which it goes over the hardware limit of 2 GRFs.
4574 */
4575 if (reg_count > 2)
4576 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4577
4578 /* According to the IVB PRMs:
4579 * "When destination spans two registers, the source MUST span two
4580 * registers. The exception to the above rule:
4581 *
4582 * - When source is scalar, the source registers are not incremented.
4583 * - When source is packed integer Word and destination is packed
4584 * integer DWord, the source register is not incremented but the
4585 * source sub register is incremented."
4586 *
4587 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4588 * restrictions. The code below intentionally doesn't check whether the
4589 * destination type is integer because empirically the hardware doesn't
4590 * seem to care what the actual type is as long as it's dword-aligned.
4591 */
4592 if (devinfo->gen < 8) {
4593 for (unsigned i = 0; i < inst->sources; i++) {
4594 /* IVB implements DF scalars as <0;2,1> regions. */
4595 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4596 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4597 const bool is_packed_word_exception =
4598 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4599 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4600
4601 if (inst->size_written > REG_SIZE &&
4602 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4603 !is_scalar_exception && !is_packed_word_exception) {
4604 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4605 max_width = MIN2(max_width, inst->exec_size / reg_count);
4606 }
4607 }
4608 }
4609
4610 /* From the IVB PRMs:
4611 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4612 * are applied for both halves of the SIMD32 instruction. If different
4613 * execution mask channels are required, split the instruction into two
4614 * SIMD16 instructions."
4615 *
4616 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4617 * 32-wide control flow support in hardware and will behave similarly.
4618 */
4619 if (devinfo->gen < 8 && !inst->force_writemask_all)
4620 max_width = MIN2(max_width, 16);
4621
4622 /* From the IVB PRMs (applies to HSW too):
4623 * "Instructions with condition modifiers must not use SIMD32."
4624 *
4625 * From the BDW PRMs (applies to later hardware too):
4626 * "Ternary instruction with condition modifiers must not use SIMD32."
4627 */
4628 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4629 max_width = MIN2(max_width, 16);
4630
4631 /* From the IVB PRMs (applies to other devices that don't have the
4632 * gen_device_info::supports_simd16_3src flag set):
4633 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4634 * SIMD8 is not allowed for DF operations."
4635 */
4636 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4637 max_width = MIN2(max_width, inst->exec_size / reg_count);
4638
4639 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4640 * the 8-bit quarter of the execution mask signals specified in the
4641 * instruction control fields) for the second compressed half of any
4642 * single-precision instruction (for double-precision instructions
4643 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4644 * the EU will apply the wrong execution controls for the second
4645 * sequential GRF write if the number of channels per GRF is not exactly
4646 * eight in single-precision mode (or four in double-float mode).
4647 *
4648 * In this situation we calculate the maximum size of the split
4649 * instructions so they only ever write to a single register.
4650 */
4651 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4652 !inst->force_writemask_all) {
4653 const unsigned channels_per_grf = inst->exec_size /
4654 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4655 const unsigned exec_type_size = get_exec_type_size(inst);
4656 assert(exec_type_size);
4657
4658 /* The hardware shifts exactly 8 channels per compressed half of the
4659 * instruction in single-precision mode and exactly 4 in double-precision.
4660 */
4661 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4662 max_width = MIN2(max_width, channels_per_grf);
4663
4664 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4665 * because HW applies the same channel enable signals to both halves of
4666 * the compressed instruction which will be just wrong under
4667 * non-uniform control flow.
4668 */
4669 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4670 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4671 max_width = MIN2(max_width, 4);
4672 }
4673
4674 /* Only power-of-two execution sizes are representable in the instruction
4675 * control fields.
4676 */
4677 return 1 << _mesa_logbase2(max_width);
4678 }
4679
4680 /**
4681 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4682 * various payload size restrictions that apply to sampler message
4683 * instructions.
4684 *
4685 * This is only intended to provide a maximum theoretical bound for the
4686 * execution size of the message based on the number of argument components
4687 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4688 * variant of the message can be used, though some messages may have
4689 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4690 * the message length to determine the exact SIMD width and argument count,
4691 * which makes a number of sampler message combinations impossible to
4692 * represent).
4693 */
4694 static unsigned
4695 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4696 const fs_inst *inst)
4697 {
4698 /* Calculate the number of coordinate components that have to be present
4699 * assuming that additional arguments follow the texel coordinates in the
4700 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4701 * need to pad to four or three components depending on the message,
4702 * pre-ILK we need to pad to at most three components.
4703 */
4704 const unsigned req_coord_components =
4705 (devinfo->gen >= 7 ||
4706 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4707 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4708 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4709 3;
4710
4711 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4712 * variant of the TXL or TXF message.
4713 */
4714 const bool implicit_lod = devinfo->gen >= 9 &&
4715 (inst->opcode == SHADER_OPCODE_TXL ||
4716 inst->opcode == SHADER_OPCODE_TXF) &&
4717 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4718
4719 /* Calculate the total number of argument components that need to be passed
4720 * to the sampler unit.
4721 */
4722 const unsigned num_payload_components =
4723 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4724 req_coord_components) +
4725 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4726 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4727 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4728 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4729 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4730 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4731 inst->components_read(TEX_LOGICAL_SRC_MCS);
4732
4733 /* SIMD16 messages with more than five arguments exceed the maximum message
4734 * size supported by the sampler, regardless of whether a header is
4735 * provided or not.
4736 */
4737 return MIN2(inst->exec_size,
4738 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4739 }
4740
4741 /**
4742 * Get the closest native SIMD width supported by the hardware for instruction
4743 * \p inst. The instruction will be left untouched by
4744 * fs_visitor::lower_simd_width() if the returned value is equal to the
4745 * original execution size.
4746 */
4747 static unsigned
4748 get_lowered_simd_width(const struct gen_device_info *devinfo,
4749 const fs_inst *inst)
4750 {
4751 switch (inst->opcode) {
4752 case BRW_OPCODE_MOV:
4753 case BRW_OPCODE_SEL:
4754 case BRW_OPCODE_NOT:
4755 case BRW_OPCODE_AND:
4756 case BRW_OPCODE_OR:
4757 case BRW_OPCODE_XOR:
4758 case BRW_OPCODE_SHR:
4759 case BRW_OPCODE_SHL:
4760 case BRW_OPCODE_ASR:
4761 case BRW_OPCODE_CMPN:
4762 case BRW_OPCODE_CSEL:
4763 case BRW_OPCODE_F32TO16:
4764 case BRW_OPCODE_F16TO32:
4765 case BRW_OPCODE_BFREV:
4766 case BRW_OPCODE_BFE:
4767 case BRW_OPCODE_ADD:
4768 case BRW_OPCODE_MUL:
4769 case BRW_OPCODE_AVG:
4770 case BRW_OPCODE_FRC:
4771 case BRW_OPCODE_RNDU:
4772 case BRW_OPCODE_RNDD:
4773 case BRW_OPCODE_RNDE:
4774 case BRW_OPCODE_RNDZ:
4775 case BRW_OPCODE_LZD:
4776 case BRW_OPCODE_FBH:
4777 case BRW_OPCODE_FBL:
4778 case BRW_OPCODE_CBIT:
4779 case BRW_OPCODE_SAD2:
4780 case BRW_OPCODE_MAD:
4781 case BRW_OPCODE_LRP:
4782 case FS_OPCODE_PACK:
4783 return get_fpu_lowered_simd_width(devinfo, inst);
4784
4785 case BRW_OPCODE_CMP: {
4786 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4787 * when the destination is a GRF the dependency-clear bit on the flag
4788 * register is cleared early.
4789 *
4790 * Suggested workarounds are to disable coissuing CMP instructions
4791 * or to split CMP(16) instructions into two CMP(8) instructions.
4792 *
4793 * We choose to split into CMP(8) instructions since disabling
4794 * coissuing would affect CMP instructions not otherwise affected by
4795 * the errata.
4796 */
4797 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4798 !inst->dst.is_null() ? 8 : ~0);
4799 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4800 }
4801 case BRW_OPCODE_BFI1:
4802 case BRW_OPCODE_BFI2:
4803 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4804 * should
4805 * "Force BFI instructions to be executed always in SIMD8."
4806 */
4807 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4808 get_fpu_lowered_simd_width(devinfo, inst));
4809
4810 case BRW_OPCODE_IF:
4811 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4812 return inst->exec_size;
4813
4814 case SHADER_OPCODE_RCP:
4815 case SHADER_OPCODE_RSQ:
4816 case SHADER_OPCODE_SQRT:
4817 case SHADER_OPCODE_EXP2:
4818 case SHADER_OPCODE_LOG2:
4819 case SHADER_OPCODE_SIN:
4820 case SHADER_OPCODE_COS:
4821 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4822 * Gen6.
4823 */
4824 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4825 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4826 MIN2(8, inst->exec_size));
4827
4828 case SHADER_OPCODE_POW:
4829 /* SIMD16 is only allowed on Gen7+. */
4830 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4831 MIN2(8, inst->exec_size));
4832
4833 case SHADER_OPCODE_INT_QUOTIENT:
4834 case SHADER_OPCODE_INT_REMAINDER:
4835 /* Integer division is limited to SIMD8 on all generations. */
4836 return MIN2(8, inst->exec_size);
4837
4838 case FS_OPCODE_LINTERP:
4839 case FS_OPCODE_GET_BUFFER_SIZE:
4840 case FS_OPCODE_DDX_COARSE:
4841 case FS_OPCODE_DDX_FINE:
4842 case FS_OPCODE_DDY_COARSE:
4843 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4844 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4845 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4846 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4847 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4848 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4849 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4850 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4851 return MIN2(16, inst->exec_size);
4852
4853 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4854 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4855 * message used to implement varying pull constant loads, so expand it
4856 * to SIMD16. An alternative with longer message payload length but
4857 * shorter return payload would be to use the SIMD8 sampler message that
4858 * takes (header, u, v, r) as parameters instead of (header, u).
4859 */
4860 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4861
4862 case FS_OPCODE_DDY_FINE:
4863 /* The implementation of this virtual opcode may require emitting
4864 * compressed Align16 instructions, which are severely limited on some
4865 * generations.
4866 *
4867 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4868 * Region Restrictions):
4869 *
4870 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4871 * and SIMD8 is not allowed for DF operations."
4872 *
4873 * In this context, "DW operations" means "operations acting on 32-bit
4874 * values", so it includes operations on floats.
4875 *
4876 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4877 * (Instruction Compression -> Rules and Restrictions):
4878 *
4879 * "A compressed instruction must be in Align1 access mode. Align16
4880 * mode instructions cannot be compressed."
4881 *
4882 * Similar text exists in the g45 PRM.
4883 *
4884 * Empirically, compressed align16 instructions using odd register
4885 * numbers don't appear to work on Sandybridge either.
4886 */
4887 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4888 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4889 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4890
4891 case SHADER_OPCODE_MULH:
4892 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4893 * is 8-wide on Gen7+.
4894 */
4895 return (devinfo->gen >= 7 ? 8 :
4896 get_fpu_lowered_simd_width(devinfo, inst));
4897
4898 case FS_OPCODE_FB_WRITE_LOGICAL:
4899 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4900 * here.
4901 */
4902 assert(devinfo->gen != 6 ||
4903 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4904 inst->exec_size == 8);
4905 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4906 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4907 8 : MIN2(16, inst->exec_size));
4908
4909 case FS_OPCODE_FB_READ_LOGICAL:
4910 return MIN2(16, inst->exec_size);
4911
4912 case SHADER_OPCODE_TEX_LOGICAL:
4913 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4914 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4915 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4916 case SHADER_OPCODE_LOD_LOGICAL:
4917 case SHADER_OPCODE_TG4_LOGICAL:
4918 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4919 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4920 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4921 return get_sampler_lowered_simd_width(devinfo, inst);
4922
4923 case SHADER_OPCODE_TXD_LOGICAL:
4924 /* TXD is unsupported in SIMD16 mode. */
4925 return 8;
4926
4927 case SHADER_OPCODE_TXL_LOGICAL:
4928 case FS_OPCODE_TXB_LOGICAL:
4929 /* Only one execution size is representable pre-ILK depending on whether
4930 * the shadow reference argument is present.
4931 */
4932 if (devinfo->gen == 4)
4933 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4934 else
4935 return get_sampler_lowered_simd_width(devinfo, inst);
4936
4937 case SHADER_OPCODE_TXF_LOGICAL:
4938 case SHADER_OPCODE_TXS_LOGICAL:
4939 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4940 * messages. Use SIMD16 instead.
4941 */
4942 if (devinfo->gen == 4)
4943 return 16;
4944 else
4945 return get_sampler_lowered_simd_width(devinfo, inst);
4946
4947 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4948 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4949 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4950 return 8;
4951
4952 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4953 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4954 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4955 return MIN2(16, inst->exec_size);
4956
4957 case SHADER_OPCODE_URB_READ_SIMD8:
4958 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4959 case SHADER_OPCODE_URB_WRITE_SIMD8:
4960 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4961 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4962 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4963 return MIN2(8, inst->exec_size);
4964
4965 case SHADER_OPCODE_MOV_INDIRECT: {
4966 /* From IVB and HSW PRMs:
4967 *
4968 * "2.When the destination requires two registers and the sources are
4969 * indirect, the sources must use 1x1 regioning mode.
4970 *
4971 * In case of DF instructions in HSW/IVB, the exec_size is limited by
4972 * the EU decompression logic not handling VxH indirect addressing
4973 * correctly.
4974 */
4975 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
4976 /* Prior to Broadwell, we only have 8 address subregisters. */
4977 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4978 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
4979 inst->exec_size);
4980 }
4981
4982 case SHADER_OPCODE_LOAD_PAYLOAD: {
4983 const unsigned reg_count =
4984 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4985
4986 if (reg_count > 2) {
4987 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4988 * can be easily lowered (which excludes headers and heterogeneous
4989 * types).
4990 */
4991 assert(!inst->header_size);
4992 for (unsigned i = 0; i < inst->sources; i++)
4993 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4994 inst->src[i].file == BAD_FILE);
4995
4996 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4997 } else {
4998 return inst->exec_size;
4999 }
5000 }
5001 default:
5002 return inst->exec_size;
5003 }
5004 }
5005
5006 /**
5007 * Return true if splitting out the group of channels of instruction \p inst
5008 * given by lbld.group() requires allocating a temporary for the i-th source
5009 * of the lowered instruction.
5010 */
5011 static inline bool
5012 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5013 {
5014 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5015 (inst->components_read(i) == 1 &&
5016 lbld.dispatch_width() <= inst->exec_size));
5017 }
5018
5019 /**
5020 * Extract the data that would be consumed by the channel group given by
5021 * lbld.group() from the i-th source region of instruction \p inst and return
5022 * it as result in packed form. If any copy instructions are required they
5023 * will be emitted before the given \p inst in \p block.
5024 */
5025 static fs_reg
5026 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
5027 unsigned i)
5028 {
5029 /* Specified channel group from the source region. */
5030 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5031
5032 if (needs_src_copy(lbld, inst, i)) {
5033 /* Builder of the right width to perform the copy avoiding uninitialized
5034 * data if the lowered execution size is greater than the original
5035 * execution size of the instruction.
5036 */
5037 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5038 inst->exec_size), 0);
5039 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5040
5041 for (unsigned k = 0; k < inst->components_read(i); ++k)
5042 cbld.at(block, inst)
5043 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5044
5045 return tmp;
5046
5047 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5048 /* The source is invariant for all dispatch_width-wide groups of the
5049 * original region.
5050 */
5051 return inst->src[i];
5052
5053 } else {
5054 /* We can just point the lowered instruction at the right channel group
5055 * from the original region.
5056 */
5057 return src;
5058 }
5059 }
5060
5061 /**
5062 * Return true if splitting out the group of channels of instruction \p inst
5063 * given by lbld.group() requires allocating a temporary for the destination
5064 * of the lowered instruction and copying the data back to the original
5065 * destination region.
5066 */
5067 static inline bool
5068 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5069 {
5070 /* If the instruction writes more than one component we'll have to shuffle
5071 * the results of multiple lowered instructions in order to make sure that
5072 * they end up arranged correctly in the original destination region.
5073 */
5074 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5075 return true;
5076
5077 /* If the lowered execution size is larger than the original the result of
5078 * the instruction won't fit in the original destination, so we'll have to
5079 * allocate a temporary in any case.
5080 */
5081 if (lbld.dispatch_width() > inst->exec_size)
5082 return true;
5083
5084 for (unsigned i = 0; i < inst->sources; i++) {
5085 /* If we already made a copy of the source for other reasons there won't
5086 * be any overlap with the destination.
5087 */
5088 if (needs_src_copy(lbld, inst, i))
5089 continue;
5090
5091 /* In order to keep the logic simple we emit a copy whenever the
5092 * destination region doesn't exactly match an overlapping source, which
5093 * may point at the source and destination not being aligned group by
5094 * group which could cause one of the lowered instructions to overwrite
5095 * the data read from the same source by other lowered instructions.
5096 */
5097 if (regions_overlap(inst->dst, inst->size_written,
5098 inst->src[i], inst->size_read(i)) &&
5099 !inst->dst.equals(inst->src[i]))
5100 return true;
5101 }
5102
5103 return false;
5104 }
5105
5106 /**
5107 * Insert data from a packed temporary into the channel group given by
5108 * lbld.group() of the destination region of instruction \p inst and return
5109 * the temporary as result. If any copy instructions are required they will
5110 * be emitted around the given \p inst in \p block.
5111 */
5112 static fs_reg
5113 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5114 {
5115 /* Builder of the right width to perform the copy avoiding uninitialized
5116 * data if the lowered execution size is greater than the original
5117 * execution size of the instruction.
5118 */
5119 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5120 inst->exec_size), 0);
5121
5122 /* Specified channel group from the destination region. */
5123 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5124 const unsigned dst_size = inst->size_written /
5125 inst->dst.component_size(inst->exec_size);
5126
5127 if (needs_dst_copy(lbld, inst)) {
5128 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5129
5130 if (inst->predicate) {
5131 /* Handle predication by copying the original contents of
5132 * the destination into the temporary before emitting the
5133 * lowered instruction.
5134 */
5135 for (unsigned k = 0; k < dst_size; ++k)
5136 cbld.at(block, inst)
5137 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5138 }
5139
5140 for (unsigned k = 0; k < dst_size; ++k)
5141 cbld.at(block, inst->next)
5142 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5143
5144 return tmp;
5145
5146 } else {
5147 /* No need to allocate a temporary for the lowered instruction, just
5148 * take the right group of channels from the original region.
5149 */
5150 return dst;
5151 }
5152 }
5153
5154 bool
5155 fs_visitor::lower_simd_width()
5156 {
5157 bool progress = false;
5158
5159 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5160 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5161
5162 if (lower_width != inst->exec_size) {
5163 /* Builder matching the original instruction. We may also need to
5164 * emit an instruction of width larger than the original, set the
5165 * execution size of the builder to the highest of both for now so
5166 * we're sure that both cases can be handled.
5167 */
5168 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5169 const fs_builder ibld = bld.at(block, inst)
5170 .exec_all(inst->force_writemask_all)
5171 .group(max_width, inst->group / max_width);
5172
5173 /* Split the copies in chunks of the execution width of either the
5174 * original or the lowered instruction, whichever is lower.
5175 */
5176 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5177 const unsigned dst_size = inst->size_written /
5178 inst->dst.component_size(inst->exec_size);
5179
5180 assert(!inst->writes_accumulator && !inst->mlen);
5181
5182 for (unsigned i = 0; i < n; i++) {
5183 /* Emit a copy of the original instruction with the lowered width.
5184 * If the EOT flag was set throw it away except for the last
5185 * instruction to avoid killing the thread prematurely.
5186 */
5187 fs_inst split_inst = *inst;
5188 split_inst.exec_size = lower_width;
5189 split_inst.eot = inst->eot && i == n - 1;
5190
5191 /* Select the correct channel enables for the i-th group, then
5192 * transform the sources and destination and emit the lowered
5193 * instruction.
5194 */
5195 const fs_builder lbld = ibld.group(lower_width, i);
5196
5197 for (unsigned j = 0; j < inst->sources; j++)
5198 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5199
5200 split_inst.dst = emit_zip(lbld, block, inst);
5201 split_inst.size_written =
5202 split_inst.dst.component_size(lower_width) * dst_size;
5203
5204 lbld.emit(split_inst);
5205 }
5206
5207 inst->remove(block);
5208 progress = true;
5209 }
5210 }
5211
5212 if (progress)
5213 invalidate_live_intervals();
5214
5215 return progress;
5216 }
5217
5218 void
5219 fs_visitor::dump_instructions()
5220 {
5221 dump_instructions(NULL);
5222 }
5223
5224 void
5225 fs_visitor::dump_instructions(const char *name)
5226 {
5227 FILE *file = stderr;
5228 if (name && geteuid() != 0) {
5229 file = fopen(name, "w");
5230 if (!file)
5231 file = stderr;
5232 }
5233
5234 if (cfg) {
5235 calculate_register_pressure();
5236 int ip = 0, max_pressure = 0;
5237 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5238 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5239 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5240 dump_instruction(inst, file);
5241 ip++;
5242 }
5243 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5244 } else {
5245 int ip = 0;
5246 foreach_in_list(backend_instruction, inst, &instructions) {
5247 fprintf(file, "%4d: ", ip++);
5248 dump_instruction(inst, file);
5249 }
5250 }
5251
5252 if (file != stderr) {
5253 fclose(file);
5254 }
5255 }
5256
5257 void
5258 fs_visitor::dump_instruction(backend_instruction *be_inst)
5259 {
5260 dump_instruction(be_inst, stderr);
5261 }
5262
5263 void
5264 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5265 {
5266 fs_inst *inst = (fs_inst *)be_inst;
5267
5268 if (inst->predicate) {
5269 fprintf(file, "(%cf0.%d) ",
5270 inst->predicate_inverse ? '-' : '+',
5271 inst->flag_subreg);
5272 }
5273
5274 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5275 if (inst->saturate)
5276 fprintf(file, ".sat");
5277 if (inst->conditional_mod) {
5278 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5279 if (!inst->predicate &&
5280 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5281 inst->opcode != BRW_OPCODE_IF &&
5282 inst->opcode != BRW_OPCODE_WHILE))) {
5283 fprintf(file, ".f0.%d", inst->flag_subreg);
5284 }
5285 }
5286 fprintf(file, "(%d) ", inst->exec_size);
5287
5288 if (inst->mlen) {
5289 fprintf(file, "(mlen: %d) ", inst->mlen);
5290 }
5291
5292 if (inst->eot) {
5293 fprintf(file, "(EOT) ");
5294 }
5295
5296 switch (inst->dst.file) {
5297 case VGRF:
5298 fprintf(file, "vgrf%d", inst->dst.nr);
5299 break;
5300 case FIXED_GRF:
5301 fprintf(file, "g%d", inst->dst.nr);
5302 break;
5303 case MRF:
5304 fprintf(file, "m%d", inst->dst.nr);
5305 break;
5306 case BAD_FILE:
5307 fprintf(file, "(null)");
5308 break;
5309 case UNIFORM:
5310 fprintf(file, "***u%d***", inst->dst.nr);
5311 break;
5312 case ATTR:
5313 fprintf(file, "***attr%d***", inst->dst.nr);
5314 break;
5315 case ARF:
5316 switch (inst->dst.nr) {
5317 case BRW_ARF_NULL:
5318 fprintf(file, "null");
5319 break;
5320 case BRW_ARF_ADDRESS:
5321 fprintf(file, "a0.%d", inst->dst.subnr);
5322 break;
5323 case BRW_ARF_ACCUMULATOR:
5324 fprintf(file, "acc%d", inst->dst.subnr);
5325 break;
5326 case BRW_ARF_FLAG:
5327 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5328 break;
5329 default:
5330 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5331 break;
5332 }
5333 break;
5334 case IMM:
5335 unreachable("not reached");
5336 }
5337
5338 if (inst->dst.offset ||
5339 (inst->dst.file == VGRF &&
5340 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5341 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5342 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5343 inst->dst.offset % reg_size);
5344 }
5345
5346 if (inst->dst.stride != 1)
5347 fprintf(file, "<%u>", inst->dst.stride);
5348 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5349
5350 for (int i = 0; i < inst->sources; i++) {
5351 if (inst->src[i].negate)
5352 fprintf(file, "-");
5353 if (inst->src[i].abs)
5354 fprintf(file, "|");
5355 switch (inst->src[i].file) {
5356 case VGRF:
5357 fprintf(file, "vgrf%d", inst->src[i].nr);
5358 break;
5359 case FIXED_GRF:
5360 fprintf(file, "g%d", inst->src[i].nr);
5361 break;
5362 case MRF:
5363 fprintf(file, "***m%d***", inst->src[i].nr);
5364 break;
5365 case ATTR:
5366 fprintf(file, "attr%d", inst->src[i].nr);
5367 break;
5368 case UNIFORM:
5369 fprintf(file, "u%d", inst->src[i].nr);
5370 break;
5371 case BAD_FILE:
5372 fprintf(file, "(null)");
5373 break;
5374 case IMM:
5375 switch (inst->src[i].type) {
5376 case BRW_REGISTER_TYPE_F:
5377 fprintf(file, "%-gf", inst->src[i].f);
5378 break;
5379 case BRW_REGISTER_TYPE_DF:
5380 fprintf(file, "%fdf", inst->src[i].df);
5381 break;
5382 case BRW_REGISTER_TYPE_W:
5383 case BRW_REGISTER_TYPE_D:
5384 fprintf(file, "%dd", inst->src[i].d);
5385 break;
5386 case BRW_REGISTER_TYPE_UW:
5387 case BRW_REGISTER_TYPE_UD:
5388 fprintf(file, "%uu", inst->src[i].ud);
5389 break;
5390 case BRW_REGISTER_TYPE_VF:
5391 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5392 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5393 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5394 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5395 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5396 break;
5397 default:
5398 fprintf(file, "???");
5399 break;
5400 }
5401 break;
5402 case ARF:
5403 switch (inst->src[i].nr) {
5404 case BRW_ARF_NULL:
5405 fprintf(file, "null");
5406 break;
5407 case BRW_ARF_ADDRESS:
5408 fprintf(file, "a0.%d", inst->src[i].subnr);
5409 break;
5410 case BRW_ARF_ACCUMULATOR:
5411 fprintf(file, "acc%d", inst->src[i].subnr);
5412 break;
5413 case BRW_ARF_FLAG:
5414 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5415 break;
5416 default:
5417 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5418 break;
5419 }
5420 break;
5421 }
5422
5423 if (inst->src[i].offset ||
5424 (inst->src[i].file == VGRF &&
5425 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5426 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5427 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5428 inst->src[i].offset % reg_size);
5429 }
5430
5431 if (inst->src[i].abs)
5432 fprintf(file, "|");
5433
5434 if (inst->src[i].file != IMM) {
5435 unsigned stride;
5436 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5437 unsigned hstride = inst->src[i].hstride;
5438 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5439 } else {
5440 stride = inst->src[i].stride;
5441 }
5442 if (stride != 1)
5443 fprintf(file, "<%u>", stride);
5444
5445 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5446 }
5447
5448 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5449 fprintf(file, ", ");
5450 }
5451
5452 fprintf(file, " ");
5453
5454 if (inst->force_writemask_all)
5455 fprintf(file, "NoMask ");
5456
5457 if (inst->exec_size != dispatch_width)
5458 fprintf(file, "group%d ", inst->group);
5459
5460 fprintf(file, "\n");
5461 }
5462
5463 /**
5464 * Possibly returns an instruction that set up @param reg.
5465 *
5466 * Sometimes we want to take the result of some expression/variable
5467 * dereference tree and rewrite the instruction generating the result
5468 * of the tree. When processing the tree, we know that the
5469 * instructions generated are all writing temporaries that are dead
5470 * outside of this tree. So, if we have some instructions that write
5471 * a temporary, we're free to point that temp write somewhere else.
5472 *
5473 * Note that this doesn't guarantee that the instruction generated
5474 * only reg -- it might be the size=4 destination of a texture instruction.
5475 */
5476 fs_inst *
5477 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5478 fs_inst *end,
5479 const fs_reg &reg)
5480 {
5481 if (end == start ||
5482 end->is_partial_write() ||
5483 !reg.equals(end->dst)) {
5484 return NULL;
5485 } else {
5486 return end;
5487 }
5488 }
5489
5490 void
5491 fs_visitor::setup_fs_payload_gen6()
5492 {
5493 assert(stage == MESA_SHADER_FRAGMENT);
5494 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5495
5496 assert(devinfo->gen >= 6);
5497
5498 /* R0-1: masks, pixel X/Y coordinates. */
5499 payload.num_regs = 2;
5500 /* R2: only for 32-pixel dispatch.*/
5501
5502 /* R3-26: barycentric interpolation coordinates. These appear in the
5503 * same order that they appear in the brw_barycentric_mode
5504 * enum. Each set of coordinates occupies 2 registers if dispatch width
5505 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5506 * appear if they were enabled using the "Barycentric Interpolation
5507 * Mode" bits in WM_STATE.
5508 */
5509 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5510 if (prog_data->barycentric_interp_modes & (1 << i)) {
5511 payload.barycentric_coord_reg[i] = payload.num_regs;
5512 payload.num_regs += 2;
5513 if (dispatch_width == 16) {
5514 payload.num_regs += 2;
5515 }
5516 }
5517 }
5518
5519 /* R27: interpolated depth if uses source depth */
5520 prog_data->uses_src_depth =
5521 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5522 if (prog_data->uses_src_depth) {
5523 payload.source_depth_reg = payload.num_regs;
5524 payload.num_regs++;
5525 if (dispatch_width == 16) {
5526 /* R28: interpolated depth if not SIMD8. */
5527 payload.num_regs++;
5528 }
5529 }
5530
5531 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5532 prog_data->uses_src_w =
5533 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5534 if (prog_data->uses_src_w) {
5535 payload.source_w_reg = payload.num_regs;
5536 payload.num_regs++;
5537 if (dispatch_width == 16) {
5538 /* R30: interpolated W if not SIMD8. */
5539 payload.num_regs++;
5540 }
5541 }
5542
5543 /* R31: MSAA position offsets. */
5544 if (prog_data->persample_dispatch &&
5545 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5546 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5547 *
5548 * "MSDISPMODE_PERSAMPLE is required in order to select
5549 * POSOFFSET_SAMPLE"
5550 *
5551 * So we can only really get sample positions if we are doing real
5552 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5553 * persample dispatch, we hard-code it to 0.5.
5554 */
5555 prog_data->uses_pos_offset = true;
5556 payload.sample_pos_reg = payload.num_regs;
5557 payload.num_regs++;
5558 }
5559
5560 /* R32: MSAA input coverage mask */
5561 prog_data->uses_sample_mask =
5562 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5563 if (prog_data->uses_sample_mask) {
5564 assert(devinfo->gen >= 7);
5565 payload.sample_mask_in_reg = payload.num_regs;
5566 payload.num_regs++;
5567 if (dispatch_width == 16) {
5568 /* R33: input coverage mask if not SIMD8. */
5569 payload.num_regs++;
5570 }
5571 }
5572
5573 /* R34-: bary for 32-pixel. */
5574 /* R58-59: interp W for 32-pixel. */
5575
5576 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5577 source_depth_to_render_target = true;
5578 }
5579 }
5580
5581 void
5582 fs_visitor::setup_vs_payload()
5583 {
5584 /* R0: thread header, R1: urb handles */
5585 payload.num_regs = 2;
5586 }
5587
5588 void
5589 fs_visitor::setup_gs_payload()
5590 {
5591 assert(stage == MESA_SHADER_GEOMETRY);
5592
5593 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5594 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5595
5596 /* R0: thread header, R1: output URB handles */
5597 payload.num_regs = 2;
5598
5599 if (gs_prog_data->include_primitive_id) {
5600 /* R2: Primitive ID 0..7 */
5601 payload.num_regs++;
5602 }
5603
5604 /* Always enable VUE handles so we can safely use pull model if needed.
5605 *
5606 * The push model for a GS uses a ton of register space even for trivial
5607 * scenarios with just a few inputs, so just make things easier and a bit
5608 * safer by always having pull model available.
5609 */
5610 gs_prog_data->base.include_vue_handles = true;
5611
5612 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5613 payload.num_regs += nir->info.gs.vertices_in;
5614
5615 /* Use a maximum of 24 registers for push-model inputs. */
5616 const unsigned max_push_components = 24;
5617
5618 /* If pushing our inputs would take too many registers, reduce the URB read
5619 * length (which is in HWords, or 8 registers), and resort to pulling.
5620 *
5621 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5622 * have to multiply by VerticesIn to obtain the total storage requirement.
5623 */
5624 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5625 max_push_components) {
5626 vue_prog_data->urb_read_length =
5627 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5628 }
5629 }
5630
5631 void
5632 fs_visitor::setup_cs_payload()
5633 {
5634 assert(devinfo->gen >= 7);
5635 payload.num_regs = 1;
5636 }
5637
5638 void
5639 fs_visitor::calculate_register_pressure()
5640 {
5641 invalidate_live_intervals();
5642 calculate_live_intervals();
5643
5644 unsigned num_instructions = 0;
5645 foreach_block(block, cfg)
5646 num_instructions += block->instructions.length();
5647
5648 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5649
5650 for (unsigned reg = 0; reg < alloc.count; reg++) {
5651 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5652 regs_live_at_ip[ip] += alloc.sizes[reg];
5653 }
5654 }
5655
5656 /**
5657 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5658 *
5659 * The needs_unlit_centroid_workaround ends up producing one of these per
5660 * channel of centroid input, so it's good to clean them up.
5661 *
5662 * An assumption here is that nothing ever modifies the dispatched pixels
5663 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5664 * dictates that anyway.
5665 */
5666 bool
5667 fs_visitor::opt_drop_redundant_mov_to_flags()
5668 {
5669 bool flag_mov_found[2] = {false};
5670 bool progress = false;
5671
5672 /* Instructions removed by this pass can only be added if this were true */
5673 if (!devinfo->needs_unlit_centroid_workaround)
5674 return false;
5675
5676 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5677 if (inst->is_control_flow()) {
5678 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5679 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5680 if (!flag_mov_found[inst->flag_subreg]) {
5681 flag_mov_found[inst->flag_subreg] = true;
5682 } else {
5683 inst->remove(block);
5684 progress = true;
5685 }
5686 } else if (inst->flags_written()) {
5687 flag_mov_found[inst->flag_subreg] = false;
5688 }
5689 }
5690
5691 return progress;
5692 }
5693
5694 void
5695 fs_visitor::optimize()
5696 {
5697 /* Start by validating the shader we currently have. */
5698 validate();
5699
5700 /* bld is the common builder object pointing at the end of the program we
5701 * used to translate it into i965 IR. For the optimization and lowering
5702 * passes coming next, any code added after the end of the program without
5703 * having explicitly called fs_builder::at() clearly points at a mistake.
5704 * Ideally optimization passes wouldn't be part of the visitor so they
5705 * wouldn't have access to bld at all, but they do, so just in case some
5706 * pass forgets to ask for a location explicitly set it to NULL here to
5707 * make it trip. The dispatch width is initialized to a bogus value to
5708 * make sure that optimizations set the execution controls explicitly to
5709 * match the code they are manipulating instead of relying on the defaults.
5710 */
5711 bld = fs_builder(this, 64);
5712
5713 assign_constant_locations();
5714 lower_constant_loads();
5715
5716 validate();
5717
5718 split_virtual_grfs();
5719 validate();
5720
5721 #define OPT(pass, args...) ({ \
5722 pass_num++; \
5723 bool this_progress = pass(args); \
5724 \
5725 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5726 char filename[64]; \
5727 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5728 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5729 \
5730 backend_shader::dump_instructions(filename); \
5731 } \
5732 \
5733 validate(); \
5734 \
5735 progress = progress || this_progress; \
5736 this_progress; \
5737 })
5738
5739 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5740 char filename[64];
5741 snprintf(filename, 64, "%s%d-%s-00-00-start",
5742 stage_abbrev, dispatch_width, nir->info.name);
5743
5744 backend_shader::dump_instructions(filename);
5745 }
5746
5747 bool progress = false;
5748 int iteration = 0;
5749 int pass_num = 0;
5750
5751 OPT(opt_drop_redundant_mov_to_flags);
5752
5753 do {
5754 progress = false;
5755 pass_num = 0;
5756 iteration++;
5757
5758 OPT(remove_duplicate_mrf_writes);
5759
5760 OPT(opt_algebraic);
5761 OPT(opt_cse);
5762 OPT(opt_copy_propagation);
5763 OPT(opt_predicated_break, this);
5764 OPT(opt_cmod_propagation);
5765 OPT(dead_code_eliminate);
5766 OPT(opt_peephole_sel);
5767 OPT(dead_control_flow_eliminate, this);
5768 OPT(opt_register_renaming);
5769 OPT(opt_saturate_propagation);
5770 OPT(register_coalesce);
5771 OPT(compute_to_mrf);
5772 OPT(eliminate_find_live_channel);
5773
5774 OPT(compact_virtual_grfs);
5775 } while (progress);
5776
5777 progress = false;
5778 pass_num = 0;
5779
5780 if (OPT(lower_pack)) {
5781 OPT(register_coalesce);
5782 OPT(dead_code_eliminate);
5783 }
5784
5785 OPT(lower_simd_width);
5786
5787 /* After SIMD lowering just in case we had to unroll the EOT send. */
5788 OPT(opt_sampler_eot);
5789
5790 OPT(lower_logical_sends);
5791
5792 if (progress) {
5793 OPT(opt_copy_propagation);
5794 /* Only run after logical send lowering because it's easier to implement
5795 * in terms of physical sends.
5796 */
5797 if (OPT(opt_zero_samples))
5798 OPT(opt_copy_propagation);
5799 /* Run after logical send lowering to give it a chance to CSE the
5800 * LOAD_PAYLOAD instructions created to construct the payloads of
5801 * e.g. texturing messages in cases where it wasn't possible to CSE the
5802 * whole logical instruction.
5803 */
5804 OPT(opt_cse);
5805 OPT(register_coalesce);
5806 OPT(compute_to_mrf);
5807 OPT(dead_code_eliminate);
5808 OPT(remove_duplicate_mrf_writes);
5809 OPT(opt_peephole_sel);
5810 }
5811
5812 OPT(opt_redundant_discard_jumps);
5813
5814 if (OPT(lower_load_payload)) {
5815 split_virtual_grfs();
5816 OPT(register_coalesce);
5817 OPT(compute_to_mrf);
5818 OPT(dead_code_eliminate);
5819 }
5820
5821 OPT(opt_combine_constants);
5822 OPT(lower_integer_multiplication);
5823
5824 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5825 OPT(opt_cmod_propagation);
5826 OPT(opt_cse);
5827 OPT(opt_copy_propagation);
5828 OPT(dead_code_eliminate);
5829 }
5830
5831 if (OPT(lower_conversions)) {
5832 OPT(opt_copy_propagation);
5833 OPT(dead_code_eliminate);
5834 OPT(lower_simd_width);
5835 }
5836
5837 lower_uniform_pull_constant_loads();
5838
5839 validate();
5840 }
5841
5842 /**
5843 * Three source instruction must have a GRF/MRF destination register.
5844 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5845 */
5846 void
5847 fs_visitor::fixup_3src_null_dest()
5848 {
5849 bool progress = false;
5850
5851 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5852 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5853 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5854 inst->dst.type);
5855 progress = true;
5856 }
5857 }
5858
5859 if (progress)
5860 invalidate_live_intervals();
5861 }
5862
5863 void
5864 fs_visitor::allocate_registers(bool allow_spilling)
5865 {
5866 bool allocated_without_spills;
5867
5868 static const enum instruction_scheduler_mode pre_modes[] = {
5869 SCHEDULE_PRE,
5870 SCHEDULE_PRE_NON_LIFO,
5871 SCHEDULE_PRE_LIFO,
5872 };
5873
5874 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5875
5876 /* Try each scheduling heuristic to see if it can successfully register
5877 * allocate without spilling. They should be ordered by decreasing
5878 * performance but increasing likelihood of allocating.
5879 */
5880 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5881 schedule_instructions(pre_modes[i]);
5882
5883 if (0) {
5884 assign_regs_trivial();
5885 allocated_without_spills = true;
5886 } else {
5887 allocated_without_spills = assign_regs(false, spill_all);
5888 }
5889 if (allocated_without_spills)
5890 break;
5891 }
5892
5893 if (!allocated_without_spills) {
5894 if (!allow_spilling)
5895 fail("Failure to register allocate and spilling is not allowed.");
5896
5897 /* We assume that any spilling is worse than just dropping back to
5898 * SIMD8. There's probably actually some intermediate point where
5899 * SIMD16 with a couple of spills is still better.
5900 */
5901 if (dispatch_width > min_dispatch_width) {
5902 fail("Failure to register allocate. Reduce number of "
5903 "live scalar values to avoid this.");
5904 } else {
5905 compiler->shader_perf_log(log_data,
5906 "%s shader triggered register spilling. "
5907 "Try reducing the number of live scalar "
5908 "values to improve performance.\n",
5909 stage_name);
5910 }
5911
5912 /* Since we're out of heuristics, just go spill registers until we
5913 * get an allocation.
5914 */
5915 while (!assign_regs(true, spill_all)) {
5916 if (failed)
5917 break;
5918 }
5919 }
5920
5921 /* This must come after all optimization and register allocation, since
5922 * it inserts dead code that happens to have side effects, and it does
5923 * so based on the actual physical registers in use.
5924 */
5925 insert_gen4_send_dependency_workarounds();
5926
5927 if (failed)
5928 return;
5929
5930 schedule_instructions(SCHEDULE_POST);
5931
5932 if (last_scratch > 0) {
5933 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5934
5935 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5936
5937 if (stage == MESA_SHADER_COMPUTE) {
5938 if (devinfo->is_haswell) {
5939 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5940 * field documentation, Haswell supports a minimum of 2kB of
5941 * scratch space for compute shaders, unlike every other stage
5942 * and platform.
5943 */
5944 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5945 } else if (devinfo->gen <= 7) {
5946 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5947 * field documentation, platforms prior to Haswell measure scratch
5948 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5949 */
5950 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5951 max_scratch_size = 12 * 1024;
5952 }
5953 }
5954
5955 /* We currently only support up to 2MB of scratch space. If we
5956 * need to support more eventually, the documentation suggests
5957 * that we could allocate a larger buffer, and partition it out
5958 * ourselves. We'd just have to undo the hardware's address
5959 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5960 * and then add FFTID * (Larger Per Thread Scratch Space).
5961 *
5962 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5963 * Thread Group Tracking > Local Memory/Scratch Space.
5964 */
5965 assert(prog_data->total_scratch < max_scratch_size);
5966 }
5967 }
5968
5969 bool
5970 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5971 {
5972 assert(stage == MESA_SHADER_VERTEX);
5973
5974 setup_vs_payload();
5975
5976 if (shader_time_index >= 0)
5977 emit_shader_time_begin();
5978
5979 emit_nir_code();
5980
5981 if (failed)
5982 return false;
5983
5984 compute_clip_distance(clip_planes);
5985
5986 emit_urb_writes();
5987
5988 if (shader_time_index >= 0)
5989 emit_shader_time_end();
5990
5991 calculate_cfg();
5992
5993 optimize();
5994
5995 assign_curb_setup();
5996 assign_vs_urb_setup();
5997
5998 fixup_3src_null_dest();
5999 allocate_registers(true);
6000
6001 return !failed;
6002 }
6003
6004 bool
6005 fs_visitor::run_tcs_single_patch()
6006 {
6007 assert(stage == MESA_SHADER_TESS_CTRL);
6008
6009 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6010
6011 /* r1-r4 contain the ICP handles. */
6012 payload.num_regs = 5;
6013
6014 if (shader_time_index >= 0)
6015 emit_shader_time_begin();
6016
6017 /* Initialize gl_InvocationID */
6018 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6019 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6020 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6021 bld.MOV(channels_ud, channels_uw);
6022
6023 if (tcs_prog_data->instances == 1) {
6024 invocation_id = channels_ud;
6025 } else {
6026 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6027
6028 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6029 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6030 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6031 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6032 brw_imm_ud(INTEL_MASK(23, 17)));
6033 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6034
6035 bld.ADD(invocation_id, instance_times_8, channels_ud);
6036 }
6037
6038 /* Fix the disptach mask */
6039 if (nir->info.tess.tcs_vertices_out % 8) {
6040 bld.CMP(bld.null_reg_ud(), invocation_id,
6041 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6042 bld.IF(BRW_PREDICATE_NORMAL);
6043 }
6044
6045 emit_nir_code();
6046
6047 if (nir->info.tess.tcs_vertices_out % 8) {
6048 bld.emit(BRW_OPCODE_ENDIF);
6049 }
6050
6051 /* Emit EOT write; set TR DS Cache bit */
6052 fs_reg srcs[3] = {
6053 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6054 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6055 fs_reg(brw_imm_ud(0)),
6056 };
6057 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6058 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6059
6060 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6061 bld.null_reg_ud(), payload);
6062 inst->mlen = 3;
6063 inst->eot = true;
6064
6065 if (shader_time_index >= 0)
6066 emit_shader_time_end();
6067
6068 if (failed)
6069 return false;
6070
6071 calculate_cfg();
6072
6073 optimize();
6074
6075 assign_curb_setup();
6076 assign_tcs_single_patch_urb_setup();
6077
6078 fixup_3src_null_dest();
6079 allocate_registers(true);
6080
6081 return !failed;
6082 }
6083
6084 bool
6085 fs_visitor::run_tes()
6086 {
6087 assert(stage == MESA_SHADER_TESS_EVAL);
6088
6089 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6090 payload.num_regs = 5;
6091
6092 if (shader_time_index >= 0)
6093 emit_shader_time_begin();
6094
6095 emit_nir_code();
6096
6097 if (failed)
6098 return false;
6099
6100 emit_urb_writes();
6101
6102 if (shader_time_index >= 0)
6103 emit_shader_time_end();
6104
6105 calculate_cfg();
6106
6107 optimize();
6108
6109 assign_curb_setup();
6110 assign_tes_urb_setup();
6111
6112 fixup_3src_null_dest();
6113 allocate_registers(true);
6114
6115 return !failed;
6116 }
6117
6118 bool
6119 fs_visitor::run_gs()
6120 {
6121 assert(stage == MESA_SHADER_GEOMETRY);
6122
6123 setup_gs_payload();
6124
6125 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6126
6127 if (gs_compile->control_data_header_size_bits > 0) {
6128 /* Create a VGRF to store accumulated control data bits. */
6129 this->control_data_bits = vgrf(glsl_type::uint_type);
6130
6131 /* If we're outputting more than 32 control data bits, then EmitVertex()
6132 * will set control_data_bits to 0 after emitting the first vertex.
6133 * Otherwise, we need to initialize it to 0 here.
6134 */
6135 if (gs_compile->control_data_header_size_bits <= 32) {
6136 const fs_builder abld = bld.annotate("initialize control data bits");
6137 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6138 }
6139 }
6140
6141 if (shader_time_index >= 0)
6142 emit_shader_time_begin();
6143
6144 emit_nir_code();
6145
6146 emit_gs_thread_end();
6147
6148 if (shader_time_index >= 0)
6149 emit_shader_time_end();
6150
6151 if (failed)
6152 return false;
6153
6154 calculate_cfg();
6155
6156 optimize();
6157
6158 assign_curb_setup();
6159 assign_gs_urb_setup();
6160
6161 fixup_3src_null_dest();
6162 allocate_registers(true);
6163
6164 return !failed;
6165 }
6166
6167 bool
6168 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6169 {
6170 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6171 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6172
6173 assert(stage == MESA_SHADER_FRAGMENT);
6174
6175 if (devinfo->gen >= 6)
6176 setup_fs_payload_gen6();
6177 else
6178 setup_fs_payload_gen4();
6179
6180 if (0) {
6181 emit_dummy_fs();
6182 } else if (do_rep_send) {
6183 assert(dispatch_width == 16);
6184 emit_repclear_shader();
6185 } else {
6186 if (shader_time_index >= 0)
6187 emit_shader_time_begin();
6188
6189 calculate_urb_setup();
6190 if (nir->info.inputs_read > 0 ||
6191 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6192 if (devinfo->gen < 6)
6193 emit_interpolation_setup_gen4();
6194 else
6195 emit_interpolation_setup_gen6();
6196 }
6197
6198 /* We handle discards by keeping track of the still-live pixels in f0.1.
6199 * Initialize it with the dispatched pixels.
6200 */
6201 if (wm_prog_data->uses_kill) {
6202 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6203 discard_init->flag_subreg = 1;
6204 }
6205
6206 /* Generate FS IR for main(). (the visitor only descends into
6207 * functions called "main").
6208 */
6209 emit_nir_code();
6210
6211 if (failed)
6212 return false;
6213
6214 if (wm_prog_data->uses_kill)
6215 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6216
6217 if (wm_key->alpha_test_func)
6218 emit_alpha_test();
6219
6220 emit_fb_writes();
6221
6222 if (shader_time_index >= 0)
6223 emit_shader_time_end();
6224
6225 calculate_cfg();
6226
6227 optimize();
6228
6229 assign_curb_setup();
6230 assign_urb_setup();
6231
6232 fixup_3src_null_dest();
6233 allocate_registers(allow_spilling);
6234
6235 if (failed)
6236 return false;
6237 }
6238
6239 return !failed;
6240 }
6241
6242 bool
6243 fs_visitor::run_cs()
6244 {
6245 assert(stage == MESA_SHADER_COMPUTE);
6246
6247 setup_cs_payload();
6248
6249 if (shader_time_index >= 0)
6250 emit_shader_time_begin();
6251
6252 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6253 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6254 const fs_builder abld = bld.exec_all().group(1, 0);
6255 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6256 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6257 }
6258
6259 emit_nir_code();
6260
6261 if (failed)
6262 return false;
6263
6264 emit_cs_terminate();
6265
6266 if (shader_time_index >= 0)
6267 emit_shader_time_end();
6268
6269 calculate_cfg();
6270
6271 optimize();
6272
6273 assign_curb_setup();
6274
6275 fixup_3src_null_dest();
6276 allocate_registers(true);
6277
6278 if (failed)
6279 return false;
6280
6281 return !failed;
6282 }
6283
6284 /**
6285 * Return a bitfield where bit n is set if barycentric interpolation mode n
6286 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6287 *
6288 * We examine the load_barycentric intrinsics rather than looking at input
6289 * variables so that we catch interpolateAtCentroid() messages too, which
6290 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6291 */
6292 static unsigned
6293 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6294 const nir_shader *shader)
6295 {
6296 unsigned barycentric_interp_modes = 0;
6297
6298 nir_foreach_function(f, shader) {
6299 if (!f->impl)
6300 continue;
6301
6302 nir_foreach_block(block, f->impl) {
6303 nir_foreach_instr(instr, block) {
6304 if (instr->type != nir_instr_type_intrinsic)
6305 continue;
6306
6307 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6308 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6309 continue;
6310
6311 /* Ignore WPOS; it doesn't require interpolation. */
6312 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6313 continue;
6314
6315 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6316 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6317 nir_intrinsic_interp_mode(intrin);
6318 nir_intrinsic_op bary_op = intrin->intrinsic;
6319 enum brw_barycentric_mode bary =
6320 brw_barycentric_mode(interp, bary_op);
6321
6322 barycentric_interp_modes |= 1 << bary;
6323
6324 if (devinfo->needs_unlit_centroid_workaround &&
6325 bary_op == nir_intrinsic_load_barycentric_centroid)
6326 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6327 }
6328 }
6329 }
6330
6331 return barycentric_interp_modes;
6332 }
6333
6334 static void
6335 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6336 const nir_shader *shader)
6337 {
6338 prog_data->flat_inputs = 0;
6339
6340 nir_foreach_variable(var, &shader->inputs) {
6341 int input_index = prog_data->urb_setup[var->data.location];
6342
6343 if (input_index < 0)
6344 continue;
6345
6346 /* flat shading */
6347 if (var->data.interpolation == INTERP_MODE_FLAT)
6348 prog_data->flat_inputs |= (1 << input_index);
6349 }
6350 }
6351
6352 static uint8_t
6353 computed_depth_mode(const nir_shader *shader)
6354 {
6355 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6356 switch (shader->info.fs.depth_layout) {
6357 case FRAG_DEPTH_LAYOUT_NONE:
6358 case FRAG_DEPTH_LAYOUT_ANY:
6359 return BRW_PSCDEPTH_ON;
6360 case FRAG_DEPTH_LAYOUT_GREATER:
6361 return BRW_PSCDEPTH_ON_GE;
6362 case FRAG_DEPTH_LAYOUT_LESS:
6363 return BRW_PSCDEPTH_ON_LE;
6364 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6365 return BRW_PSCDEPTH_OFF;
6366 }
6367 }
6368 return BRW_PSCDEPTH_OFF;
6369 }
6370
6371 /**
6372 * Move load_interpolated_input with simple (payload-based) barycentric modes
6373 * to the top of the program so we don't emit multiple PLNs for the same input.
6374 *
6375 * This works around CSE not being able to handle non-dominating cases
6376 * such as:
6377 *
6378 * if (...) {
6379 * interpolate input
6380 * } else {
6381 * interpolate the same exact input
6382 * }
6383 *
6384 * This should be replaced by global value numbering someday.
6385 */
6386 static bool
6387 move_interpolation_to_top(nir_shader *nir)
6388 {
6389 bool progress = false;
6390
6391 nir_foreach_function(f, nir) {
6392 if (!f->impl)
6393 continue;
6394
6395 nir_block *top = nir_start_block(f->impl);
6396 exec_node *cursor_node = NULL;
6397
6398 nir_foreach_block(block, f->impl) {
6399 if (block == top)
6400 continue;
6401
6402 nir_foreach_instr_safe(instr, block) {
6403 if (instr->type != nir_instr_type_intrinsic)
6404 continue;
6405
6406 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6407 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6408 continue;
6409 nir_intrinsic_instr *bary_intrinsic =
6410 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6411 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6412
6413 /* Leave interpolateAtSample/Offset() where they are. */
6414 if (op == nir_intrinsic_load_barycentric_at_sample ||
6415 op == nir_intrinsic_load_barycentric_at_offset)
6416 continue;
6417
6418 nir_instr *move[3] = {
6419 &bary_intrinsic->instr,
6420 intrin->src[1].ssa->parent_instr,
6421 instr
6422 };
6423
6424 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6425 if (move[i]->block != top) {
6426 move[i]->block = top;
6427 exec_node_remove(&move[i]->node);
6428 if (cursor_node) {
6429 exec_node_insert_after(cursor_node, &move[i]->node);
6430 } else {
6431 exec_list_push_head(&top->instr_list, &move[i]->node);
6432 }
6433 cursor_node = &move[i]->node;
6434 progress = true;
6435 }
6436 }
6437 }
6438 }
6439 nir_metadata_preserve(f->impl, (nir_metadata)
6440 ((unsigned) nir_metadata_block_index |
6441 (unsigned) nir_metadata_dominance));
6442 }
6443
6444 return progress;
6445 }
6446
6447 /**
6448 * Demote per-sample barycentric intrinsics to centroid.
6449 *
6450 * Useful when rendering to a non-multisampled buffer.
6451 */
6452 static bool
6453 demote_sample_qualifiers(nir_shader *nir)
6454 {
6455 bool progress = true;
6456
6457 nir_foreach_function(f, nir) {
6458 if (!f->impl)
6459 continue;
6460
6461 nir_builder b;
6462 nir_builder_init(&b, f->impl);
6463
6464 nir_foreach_block(block, f->impl) {
6465 nir_foreach_instr_safe(instr, block) {
6466 if (instr->type != nir_instr_type_intrinsic)
6467 continue;
6468
6469 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6470 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6471 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6472 continue;
6473
6474 b.cursor = nir_before_instr(instr);
6475 nir_ssa_def *centroid =
6476 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6477 nir_intrinsic_interp_mode(intrin));
6478 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6479 nir_src_for_ssa(centroid));
6480 nir_instr_remove(instr);
6481 progress = true;
6482 }
6483 }
6484
6485 nir_metadata_preserve(f->impl, (nir_metadata)
6486 ((unsigned) nir_metadata_block_index |
6487 (unsigned) nir_metadata_dominance));
6488 }
6489
6490 return progress;
6491 }
6492
6493 /**
6494 * Pre-gen6, the register file of the EUs was shared between threads,
6495 * and each thread used some subset allocated on a 16-register block
6496 * granularity. The unit states wanted these block counts.
6497 */
6498 static inline int
6499 brw_register_blocks(int reg_count)
6500 {
6501 return ALIGN(reg_count, 16) / 16 - 1;
6502 }
6503
6504 const unsigned *
6505 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6506 void *mem_ctx,
6507 const struct brw_wm_prog_key *key,
6508 struct brw_wm_prog_data *prog_data,
6509 const nir_shader *src_shader,
6510 struct gl_program *prog,
6511 int shader_time_index8, int shader_time_index16,
6512 bool allow_spilling,
6513 bool use_rep_send, struct brw_vue_map *vue_map,
6514 unsigned *final_assembly_size,
6515 char **error_str)
6516 {
6517 const struct gen_device_info *devinfo = compiler->devinfo;
6518
6519 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6520 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6521 brw_nir_lower_fs_inputs(shader, devinfo, key);
6522 brw_nir_lower_fs_outputs(shader);
6523
6524 if (devinfo->gen < 6) {
6525 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6526 }
6527
6528 if (!key->multisample_fbo)
6529 NIR_PASS_V(shader, demote_sample_qualifiers);
6530 NIR_PASS_V(shader, move_interpolation_to_top);
6531 shader = brw_postprocess_nir(shader, compiler, true);
6532
6533 /* key->alpha_test_func means simulating alpha testing via discards,
6534 * so the shader definitely kills pixels.
6535 */
6536 prog_data->uses_kill = shader->info.fs.uses_discard ||
6537 key->alpha_test_func;
6538 prog_data->uses_omask = key->multisample_fbo &&
6539 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6540 prog_data->computed_depth_mode = computed_depth_mode(shader);
6541 prog_data->computed_stencil =
6542 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6543
6544 prog_data->persample_dispatch =
6545 key->multisample_fbo &&
6546 (key->persample_interp ||
6547 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6548 SYSTEM_BIT_SAMPLE_POS)) ||
6549 shader->info.fs.uses_sample_qualifier ||
6550 shader->info.outputs_read);
6551
6552 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
6553
6554 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6555 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6556 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6557
6558 prog_data->barycentric_interp_modes =
6559 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6560
6561 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6562 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6563 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6564
6565 fs_visitor v8(compiler, log_data, mem_ctx, key,
6566 &prog_data->base, prog, shader, 8,
6567 shader_time_index8);
6568 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6569 if (error_str)
6570 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6571
6572 return NULL;
6573 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6574 simd8_cfg = v8.cfg;
6575 simd8_grf_start = v8.payload.num_regs;
6576 simd8_grf_used = v8.grf_used;
6577 }
6578
6579 if (v8.max_dispatch_width >= 16 &&
6580 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6581 /* Try a SIMD16 compile */
6582 fs_visitor v16(compiler, log_data, mem_ctx, key,
6583 &prog_data->base, prog, shader, 16,
6584 shader_time_index16);
6585 v16.import_uniforms(&v8);
6586 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6587 compiler->shader_perf_log(log_data,
6588 "SIMD16 shader failed to compile: %s",
6589 v16.fail_msg);
6590 } else {
6591 simd16_cfg = v16.cfg;
6592 simd16_grf_start = v16.payload.num_regs;
6593 simd16_grf_used = v16.grf_used;
6594 }
6595 }
6596
6597 /* When the caller requests a repclear shader, they want SIMD16-only */
6598 if (use_rep_send)
6599 simd8_cfg = NULL;
6600
6601 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6602 * at the top to select the shader. We've never implemented that.
6603 * Instead, we just give them exactly one shader and we pick the widest one
6604 * available.
6605 */
6606 if (compiler->devinfo->gen < 5 && simd16_cfg)
6607 simd8_cfg = NULL;
6608
6609 if (prog_data->persample_dispatch) {
6610 /* Starting with SandyBridge (where we first get MSAA), the different
6611 * pixel dispatch combinations are grouped into classifications A
6612 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6613 * generations, the only configurations supporting persample dispatch
6614 * are are this in which only one dispatch width is enabled.
6615 *
6616 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6617 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6618 */
6619 if (compiler->devinfo->gen == 6 &&
6620 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6621 simd16_cfg = NULL;
6622 } else if (simd16_cfg) {
6623 simd8_cfg = NULL;
6624 }
6625 }
6626
6627 /* We have to compute the flat inputs after the visitor is finished running
6628 * because it relies on prog_data->urb_setup which is computed in
6629 * fs_visitor::calculate_urb_setup().
6630 */
6631 brw_compute_flat_inputs(prog_data, shader);
6632
6633 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6634 v8.promoted_constants, v8.runtime_check_aads_emit,
6635 MESA_SHADER_FRAGMENT);
6636
6637 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6638 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6639 shader->info.label ?
6640 shader->info.label : "unnamed",
6641 shader->info.name));
6642 }
6643
6644 if (simd8_cfg) {
6645 prog_data->dispatch_8 = true;
6646 g.generate_code(simd8_cfg, 8);
6647 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6648 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6649
6650 if (simd16_cfg) {
6651 prog_data->dispatch_16 = true;
6652 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6653 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6654 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6655 }
6656 } else if (simd16_cfg) {
6657 prog_data->dispatch_16 = true;
6658 g.generate_code(simd16_cfg, 16);
6659 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6660 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6661 }
6662
6663 return g.get_assembly(final_assembly_size);
6664 }
6665
6666 fs_reg *
6667 fs_visitor::emit_cs_work_group_id_setup()
6668 {
6669 assert(stage == MESA_SHADER_COMPUTE);
6670
6671 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6672
6673 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6674 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6675 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6676
6677 bld.MOV(*reg, r0_1);
6678 bld.MOV(offset(*reg, bld, 1), r0_6);
6679 bld.MOV(offset(*reg, bld, 2), r0_7);
6680
6681 return reg;
6682 }
6683
6684 static void
6685 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6686 {
6687 block->dwords = dwords;
6688 block->regs = DIV_ROUND_UP(dwords, 8);
6689 block->size = block->regs * 32;
6690 }
6691
6692 static void
6693 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6694 struct brw_cs_prog_data *cs_prog_data)
6695 {
6696 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6697 bool fill_thread_id =
6698 cs_prog_data->thread_local_id_index >= 0 &&
6699 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6700 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6701
6702 /* The thread ID should be stored in the last param dword */
6703 assert(prog_data->nr_params > 0 || !fill_thread_id);
6704 assert(!fill_thread_id ||
6705 cs_prog_data->thread_local_id_index ==
6706 (int)prog_data->nr_params - 1);
6707
6708 unsigned cross_thread_dwords, per_thread_dwords;
6709 if (!cross_thread_supported) {
6710 cross_thread_dwords = 0u;
6711 per_thread_dwords = prog_data->nr_params;
6712 } else if (fill_thread_id) {
6713 /* Fill all but the last register with cross-thread payload */
6714 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6715 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6716 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6717 } else {
6718 /* Fill all data using cross-thread payload */
6719 cross_thread_dwords = prog_data->nr_params;
6720 per_thread_dwords = 0u;
6721 }
6722
6723 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6724 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6725
6726 unsigned total_dwords =
6727 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6728 cs_prog_data->push.cross_thread.size) / 4;
6729 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6730
6731 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6732 cs_prog_data->push.per_thread.size == 0);
6733 assert(cs_prog_data->push.cross_thread.dwords +
6734 cs_prog_data->push.per_thread.dwords ==
6735 prog_data->nr_params);
6736 }
6737
6738 static void
6739 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6740 {
6741 cs_prog_data->simd_size = size;
6742 unsigned group_size = cs_prog_data->local_size[0] *
6743 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6744 cs_prog_data->threads = (group_size + size - 1) / size;
6745 }
6746
6747 const unsigned *
6748 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6749 void *mem_ctx,
6750 const struct brw_cs_prog_key *key,
6751 struct brw_cs_prog_data *prog_data,
6752 const nir_shader *src_shader,
6753 int shader_time_index,
6754 unsigned *final_assembly_size,
6755 char **error_str)
6756 {
6757 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6758 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6759
6760 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6761 * the thread_local_id_index.
6762 */
6763 assert(prog_data->thread_local_id_index >= 0);
6764 shader->num_uniforms =
6765 MAX2(shader->num_uniforms,
6766 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6767
6768 brw_nir_lower_intrinsics(shader, &prog_data->base);
6769 shader = brw_postprocess_nir(shader, compiler, true);
6770
6771 prog_data->local_size[0] = shader->info.cs.local_size[0];
6772 prog_data->local_size[1] = shader->info.cs.local_size[1];
6773 prog_data->local_size[2] = shader->info.cs.local_size[2];
6774 unsigned local_workgroup_size =
6775 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6776 shader->info.cs.local_size[2];
6777
6778 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6779 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6780
6781 cfg_t *cfg = NULL;
6782 const char *fail_msg = NULL;
6783
6784 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6785 */
6786 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6787 NULL, /* Never used in core profile */
6788 shader, 8, shader_time_index);
6789 if (simd_required <= 8) {
6790 if (!v8.run_cs()) {
6791 fail_msg = v8.fail_msg;
6792 } else {
6793 cfg = v8.cfg;
6794 cs_set_simd_size(prog_data, 8);
6795 cs_fill_push_const_info(compiler->devinfo, prog_data);
6796 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6797 }
6798 }
6799
6800 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6801 NULL, /* Never used in core profile */
6802 shader, 16, shader_time_index);
6803 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6804 !fail_msg && v8.max_dispatch_width >= 16 &&
6805 simd_required <= 16) {
6806 /* Try a SIMD16 compile */
6807 if (simd_required <= 8)
6808 v16.import_uniforms(&v8);
6809 if (!v16.run_cs()) {
6810 compiler->shader_perf_log(log_data,
6811 "SIMD16 shader failed to compile: %s",
6812 v16.fail_msg);
6813 if (!cfg) {
6814 fail_msg =
6815 "Couldn't generate SIMD16 program and not "
6816 "enough threads for SIMD8";
6817 }
6818 } else {
6819 cfg = v16.cfg;
6820 cs_set_simd_size(prog_data, 16);
6821 cs_fill_push_const_info(compiler->devinfo, prog_data);
6822 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6823 }
6824 }
6825
6826 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6827 NULL, /* Never used in core profile */
6828 shader, 32, shader_time_index);
6829 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6830 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6831 /* Try a SIMD32 compile */
6832 if (simd_required <= 8)
6833 v32.import_uniforms(&v8);
6834 else if (simd_required <= 16)
6835 v32.import_uniforms(&v16);
6836
6837 if (!v32.run_cs()) {
6838 compiler->shader_perf_log(log_data,
6839 "SIMD32 shader failed to compile: %s",
6840 v16.fail_msg);
6841 if (!cfg) {
6842 fail_msg =
6843 "Couldn't generate SIMD32 program and not "
6844 "enough threads for SIMD16";
6845 }
6846 } else {
6847 cfg = v32.cfg;
6848 cs_set_simd_size(prog_data, 32);
6849 cs_fill_push_const_info(compiler->devinfo, prog_data);
6850 }
6851 }
6852
6853 if (unlikely(cfg == NULL)) {
6854 assert(fail_msg);
6855 if (error_str)
6856 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6857
6858 return NULL;
6859 }
6860
6861 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6862 v8.promoted_constants, v8.runtime_check_aads_emit,
6863 MESA_SHADER_COMPUTE);
6864 if (INTEL_DEBUG & DEBUG_CS) {
6865 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6866 shader->info.label ? shader->info.label :
6867 "unnamed",
6868 shader->info.name);
6869 g.enable_debug(name);
6870 }
6871
6872 g.generate_code(cfg, prog_data->simd_size);
6873
6874 return g.get_assembly(final_assembly_size);
6875 }
6876
6877 /**
6878 * Test the dispatch mask packing assumptions of
6879 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6880 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6881 * executed with an unexpected dispatch mask.
6882 */
6883 static UNUSED void
6884 brw_fs_test_dispatch_packing(const fs_builder &bld)
6885 {
6886 const gl_shader_stage stage = bld.shader->stage;
6887
6888 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6889 bld.shader->stage_prog_data)) {
6890 const fs_builder ubld = bld.exec_all().group(1, 0);
6891 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6892 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6893 brw_dmask_reg());
6894
6895 ubld.ADD(tmp, mask, brw_imm_ud(1));
6896 ubld.AND(tmp, mask, tmp);
6897
6898 /* This will loop forever if the dispatch mask doesn't have the expected
6899 * form '2^n-1', in which case tmp will be non-zero.
6900 */
6901 bld.emit(BRW_OPCODE_DO);
6902 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6903 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6904 }
6905 }