intel/fs: Implement GRF bank conflict mitigation pass.
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 fs_reg dw = offset(vec4_result, bld, (const_offset & 0xf) / 4);
195 switch (type_sz(dst.type)) {
196 case 2:
197 shuffle_32bit_load_result_to_16bit_data(bld, dst, dw, 1);
198 bld.MOV(dst, subscript(dw, dst.type, (const_offset / 2) & 1));
199 break;
200 case 4:
201 bld.MOV(dst, retype(dw, dst.type));
202 break;
203 case 8:
204 shuffle_32bit_load_result_to_64bit_data(bld, dst, dw, 1);
205 break;
206 default:
207 unreachable("Unsupported bit_size");
208 }
209 }
210
211 /**
212 * A helper for MOV generation for fixing up broken hardware SEND dependency
213 * handling.
214 */
215 void
216 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
217 {
218 /* The caller always wants uncompressed to emit the minimal extra
219 * dependencies, and to avoid having to deal with aligning its regs to 2.
220 */
221 const fs_builder ubld = bld.annotate("send dependency resolve")
222 .half(0);
223
224 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
225 }
226
227 bool
228 fs_inst::equals(fs_inst *inst) const
229 {
230 return (opcode == inst->opcode &&
231 dst.equals(inst->dst) &&
232 src[0].equals(inst->src[0]) &&
233 src[1].equals(inst->src[1]) &&
234 src[2].equals(inst->src[2]) &&
235 saturate == inst->saturate &&
236 predicate == inst->predicate &&
237 conditional_mod == inst->conditional_mod &&
238 mlen == inst->mlen &&
239 base_mrf == inst->base_mrf &&
240 target == inst->target &&
241 eot == inst->eot &&
242 header_size == inst->header_size &&
243 shadow_compare == inst->shadow_compare &&
244 exec_size == inst->exec_size &&
245 offset == inst->offset);
246 }
247
248 bool
249 fs_inst::is_send_from_grf() const
250 {
251 switch (opcode) {
252 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
253 case SHADER_OPCODE_SHADER_TIME_ADD:
254 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
255 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
256 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
257 case SHADER_OPCODE_UNTYPED_ATOMIC:
258 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
259 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
260 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
261 case SHADER_OPCODE_BYTE_SCATTERED_READ:
262 case SHADER_OPCODE_TYPED_ATOMIC:
263 case SHADER_OPCODE_TYPED_SURFACE_READ:
264 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
265 case SHADER_OPCODE_URB_WRITE_SIMD8:
266 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
267 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
268 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
269 case SHADER_OPCODE_URB_READ_SIMD8:
270 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
271 return true;
272 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
273 return src[1].file == VGRF;
274 case FS_OPCODE_FB_WRITE:
275 case FS_OPCODE_FB_READ:
276 return src[0].file == VGRF;
277 default:
278 if (is_tex())
279 return src[0].file == VGRF;
280
281 return false;
282 }
283 }
284
285 /**
286 * Returns true if this instruction's sources and destinations cannot
287 * safely be the same register.
288 *
289 * In most cases, a register can be written over safely by the same
290 * instruction that is its last use. For a single instruction, the
291 * sources are dereferenced before writing of the destination starts
292 * (naturally).
293 *
294 * However, there are a few cases where this can be problematic:
295 *
296 * - Virtual opcodes that translate to multiple instructions in the
297 * code generator: if src == dst and one instruction writes the
298 * destination before a later instruction reads the source, then
299 * src will have been clobbered.
300 *
301 * - SIMD16 compressed instructions with certain regioning (see below).
302 *
303 * The register allocator uses this information to set up conflicts between
304 * GRF sources and the destination.
305 */
306 bool
307 fs_inst::has_source_and_destination_hazard() const
308 {
309 switch (opcode) {
310 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
311 /* Multiple partial writes to the destination */
312 return true;
313 default:
314 /* The SIMD16 compressed instruction
315 *
316 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
317 *
318 * is actually decoded in hardware as:
319 *
320 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
321 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
322 *
323 * Which is safe. However, if we have uniform accesses
324 * happening, we get into trouble:
325 *
326 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
327 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
328 *
329 * Now our destination for the first instruction overwrote the
330 * second instruction's src0, and we get garbage for those 8
331 * pixels. There's a similar issue for the pre-gen6
332 * pixel_x/pixel_y, which are registers of 16-bit values and thus
333 * would get stomped by the first decode as well.
334 */
335 if (exec_size == 16) {
336 for (int i = 0; i < sources; i++) {
337 if (src[i].file == VGRF && (src[i].stride == 0 ||
338 src[i].type == BRW_REGISTER_TYPE_UW ||
339 src[i].type == BRW_REGISTER_TYPE_W ||
340 src[i].type == BRW_REGISTER_TYPE_UB ||
341 src[i].type == BRW_REGISTER_TYPE_B)) {
342 return true;
343 }
344 }
345 }
346 return false;
347 }
348 }
349
350 bool
351 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
352 {
353 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
354 return false;
355
356 fs_reg reg = this->src[0];
357 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
358 return false;
359
360 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
361 return false;
362
363 for (int i = 0; i < this->sources; i++) {
364 reg.type = this->src[i].type;
365 if (!this->src[i].equals(reg))
366 return false;
367
368 if (i < this->header_size) {
369 reg.offset += REG_SIZE;
370 } else {
371 reg = horiz_offset(reg, this->exec_size);
372 }
373 }
374
375 return true;
376 }
377
378 bool
379 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
380 {
381 if (devinfo->gen == 6 && is_math())
382 return false;
383
384 if (is_send_from_grf())
385 return false;
386
387 if (!backend_instruction::can_do_source_mods())
388 return false;
389
390 return true;
391 }
392
393 bool
394 fs_inst::can_change_types() const
395 {
396 return dst.type == src[0].type &&
397 !src[0].abs && !src[0].negate && !saturate &&
398 (opcode == BRW_OPCODE_MOV ||
399 (opcode == BRW_OPCODE_SEL &&
400 dst.type == src[1].type &&
401 predicate != BRW_PREDICATE_NONE &&
402 !src[1].abs && !src[1].negate));
403 }
404
405 void
406 fs_reg::init()
407 {
408 memset(this, 0, sizeof(*this));
409 type = BRW_REGISTER_TYPE_UD;
410 stride = 1;
411 }
412
413 /** Generic unset register constructor. */
414 fs_reg::fs_reg()
415 {
416 init();
417 this->file = BAD_FILE;
418 }
419
420 fs_reg::fs_reg(struct ::brw_reg reg) :
421 backend_reg(reg)
422 {
423 this->offset = 0;
424 this->stride = 1;
425 if (this->file == IMM &&
426 (this->type != BRW_REGISTER_TYPE_V &&
427 this->type != BRW_REGISTER_TYPE_UV &&
428 this->type != BRW_REGISTER_TYPE_VF)) {
429 this->stride = 0;
430 }
431 }
432
433 bool
434 fs_reg::equals(const fs_reg &r) const
435 {
436 return (this->backend_reg::equals(r) &&
437 stride == r.stride);
438 }
439
440 bool
441 fs_reg::is_contiguous() const
442 {
443 return stride == 1;
444 }
445
446 unsigned
447 fs_reg::component_size(unsigned width) const
448 {
449 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
450 hstride == 0 ? 0 :
451 1 << (hstride - 1));
452 return MAX2(width * stride, 1) * type_sz(type);
453 }
454
455 extern "C" int
456 type_size_scalar(const struct glsl_type *type)
457 {
458 unsigned int size, i;
459
460 switch (type->base_type) {
461 case GLSL_TYPE_UINT:
462 case GLSL_TYPE_INT:
463 case GLSL_TYPE_FLOAT:
464 case GLSL_TYPE_BOOL:
465 return type->components();
466 case GLSL_TYPE_UINT16:
467 case GLSL_TYPE_INT16:
468 case GLSL_TYPE_FLOAT16:
469 return DIV_ROUND_UP(type->components(), 2);
470 case GLSL_TYPE_DOUBLE:
471 case GLSL_TYPE_UINT64:
472 case GLSL_TYPE_INT64:
473 return type->components() * 2;
474 case GLSL_TYPE_ARRAY:
475 return type_size_scalar(type->fields.array) * type->length;
476 case GLSL_TYPE_STRUCT:
477 size = 0;
478 for (i = 0; i < type->length; i++) {
479 size += type_size_scalar(type->fields.structure[i].type);
480 }
481 return size;
482 case GLSL_TYPE_SAMPLER:
483 /* Samplers take up no register space, since they're baked in at
484 * link time.
485 */
486 return 0;
487 case GLSL_TYPE_ATOMIC_UINT:
488 return 0;
489 case GLSL_TYPE_SUBROUTINE:
490 return 1;
491 case GLSL_TYPE_IMAGE:
492 return BRW_IMAGE_PARAM_SIZE;
493 case GLSL_TYPE_VOID:
494 case GLSL_TYPE_ERROR:
495 case GLSL_TYPE_INTERFACE:
496 case GLSL_TYPE_FUNCTION:
497 unreachable("not reached");
498 }
499
500 return 0;
501 }
502
503 /**
504 * Create a MOV to read the timestamp register.
505 *
506 * The caller is responsible for emitting the MOV. The return value is
507 * the destination of the MOV, with extra parameters set.
508 */
509 fs_reg
510 fs_visitor::get_timestamp(const fs_builder &bld)
511 {
512 assert(devinfo->gen >= 7);
513
514 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
515 BRW_ARF_TIMESTAMP,
516 0),
517 BRW_REGISTER_TYPE_UD));
518
519 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
520
521 /* We want to read the 3 fields we care about even if it's not enabled in
522 * the dispatch.
523 */
524 bld.group(4, 0).exec_all().MOV(dst, ts);
525
526 return dst;
527 }
528
529 void
530 fs_visitor::emit_shader_time_begin()
531 {
532 /* We want only the low 32 bits of the timestamp. Since it's running
533 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
534 * which is plenty of time for our purposes. It is identical across the
535 * EUs, but since it's tracking GPU core speed it will increment at a
536 * varying rate as render P-states change.
537 */
538 shader_start_time = component(
539 get_timestamp(bld.annotate("shader time start")), 0);
540 }
541
542 void
543 fs_visitor::emit_shader_time_end()
544 {
545 /* Insert our code just before the final SEND with EOT. */
546 exec_node *end = this->instructions.get_tail();
547 assert(end && ((fs_inst *) end)->eot);
548 const fs_builder ibld = bld.annotate("shader time end")
549 .exec_all().at(NULL, end);
550 const fs_reg timestamp = get_timestamp(ibld);
551
552 /* We only use the low 32 bits of the timestamp - see
553 * emit_shader_time_begin()).
554 *
555 * We could also check if render P-states have changed (or anything
556 * else that might disrupt timing) by setting smear to 2 and checking if
557 * that field is != 0.
558 */
559 const fs_reg shader_end_time = component(timestamp, 0);
560
561 /* Check that there weren't any timestamp reset events (assuming these
562 * were the only two timestamp reads that happened).
563 */
564 const fs_reg reset = component(timestamp, 2);
565 set_condmod(BRW_CONDITIONAL_Z,
566 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
567 ibld.IF(BRW_PREDICATE_NORMAL);
568
569 fs_reg start = shader_start_time;
570 start.negate = true;
571 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
572 BRW_REGISTER_TYPE_UD),
573 0);
574 const fs_builder cbld = ibld.group(1, 0);
575 cbld.group(1, 0).ADD(diff, start, shader_end_time);
576
577 /* If there were no instructions between the two timestamp gets, the diff
578 * is 2 cycles. Remove that overhead, so I can forget about that when
579 * trying to determine the time taken for single instructions.
580 */
581 cbld.ADD(diff, diff, brw_imm_ud(-2u));
582 SHADER_TIME_ADD(cbld, 0, diff);
583 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
584 ibld.emit(BRW_OPCODE_ELSE);
585 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
586 ibld.emit(BRW_OPCODE_ENDIF);
587 }
588
589 void
590 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
591 int shader_time_subindex,
592 fs_reg value)
593 {
594 int index = shader_time_index * 3 + shader_time_subindex;
595 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
596
597 fs_reg payload;
598 if (dispatch_width == 8)
599 payload = vgrf(glsl_type::uvec2_type);
600 else
601 payload = vgrf(glsl_type::uint_type);
602
603 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
604 }
605
606 void
607 fs_visitor::vfail(const char *format, va_list va)
608 {
609 char *msg;
610
611 if (failed)
612 return;
613
614 failed = true;
615
616 msg = ralloc_vasprintf(mem_ctx, format, va);
617 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
618
619 this->fail_msg = msg;
620
621 if (debug_enabled) {
622 fprintf(stderr, "%s", msg);
623 }
624 }
625
626 void
627 fs_visitor::fail(const char *format, ...)
628 {
629 va_list va;
630
631 va_start(va, format);
632 vfail(format, va);
633 va_end(va);
634 }
635
636 /**
637 * Mark this program as impossible to compile with dispatch width greater
638 * than n.
639 *
640 * During the SIMD8 compile (which happens first), we can detect and flag
641 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
642 * SIMD16+ compile altogether.
643 *
644 * During a compile of dispatch width greater than n (if one happens anyway),
645 * this just calls fail().
646 */
647 void
648 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
649 {
650 if (dispatch_width > n) {
651 fail("%s", msg);
652 } else {
653 max_dispatch_width = n;
654 compiler->shader_perf_log(log_data,
655 "Shader dispatch width limited to SIMD%d: %s",
656 n, msg);
657 }
658 }
659
660 /**
661 * Returns true if the instruction has a flag that means it won't
662 * update an entire destination register.
663 *
664 * For example, dead code elimination and live variable analysis want to know
665 * when a write to a variable screens off any preceding values that were in
666 * it.
667 */
668 bool
669 fs_inst::is_partial_write() const
670 {
671 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
672 (this->exec_size * type_sz(this->dst.type)) < 32 ||
673 !this->dst.is_contiguous() ||
674 this->dst.offset % REG_SIZE != 0);
675 }
676
677 unsigned
678 fs_inst::components_read(unsigned i) const
679 {
680 /* Return zero if the source is not present. */
681 if (src[i].file == BAD_FILE)
682 return 0;
683
684 switch (opcode) {
685 case FS_OPCODE_LINTERP:
686 if (i == 0)
687 return 2;
688 else
689 return 1;
690
691 case FS_OPCODE_PIXEL_X:
692 case FS_OPCODE_PIXEL_Y:
693 assert(i == 0);
694 return 2;
695
696 case FS_OPCODE_FB_WRITE_LOGICAL:
697 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
698 /* First/second FB write color. */
699 if (i < 2)
700 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
701 else
702 return 1;
703
704 case SHADER_OPCODE_TEX_LOGICAL:
705 case SHADER_OPCODE_TXD_LOGICAL:
706 case SHADER_OPCODE_TXF_LOGICAL:
707 case SHADER_OPCODE_TXL_LOGICAL:
708 case SHADER_OPCODE_TXS_LOGICAL:
709 case FS_OPCODE_TXB_LOGICAL:
710 case SHADER_OPCODE_TXF_CMS_LOGICAL:
711 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
712 case SHADER_OPCODE_TXF_UMS_LOGICAL:
713 case SHADER_OPCODE_TXF_MCS_LOGICAL:
714 case SHADER_OPCODE_LOD_LOGICAL:
715 case SHADER_OPCODE_TG4_LOGICAL:
716 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
717 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
718 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
719 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
720 /* Texture coordinates. */
721 if (i == TEX_LOGICAL_SRC_COORDINATE)
722 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
723 /* Texture derivatives. */
724 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
725 opcode == SHADER_OPCODE_TXD_LOGICAL)
726 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
727 /* Texture offset. */
728 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
729 return 2;
730 /* MCS */
731 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
732 return 2;
733 else
734 return 1;
735
736 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
737 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
738 assert(src[3].file == IMM);
739 /* Surface coordinates. */
740 if (i == 0)
741 return src[3].ud;
742 /* Surface operation source (ignored for reads). */
743 else if (i == 1)
744 return 0;
745 else
746 return 1;
747
748 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
749 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
750 assert(src[3].file == IMM &&
751 src[4].file == IMM);
752 /* Surface coordinates. */
753 if (i == 0)
754 return src[3].ud;
755 /* Surface operation source. */
756 else if (i == 1)
757 return src[4].ud;
758 else
759 return 1;
760
761 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
762 /* Scattered logical opcodes use the following params:
763 * src[0] Surface coordinates
764 * src[1] Surface operation source (ignored for reads)
765 * src[2] Surface
766 * src[3] IMM with always 1 dimension.
767 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
768 */
769 assert(src[3].file == IMM &&
770 src[4].file == IMM);
771 return i == 1 ? 0 : 1;
772
773 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
774 assert(src[3].file == IMM &&
775 src[4].file == IMM);
776 return 1;
777
778 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
779 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
780 assert(src[3].file == IMM &&
781 src[4].file == IMM);
782 const unsigned op = src[4].ud;
783 /* Surface coordinates. */
784 if (i == 0)
785 return src[3].ud;
786 /* Surface operation source. */
787 else if (i == 1 && op == BRW_AOP_CMPWR)
788 return 2;
789 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
790 op == BRW_AOP_PREDEC))
791 return 0;
792 else
793 return 1;
794 }
795
796 default:
797 return 1;
798 }
799 }
800
801 unsigned
802 fs_inst::size_read(int arg) const
803 {
804 switch (opcode) {
805 case FS_OPCODE_FB_WRITE:
806 case FS_OPCODE_FB_READ:
807 case SHADER_OPCODE_URB_WRITE_SIMD8:
808 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
809 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
810 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
811 case SHADER_OPCODE_URB_READ_SIMD8:
812 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
813 case SHADER_OPCODE_UNTYPED_ATOMIC:
814 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
815 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
816 case SHADER_OPCODE_TYPED_ATOMIC:
817 case SHADER_OPCODE_TYPED_SURFACE_READ:
818 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
819 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
820 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
821 case SHADER_OPCODE_BYTE_SCATTERED_READ:
822 if (arg == 0)
823 return mlen * REG_SIZE;
824 break;
825
826 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
827 /* The payload is actually stored in src1 */
828 if (arg == 1)
829 return mlen * REG_SIZE;
830 break;
831
832 case FS_OPCODE_LINTERP:
833 if (arg == 1)
834 return 16;
835 break;
836
837 case SHADER_OPCODE_LOAD_PAYLOAD:
838 if (arg < this->header_size)
839 return REG_SIZE;
840 break;
841
842 case CS_OPCODE_CS_TERMINATE:
843 case SHADER_OPCODE_BARRIER:
844 return REG_SIZE;
845
846 case SHADER_OPCODE_MOV_INDIRECT:
847 if (arg == 0) {
848 assert(src[2].file == IMM);
849 return src[2].ud;
850 }
851 break;
852
853 default:
854 if (is_tex() && arg == 0 && src[0].file == VGRF)
855 return mlen * REG_SIZE;
856 break;
857 }
858
859 switch (src[arg].file) {
860 case UNIFORM:
861 case IMM:
862 return components_read(arg) * type_sz(src[arg].type);
863 case BAD_FILE:
864 case ARF:
865 case FIXED_GRF:
866 case VGRF:
867 case ATTR:
868 return components_read(arg) * src[arg].component_size(exec_size);
869 case MRF:
870 unreachable("MRF registers are not allowed as sources");
871 }
872 return 0;
873 }
874
875 namespace {
876 /* Return the subset of flag registers that an instruction could
877 * potentially read or write based on the execution controls and flag
878 * subregister number of the instruction.
879 */
880 unsigned
881 flag_mask(const fs_inst *inst)
882 {
883 const unsigned start = inst->flag_subreg * 16 + inst->group;
884 const unsigned end = start + inst->exec_size;
885 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
886 }
887
888 unsigned
889 bit_mask(unsigned n)
890 {
891 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
892 }
893
894 unsigned
895 flag_mask(const fs_reg &r, unsigned sz)
896 {
897 if (r.file == ARF) {
898 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
899 const unsigned end = start + sz;
900 return bit_mask(end) & ~bit_mask(start);
901 } else {
902 return 0;
903 }
904 }
905 }
906
907 unsigned
908 fs_inst::flags_read(const gen_device_info *devinfo) const
909 {
910 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
911 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
912 /* The vertical predication modes combine corresponding bits from
913 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
914 */
915 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
916 return flag_mask(this) << shift | flag_mask(this);
917 } else if (predicate) {
918 return flag_mask(this);
919 } else {
920 unsigned mask = 0;
921 for (int i = 0; i < sources; i++) {
922 mask |= flag_mask(src[i], size_read(i));
923 }
924 return mask;
925 }
926 }
927
928 unsigned
929 fs_inst::flags_written() const
930 {
931 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
932 opcode != BRW_OPCODE_IF &&
933 opcode != BRW_OPCODE_WHILE)) ||
934 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
935 return flag_mask(this);
936 } else {
937 return flag_mask(dst, size_written);
938 }
939 }
940
941 /**
942 * Returns how many MRFs an FS opcode will write over.
943 *
944 * Note that this is not the 0 or 1 implied writes in an actual gen
945 * instruction -- the FS opcodes often generate MOVs in addition.
946 */
947 int
948 fs_visitor::implied_mrf_writes(fs_inst *inst)
949 {
950 if (inst->mlen == 0)
951 return 0;
952
953 if (inst->base_mrf == -1)
954 return 0;
955
956 switch (inst->opcode) {
957 case SHADER_OPCODE_RCP:
958 case SHADER_OPCODE_RSQ:
959 case SHADER_OPCODE_SQRT:
960 case SHADER_OPCODE_EXP2:
961 case SHADER_OPCODE_LOG2:
962 case SHADER_OPCODE_SIN:
963 case SHADER_OPCODE_COS:
964 return 1 * dispatch_width / 8;
965 case SHADER_OPCODE_POW:
966 case SHADER_OPCODE_INT_QUOTIENT:
967 case SHADER_OPCODE_INT_REMAINDER:
968 return 2 * dispatch_width / 8;
969 case SHADER_OPCODE_TEX:
970 case FS_OPCODE_TXB:
971 case SHADER_OPCODE_TXD:
972 case SHADER_OPCODE_TXF:
973 case SHADER_OPCODE_TXF_CMS:
974 case SHADER_OPCODE_TXF_MCS:
975 case SHADER_OPCODE_TG4:
976 case SHADER_OPCODE_TG4_OFFSET:
977 case SHADER_OPCODE_TXL:
978 case SHADER_OPCODE_TXS:
979 case SHADER_OPCODE_LOD:
980 case SHADER_OPCODE_SAMPLEINFO:
981 return 1;
982 case FS_OPCODE_FB_WRITE:
983 return 2;
984 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
985 case SHADER_OPCODE_GEN4_SCRATCH_READ:
986 return 1;
987 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
988 return inst->mlen;
989 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
990 return inst->mlen;
991 default:
992 unreachable("not reached");
993 }
994 }
995
996 fs_reg
997 fs_visitor::vgrf(const glsl_type *const type)
998 {
999 int reg_width = dispatch_width / 8;
1000 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
1001 brw_type_for_base_type(type));
1002 }
1003
1004 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1005 {
1006 init();
1007 this->file = file;
1008 this->nr = nr;
1009 this->type = BRW_REGISTER_TYPE_F;
1010 this->stride = (file == UNIFORM ? 0 : 1);
1011 }
1012
1013 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1014 {
1015 init();
1016 this->file = file;
1017 this->nr = nr;
1018 this->type = type;
1019 this->stride = (file == UNIFORM ? 0 : 1);
1020 }
1021
1022 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1023 * This brings in those uniform definitions
1024 */
1025 void
1026 fs_visitor::import_uniforms(fs_visitor *v)
1027 {
1028 this->push_constant_loc = v->push_constant_loc;
1029 this->pull_constant_loc = v->pull_constant_loc;
1030 this->uniforms = v->uniforms;
1031 this->subgroup_id = v->subgroup_id;
1032 }
1033
1034 void
1035 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1036 {
1037 assert(stage == MESA_SHADER_FRAGMENT);
1038
1039 /* gl_FragCoord.x */
1040 bld.MOV(wpos, this->pixel_x);
1041 wpos = offset(wpos, bld, 1);
1042
1043 /* gl_FragCoord.y */
1044 bld.MOV(wpos, this->pixel_y);
1045 wpos = offset(wpos, bld, 1);
1046
1047 /* gl_FragCoord.z */
1048 if (devinfo->gen >= 6) {
1049 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1050 } else {
1051 bld.emit(FS_OPCODE_LINTERP, wpos,
1052 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1053 interp_reg(VARYING_SLOT_POS, 2));
1054 }
1055 wpos = offset(wpos, bld, 1);
1056
1057 /* gl_FragCoord.w: Already set up in emit_interpolation */
1058 bld.MOV(wpos, this->wpos_w);
1059 }
1060
1061 enum brw_barycentric_mode
1062 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1063 {
1064 /* Barycentric modes don't make sense for flat inputs. */
1065 assert(mode != INTERP_MODE_FLAT);
1066
1067 unsigned bary;
1068 switch (op) {
1069 case nir_intrinsic_load_barycentric_pixel:
1070 case nir_intrinsic_load_barycentric_at_offset:
1071 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1072 break;
1073 case nir_intrinsic_load_barycentric_centroid:
1074 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1075 break;
1076 case nir_intrinsic_load_barycentric_sample:
1077 case nir_intrinsic_load_barycentric_at_sample:
1078 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1079 break;
1080 default:
1081 unreachable("invalid intrinsic");
1082 }
1083
1084 if (mode == INTERP_MODE_NOPERSPECTIVE)
1085 bary += 3;
1086
1087 return (enum brw_barycentric_mode) bary;
1088 }
1089
1090 /**
1091 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1092 */
1093 static enum brw_barycentric_mode
1094 centroid_to_pixel(enum brw_barycentric_mode bary)
1095 {
1096 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1097 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1098 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1099 }
1100
1101 fs_reg *
1102 fs_visitor::emit_frontfacing_interpolation()
1103 {
1104 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1105
1106 if (devinfo->gen >= 6) {
1107 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1108 * a boolean result from this (~0/true or 0/false).
1109 *
1110 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1111 * this task in only one instruction:
1112 * - a negation source modifier will flip the bit; and
1113 * - a W -> D type conversion will sign extend the bit into the high
1114 * word of the destination.
1115 *
1116 * An ASR 15 fills the low word of the destination.
1117 */
1118 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1119 g0.negate = true;
1120
1121 bld.ASR(*reg, g0, brw_imm_d(15));
1122 } else {
1123 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1124 * a boolean result from this (1/true or 0/false).
1125 *
1126 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1127 * the negation source modifier to flip it. Unfortunately the SHR
1128 * instruction only operates on UD (or D with an abs source modifier)
1129 * sources without negation.
1130 *
1131 * Instead, use ASR (which will give ~0/true or 0/false).
1132 */
1133 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1134 g1_6.negate = true;
1135
1136 bld.ASR(*reg, g1_6, brw_imm_d(31));
1137 }
1138
1139 return reg;
1140 }
1141
1142 void
1143 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1144 {
1145 assert(stage == MESA_SHADER_FRAGMENT);
1146 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1147 assert(dst.type == BRW_REGISTER_TYPE_F);
1148
1149 if (wm_prog_data->persample_dispatch) {
1150 /* Convert int_sample_pos to floating point */
1151 bld.MOV(dst, int_sample_pos);
1152 /* Scale to the range [0, 1] */
1153 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1154 }
1155 else {
1156 /* From ARB_sample_shading specification:
1157 * "When rendering to a non-multisample buffer, or if multisample
1158 * rasterization is disabled, gl_SamplePosition will always be
1159 * (0.5, 0.5).
1160 */
1161 bld.MOV(dst, brw_imm_f(0.5f));
1162 }
1163 }
1164
1165 fs_reg *
1166 fs_visitor::emit_samplepos_setup()
1167 {
1168 assert(devinfo->gen >= 6);
1169
1170 const fs_builder abld = bld.annotate("compute sample position");
1171 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1172 fs_reg pos = *reg;
1173 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1174 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1175
1176 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1177 * mode will be enabled.
1178 *
1179 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1180 * R31.1:0 Position Offset X/Y for Slot[3:0]
1181 * R31.3:2 Position Offset X/Y for Slot[7:4]
1182 * .....
1183 *
1184 * The X, Y sample positions come in as bytes in thread payload. So, read
1185 * the positions using vstride=16, width=8, hstride=2.
1186 */
1187 struct brw_reg sample_pos_reg =
1188 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1189 BRW_REGISTER_TYPE_B), 16, 8, 2);
1190
1191 if (dispatch_width == 8) {
1192 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1193 } else {
1194 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1195 abld.half(1).MOV(half(int_sample_x, 1),
1196 fs_reg(suboffset(sample_pos_reg, 16)));
1197 }
1198 /* Compute gl_SamplePosition.x */
1199 compute_sample_position(pos, int_sample_x);
1200 pos = offset(pos, abld, 1);
1201 if (dispatch_width == 8) {
1202 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1203 } else {
1204 abld.half(0).MOV(half(int_sample_y, 0),
1205 fs_reg(suboffset(sample_pos_reg, 1)));
1206 abld.half(1).MOV(half(int_sample_y, 1),
1207 fs_reg(suboffset(sample_pos_reg, 17)));
1208 }
1209 /* Compute gl_SamplePosition.y */
1210 compute_sample_position(pos, int_sample_y);
1211 return reg;
1212 }
1213
1214 fs_reg *
1215 fs_visitor::emit_sampleid_setup()
1216 {
1217 assert(stage == MESA_SHADER_FRAGMENT);
1218 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1219 assert(devinfo->gen >= 6);
1220
1221 const fs_builder abld = bld.annotate("compute sample id");
1222 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1223
1224 if (!key->multisample_fbo) {
1225 /* As per GL_ARB_sample_shading specification:
1226 * "When rendering to a non-multisample buffer, or if multisample
1227 * rasterization is disabled, gl_SampleID will always be zero."
1228 */
1229 abld.MOV(*reg, brw_imm_d(0));
1230 } else if (devinfo->gen >= 8) {
1231 /* Sample ID comes in as 4-bit numbers in g1.0:
1232 *
1233 * 15:12 Slot 3 SampleID (only used in SIMD16)
1234 * 11:8 Slot 2 SampleID (only used in SIMD16)
1235 * 7:4 Slot 1 SampleID
1236 * 3:0 Slot 0 SampleID
1237 *
1238 * Each slot corresponds to four channels, so we want to replicate each
1239 * half-byte value to 4 channels in a row:
1240 *
1241 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1242 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1243 *
1244 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1245 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1246 *
1247 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1248 * channels to read the first byte (7:0), and the second group of 8
1249 * channels to read the second byte (15:8). Then, we shift right by
1250 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1251 * values into place. Finally, we AND with 0xf to keep the low nibble.
1252 *
1253 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1254 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1255 *
1256 * TODO: These payload bits exist on Gen7 too, but they appear to always
1257 * be zero, so this code fails to work. We should find out why.
1258 */
1259 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1260
1261 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1262 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1263 brw_imm_v(0x44440000));
1264 abld.AND(*reg, tmp, brw_imm_w(0xf));
1265 } else {
1266 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1267 BRW_REGISTER_TYPE_D), 0);
1268 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1269
1270 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1271 * 8x multisampling, subspan 0 will represent sample N (where N
1272 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1273 * 7. We can find the value of N by looking at R0.0 bits 7:6
1274 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1275 * (since samples are always delivered in pairs). That is, we
1276 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1277 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1278 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1279 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1280 * populating a temporary variable with the sequence (0, 1, 2, 3),
1281 * and then reading from it using vstride=1, width=4, hstride=0.
1282 * These computations hold good for 4x multisampling as well.
1283 *
1284 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1285 * the first four slots are sample 0 of subspan 0; the next four
1286 * are sample 1 of subspan 0; the third group is sample 0 of
1287 * subspan 1, and finally sample 1 of subspan 1.
1288 */
1289
1290 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1291 * accomodate 16x MSAA.
1292 */
1293 abld.exec_all().group(1, 0)
1294 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1295 brw_imm_ud(0xc0));
1296 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1297
1298 /* This works for both SIMD8 and SIMD16 */
1299 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1300
1301 /* This special instruction takes care of setting vstride=1,
1302 * width=4, hstride=0 of t2 during an ADD instruction.
1303 */
1304 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1305 }
1306
1307 return reg;
1308 }
1309
1310 fs_reg *
1311 fs_visitor::emit_samplemaskin_setup()
1312 {
1313 assert(stage == MESA_SHADER_FRAGMENT);
1314 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1315 assert(devinfo->gen >= 6);
1316
1317 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1318
1319 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1320 BRW_REGISTER_TYPE_D));
1321
1322 if (wm_prog_data->persample_dispatch) {
1323 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1324 * and a mask representing which sample is being processed by the
1325 * current shader invocation.
1326 *
1327 * From the OES_sample_variables specification:
1328 * "When per-sample shading is active due to the use of a fragment input
1329 * qualified by "sample" or due to the use of the gl_SampleID or
1330 * gl_SamplePosition variables, only the bit for the current sample is
1331 * set in gl_SampleMaskIn."
1332 */
1333 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1334
1335 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1336 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1337
1338 fs_reg one = vgrf(glsl_type::int_type);
1339 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1340 abld.MOV(one, brw_imm_d(1));
1341 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1342 abld.AND(*reg, enabled_mask, coverage_mask);
1343 } else {
1344 /* In per-pixel mode, the coverage mask is sufficient. */
1345 *reg = coverage_mask;
1346 }
1347 return reg;
1348 }
1349
1350 fs_reg
1351 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1352 {
1353 if (!src.abs && !src.negate)
1354 return src;
1355
1356 fs_reg temp = bld.vgrf(src.type);
1357 bld.MOV(temp, src);
1358
1359 return temp;
1360 }
1361
1362 void
1363 fs_visitor::emit_discard_jump()
1364 {
1365 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1366
1367 /* For performance, after a discard, jump to the end of the
1368 * shader if all relevant channels have been discarded.
1369 */
1370 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1371 discard_jump->flag_subreg = 1;
1372
1373 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1374 discard_jump->predicate_inverse = true;
1375 }
1376
1377 void
1378 fs_visitor::emit_gs_thread_end()
1379 {
1380 assert(stage == MESA_SHADER_GEOMETRY);
1381
1382 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1383
1384 if (gs_compile->control_data_header_size_bits > 0) {
1385 emit_gs_control_data_bits(this->final_gs_vertex_count);
1386 }
1387
1388 const fs_builder abld = bld.annotate("thread end");
1389 fs_inst *inst;
1390
1391 if (gs_prog_data->static_vertex_count != -1) {
1392 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1393 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1394 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1395 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1396 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1397 prev->eot = true;
1398
1399 /* Delete now dead instructions. */
1400 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1401 if (dead == prev)
1402 break;
1403 dead->remove();
1404 }
1405 return;
1406 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1407 break;
1408 }
1409 }
1410 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1411 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1412 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1413 inst->mlen = 1;
1414 } else {
1415 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1416 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1417 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1418 sources[1] = this->final_gs_vertex_count;
1419 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1420 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1421 inst->mlen = 2;
1422 }
1423 inst->eot = true;
1424 inst->offset = 0;
1425 }
1426
1427 void
1428 fs_visitor::assign_curb_setup()
1429 {
1430 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1431
1432 unsigned ubo_push_length = 0;
1433 unsigned ubo_push_start[4];
1434 for (int i = 0; i < 4; i++) {
1435 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1436 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1437 }
1438
1439 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1440
1441 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1442 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1443 for (unsigned int i = 0; i < inst->sources; i++) {
1444 if (inst->src[i].file == UNIFORM) {
1445 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1446 int constant_nr;
1447 if (inst->src[i].nr >= UBO_START) {
1448 /* constant_nr is in 32-bit units, the rest are in bytes */
1449 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1450 inst->src[i].offset / 4;
1451 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1452 constant_nr = push_constant_loc[uniform_nr];
1453 } else {
1454 /* Section 5.11 of the OpenGL 4.1 spec says:
1455 * "Out-of-bounds reads return undefined values, which include
1456 * values from other variables of the active program or zero."
1457 * Just return the first push constant.
1458 */
1459 constant_nr = 0;
1460 }
1461
1462 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1463 constant_nr / 8,
1464 constant_nr % 8);
1465 brw_reg.abs = inst->src[i].abs;
1466 brw_reg.negate = inst->src[i].negate;
1467
1468 assert(inst->src[i].stride == 0);
1469 inst->src[i] = byte_offset(
1470 retype(brw_reg, inst->src[i].type),
1471 inst->src[i].offset % 4);
1472 }
1473 }
1474 }
1475
1476 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1477 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1478 }
1479
1480 void
1481 fs_visitor::calculate_urb_setup()
1482 {
1483 assert(stage == MESA_SHADER_FRAGMENT);
1484 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1485 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1486
1487 memset(prog_data->urb_setup, -1,
1488 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1489
1490 int urb_next = 0;
1491 /* Figure out where each of the incoming setup attributes lands. */
1492 if (devinfo->gen >= 6) {
1493 if (_mesa_bitcount_64(nir->info.inputs_read &
1494 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1495 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1496 * first 16 varying inputs, so we can put them wherever we want.
1497 * Just put them in order.
1498 *
1499 * This is useful because it means that (a) inputs not used by the
1500 * fragment shader won't take up valuable register space, and (b) we
1501 * won't have to recompile the fragment shader if it gets paired with
1502 * a different vertex (or geometry) shader.
1503 */
1504 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1505 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1506 BITFIELD64_BIT(i)) {
1507 prog_data->urb_setup[i] = urb_next++;
1508 }
1509 }
1510 } else {
1511 /* We have enough input varyings that the SF/SBE pipeline stage can't
1512 * arbitrarily rearrange them to suit our whim; we have to put them
1513 * in an order that matches the output of the previous pipeline stage
1514 * (geometry or vertex shader).
1515 */
1516 struct brw_vue_map prev_stage_vue_map;
1517 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1518 key->input_slots_valid,
1519 nir->info.separate_shader);
1520
1521 int first_slot =
1522 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1523 &prev_stage_vue_map);
1524
1525 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1526 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1527 slot++) {
1528 int varying = prev_stage_vue_map.slot_to_varying[slot];
1529 if (varying != BRW_VARYING_SLOT_PAD &&
1530 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1531 BITFIELD64_BIT(varying))) {
1532 prog_data->urb_setup[varying] = slot - first_slot;
1533 }
1534 }
1535 urb_next = prev_stage_vue_map.num_slots - first_slot;
1536 }
1537 } else {
1538 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1539 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1540 /* Point size is packed into the header, not as a general attribute */
1541 if (i == VARYING_SLOT_PSIZ)
1542 continue;
1543
1544 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1545 /* The back color slot is skipped when the front color is
1546 * also written to. In addition, some slots can be
1547 * written in the vertex shader and not read in the
1548 * fragment shader. So the register number must always be
1549 * incremented, mapped or not.
1550 */
1551 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1552 prog_data->urb_setup[i] = urb_next;
1553 urb_next++;
1554 }
1555 }
1556
1557 /*
1558 * It's a FS only attribute, and we did interpolation for this attribute
1559 * in SF thread. So, count it here, too.
1560 *
1561 * See compile_sf_prog() for more info.
1562 */
1563 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1564 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1565 }
1566
1567 prog_data->num_varying_inputs = urb_next;
1568 }
1569
1570 void
1571 fs_visitor::assign_urb_setup()
1572 {
1573 assert(stage == MESA_SHADER_FRAGMENT);
1574 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1575
1576 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1577
1578 /* Offset all the urb_setup[] index by the actual position of the
1579 * setup regs, now that the location of the constants has been chosen.
1580 */
1581 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1582 if (inst->opcode == FS_OPCODE_LINTERP) {
1583 assert(inst->src[1].file == FIXED_GRF);
1584 inst->src[1].nr += urb_start;
1585 }
1586
1587 if (inst->opcode == FS_OPCODE_CINTERP) {
1588 assert(inst->src[0].file == FIXED_GRF);
1589 inst->src[0].nr += urb_start;
1590 }
1591 }
1592
1593 /* Each attribute is 4 setup channels, each of which is half a reg. */
1594 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1595 }
1596
1597 void
1598 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1599 {
1600 for (int i = 0; i < inst->sources; i++) {
1601 if (inst->src[i].file == ATTR) {
1602 int grf = payload.num_regs +
1603 prog_data->curb_read_length +
1604 inst->src[i].nr +
1605 inst->src[i].offset / REG_SIZE;
1606
1607 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1608 *
1609 * VertStride must be used to cross GRF register boundaries. This
1610 * rule implies that elements within a 'Width' cannot cross GRF
1611 * boundaries.
1612 *
1613 * So, for registers that are large enough, we have to split the exec
1614 * size in two and trust the compression state to sort it out.
1615 */
1616 unsigned total_size = inst->exec_size *
1617 inst->src[i].stride *
1618 type_sz(inst->src[i].type);
1619
1620 assert(total_size <= 2 * REG_SIZE);
1621 const unsigned exec_size =
1622 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1623
1624 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1625 struct brw_reg reg =
1626 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1627 inst->src[i].offset % REG_SIZE),
1628 exec_size * inst->src[i].stride,
1629 width, inst->src[i].stride);
1630 reg.abs = inst->src[i].abs;
1631 reg.negate = inst->src[i].negate;
1632
1633 inst->src[i] = reg;
1634 }
1635 }
1636 }
1637
1638 void
1639 fs_visitor::assign_vs_urb_setup()
1640 {
1641 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1642
1643 assert(stage == MESA_SHADER_VERTEX);
1644
1645 /* Each attribute is 4 regs. */
1646 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1647
1648 assert(vs_prog_data->base.urb_read_length <= 15);
1649
1650 /* Rewrite all ATTR file references to the hw grf that they land in. */
1651 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1652 convert_attr_sources_to_hw_regs(inst);
1653 }
1654 }
1655
1656 void
1657 fs_visitor::assign_tcs_single_patch_urb_setup()
1658 {
1659 assert(stage == MESA_SHADER_TESS_CTRL);
1660
1661 /* Rewrite all ATTR file references to HW_REGs. */
1662 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1663 convert_attr_sources_to_hw_regs(inst);
1664 }
1665 }
1666
1667 void
1668 fs_visitor::assign_tes_urb_setup()
1669 {
1670 assert(stage == MESA_SHADER_TESS_EVAL);
1671
1672 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1673
1674 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1675
1676 /* Rewrite all ATTR file references to HW_REGs. */
1677 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1678 convert_attr_sources_to_hw_regs(inst);
1679 }
1680 }
1681
1682 void
1683 fs_visitor::assign_gs_urb_setup()
1684 {
1685 assert(stage == MESA_SHADER_GEOMETRY);
1686
1687 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1688
1689 first_non_payload_grf +=
1690 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1691
1692 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1693 /* Rewrite all ATTR file references to GRFs. */
1694 convert_attr_sources_to_hw_regs(inst);
1695 }
1696 }
1697
1698
1699 /**
1700 * Split large virtual GRFs into separate components if we can.
1701 *
1702 * This is mostly duplicated with what brw_fs_vector_splitting does,
1703 * but that's really conservative because it's afraid of doing
1704 * splitting that doesn't result in real progress after the rest of
1705 * the optimization phases, which would cause infinite looping in
1706 * optimization. We can do it once here, safely. This also has the
1707 * opportunity to split interpolated values, or maybe even uniforms,
1708 * which we don't have at the IR level.
1709 *
1710 * We want to split, because virtual GRFs are what we register
1711 * allocate and spill (due to contiguousness requirements for some
1712 * instructions), and they're what we naturally generate in the
1713 * codegen process, but most virtual GRFs don't actually need to be
1714 * contiguous sets of GRFs. If we split, we'll end up with reduced
1715 * live intervals and better dead code elimination and coalescing.
1716 */
1717 void
1718 fs_visitor::split_virtual_grfs()
1719 {
1720 /* Compact the register file so we eliminate dead vgrfs. This
1721 * only defines split points for live registers, so if we have
1722 * too large dead registers they will hit assertions later.
1723 */
1724 compact_virtual_grfs();
1725
1726 int num_vars = this->alloc.count;
1727
1728 /* Count the total number of registers */
1729 int reg_count = 0;
1730 int vgrf_to_reg[num_vars];
1731 for (int i = 0; i < num_vars; i++) {
1732 vgrf_to_reg[i] = reg_count;
1733 reg_count += alloc.sizes[i];
1734 }
1735
1736 /* An array of "split points". For each register slot, this indicates
1737 * if this slot can be separated from the previous slot. Every time an
1738 * instruction uses multiple elements of a register (as a source or
1739 * destination), we mark the used slots as inseparable. Then we go
1740 * through and split the registers into the smallest pieces we can.
1741 */
1742 bool split_points[reg_count];
1743 memset(split_points, 0, sizeof(split_points));
1744
1745 /* Mark all used registers as fully splittable */
1746 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1747 if (inst->dst.file == VGRF) {
1748 int reg = vgrf_to_reg[inst->dst.nr];
1749 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1750 split_points[reg + j] = true;
1751 }
1752
1753 for (int i = 0; i < inst->sources; i++) {
1754 if (inst->src[i].file == VGRF) {
1755 int reg = vgrf_to_reg[inst->src[i].nr];
1756 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1757 split_points[reg + j] = true;
1758 }
1759 }
1760 }
1761
1762 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1763 if (inst->dst.file == VGRF) {
1764 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1765 for (unsigned j = 1; j < regs_written(inst); j++)
1766 split_points[reg + j] = false;
1767 }
1768 for (int i = 0; i < inst->sources; i++) {
1769 if (inst->src[i].file == VGRF) {
1770 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1771 for (unsigned j = 1; j < regs_read(inst, i); j++)
1772 split_points[reg + j] = false;
1773 }
1774 }
1775 }
1776
1777 int new_virtual_grf[reg_count];
1778 int new_reg_offset[reg_count];
1779
1780 int reg = 0;
1781 for (int i = 0; i < num_vars; i++) {
1782 /* The first one should always be 0 as a quick sanity check. */
1783 assert(split_points[reg] == false);
1784
1785 /* j = 0 case */
1786 new_reg_offset[reg] = 0;
1787 reg++;
1788 int offset = 1;
1789
1790 /* j > 0 case */
1791 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1792 /* If this is a split point, reset the offset to 0 and allocate a
1793 * new virtual GRF for the previous offset many registers
1794 */
1795 if (split_points[reg]) {
1796 assert(offset <= MAX_VGRF_SIZE);
1797 int grf = alloc.allocate(offset);
1798 for (int k = reg - offset; k < reg; k++)
1799 new_virtual_grf[k] = grf;
1800 offset = 0;
1801 }
1802 new_reg_offset[reg] = offset;
1803 offset++;
1804 reg++;
1805 }
1806
1807 /* The last one gets the original register number */
1808 assert(offset <= MAX_VGRF_SIZE);
1809 alloc.sizes[i] = offset;
1810 for (int k = reg - offset; k < reg; k++)
1811 new_virtual_grf[k] = i;
1812 }
1813 assert(reg == reg_count);
1814
1815 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1816 if (inst->dst.file == VGRF) {
1817 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1818 inst->dst.nr = new_virtual_grf[reg];
1819 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1820 inst->dst.offset % REG_SIZE;
1821 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1822 }
1823 for (int i = 0; i < inst->sources; i++) {
1824 if (inst->src[i].file == VGRF) {
1825 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1826 inst->src[i].nr = new_virtual_grf[reg];
1827 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1828 inst->src[i].offset % REG_SIZE;
1829 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1830 }
1831 }
1832 }
1833 invalidate_live_intervals();
1834 }
1835
1836 /**
1837 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1838 *
1839 * During code generation, we create tons of temporary variables, many of
1840 * which get immediately killed and are never used again. Yet, in later
1841 * optimization and analysis passes, such as compute_live_intervals, we need
1842 * to loop over all the virtual GRFs. Compacting them can save a lot of
1843 * overhead.
1844 */
1845 bool
1846 fs_visitor::compact_virtual_grfs()
1847 {
1848 bool progress = false;
1849 int remap_table[this->alloc.count];
1850 memset(remap_table, -1, sizeof(remap_table));
1851
1852 /* Mark which virtual GRFs are used. */
1853 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1854 if (inst->dst.file == VGRF)
1855 remap_table[inst->dst.nr] = 0;
1856
1857 for (int i = 0; i < inst->sources; i++) {
1858 if (inst->src[i].file == VGRF)
1859 remap_table[inst->src[i].nr] = 0;
1860 }
1861 }
1862
1863 /* Compact the GRF arrays. */
1864 int new_index = 0;
1865 for (unsigned i = 0; i < this->alloc.count; i++) {
1866 if (remap_table[i] == -1) {
1867 /* We just found an unused register. This means that we are
1868 * actually going to compact something.
1869 */
1870 progress = true;
1871 } else {
1872 remap_table[i] = new_index;
1873 alloc.sizes[new_index] = alloc.sizes[i];
1874 invalidate_live_intervals();
1875 ++new_index;
1876 }
1877 }
1878
1879 this->alloc.count = new_index;
1880
1881 /* Patch all the instructions to use the newly renumbered registers */
1882 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1883 if (inst->dst.file == VGRF)
1884 inst->dst.nr = remap_table[inst->dst.nr];
1885
1886 for (int i = 0; i < inst->sources; i++) {
1887 if (inst->src[i].file == VGRF)
1888 inst->src[i].nr = remap_table[inst->src[i].nr];
1889 }
1890 }
1891
1892 /* Patch all the references to delta_xy, since they're used in register
1893 * allocation. If they're unused, switch them to BAD_FILE so we don't
1894 * think some random VGRF is delta_xy.
1895 */
1896 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1897 if (delta_xy[i].file == VGRF) {
1898 if (remap_table[delta_xy[i].nr] != -1) {
1899 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1900 } else {
1901 delta_xy[i].file = BAD_FILE;
1902 }
1903 }
1904 }
1905
1906 return progress;
1907 }
1908
1909 static void
1910 set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1911 unsigned *max_chunk_bitsize,
1912 bool contiguous, unsigned bitsize,
1913 const unsigned target_bitsize,
1914 int *push_constant_loc, int *pull_constant_loc,
1915 unsigned *num_push_constants,
1916 unsigned *num_pull_constants,
1917 const unsigned max_push_components,
1918 const unsigned max_chunk_size,
1919 bool allow_pull_constants,
1920 struct brw_stage_prog_data *stage_prog_data)
1921 {
1922 /* This is the first live uniform in the chunk */
1923 if (*chunk_start < 0)
1924 *chunk_start = uniform;
1925
1926 /* Keep track of the maximum bit size access in contiguous uniforms */
1927 *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1928
1929 /* If this element does not need to be contiguous with the next, we
1930 * split at this point and everything between chunk_start and u forms a
1931 * single chunk.
1932 */
1933 if (!contiguous) {
1934 /* If bitsize doesn't match the target one, skip it */
1935 if (*max_chunk_bitsize != target_bitsize) {
1936 /* FIXME: right now we only support 32 and 64-bit accesses */
1937 assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1938 *max_chunk_bitsize = 0;
1939 *chunk_start = -1;
1940 return;
1941 }
1942
1943 unsigned chunk_size = uniform - *chunk_start + 1;
1944
1945 /* Decide whether we should push or pull this parameter. In the
1946 * Vulkan driver, push constants are explicitly exposed via the API
1947 * so we push everything. In GL, we only push small arrays.
1948 */
1949 if (!allow_pull_constants ||
1950 (*num_push_constants + chunk_size <= max_push_components &&
1951 chunk_size <= max_chunk_size)) {
1952 assert(*num_push_constants + chunk_size <= max_push_components);
1953 for (unsigned j = *chunk_start; j <= uniform; j++)
1954 push_constant_loc[j] = (*num_push_constants)++;
1955 } else {
1956 for (unsigned j = *chunk_start; j <= uniform; j++)
1957 pull_constant_loc[j] = (*num_pull_constants)++;
1958 }
1959
1960 *max_chunk_bitsize = 0;
1961 *chunk_start = -1;
1962 }
1963 }
1964
1965 static int
1966 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
1967 {
1968 if (prog_data->nr_params == 0)
1969 return -1;
1970
1971 /* The local thread id is always the last parameter in the list */
1972 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
1973 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
1974 return prog_data->nr_params - 1;
1975
1976 return -1;
1977 }
1978
1979 /**
1980 * Assign UNIFORM file registers to either push constants or pull constants.
1981 *
1982 * We allow a fragment shader to have more than the specified minimum
1983 * maximum number of fragment shader uniform components (64). If
1984 * there are too many of these, they'd fill up all of register space.
1985 * So, this will push some of them out to the pull constant buffer and
1986 * update the program to load them.
1987 */
1988 void
1989 fs_visitor::assign_constant_locations()
1990 {
1991 /* Only the first compile gets to decide on locations. */
1992 if (push_constant_loc) {
1993 assert(pull_constant_loc);
1994 return;
1995 }
1996
1997 bool is_live[uniforms];
1998 memset(is_live, 0, sizeof(is_live));
1999 unsigned bitsize_access[uniforms];
2000 memset(bitsize_access, 0, sizeof(bitsize_access));
2001
2002 /* For each uniform slot, a value of true indicates that the given slot and
2003 * the next slot must remain contiguous. This is used to keep us from
2004 * splitting arrays and 64-bit values apart.
2005 */
2006 bool contiguous[uniforms];
2007 memset(contiguous, 0, sizeof(contiguous));
2008
2009 /* First, we walk through the instructions and do two things:
2010 *
2011 * 1) Figure out which uniforms are live.
2012 *
2013 * 2) Mark any indirectly used ranges of registers as contiguous.
2014 *
2015 * Note that we don't move constant-indexed accesses to arrays. No
2016 * testing has been done of the performance impact of this choice.
2017 */
2018 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2019 for (int i = 0 ; i < inst->sources; i++) {
2020 if (inst->src[i].file != UNIFORM)
2021 continue;
2022
2023 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
2024
2025 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2026 assert(inst->src[2].ud % 4 == 0);
2027 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
2028 assert(last < uniforms);
2029
2030 for (unsigned j = constant_nr; j < last; j++) {
2031 is_live[j] = true;
2032 contiguous[j] = true;
2033 bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
2034 }
2035 is_live[last] = true;
2036 bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
2037 } else {
2038 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
2039 int regs_read = inst->components_read(i) *
2040 type_sz(inst->src[i].type) / 4;
2041 assert(regs_read <= 2);
2042 if (regs_read == 2)
2043 contiguous[constant_nr] = true;
2044 for (int j = 0; j < regs_read; j++) {
2045 is_live[constant_nr + j] = true;
2046 bitsize_access[constant_nr + j] =
2047 MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
2048 }
2049 }
2050 }
2051 }
2052 }
2053
2054 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2055
2056 /* Only allow 16 registers (128 uniform components) as push constants.
2057 *
2058 * Just demote the end of the list. We could probably do better
2059 * here, demoting things that are rarely used in the program first.
2060 *
2061 * If changing this value, note the limitation about total_regs in
2062 * brw_curbe.c.
2063 */
2064 unsigned int max_push_components = 16 * 8;
2065 if (subgroup_id_index >= 0)
2066 max_push_components--; /* Save a slot for the thread ID */
2067
2068 /* We push small arrays, but no bigger than 16 floats. This is big enough
2069 * for a vec4 but hopefully not large enough to push out other stuff. We
2070 * should probably use a better heuristic at some point.
2071 */
2072 const unsigned int max_chunk_size = 16;
2073
2074 unsigned int num_push_constants = 0;
2075 unsigned int num_pull_constants = 0;
2076
2077 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2078 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2079
2080 /* Default to -1 meaning no location */
2081 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2082 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2083
2084 int chunk_start = -1;
2085 unsigned max_chunk_bitsize = 0;
2086
2087 /* First push 64-bit uniforms to ensure they are properly aligned */
2088 const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2089 for (unsigned u = 0; u < uniforms; u++) {
2090 if (!is_live[u])
2091 continue;
2092
2093 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2094 contiguous[u], bitsize_access[u],
2095 uniform_64_bit_size,
2096 push_constant_loc, pull_constant_loc,
2097 &num_push_constants, &num_pull_constants,
2098 max_push_components, max_chunk_size,
2099 compiler->supports_pull_constants,
2100 stage_prog_data);
2101
2102 }
2103
2104 /* Then push the rest of uniforms */
2105 const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2106 for (unsigned u = 0; u < uniforms; u++) {
2107 if (!is_live[u])
2108 continue;
2109
2110 /* Skip subgroup_id_index to put it in the last push register. */
2111 if (subgroup_id_index == (int)u)
2112 continue;
2113
2114 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2115 contiguous[u], bitsize_access[u],
2116 uniform_32_bit_size,
2117 push_constant_loc, pull_constant_loc,
2118 &num_push_constants, &num_pull_constants,
2119 max_push_components, max_chunk_size,
2120 compiler->supports_pull_constants,
2121 stage_prog_data);
2122 }
2123
2124 /* Add the CS local thread ID uniform at the end of the push constants */
2125 if (subgroup_id_index >= 0)
2126 push_constant_loc[subgroup_id_index] = num_push_constants++;
2127
2128 /* As the uniforms are going to be reordered, stash the old array and
2129 * create two new arrays for push/pull params.
2130 */
2131 uint32_t *param = stage_prog_data->param;
2132 stage_prog_data->nr_params = num_push_constants;
2133 if (num_push_constants) {
2134 stage_prog_data->param = ralloc_array(mem_ctx, uint32_t,
2135 num_push_constants);
2136 } else {
2137 stage_prog_data->param = NULL;
2138 }
2139 assert(stage_prog_data->nr_pull_params == 0);
2140 assert(stage_prog_data->pull_param == NULL);
2141 if (num_pull_constants > 0) {
2142 stage_prog_data->nr_pull_params = num_pull_constants;
2143 stage_prog_data->pull_param = ralloc_array(mem_ctx, uint32_t,
2144 num_pull_constants);
2145 }
2146
2147 /* Now that we know how many regular uniforms we'll push, reduce the
2148 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2149 */
2150 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2151 for (int i = 0; i < 4; i++) {
2152 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2153
2154 if (push_length + range->length > 64)
2155 range->length = 64 - push_length;
2156
2157 push_length += range->length;
2158 }
2159 assert(push_length <= 64);
2160
2161 /* Up until now, the param[] array has been indexed by reg + offset
2162 * of UNIFORM registers. Move pull constants into pull_param[] and
2163 * condense param[] to only contain the uniforms we chose to push.
2164 *
2165 * NOTE: Because we are condensing the params[] array, we know that
2166 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2167 * having to make a copy.
2168 */
2169 for (unsigned int i = 0; i < uniforms; i++) {
2170 uint32_t value = param[i];
2171 if (pull_constant_loc[i] != -1) {
2172 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2173 } else if (push_constant_loc[i] != -1) {
2174 stage_prog_data->param[push_constant_loc[i]] = value;
2175 }
2176 }
2177 ralloc_free(param);
2178 }
2179
2180 bool
2181 fs_visitor::get_pull_locs(const fs_reg &src,
2182 unsigned *out_surf_index,
2183 unsigned *out_pull_index)
2184 {
2185 assert(src.file == UNIFORM);
2186
2187 if (src.nr >= UBO_START) {
2188 const struct brw_ubo_range *range =
2189 &prog_data->ubo_ranges[src.nr - UBO_START];
2190
2191 /* If this access is in our (reduced) range, use the push data. */
2192 if (src.offset / 32 < range->length)
2193 return false;
2194
2195 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2196 *out_pull_index = (32 * range->start + src.offset) / 4;
2197 return true;
2198 }
2199
2200 const unsigned location = src.nr + src.offset / 4;
2201
2202 if (location < uniforms && pull_constant_loc[location] != -1) {
2203 /* A regular uniform push constant */
2204 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2205 *out_pull_index = pull_constant_loc[location];
2206 return true;
2207 }
2208
2209 return false;
2210 }
2211
2212 /**
2213 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2214 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2215 */
2216 void
2217 fs_visitor::lower_constant_loads()
2218 {
2219 unsigned index, pull_index;
2220
2221 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2222 /* Set up the annotation tracking for new generated instructions. */
2223 const fs_builder ibld(this, block, inst);
2224
2225 for (int i = 0; i < inst->sources; i++) {
2226 if (inst->src[i].file != UNIFORM)
2227 continue;
2228
2229 /* We'll handle this case later */
2230 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2231 continue;
2232
2233 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2234 continue;
2235
2236 assert(inst->src[i].stride == 0);
2237
2238 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2239 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2240 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2241 const unsigned base = pull_index * 4;
2242
2243 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2244 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2245
2246 /* Rewrite the instruction to use the temporary VGRF. */
2247 inst->src[i].file = VGRF;
2248 inst->src[i].nr = dst.nr;
2249 inst->src[i].offset = (base & (block_sz - 1)) +
2250 inst->src[i].offset % 4;
2251
2252 brw_mark_surface_used(prog_data, index);
2253 }
2254
2255 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2256 inst->src[0].file == UNIFORM) {
2257
2258 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2259 continue;
2260
2261 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2262 brw_imm_ud(index),
2263 inst->src[1],
2264 pull_index * 4);
2265 inst->remove(block);
2266
2267 brw_mark_surface_used(prog_data, index);
2268 }
2269 }
2270 invalidate_live_intervals();
2271 }
2272
2273 bool
2274 fs_visitor::opt_algebraic()
2275 {
2276 bool progress = false;
2277
2278 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2279 switch (inst->opcode) {
2280 case BRW_OPCODE_MOV:
2281 if (inst->src[0].file != IMM)
2282 break;
2283
2284 if (inst->saturate) {
2285 if (inst->dst.type != inst->src[0].type)
2286 assert(!"unimplemented: saturate mixed types");
2287
2288 if (brw_saturate_immediate(inst->dst.type,
2289 &inst->src[0].as_brw_reg())) {
2290 inst->saturate = false;
2291 progress = true;
2292 }
2293 }
2294 break;
2295
2296 case BRW_OPCODE_MUL:
2297 if (inst->src[1].file != IMM)
2298 continue;
2299
2300 /* a * 1.0 = a */
2301 if (inst->src[1].is_one()) {
2302 inst->opcode = BRW_OPCODE_MOV;
2303 inst->src[1] = reg_undef;
2304 progress = true;
2305 break;
2306 }
2307
2308 /* a * -1.0 = -a */
2309 if (inst->src[1].is_negative_one()) {
2310 inst->opcode = BRW_OPCODE_MOV;
2311 inst->src[0].negate = !inst->src[0].negate;
2312 inst->src[1] = reg_undef;
2313 progress = true;
2314 break;
2315 }
2316
2317 /* a * 0.0 = 0.0 */
2318 if (inst->src[1].is_zero()) {
2319 inst->opcode = BRW_OPCODE_MOV;
2320 inst->src[0] = inst->src[1];
2321 inst->src[1] = reg_undef;
2322 progress = true;
2323 break;
2324 }
2325
2326 if (inst->src[0].file == IMM) {
2327 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2328 inst->opcode = BRW_OPCODE_MOV;
2329 inst->src[0].f *= inst->src[1].f;
2330 inst->src[1] = reg_undef;
2331 progress = true;
2332 break;
2333 }
2334 break;
2335 case BRW_OPCODE_ADD:
2336 if (inst->src[1].file != IMM)
2337 continue;
2338
2339 /* a + 0.0 = a */
2340 if (inst->src[1].is_zero()) {
2341 inst->opcode = BRW_OPCODE_MOV;
2342 inst->src[1] = reg_undef;
2343 progress = true;
2344 break;
2345 }
2346
2347 if (inst->src[0].file == IMM) {
2348 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2349 inst->opcode = BRW_OPCODE_MOV;
2350 inst->src[0].f += inst->src[1].f;
2351 inst->src[1] = reg_undef;
2352 progress = true;
2353 break;
2354 }
2355 break;
2356 case BRW_OPCODE_OR:
2357 if (inst->src[0].equals(inst->src[1])) {
2358 inst->opcode = BRW_OPCODE_MOV;
2359 inst->src[1] = reg_undef;
2360 progress = true;
2361 break;
2362 }
2363 break;
2364 case BRW_OPCODE_LRP:
2365 if (inst->src[1].equals(inst->src[2])) {
2366 inst->opcode = BRW_OPCODE_MOV;
2367 inst->src[0] = inst->src[1];
2368 inst->src[1] = reg_undef;
2369 inst->src[2] = reg_undef;
2370 progress = true;
2371 break;
2372 }
2373 break;
2374 case BRW_OPCODE_CMP:
2375 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2376 inst->src[0].abs &&
2377 inst->src[0].negate &&
2378 inst->src[1].is_zero()) {
2379 inst->src[0].abs = false;
2380 inst->src[0].negate = false;
2381 inst->conditional_mod = BRW_CONDITIONAL_Z;
2382 progress = true;
2383 break;
2384 }
2385 break;
2386 case BRW_OPCODE_SEL:
2387 if (inst->src[0].equals(inst->src[1])) {
2388 inst->opcode = BRW_OPCODE_MOV;
2389 inst->src[1] = reg_undef;
2390 inst->predicate = BRW_PREDICATE_NONE;
2391 inst->predicate_inverse = false;
2392 progress = true;
2393 } else if (inst->saturate && inst->src[1].file == IMM) {
2394 switch (inst->conditional_mod) {
2395 case BRW_CONDITIONAL_LE:
2396 case BRW_CONDITIONAL_L:
2397 switch (inst->src[1].type) {
2398 case BRW_REGISTER_TYPE_F:
2399 if (inst->src[1].f >= 1.0f) {
2400 inst->opcode = BRW_OPCODE_MOV;
2401 inst->src[1] = reg_undef;
2402 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2403 progress = true;
2404 }
2405 break;
2406 default:
2407 break;
2408 }
2409 break;
2410 case BRW_CONDITIONAL_GE:
2411 case BRW_CONDITIONAL_G:
2412 switch (inst->src[1].type) {
2413 case BRW_REGISTER_TYPE_F:
2414 if (inst->src[1].f <= 0.0f) {
2415 inst->opcode = BRW_OPCODE_MOV;
2416 inst->src[1] = reg_undef;
2417 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2418 progress = true;
2419 }
2420 break;
2421 default:
2422 break;
2423 }
2424 default:
2425 break;
2426 }
2427 }
2428 break;
2429 case BRW_OPCODE_MAD:
2430 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2431 inst->opcode = BRW_OPCODE_MOV;
2432 inst->src[1] = reg_undef;
2433 inst->src[2] = reg_undef;
2434 progress = true;
2435 } else if (inst->src[0].is_zero()) {
2436 inst->opcode = BRW_OPCODE_MUL;
2437 inst->src[0] = inst->src[2];
2438 inst->src[2] = reg_undef;
2439 progress = true;
2440 } else if (inst->src[1].is_one()) {
2441 inst->opcode = BRW_OPCODE_ADD;
2442 inst->src[1] = inst->src[2];
2443 inst->src[2] = reg_undef;
2444 progress = true;
2445 } else if (inst->src[2].is_one()) {
2446 inst->opcode = BRW_OPCODE_ADD;
2447 inst->src[2] = reg_undef;
2448 progress = true;
2449 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2450 inst->opcode = BRW_OPCODE_ADD;
2451 inst->src[1].f *= inst->src[2].f;
2452 inst->src[2] = reg_undef;
2453 progress = true;
2454 }
2455 break;
2456 case SHADER_OPCODE_BROADCAST:
2457 if (is_uniform(inst->src[0])) {
2458 inst->opcode = BRW_OPCODE_MOV;
2459 inst->sources = 1;
2460 inst->force_writemask_all = true;
2461 progress = true;
2462 } else if (inst->src[1].file == IMM) {
2463 inst->opcode = BRW_OPCODE_MOV;
2464 /* It's possible that the selected component will be too large and
2465 * overflow the register. This can happen if someone does a
2466 * readInvocation() from GLSL or SPIR-V and provides an OOB
2467 * invocationIndex. If this happens and we some how manage
2468 * to constant fold it in and get here, then component() may cause
2469 * us to start reading outside of the VGRF which will lead to an
2470 * assert later. Instead, just let it wrap around if it goes over
2471 * exec_size.
2472 */
2473 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2474 inst->src[0] = component(inst->src[0], comp);
2475 inst->sources = 1;
2476 inst->force_writemask_all = true;
2477 progress = true;
2478 }
2479 break;
2480
2481 default:
2482 break;
2483 }
2484
2485 /* Swap if src[0] is immediate. */
2486 if (progress && inst->is_commutative()) {
2487 if (inst->src[0].file == IMM) {
2488 fs_reg tmp = inst->src[1];
2489 inst->src[1] = inst->src[0];
2490 inst->src[0] = tmp;
2491 }
2492 }
2493 }
2494 return progress;
2495 }
2496
2497 /**
2498 * Optimize sample messages that have constant zero values for the trailing
2499 * texture coordinates. We can just reduce the message length for these
2500 * instructions instead of reserving a register for it. Trailing parameters
2501 * that aren't sent default to zero anyway. This will cause the dead code
2502 * eliminator to remove the MOV instruction that would otherwise be emitted to
2503 * set up the zero value.
2504 */
2505 bool
2506 fs_visitor::opt_zero_samples()
2507 {
2508 /* Gen4 infers the texturing opcode based on the message length so we can't
2509 * change it.
2510 */
2511 if (devinfo->gen < 5)
2512 return false;
2513
2514 bool progress = false;
2515
2516 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2517 if (!inst->is_tex())
2518 continue;
2519
2520 fs_inst *load_payload = (fs_inst *) inst->prev;
2521
2522 if (load_payload->is_head_sentinel() ||
2523 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2524 continue;
2525
2526 /* We don't want to remove the message header or the first parameter.
2527 * Removing the first parameter is not allowed, see the Haswell PRM
2528 * volume 7, page 149:
2529 *
2530 * "Parameter 0 is required except for the sampleinfo message, which
2531 * has no parameter 0"
2532 */
2533 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2534 load_payload->src[(inst->mlen - inst->header_size) /
2535 (inst->exec_size / 8) +
2536 inst->header_size - 1].is_zero()) {
2537 inst->mlen -= inst->exec_size / 8;
2538 progress = true;
2539 }
2540 }
2541
2542 if (progress)
2543 invalidate_live_intervals();
2544
2545 return progress;
2546 }
2547
2548 /**
2549 * Optimize sample messages which are followed by the final RT write.
2550 *
2551 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2552 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2553 * final texturing results copied to the framebuffer write payload and modify
2554 * them to write to the framebuffer directly.
2555 */
2556 bool
2557 fs_visitor::opt_sampler_eot()
2558 {
2559 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2560
2561 if (stage != MESA_SHADER_FRAGMENT)
2562 return false;
2563
2564 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2565 return false;
2566
2567 /* FINISHME: It should be possible to implement this optimization when there
2568 * are multiple drawbuffers.
2569 */
2570 if (key->nr_color_regions != 1)
2571 return false;
2572
2573 /* Requires emitting a bunch of saturating MOV instructions during logical
2574 * send lowering to clamp the color payload, which the sampler unit isn't
2575 * going to do for us.
2576 */
2577 if (key->clamp_fragment_color)
2578 return false;
2579
2580 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2581 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2582 fs_inst *fb_write = (fs_inst *)block->end();
2583 assert(fb_write->eot);
2584 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2585
2586 /* There wasn't one; nothing to do. */
2587 if (unlikely(fb_write->prev->is_head_sentinel()))
2588 return false;
2589
2590 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2591
2592 /* 3D Sampler » Messages » Message Format
2593 *
2594 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2595 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2596 */
2597 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2598 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2599 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2600 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2601 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2602 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2603 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2604 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2605 return false;
2606
2607 /* XXX - This shouldn't be necessary. */
2608 if (tex_inst->prev->is_head_sentinel())
2609 return false;
2610
2611 /* Check that the FB write sources are fully initialized by the single
2612 * texturing instruction.
2613 */
2614 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2615 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2616 if (!fb_write->src[i].equals(tex_inst->dst) ||
2617 fb_write->size_read(i) != tex_inst->size_written)
2618 return false;
2619 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2620 if (fb_write->src[i].file != BAD_FILE)
2621 return false;
2622 }
2623 }
2624
2625 assert(!tex_inst->eot); /* We can't get here twice */
2626 assert((tex_inst->offset & (0xff << 24)) == 0);
2627
2628 const fs_builder ibld(this, block, tex_inst);
2629
2630 tex_inst->offset |= fb_write->target << 24;
2631 tex_inst->eot = true;
2632 tex_inst->dst = ibld.null_reg_ud();
2633 tex_inst->size_written = 0;
2634 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2635
2636 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2637 * flag and submit a header together with the sampler message as required
2638 * by the hardware.
2639 */
2640 invalidate_live_intervals();
2641 return true;
2642 }
2643
2644 bool
2645 fs_visitor::opt_register_renaming()
2646 {
2647 bool progress = false;
2648 int depth = 0;
2649
2650 int remap[alloc.count];
2651 memset(remap, -1, sizeof(int) * alloc.count);
2652
2653 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2654 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2655 depth++;
2656 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2657 inst->opcode == BRW_OPCODE_WHILE) {
2658 depth--;
2659 }
2660
2661 /* Rewrite instruction sources. */
2662 for (int i = 0; i < inst->sources; i++) {
2663 if (inst->src[i].file == VGRF &&
2664 remap[inst->src[i].nr] != -1 &&
2665 remap[inst->src[i].nr] != inst->src[i].nr) {
2666 inst->src[i].nr = remap[inst->src[i].nr];
2667 progress = true;
2668 }
2669 }
2670
2671 const int dst = inst->dst.nr;
2672
2673 if (depth == 0 &&
2674 inst->dst.file == VGRF &&
2675 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2676 !inst->is_partial_write()) {
2677 if (remap[dst] == -1) {
2678 remap[dst] = dst;
2679 } else {
2680 remap[dst] = alloc.allocate(regs_written(inst));
2681 inst->dst.nr = remap[dst];
2682 progress = true;
2683 }
2684 } else if (inst->dst.file == VGRF &&
2685 remap[dst] != -1 &&
2686 remap[dst] != dst) {
2687 inst->dst.nr = remap[dst];
2688 progress = true;
2689 }
2690 }
2691
2692 if (progress) {
2693 invalidate_live_intervals();
2694
2695 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2696 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2697 delta_xy[i].nr = remap[delta_xy[i].nr];
2698 }
2699 }
2700 }
2701
2702 return progress;
2703 }
2704
2705 /**
2706 * Remove redundant or useless discard jumps.
2707 *
2708 * For example, we can eliminate jumps in the following sequence:
2709 *
2710 * discard-jump (redundant with the next jump)
2711 * discard-jump (useless; jumps to the next instruction)
2712 * placeholder-halt
2713 */
2714 bool
2715 fs_visitor::opt_redundant_discard_jumps()
2716 {
2717 bool progress = false;
2718
2719 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2720
2721 fs_inst *placeholder_halt = NULL;
2722 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2723 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2724 placeholder_halt = inst;
2725 break;
2726 }
2727 }
2728
2729 if (!placeholder_halt)
2730 return false;
2731
2732 /* Delete any HALTs immediately before the placeholder halt. */
2733 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2734 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2735 prev = (fs_inst *) placeholder_halt->prev) {
2736 prev->remove(last_bblock);
2737 progress = true;
2738 }
2739
2740 if (progress)
2741 invalidate_live_intervals();
2742
2743 return progress;
2744 }
2745
2746 /**
2747 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2748 * from \p r.offset which overlaps the region starting at \p s.offset and
2749 * spanning \p ds bytes.
2750 */
2751 static inline unsigned
2752 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2753 {
2754 const int rel_offset = reg_offset(s) - reg_offset(r);
2755 const int shift = rel_offset / REG_SIZE;
2756 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2757 assert(reg_space(r) == reg_space(s) &&
2758 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2759 return ((1 << n) - 1) << shift;
2760 }
2761
2762 bool
2763 fs_visitor::compute_to_mrf()
2764 {
2765 bool progress = false;
2766 int next_ip = 0;
2767
2768 /* No MRFs on Gen >= 7. */
2769 if (devinfo->gen >= 7)
2770 return false;
2771
2772 calculate_live_intervals();
2773
2774 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2775 int ip = next_ip;
2776 next_ip++;
2777
2778 if (inst->opcode != BRW_OPCODE_MOV ||
2779 inst->is_partial_write() ||
2780 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2781 inst->dst.type != inst->src[0].type ||
2782 inst->src[0].abs || inst->src[0].negate ||
2783 !inst->src[0].is_contiguous() ||
2784 inst->src[0].offset % REG_SIZE != 0)
2785 continue;
2786
2787 /* Can't compute-to-MRF this GRF if someone else was going to
2788 * read it later.
2789 */
2790 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2791 continue;
2792
2793 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2794 * things that computed the value of all GRFs of the source region. The
2795 * regs_left bitset keeps track of the registers we haven't yet found a
2796 * generating instruction for.
2797 */
2798 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2799
2800 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2801 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2802 inst->src[0], inst->size_read(0))) {
2803 /* Found the last thing to write our reg we want to turn
2804 * into a compute-to-MRF.
2805 */
2806
2807 /* If this one instruction didn't populate all the
2808 * channels, bail. We might be able to rewrite everything
2809 * that writes that reg, but it would require smarter
2810 * tracking.
2811 */
2812 if (scan_inst->is_partial_write())
2813 break;
2814
2815 /* Handling things not fully contained in the source of the copy
2816 * would need us to understand coalescing out more than one MOV at
2817 * a time.
2818 */
2819 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2820 inst->src[0], inst->size_read(0)))
2821 break;
2822
2823 /* SEND instructions can't have MRF as a destination. */
2824 if (scan_inst->mlen)
2825 break;
2826
2827 if (devinfo->gen == 6) {
2828 /* gen6 math instructions must have the destination be
2829 * GRF, so no compute-to-MRF for them.
2830 */
2831 if (scan_inst->is_math()) {
2832 break;
2833 }
2834 }
2835
2836 /* Clear the bits for any registers this instruction overwrites. */
2837 regs_left &= ~mask_relative_to(
2838 inst->src[0], scan_inst->dst, scan_inst->size_written);
2839 if (!regs_left)
2840 break;
2841 }
2842
2843 /* We don't handle control flow here. Most computation of
2844 * values that end up in MRFs are shortly before the MRF
2845 * write anyway.
2846 */
2847 if (block->start() == scan_inst)
2848 break;
2849
2850 /* You can't read from an MRF, so if someone else reads our
2851 * MRF's source GRF that we wanted to rewrite, that stops us.
2852 */
2853 bool interfered = false;
2854 for (int i = 0; i < scan_inst->sources; i++) {
2855 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2856 inst->src[0], inst->size_read(0))) {
2857 interfered = true;
2858 }
2859 }
2860 if (interfered)
2861 break;
2862
2863 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2864 inst->dst, inst->size_written)) {
2865 /* If somebody else writes our MRF here, we can't
2866 * compute-to-MRF before that.
2867 */
2868 break;
2869 }
2870
2871 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2872 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2873 inst->dst, inst->size_written)) {
2874 /* Found a SEND instruction, which means that there are
2875 * live values in MRFs from base_mrf to base_mrf +
2876 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2877 * above it.
2878 */
2879 break;
2880 }
2881 }
2882
2883 if (regs_left)
2884 continue;
2885
2886 /* Found all generating instructions of our MRF's source value, so it
2887 * should be safe to rewrite them to point to the MRF directly.
2888 */
2889 regs_left = (1 << regs_read(inst, 0)) - 1;
2890
2891 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2892 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2893 inst->src[0], inst->size_read(0))) {
2894 /* Clear the bits for any registers this instruction overwrites. */
2895 regs_left &= ~mask_relative_to(
2896 inst->src[0], scan_inst->dst, scan_inst->size_written);
2897
2898 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2899 reg_offset(inst->src[0]);
2900
2901 if (inst->dst.nr & BRW_MRF_COMPR4) {
2902 /* Apply the same address transformation done by the hardware
2903 * for COMPR4 MRF writes.
2904 */
2905 assert(rel_offset < 2 * REG_SIZE);
2906 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2907
2908 /* Clear the COMPR4 bit if the generating instruction is not
2909 * compressed.
2910 */
2911 if (scan_inst->size_written < 2 * REG_SIZE)
2912 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2913
2914 } else {
2915 /* Calculate the MRF number the result of this instruction is
2916 * ultimately written to.
2917 */
2918 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2919 }
2920
2921 scan_inst->dst.file = MRF;
2922 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2923 scan_inst->saturate |= inst->saturate;
2924 if (!regs_left)
2925 break;
2926 }
2927 }
2928
2929 assert(!regs_left);
2930 inst->remove(block);
2931 progress = true;
2932 }
2933
2934 if (progress)
2935 invalidate_live_intervals();
2936
2937 return progress;
2938 }
2939
2940 /**
2941 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2942 * flow. We could probably do better here with some form of divergence
2943 * analysis.
2944 */
2945 bool
2946 fs_visitor::eliminate_find_live_channel()
2947 {
2948 bool progress = false;
2949 unsigned depth = 0;
2950
2951 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2952 /* The optimization below assumes that channel zero is live on thread
2953 * dispatch, which may not be the case if the fixed function dispatches
2954 * threads sparsely.
2955 */
2956 return false;
2957 }
2958
2959 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2960 switch (inst->opcode) {
2961 case BRW_OPCODE_IF:
2962 case BRW_OPCODE_DO:
2963 depth++;
2964 break;
2965
2966 case BRW_OPCODE_ENDIF:
2967 case BRW_OPCODE_WHILE:
2968 depth--;
2969 break;
2970
2971 case FS_OPCODE_DISCARD_JUMP:
2972 /* This can potentially make control flow non-uniform until the end
2973 * of the program.
2974 */
2975 return progress;
2976
2977 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2978 if (depth == 0) {
2979 inst->opcode = BRW_OPCODE_MOV;
2980 inst->src[0] = brw_imm_ud(0u);
2981 inst->sources = 1;
2982 inst->force_writemask_all = true;
2983 progress = true;
2984 }
2985 break;
2986
2987 default:
2988 break;
2989 }
2990 }
2991
2992 return progress;
2993 }
2994
2995 /**
2996 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2997 * instructions to FS_OPCODE_REP_FB_WRITE.
2998 */
2999 void
3000 fs_visitor::emit_repclear_shader()
3001 {
3002 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3003 int base_mrf = 0;
3004 int color_mrf = base_mrf + 2;
3005 fs_inst *mov;
3006
3007 if (uniforms > 0) {
3008 mov = bld.exec_all().group(4, 0)
3009 .MOV(brw_message_reg(color_mrf),
3010 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3011 } else {
3012 struct brw_reg reg =
3013 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3014 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3015 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3016
3017 mov = bld.exec_all().group(4, 0)
3018 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3019 }
3020
3021 fs_inst *write;
3022 if (key->nr_color_regions == 1) {
3023 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3024 write->saturate = key->clamp_fragment_color;
3025 write->base_mrf = color_mrf;
3026 write->target = 0;
3027 write->header_size = 0;
3028 write->mlen = 1;
3029 } else {
3030 assume(key->nr_color_regions > 0);
3031 for (int i = 0; i < key->nr_color_regions; ++i) {
3032 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3033 write->saturate = key->clamp_fragment_color;
3034 write->base_mrf = base_mrf;
3035 write->target = i;
3036 write->header_size = 2;
3037 write->mlen = 3;
3038 }
3039 }
3040 write->eot = true;
3041
3042 calculate_cfg();
3043
3044 assign_constant_locations();
3045 assign_curb_setup();
3046
3047 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3048 if (uniforms > 0) {
3049 assert(mov->src[0].file == FIXED_GRF);
3050 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3051 }
3052 }
3053
3054 /**
3055 * Walks through basic blocks, looking for repeated MRF writes and
3056 * removing the later ones.
3057 */
3058 bool
3059 fs_visitor::remove_duplicate_mrf_writes()
3060 {
3061 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3062 bool progress = false;
3063
3064 /* Need to update the MRF tracking for compressed instructions. */
3065 if (dispatch_width >= 16)
3066 return false;
3067
3068 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3069
3070 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3071 if (inst->is_control_flow()) {
3072 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3073 }
3074
3075 if (inst->opcode == BRW_OPCODE_MOV &&
3076 inst->dst.file == MRF) {
3077 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3078 if (prev_inst && inst->equals(prev_inst)) {
3079 inst->remove(block);
3080 progress = true;
3081 continue;
3082 }
3083 }
3084
3085 /* Clear out the last-write records for MRFs that were overwritten. */
3086 if (inst->dst.file == MRF) {
3087 last_mrf_move[inst->dst.nr] = NULL;
3088 }
3089
3090 if (inst->mlen > 0 && inst->base_mrf != -1) {
3091 /* Found a SEND instruction, which will include two or fewer
3092 * implied MRF writes. We could do better here.
3093 */
3094 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3095 last_mrf_move[inst->base_mrf + i] = NULL;
3096 }
3097 }
3098
3099 /* Clear out any MRF move records whose sources got overwritten. */
3100 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3101 if (last_mrf_move[i] &&
3102 regions_overlap(inst->dst, inst->size_written,
3103 last_mrf_move[i]->src[0],
3104 last_mrf_move[i]->size_read(0))) {
3105 last_mrf_move[i] = NULL;
3106 }
3107 }
3108
3109 if (inst->opcode == BRW_OPCODE_MOV &&
3110 inst->dst.file == MRF &&
3111 inst->src[0].file != ARF &&
3112 !inst->is_partial_write()) {
3113 last_mrf_move[inst->dst.nr] = inst;
3114 }
3115 }
3116
3117 if (progress)
3118 invalidate_live_intervals();
3119
3120 return progress;
3121 }
3122
3123 /**
3124 * Rounding modes for conversion instructions are included for each
3125 * conversion, but right now it is a state. So once it is set,
3126 * we don't need to call it again for subsequent calls.
3127 *
3128 * This is useful for vector/matrices conversions, as setting the
3129 * mode once is enough for the full vector/matrix
3130 */
3131 bool
3132 fs_visitor::remove_extra_rounding_modes()
3133 {
3134 bool progress = false;
3135
3136 foreach_block (block, cfg) {
3137 brw_rnd_mode prev_mode = BRW_RND_MODE_UNSPECIFIED;
3138
3139 foreach_inst_in_block_safe (fs_inst, inst, block) {
3140 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3141 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3142 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3143 if (mode == prev_mode) {
3144 inst->remove(block);
3145 progress = true;
3146 } else {
3147 prev_mode = mode;
3148 }
3149 }
3150 }
3151 }
3152
3153 if (progress)
3154 invalidate_live_intervals();
3155
3156 return progress;
3157 }
3158
3159 static void
3160 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3161 {
3162 /* Clear the flag for registers that actually got read (as expected). */
3163 for (int i = 0; i < inst->sources; i++) {
3164 int grf;
3165 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3166 grf = inst->src[i].nr;
3167 } else {
3168 continue;
3169 }
3170
3171 if (grf >= first_grf &&
3172 grf < first_grf + grf_len) {
3173 deps[grf - first_grf] = false;
3174 if (inst->exec_size == 16)
3175 deps[grf - first_grf + 1] = false;
3176 }
3177 }
3178 }
3179
3180 /**
3181 * Implements this workaround for the original 965:
3182 *
3183 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3184 * check for post destination dependencies on this instruction, software
3185 * must ensure that there is no destination hazard for the case of ‘write
3186 * followed by a posted write’ shown in the following example.
3187 *
3188 * 1. mov r3 0
3189 * 2. send r3.xy <rest of send instruction>
3190 * 3. mov r2 r3
3191 *
3192 * Due to no post-destination dependency check on the ‘send’, the above
3193 * code sequence could have two instructions (1 and 2) in flight at the
3194 * same time that both consider ‘r3’ as the target of their final writes.
3195 */
3196 void
3197 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3198 fs_inst *inst)
3199 {
3200 int write_len = regs_written(inst);
3201 int first_write_grf = inst->dst.nr;
3202 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3203 assert(write_len < (int)sizeof(needs_dep) - 1);
3204
3205 memset(needs_dep, false, sizeof(needs_dep));
3206 memset(needs_dep, true, write_len);
3207
3208 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3209
3210 /* Walk backwards looking for writes to registers we're writing which
3211 * aren't read since being written. If we hit the start of the program,
3212 * we assume that there are no outstanding dependencies on entry to the
3213 * program.
3214 */
3215 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3216 /* If we hit control flow, assume that there *are* outstanding
3217 * dependencies, and force their cleanup before our instruction.
3218 */
3219 if (block->start() == scan_inst && block->num != 0) {
3220 for (int i = 0; i < write_len; i++) {
3221 if (needs_dep[i])
3222 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3223 first_write_grf + i);
3224 }
3225 return;
3226 }
3227
3228 /* We insert our reads as late as possible on the assumption that any
3229 * instruction but a MOV that might have left us an outstanding
3230 * dependency has more latency than a MOV.
3231 */
3232 if (scan_inst->dst.file == VGRF) {
3233 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3234 int reg = scan_inst->dst.nr + i;
3235
3236 if (reg >= first_write_grf &&
3237 reg < first_write_grf + write_len &&
3238 needs_dep[reg - first_write_grf]) {
3239 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3240 needs_dep[reg - first_write_grf] = false;
3241 if (scan_inst->exec_size == 16)
3242 needs_dep[reg - first_write_grf + 1] = false;
3243 }
3244 }
3245 }
3246
3247 /* Clear the flag for registers that actually got read (as expected). */
3248 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3249
3250 /* Continue the loop only if we haven't resolved all the dependencies */
3251 int i;
3252 for (i = 0; i < write_len; i++) {
3253 if (needs_dep[i])
3254 break;
3255 }
3256 if (i == write_len)
3257 return;
3258 }
3259 }
3260
3261 /**
3262 * Implements this workaround for the original 965:
3263 *
3264 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3265 * used as a destination register until after it has been sourced by an
3266 * instruction with a different destination register.
3267 */
3268 void
3269 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3270 {
3271 int write_len = regs_written(inst);
3272 int first_write_grf = inst->dst.nr;
3273 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3274 assert(write_len < (int)sizeof(needs_dep) - 1);
3275
3276 memset(needs_dep, false, sizeof(needs_dep));
3277 memset(needs_dep, true, write_len);
3278 /* Walk forwards looking for writes to registers we're writing which aren't
3279 * read before being written.
3280 */
3281 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3282 /* If we hit control flow, force resolve all remaining dependencies. */
3283 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3284 for (int i = 0; i < write_len; i++) {
3285 if (needs_dep[i])
3286 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3287 first_write_grf + i);
3288 }
3289 return;
3290 }
3291
3292 /* Clear the flag for registers that actually got read (as expected). */
3293 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3294
3295 /* We insert our reads as late as possible since they're reading the
3296 * result of a SEND, which has massive latency.
3297 */
3298 if (scan_inst->dst.file == VGRF &&
3299 scan_inst->dst.nr >= first_write_grf &&
3300 scan_inst->dst.nr < first_write_grf + write_len &&
3301 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3302 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3303 scan_inst->dst.nr);
3304 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3305 }
3306
3307 /* Continue the loop only if we haven't resolved all the dependencies */
3308 int i;
3309 for (i = 0; i < write_len; i++) {
3310 if (needs_dep[i])
3311 break;
3312 }
3313 if (i == write_len)
3314 return;
3315 }
3316 }
3317
3318 void
3319 fs_visitor::insert_gen4_send_dependency_workarounds()
3320 {
3321 if (devinfo->gen != 4 || devinfo->is_g4x)
3322 return;
3323
3324 bool progress = false;
3325
3326 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3327 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3328 insert_gen4_pre_send_dependency_workarounds(block, inst);
3329 insert_gen4_post_send_dependency_workarounds(block, inst);
3330 progress = true;
3331 }
3332 }
3333
3334 if (progress)
3335 invalidate_live_intervals();
3336 }
3337
3338 /**
3339 * Turns the generic expression-style uniform pull constant load instruction
3340 * into a hardware-specific series of instructions for loading a pull
3341 * constant.
3342 *
3343 * The expression style allows the CSE pass before this to optimize out
3344 * repeated loads from the same offset, and gives the pre-register-allocation
3345 * scheduling full flexibility, while the conversion to native instructions
3346 * allows the post-register-allocation scheduler the best information
3347 * possible.
3348 *
3349 * Note that execution masking for setting up pull constant loads is special:
3350 * the channels that need to be written are unrelated to the current execution
3351 * mask, since a later instruction will use one of the result channels as a
3352 * source operand for all 8 or 16 of its channels.
3353 */
3354 void
3355 fs_visitor::lower_uniform_pull_constant_loads()
3356 {
3357 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3358 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3359 continue;
3360
3361 if (devinfo->gen >= 7) {
3362 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3363 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3364
3365 ubld.group(8, 0).MOV(payload,
3366 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3367 ubld.group(1, 0).MOV(component(payload, 2),
3368 brw_imm_ud(inst->src[1].ud / 16));
3369
3370 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3371 inst->src[1] = payload;
3372 inst->header_size = 1;
3373 inst->mlen = 1;
3374
3375 invalidate_live_intervals();
3376 } else {
3377 /* Before register allocation, we didn't tell the scheduler about the
3378 * MRF we use. We know it's safe to use this MRF because nothing
3379 * else does except for register spill/unspill, which generates and
3380 * uses its MRF within a single IR instruction.
3381 */
3382 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3383 inst->mlen = 1;
3384 }
3385 }
3386 }
3387
3388 bool
3389 fs_visitor::lower_load_payload()
3390 {
3391 bool progress = false;
3392
3393 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3394 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3395 continue;
3396
3397 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3398 assert(inst->saturate == false);
3399 fs_reg dst = inst->dst;
3400
3401 /* Get rid of COMPR4. We'll add it back in if we need it */
3402 if (dst.file == MRF)
3403 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3404
3405 const fs_builder ibld(this, block, inst);
3406 const fs_builder hbld = ibld.exec_all().group(8, 0);
3407
3408 for (uint8_t i = 0; i < inst->header_size; i++) {
3409 if (inst->src[i].file != BAD_FILE) {
3410 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3411 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3412 hbld.MOV(mov_dst, mov_src);
3413 }
3414 dst = offset(dst, hbld, 1);
3415 }
3416
3417 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3418 inst->exec_size > 8) {
3419 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3420 * a straightforward copy. Instead, the result of the
3421 * LOAD_PAYLOAD is treated as interleaved and the first four
3422 * non-header sources are unpacked as:
3423 *
3424 * m + 0: r0
3425 * m + 1: g0
3426 * m + 2: b0
3427 * m + 3: a0
3428 * m + 4: r1
3429 * m + 5: g1
3430 * m + 6: b1
3431 * m + 7: a1
3432 *
3433 * This is used for gen <= 5 fb writes.
3434 */
3435 assert(inst->exec_size == 16);
3436 assert(inst->header_size + 4 <= inst->sources);
3437 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3438 if (inst->src[i].file != BAD_FILE) {
3439 if (devinfo->has_compr4) {
3440 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3441 compr4_dst.nr |= BRW_MRF_COMPR4;
3442 ibld.MOV(compr4_dst, inst->src[i]);
3443 } else {
3444 /* Platform doesn't have COMPR4. We have to fake it */
3445 fs_reg mov_dst = retype(dst, inst->src[i].type);
3446 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3447 mov_dst.nr += 4;
3448 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3449 }
3450 }
3451
3452 dst.nr++;
3453 }
3454
3455 /* The loop above only ever incremented us through the first set
3456 * of 4 registers. However, thanks to the magic of COMPR4, we
3457 * actually wrote to the first 8 registers, so we need to take
3458 * that into account now.
3459 */
3460 dst.nr += 4;
3461
3462 /* The COMPR4 code took care of the first 4 sources. We'll let
3463 * the regular path handle any remaining sources. Yes, we are
3464 * modifying the instruction but we're about to delete it so
3465 * this really doesn't hurt anything.
3466 */
3467 inst->header_size += 4;
3468 }
3469
3470 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3471 if (inst->src[i].file != BAD_FILE)
3472 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3473 dst = offset(dst, ibld, 1);
3474 }
3475
3476 inst->remove(block);
3477 progress = true;
3478 }
3479
3480 if (progress)
3481 invalidate_live_intervals();
3482
3483 return progress;
3484 }
3485
3486 bool
3487 fs_visitor::lower_integer_multiplication()
3488 {
3489 bool progress = false;
3490
3491 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3492 const fs_builder ibld(this, block, inst);
3493
3494 if (inst->opcode == BRW_OPCODE_MUL) {
3495 if (inst->dst.is_accumulator() ||
3496 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3497 inst->dst.type != BRW_REGISTER_TYPE_UD))
3498 continue;
3499
3500 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3501 * operation directly, but CHV/BXT cannot.
3502 */
3503 if (devinfo->gen >= 8 &&
3504 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3505 continue;
3506
3507 if (inst->src[1].file == IMM &&
3508 inst->src[1].ud < (1 << 16)) {
3509 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3510 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3511 * src1 are used.
3512 *
3513 * If multiplying by an immediate value that fits in 16-bits, do a
3514 * single MUL instruction with that value in the proper location.
3515 */
3516 if (devinfo->gen < 7) {
3517 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3518 inst->dst.type);
3519 ibld.MOV(imm, inst->src[1]);
3520 ibld.MUL(inst->dst, imm, inst->src[0]);
3521 } else {
3522 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3523 ibld.MUL(inst->dst, inst->src[0],
3524 ud ? brw_imm_uw(inst->src[1].ud)
3525 : brw_imm_w(inst->src[1].d));
3526 }
3527 } else {
3528 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3529 * do 32-bit integer multiplication in one instruction, but instead
3530 * must do a sequence (which actually calculates a 64-bit result):
3531 *
3532 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3533 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3534 * mov(8) g2<1>D acc0<8,8,1>D
3535 *
3536 * But on Gen > 6, the ability to use second accumulator register
3537 * (acc1) for non-float data types was removed, preventing a simple
3538 * implementation in SIMD16. A 16-channel result can be calculated by
3539 * executing the three instructions twice in SIMD8, once with quarter
3540 * control of 1Q for the first eight channels and again with 2Q for
3541 * the second eight channels.
3542 *
3543 * Which accumulator register is implicitly accessed (by AccWrEnable
3544 * for instance) is determined by the quarter control. Unfortunately
3545 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3546 * implicit accumulator access by an instruction with 2Q will access
3547 * acc1 regardless of whether the data type is usable in acc1.
3548 *
3549 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3550 * integer data types.
3551 *
3552 * Since we only want the low 32-bits of the result, we can do two
3553 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3554 * adjust the high result and add them (like the mach is doing):
3555 *
3556 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3557 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3558 * shl(8) g9<1>D g8<8,8,1>D 16D
3559 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3560 *
3561 * We avoid the shl instruction by realizing that we only want to add
3562 * the low 16-bits of the "high" result to the high 16-bits of the
3563 * "low" result and using proper regioning on the add:
3564 *
3565 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3566 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3567 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3568 *
3569 * Since it does not use the (single) accumulator register, we can
3570 * schedule multi-component multiplications much better.
3571 */
3572
3573 bool needs_mov = false;
3574 fs_reg orig_dst = inst->dst;
3575 fs_reg low = inst->dst;
3576 if (orig_dst.is_null() || orig_dst.file == MRF ||
3577 regions_overlap(inst->dst, inst->size_written,
3578 inst->src[0], inst->size_read(0)) ||
3579 regions_overlap(inst->dst, inst->size_written,
3580 inst->src[1], inst->size_read(1))) {
3581 needs_mov = true;
3582 low.nr = alloc.allocate(regs_written(inst));
3583 low.offset = low.offset % REG_SIZE;
3584 }
3585
3586 fs_reg high = inst->dst;
3587 high.nr = alloc.allocate(regs_written(inst));
3588 high.offset = high.offset % REG_SIZE;
3589
3590 if (devinfo->gen >= 7) {
3591 if (inst->src[1].file == IMM) {
3592 ibld.MUL(low, inst->src[0],
3593 brw_imm_uw(inst->src[1].ud & 0xffff));
3594 ibld.MUL(high, inst->src[0],
3595 brw_imm_uw(inst->src[1].ud >> 16));
3596 } else {
3597 ibld.MUL(low, inst->src[0],
3598 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3599 ibld.MUL(high, inst->src[0],
3600 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3601 }
3602 } else {
3603 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3604 inst->src[1]);
3605 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3606 inst->src[1]);
3607 }
3608
3609 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3610 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3611 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3612
3613 if (needs_mov || inst->conditional_mod) {
3614 set_condmod(inst->conditional_mod,
3615 ibld.MOV(orig_dst, low));
3616 }
3617 }
3618
3619 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3620 /* Should have been lowered to 8-wide. */
3621 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3622 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3623 inst->dst.type);
3624 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3625 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3626
3627 if (devinfo->gen >= 8) {
3628 /* Until Gen8, integer multiplies read 32-bits from one source,
3629 * and 16-bits from the other, and relying on the MACH instruction
3630 * to generate the high bits of the result.
3631 *
3632 * On Gen8, the multiply instruction does a full 32x32-bit
3633 * multiply, but in order to do a 64-bit multiply we can simulate
3634 * the previous behavior and then use a MACH instruction.
3635 *
3636 * FINISHME: Don't use source modifiers on src1.
3637 */
3638 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3639 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3640 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3641 mul->src[1].stride *= 2;
3642
3643 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3644 inst->group > 0) {
3645 /* Among other things the quarter control bits influence which
3646 * accumulator register is used by the hardware for instructions
3647 * that access the accumulator implicitly (e.g. MACH). A
3648 * second-half instruction would normally map to acc1, which
3649 * doesn't exist on Gen7 and up (the hardware does emulate it for
3650 * floating-point instructions *only* by taking advantage of the
3651 * extra precision of acc0 not normally used for floating point
3652 * arithmetic).
3653 *
3654 * HSW and up are careful enough not to try to access an
3655 * accumulator register that doesn't exist, but on earlier Gen7
3656 * hardware we need to make sure that the quarter control bits are
3657 * zero to avoid non-deterministic behaviour and emit an extra MOV
3658 * to get the result masked correctly according to the current
3659 * channel enables.
3660 */
3661 mach->group = 0;
3662 mach->force_writemask_all = true;
3663 mach->dst = ibld.vgrf(inst->dst.type);
3664 ibld.MOV(inst->dst, mach->dst);
3665 }
3666 } else {
3667 continue;
3668 }
3669
3670 inst->remove(block);
3671 progress = true;
3672 }
3673
3674 if (progress)
3675 invalidate_live_intervals();
3676
3677 return progress;
3678 }
3679
3680 bool
3681 fs_visitor::lower_minmax()
3682 {
3683 assert(devinfo->gen < 6);
3684
3685 bool progress = false;
3686
3687 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3688 const fs_builder ibld(this, block, inst);
3689
3690 if (inst->opcode == BRW_OPCODE_SEL &&
3691 inst->predicate == BRW_PREDICATE_NONE) {
3692 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3693 * the original SEL.L/GE instruction
3694 */
3695 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3696 inst->conditional_mod);
3697 inst->predicate = BRW_PREDICATE_NORMAL;
3698 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3699
3700 progress = true;
3701 }
3702 }
3703
3704 if (progress)
3705 invalidate_live_intervals();
3706
3707 return progress;
3708 }
3709
3710 static void
3711 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3712 fs_reg *dst, fs_reg color, unsigned components)
3713 {
3714 if (key->clamp_fragment_color) {
3715 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3716 assert(color.type == BRW_REGISTER_TYPE_F);
3717
3718 for (unsigned i = 0; i < components; i++)
3719 set_saturate(true,
3720 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3721
3722 color = tmp;
3723 }
3724
3725 for (unsigned i = 0; i < components; i++)
3726 dst[i] = offset(color, bld, i);
3727 }
3728
3729 static void
3730 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3731 const struct brw_wm_prog_data *prog_data,
3732 const brw_wm_prog_key *key,
3733 const fs_visitor::thread_payload &payload)
3734 {
3735 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3736 const gen_device_info *devinfo = bld.shader->devinfo;
3737 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3738 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3739 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3740 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3741 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3742 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3743 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3744 const unsigned components =
3745 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3746
3747 /* We can potentially have a message length of up to 15, so we have to set
3748 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3749 */
3750 fs_reg sources[15];
3751 int header_size = 2, payload_header_size;
3752 unsigned length = 0;
3753
3754 /* From the Sandy Bridge PRM, volume 4, page 198:
3755 *
3756 * "Dispatched Pixel Enables. One bit per pixel indicating
3757 * which pixels were originally enabled when the thread was
3758 * dispatched. This field is only required for the end-of-
3759 * thread message and on all dual-source messages."
3760 */
3761 if (devinfo->gen >= 6 &&
3762 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3763 color1.file == BAD_FILE &&
3764 key->nr_color_regions == 1) {
3765 header_size = 0;
3766 }
3767
3768 if (header_size != 0) {
3769 assert(header_size == 2);
3770 /* Allocate 2 registers for a header */
3771 length += 2;
3772 }
3773
3774 if (payload.aa_dest_stencil_reg) {
3775 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3776 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3777 .MOV(sources[length],
3778 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3779 length++;
3780 }
3781
3782 if (sample_mask.file != BAD_FILE) {
3783 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3784 BRW_REGISTER_TYPE_UD);
3785
3786 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3787 * relevant. Since it's unsigned single words one vgrf is always
3788 * 16-wide, but only the lower or higher 8 channels will be used by the
3789 * hardware when doing a SIMD8 write depending on whether we have
3790 * selected the subspans for the first or second half respectively.
3791 */
3792 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3793 sample_mask.type = BRW_REGISTER_TYPE_UW;
3794 sample_mask.stride *= 2;
3795
3796 bld.exec_all().annotate("FB write oMask")
3797 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3798 inst->group),
3799 sample_mask);
3800 length++;
3801 }
3802
3803 payload_header_size = length;
3804
3805 if (src0_alpha.file != BAD_FILE) {
3806 /* FIXME: This is being passed at the wrong location in the payload and
3807 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3808 * It's supposed to be immediately before oMask but there seems to be no
3809 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3810 * requires header sources to form a contiguous segment at the beginning
3811 * of the message and src0_alpha has per-channel semantics.
3812 */
3813 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3814 length++;
3815 } else if (key->replicate_alpha && inst->target != 0) {
3816 /* Handle the case when fragment shader doesn't write to draw buffer
3817 * zero. No need to call setup_color_payload() for src0_alpha because
3818 * alpha value will be undefined.
3819 */
3820 length++;
3821 }
3822
3823 setup_color_payload(bld, key, &sources[length], color0, components);
3824 length += 4;
3825
3826 if (color1.file != BAD_FILE) {
3827 setup_color_payload(bld, key, &sources[length], color1, components);
3828 length += 4;
3829 }
3830
3831 if (src_depth.file != BAD_FILE) {
3832 sources[length] = src_depth;
3833 length++;
3834 }
3835
3836 if (dst_depth.file != BAD_FILE) {
3837 sources[length] = dst_depth;
3838 length++;
3839 }
3840
3841 if (src_stencil.file != BAD_FILE) {
3842 assert(devinfo->gen >= 9);
3843 assert(bld.dispatch_width() != 16);
3844
3845 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3846 * available on gen9+. As such it's impossible to have both enabled at the
3847 * same time and therefore length cannot overrun the array.
3848 */
3849 assert(length < 15);
3850
3851 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3852 bld.exec_all().annotate("FB write OS")
3853 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3854 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3855 length++;
3856 }
3857
3858 fs_inst *load;
3859 if (devinfo->gen >= 7) {
3860 /* Send from the GRF */
3861 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3862 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3863 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3864 load->dst = payload;
3865
3866 inst->src[0] = payload;
3867 inst->resize_sources(1);
3868 } else {
3869 /* Send from the MRF */
3870 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3871 sources, length, payload_header_size);
3872
3873 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3874 * will do this for us if we just give it a COMPR4 destination.
3875 */
3876 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3877 load->dst.nr |= BRW_MRF_COMPR4;
3878
3879 inst->resize_sources(0);
3880 inst->base_mrf = 1;
3881 }
3882
3883 inst->opcode = FS_OPCODE_FB_WRITE;
3884 inst->mlen = regs_written(load);
3885 inst->header_size = header_size;
3886 }
3887
3888 static void
3889 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3890 {
3891 const fs_builder &ubld = bld.exec_all();
3892 const unsigned length = 2;
3893 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3894
3895 ubld.group(16, 0)
3896 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3897
3898 inst->resize_sources(1);
3899 inst->src[0] = header;
3900 inst->opcode = FS_OPCODE_FB_READ;
3901 inst->mlen = length;
3902 inst->header_size = length;
3903 }
3904
3905 static void
3906 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3907 const fs_reg &coordinate,
3908 const fs_reg &shadow_c,
3909 const fs_reg &lod, const fs_reg &lod2,
3910 const fs_reg &surface,
3911 const fs_reg &sampler,
3912 unsigned coord_components,
3913 unsigned grad_components)
3914 {
3915 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3916 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3917 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3918 fs_reg msg_end = msg_begin;
3919
3920 /* g0 header. */
3921 msg_end = offset(msg_end, bld.group(8, 0), 1);
3922
3923 for (unsigned i = 0; i < coord_components; i++)
3924 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3925 offset(coordinate, bld, i));
3926
3927 msg_end = offset(msg_end, bld, coord_components);
3928
3929 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3930 * require all three components to be present and zero if they are unused.
3931 */
3932 if (coord_components > 0 &&
3933 (has_lod || shadow_c.file != BAD_FILE ||
3934 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3935 for (unsigned i = coord_components; i < 3; i++)
3936 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3937
3938 msg_end = offset(msg_end, bld, 3 - coord_components);
3939 }
3940
3941 if (op == SHADER_OPCODE_TXD) {
3942 /* TXD unsupported in SIMD16 mode. */
3943 assert(bld.dispatch_width() == 8);
3944
3945 /* the slots for u and v are always present, but r is optional */
3946 if (coord_components < 2)
3947 msg_end = offset(msg_end, bld, 2 - coord_components);
3948
3949 /* P = u, v, r
3950 * dPdx = dudx, dvdx, drdx
3951 * dPdy = dudy, dvdy, drdy
3952 *
3953 * 1-arg: Does not exist.
3954 *
3955 * 2-arg: dudx dvdx dudy dvdy
3956 * dPdx.x dPdx.y dPdy.x dPdy.y
3957 * m4 m5 m6 m7
3958 *
3959 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3960 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3961 * m5 m6 m7 m8 m9 m10
3962 */
3963 for (unsigned i = 0; i < grad_components; i++)
3964 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3965
3966 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3967
3968 for (unsigned i = 0; i < grad_components; i++)
3969 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3970
3971 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3972 }
3973
3974 if (has_lod) {
3975 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3976 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3977 */
3978 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3979 bld.dispatch_width() == 16);
3980
3981 const brw_reg_type type =
3982 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3983 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3984 bld.MOV(retype(msg_end, type), lod);
3985 msg_end = offset(msg_end, bld, 1);
3986 }
3987
3988 if (shadow_c.file != BAD_FILE) {
3989 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3990 /* There's no plain shadow compare message, so we use shadow
3991 * compare with a bias of 0.0.
3992 */
3993 bld.MOV(msg_end, brw_imm_f(0.0f));
3994 msg_end = offset(msg_end, bld, 1);
3995 }
3996
3997 bld.MOV(msg_end, shadow_c);
3998 msg_end = offset(msg_end, bld, 1);
3999 }
4000
4001 inst->opcode = op;
4002 inst->src[0] = reg_undef;
4003 inst->src[1] = surface;
4004 inst->src[2] = sampler;
4005 inst->resize_sources(3);
4006 inst->base_mrf = msg_begin.nr;
4007 inst->mlen = msg_end.nr - msg_begin.nr;
4008 inst->header_size = 1;
4009 }
4010
4011 static void
4012 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4013 const fs_reg &coordinate,
4014 const fs_reg &shadow_c,
4015 const fs_reg &lod, const fs_reg &lod2,
4016 const fs_reg &sample_index,
4017 const fs_reg &surface,
4018 const fs_reg &sampler,
4019 unsigned coord_components,
4020 unsigned grad_components)
4021 {
4022 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4023 fs_reg msg_coords = message;
4024 unsigned header_size = 0;
4025
4026 if (inst->offset != 0) {
4027 /* The offsets set up by the visitor are in the m1 header, so we can't
4028 * go headerless.
4029 */
4030 header_size = 1;
4031 message.nr--;
4032 }
4033
4034 for (unsigned i = 0; i < coord_components; i++)
4035 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4036 offset(coordinate, bld, i));
4037
4038 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4039 fs_reg msg_lod = offset(msg_coords, bld, 4);
4040
4041 if (shadow_c.file != BAD_FILE) {
4042 fs_reg msg_shadow = msg_lod;
4043 bld.MOV(msg_shadow, shadow_c);
4044 msg_lod = offset(msg_shadow, bld, 1);
4045 msg_end = msg_lod;
4046 }
4047
4048 switch (op) {
4049 case SHADER_OPCODE_TXL:
4050 case FS_OPCODE_TXB:
4051 bld.MOV(msg_lod, lod);
4052 msg_end = offset(msg_lod, bld, 1);
4053 break;
4054 case SHADER_OPCODE_TXD:
4055 /**
4056 * P = u, v, r
4057 * dPdx = dudx, dvdx, drdx
4058 * dPdy = dudy, dvdy, drdy
4059 *
4060 * Load up these values:
4061 * - dudx dudy dvdx dvdy drdx drdy
4062 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4063 */
4064 msg_end = msg_lod;
4065 for (unsigned i = 0; i < grad_components; i++) {
4066 bld.MOV(msg_end, offset(lod, bld, i));
4067 msg_end = offset(msg_end, bld, 1);
4068
4069 bld.MOV(msg_end, offset(lod2, bld, i));
4070 msg_end = offset(msg_end, bld, 1);
4071 }
4072 break;
4073 case SHADER_OPCODE_TXS:
4074 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4075 bld.MOV(msg_lod, lod);
4076 msg_end = offset(msg_lod, bld, 1);
4077 break;
4078 case SHADER_OPCODE_TXF:
4079 msg_lod = offset(msg_coords, bld, 3);
4080 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4081 msg_end = offset(msg_lod, bld, 1);
4082 break;
4083 case SHADER_OPCODE_TXF_CMS:
4084 msg_lod = offset(msg_coords, bld, 3);
4085 /* lod */
4086 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4087 /* sample index */
4088 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4089 msg_end = offset(msg_lod, bld, 2);
4090 break;
4091 default:
4092 break;
4093 }
4094
4095 inst->opcode = op;
4096 inst->src[0] = reg_undef;
4097 inst->src[1] = surface;
4098 inst->src[2] = sampler;
4099 inst->resize_sources(3);
4100 inst->base_mrf = message.nr;
4101 inst->mlen = msg_end.nr - message.nr;
4102 inst->header_size = header_size;
4103
4104 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4105 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4106 }
4107
4108 static bool
4109 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4110 {
4111 if (devinfo->gen < 8 && !devinfo->is_haswell)
4112 return false;
4113
4114 return sampler.file != IMM || sampler.ud >= 16;
4115 }
4116
4117 static void
4118 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4119 const fs_reg &coordinate,
4120 const fs_reg &shadow_c,
4121 fs_reg lod, const fs_reg &lod2,
4122 const fs_reg &sample_index,
4123 const fs_reg &mcs,
4124 const fs_reg &surface,
4125 const fs_reg &sampler,
4126 const fs_reg &tg4_offset,
4127 unsigned coord_components,
4128 unsigned grad_components)
4129 {
4130 const gen_device_info *devinfo = bld.shader->devinfo;
4131 unsigned reg_width = bld.dispatch_width() / 8;
4132 unsigned header_size = 0, length = 0;
4133 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4134 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4135 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4136
4137 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4138 inst->offset != 0 || inst->eot ||
4139 op == SHADER_OPCODE_SAMPLEINFO ||
4140 is_high_sampler(devinfo, sampler)) {
4141 /* For general texture offsets (no txf workaround), we need a header to
4142 * put them in. Note that we're only reserving space for it in the
4143 * message payload as it will be initialized implicitly by the
4144 * generator.
4145 *
4146 * TG4 needs to place its channel select in the header, for interaction
4147 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4148 * larger sampler numbers we need to offset the Sampler State Pointer in
4149 * the header.
4150 */
4151 header_size = 1;
4152 sources[0] = fs_reg();
4153 length++;
4154
4155 /* If we're requesting fewer than four channels worth of response,
4156 * and we have an explicit header, we need to set up the sampler
4157 * writemask. It's reversed from normal: 1 means "don't write".
4158 */
4159 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4160 assert(regs_written(inst) % reg_width == 0);
4161 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4162 inst->offset |= mask << 12;
4163 }
4164 }
4165
4166 if (shadow_c.file != BAD_FILE) {
4167 bld.MOV(sources[length], shadow_c);
4168 length++;
4169 }
4170
4171 bool coordinate_done = false;
4172
4173 /* Set up the LOD info */
4174 switch (op) {
4175 case FS_OPCODE_TXB:
4176 case SHADER_OPCODE_TXL:
4177 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4178 op = SHADER_OPCODE_TXL_LZ;
4179 break;
4180 }
4181 bld.MOV(sources[length], lod);
4182 length++;
4183 break;
4184 case SHADER_OPCODE_TXD:
4185 /* TXD should have been lowered in SIMD16 mode. */
4186 assert(bld.dispatch_width() == 8);
4187
4188 /* Load dPdx and the coordinate together:
4189 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4190 */
4191 for (unsigned i = 0; i < coord_components; i++) {
4192 bld.MOV(sources[length++], offset(coordinate, bld, i));
4193
4194 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4195 * only derivatives for (u, v, r).
4196 */
4197 if (i < grad_components) {
4198 bld.MOV(sources[length++], offset(lod, bld, i));
4199 bld.MOV(sources[length++], offset(lod2, bld, i));
4200 }
4201 }
4202
4203 coordinate_done = true;
4204 break;
4205 case SHADER_OPCODE_TXS:
4206 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4207 length++;
4208 break;
4209 case SHADER_OPCODE_TXF:
4210 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4211 * On Gen9 they are u, v, lod, r
4212 */
4213 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4214
4215 if (devinfo->gen >= 9) {
4216 if (coord_components >= 2) {
4217 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4218 offset(coordinate, bld, 1));
4219 } else {
4220 sources[length] = brw_imm_d(0);
4221 }
4222 length++;
4223 }
4224
4225 if (devinfo->gen >= 9 && lod.is_zero()) {
4226 op = SHADER_OPCODE_TXF_LZ;
4227 } else {
4228 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4229 length++;
4230 }
4231
4232 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4233 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4234 offset(coordinate, bld, i));
4235
4236 coordinate_done = true;
4237 break;
4238
4239 case SHADER_OPCODE_TXF_CMS:
4240 case SHADER_OPCODE_TXF_CMS_W:
4241 case SHADER_OPCODE_TXF_UMS:
4242 case SHADER_OPCODE_TXF_MCS:
4243 if (op == SHADER_OPCODE_TXF_UMS ||
4244 op == SHADER_OPCODE_TXF_CMS ||
4245 op == SHADER_OPCODE_TXF_CMS_W) {
4246 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4247 length++;
4248 }
4249
4250 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4251 /* Data from the multisample control surface. */
4252 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4253 length++;
4254
4255 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4256 * the MCS data.
4257 */
4258 if (op == SHADER_OPCODE_TXF_CMS_W) {
4259 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4260 mcs.file == IMM ?
4261 mcs :
4262 offset(mcs, bld, 1));
4263 length++;
4264 }
4265 }
4266
4267 /* There is no offsetting for this message; just copy in the integer
4268 * texture coordinates.
4269 */
4270 for (unsigned i = 0; i < coord_components; i++)
4271 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4272 offset(coordinate, bld, i));
4273
4274 coordinate_done = true;
4275 break;
4276 case SHADER_OPCODE_TG4_OFFSET:
4277 /* More crazy intermixing */
4278 for (unsigned i = 0; i < 2; i++) /* u, v */
4279 bld.MOV(sources[length++], offset(coordinate, bld, i));
4280
4281 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4282 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4283 offset(tg4_offset, bld, i));
4284
4285 if (coord_components == 3) /* r if present */
4286 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4287
4288 coordinate_done = true;
4289 break;
4290 default:
4291 break;
4292 }
4293
4294 /* Set up the coordinate (except for cases where it was done above) */
4295 if (!coordinate_done) {
4296 for (unsigned i = 0; i < coord_components; i++)
4297 bld.MOV(sources[length++], offset(coordinate, bld, i));
4298 }
4299
4300 int mlen;
4301 if (reg_width == 2)
4302 mlen = length * reg_width - header_size;
4303 else
4304 mlen = length * reg_width;
4305
4306 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4307 BRW_REGISTER_TYPE_F);
4308 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4309
4310 /* Generate the SEND. */
4311 inst->opcode = op;
4312 inst->src[0] = src_payload;
4313 inst->src[1] = surface;
4314 inst->src[2] = sampler;
4315 inst->resize_sources(3);
4316 inst->mlen = mlen;
4317 inst->header_size = header_size;
4318
4319 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4320 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4321 }
4322
4323 static void
4324 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4325 {
4326 const gen_device_info *devinfo = bld.shader->devinfo;
4327 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4328 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4329 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4330 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4331 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4332 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4333 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4334 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4335 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4336 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4337 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4338 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4339 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4340
4341 if (devinfo->gen >= 7) {
4342 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4343 shadow_c, lod, lod2, sample_index,
4344 mcs, surface, sampler, tg4_offset,
4345 coord_components, grad_components);
4346 } else if (devinfo->gen >= 5) {
4347 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4348 shadow_c, lod, lod2, sample_index,
4349 surface, sampler,
4350 coord_components, grad_components);
4351 } else {
4352 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4353 shadow_c, lod, lod2,
4354 surface, sampler,
4355 coord_components, grad_components);
4356 }
4357 }
4358
4359 /**
4360 * Initialize the header present in some typed and untyped surface
4361 * messages.
4362 */
4363 static fs_reg
4364 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4365 {
4366 fs_builder ubld = bld.exec_all().group(8, 0);
4367 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4368 ubld.MOV(dst, brw_imm_d(0));
4369 ubld.group(1, 0).MOV(component(dst, 7), sample_mask);
4370 return dst;
4371 }
4372
4373 static void
4374 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4375 const fs_reg &sample_mask)
4376 {
4377 /* Get the logical send arguments. */
4378 const fs_reg &addr = inst->src[0];
4379 const fs_reg &src = inst->src[1];
4380 const fs_reg &surface = inst->src[2];
4381 const UNUSED fs_reg &dims = inst->src[3];
4382 const fs_reg &arg = inst->src[4];
4383
4384 /* Calculate the total number of components of the payload. */
4385 const unsigned addr_sz = inst->components_read(0);
4386 const unsigned src_sz = inst->components_read(1);
4387 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4388 const unsigned sz = header_sz + addr_sz + src_sz;
4389
4390 /* Allocate space for the payload. */
4391 fs_reg *const components = new fs_reg[sz];
4392 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4393 unsigned n = 0;
4394
4395 /* Construct the payload. */
4396 if (header_sz)
4397 components[n++] = emit_surface_header(bld, sample_mask);
4398
4399 for (unsigned i = 0; i < addr_sz; i++)
4400 components[n++] = offset(addr, bld, i);
4401
4402 for (unsigned i = 0; i < src_sz; i++)
4403 components[n++] = offset(src, bld, i);
4404
4405 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4406
4407 /* Update the original instruction. */
4408 inst->opcode = op;
4409 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4410 inst->header_size = header_sz;
4411
4412 inst->src[0] = payload;
4413 inst->src[1] = surface;
4414 inst->src[2] = arg;
4415 inst->resize_sources(3);
4416
4417 delete[] components;
4418 }
4419
4420 static void
4421 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4422 {
4423 const gen_device_info *devinfo = bld.shader->devinfo;
4424
4425 if (devinfo->gen >= 7) {
4426 /* We are switching the instruction from an ALU-like instruction to a
4427 * send-from-grf instruction. Since sends can't handle strides or
4428 * source modifiers, we have to make a copy of the offset source.
4429 */
4430 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4431 bld.MOV(tmp, inst->src[1]);
4432 inst->src[1] = tmp;
4433
4434 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4435
4436 } else {
4437 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4438 BRW_REGISTER_TYPE_UD);
4439
4440 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4441
4442 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4443 inst->resize_sources(1);
4444 inst->base_mrf = payload.nr;
4445 inst->header_size = 1;
4446 inst->mlen = 1 + inst->exec_size / 8;
4447 }
4448 }
4449
4450 static void
4451 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4452 {
4453 assert(bld.shader->devinfo->gen < 6);
4454
4455 inst->base_mrf = 2;
4456 inst->mlen = inst->sources * inst->exec_size / 8;
4457
4458 if (inst->sources > 1) {
4459 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4460 * "Message Payload":
4461 *
4462 * "Operand0[7]. For the INT DIV functions, this operand is the
4463 * denominator."
4464 * ...
4465 * "Operand1[7]. For the INT DIV functions, this operand is the
4466 * numerator."
4467 */
4468 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4469 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4470 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4471
4472 inst->resize_sources(1);
4473 inst->src[0] = src0;
4474
4475 assert(inst->exec_size == 8);
4476 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4477 }
4478 }
4479
4480 bool
4481 fs_visitor::lower_logical_sends()
4482 {
4483 bool progress = false;
4484
4485 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4486 const fs_builder ibld(this, block, inst);
4487
4488 switch (inst->opcode) {
4489 case FS_OPCODE_FB_WRITE_LOGICAL:
4490 assert(stage == MESA_SHADER_FRAGMENT);
4491 lower_fb_write_logical_send(ibld, inst,
4492 brw_wm_prog_data(prog_data),
4493 (const brw_wm_prog_key *)key,
4494 payload);
4495 break;
4496
4497 case FS_OPCODE_FB_READ_LOGICAL:
4498 lower_fb_read_logical_send(ibld, inst);
4499 break;
4500
4501 case SHADER_OPCODE_TEX_LOGICAL:
4502 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4503 break;
4504
4505 case SHADER_OPCODE_TXD_LOGICAL:
4506 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4507 break;
4508
4509 case SHADER_OPCODE_TXF_LOGICAL:
4510 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4511 break;
4512
4513 case SHADER_OPCODE_TXL_LOGICAL:
4514 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4515 break;
4516
4517 case SHADER_OPCODE_TXS_LOGICAL:
4518 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4519 break;
4520
4521 case FS_OPCODE_TXB_LOGICAL:
4522 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4523 break;
4524
4525 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4526 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4527 break;
4528
4529 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4530 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4531 break;
4532
4533 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4534 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4535 break;
4536
4537 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4538 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4539 break;
4540
4541 case SHADER_OPCODE_LOD_LOGICAL:
4542 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4543 break;
4544
4545 case SHADER_OPCODE_TG4_LOGICAL:
4546 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4547 break;
4548
4549 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4550 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4551 break;
4552
4553 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4554 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4555 break;
4556
4557 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4558 lower_surface_logical_send(ibld, inst,
4559 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4560 fs_reg());
4561 break;
4562
4563 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4564 lower_surface_logical_send(ibld, inst,
4565 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4566 ibld.sample_mask_reg());
4567 break;
4568
4569 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
4570 lower_surface_logical_send(ibld, inst,
4571 SHADER_OPCODE_BYTE_SCATTERED_READ,
4572 fs_reg());
4573 break;
4574
4575 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
4576 lower_surface_logical_send(ibld, inst,
4577 SHADER_OPCODE_BYTE_SCATTERED_WRITE,
4578 ibld.sample_mask_reg());
4579 break;
4580
4581 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4582 lower_surface_logical_send(ibld, inst,
4583 SHADER_OPCODE_UNTYPED_ATOMIC,
4584 ibld.sample_mask_reg());
4585 break;
4586
4587 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4588 lower_surface_logical_send(ibld, inst,
4589 SHADER_OPCODE_TYPED_SURFACE_READ,
4590 brw_imm_d(0xffff));
4591 break;
4592
4593 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4594 lower_surface_logical_send(ibld, inst,
4595 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4596 ibld.sample_mask_reg());
4597 break;
4598
4599 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4600 lower_surface_logical_send(ibld, inst,
4601 SHADER_OPCODE_TYPED_ATOMIC,
4602 ibld.sample_mask_reg());
4603 break;
4604
4605 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4606 lower_varying_pull_constant_logical_send(ibld, inst);
4607 break;
4608
4609 case SHADER_OPCODE_RCP:
4610 case SHADER_OPCODE_RSQ:
4611 case SHADER_OPCODE_SQRT:
4612 case SHADER_OPCODE_EXP2:
4613 case SHADER_OPCODE_LOG2:
4614 case SHADER_OPCODE_SIN:
4615 case SHADER_OPCODE_COS:
4616 case SHADER_OPCODE_POW:
4617 case SHADER_OPCODE_INT_QUOTIENT:
4618 case SHADER_OPCODE_INT_REMAINDER:
4619 /* The math opcodes are overloaded for the send-like and
4620 * expression-like instructions which seems kind of icky. Gen6+ has
4621 * a native (but rather quirky) MATH instruction so we don't need to
4622 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4623 * logical instructions (which we can easily recognize because they
4624 * have mlen = 0) into send-like virtual instructions.
4625 */
4626 if (devinfo->gen < 6 && inst->mlen == 0) {
4627 lower_math_logical_send(ibld, inst);
4628 break;
4629
4630 } else {
4631 continue;
4632 }
4633
4634 default:
4635 continue;
4636 }
4637
4638 progress = true;
4639 }
4640
4641 if (progress)
4642 invalidate_live_intervals();
4643
4644 return progress;
4645 }
4646
4647 /**
4648 * Get the closest allowed SIMD width for instruction \p inst accounting for
4649 * some common regioning and execution control restrictions that apply to FPU
4650 * instructions. These restrictions don't necessarily have any relevance to
4651 * instructions not executed by the FPU pipeline like extended math, control
4652 * flow or send message instructions.
4653 *
4654 * For virtual opcodes it's really up to the instruction -- In some cases
4655 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4656 * instructions) it may simplify virtual instruction lowering if we can
4657 * enforce FPU-like regioning restrictions already on the virtual instruction,
4658 * in other cases (e.g. virtual send-like instructions) this may be
4659 * excessively restrictive.
4660 */
4661 static unsigned
4662 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4663 const fs_inst *inst)
4664 {
4665 /* Maximum execution size representable in the instruction controls. */
4666 unsigned max_width = MIN2(32, inst->exec_size);
4667
4668 /* According to the PRMs:
4669 * "A. In Direct Addressing mode, a source cannot span more than 2
4670 * adjacent GRF registers.
4671 * B. A destination cannot span more than 2 adjacent GRF registers."
4672 *
4673 * Look for the source or destination with the largest register region
4674 * which is the one that is going to limit the overall execution size of
4675 * the instruction due to this rule.
4676 */
4677 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4678
4679 for (unsigned i = 0; i < inst->sources; i++)
4680 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4681
4682 /* Calculate the maximum execution size of the instruction based on the
4683 * factor by which it goes over the hardware limit of 2 GRFs.
4684 */
4685 if (reg_count > 2)
4686 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4687
4688 /* According to the IVB PRMs:
4689 * "When destination spans two registers, the source MUST span two
4690 * registers. The exception to the above rule:
4691 *
4692 * - When source is scalar, the source registers are not incremented.
4693 * - When source is packed integer Word and destination is packed
4694 * integer DWord, the source register is not incremented but the
4695 * source sub register is incremented."
4696 *
4697 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4698 * restrictions. The code below intentionally doesn't check whether the
4699 * destination type is integer because empirically the hardware doesn't
4700 * seem to care what the actual type is as long as it's dword-aligned.
4701 */
4702 if (devinfo->gen < 8) {
4703 for (unsigned i = 0; i < inst->sources; i++) {
4704 /* IVB implements DF scalars as <0;2,1> regions. */
4705 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4706 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4707 const bool is_packed_word_exception =
4708 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4709 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4710
4711 if (inst->size_written > REG_SIZE &&
4712 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4713 !is_scalar_exception && !is_packed_word_exception) {
4714 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4715 max_width = MIN2(max_width, inst->exec_size / reg_count);
4716 }
4717 }
4718 }
4719
4720 /* From the IVB PRMs:
4721 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4722 * are applied for both halves of the SIMD32 instruction. If different
4723 * execution mask channels are required, split the instruction into two
4724 * SIMD16 instructions."
4725 *
4726 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4727 * 32-wide control flow support in hardware and will behave similarly.
4728 */
4729 if (devinfo->gen < 8 && !inst->force_writemask_all)
4730 max_width = MIN2(max_width, 16);
4731
4732 /* From the IVB PRMs (applies to HSW too):
4733 * "Instructions with condition modifiers must not use SIMD32."
4734 *
4735 * From the BDW PRMs (applies to later hardware too):
4736 * "Ternary instruction with condition modifiers must not use SIMD32."
4737 */
4738 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4739 max_width = MIN2(max_width, 16);
4740
4741 /* From the IVB PRMs (applies to other devices that don't have the
4742 * gen_device_info::supports_simd16_3src flag set):
4743 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4744 * SIMD8 is not allowed for DF operations."
4745 */
4746 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4747 max_width = MIN2(max_width, inst->exec_size / reg_count);
4748
4749 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4750 * the 8-bit quarter of the execution mask signals specified in the
4751 * instruction control fields) for the second compressed half of any
4752 * single-precision instruction (for double-precision instructions
4753 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4754 * the EU will apply the wrong execution controls for the second
4755 * sequential GRF write if the number of channels per GRF is not exactly
4756 * eight in single-precision mode (or four in double-float mode).
4757 *
4758 * In this situation we calculate the maximum size of the split
4759 * instructions so they only ever write to a single register.
4760 */
4761 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4762 !inst->force_writemask_all) {
4763 const unsigned channels_per_grf = inst->exec_size /
4764 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4765 const unsigned exec_type_size = get_exec_type_size(inst);
4766 assert(exec_type_size);
4767
4768 /* The hardware shifts exactly 8 channels per compressed half of the
4769 * instruction in single-precision mode and exactly 4 in double-precision.
4770 */
4771 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4772 max_width = MIN2(max_width, channels_per_grf);
4773
4774 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4775 * because HW applies the same channel enable signals to both halves of
4776 * the compressed instruction which will be just wrong under
4777 * non-uniform control flow.
4778 */
4779 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4780 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4781 max_width = MIN2(max_width, 4);
4782 }
4783
4784 /* Only power-of-two execution sizes are representable in the instruction
4785 * control fields.
4786 */
4787 return 1 << _mesa_logbase2(max_width);
4788 }
4789
4790 /**
4791 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4792 * various payload size restrictions that apply to sampler message
4793 * instructions.
4794 *
4795 * This is only intended to provide a maximum theoretical bound for the
4796 * execution size of the message based on the number of argument components
4797 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4798 * variant of the message can be used, though some messages may have
4799 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4800 * the message length to determine the exact SIMD width and argument count,
4801 * which makes a number of sampler message combinations impossible to
4802 * represent).
4803 */
4804 static unsigned
4805 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4806 const fs_inst *inst)
4807 {
4808 /* Calculate the number of coordinate components that have to be present
4809 * assuming that additional arguments follow the texel coordinates in the
4810 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4811 * need to pad to four or three components depending on the message,
4812 * pre-ILK we need to pad to at most three components.
4813 */
4814 const unsigned req_coord_components =
4815 (devinfo->gen >= 7 ||
4816 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4817 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4818 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4819 3;
4820
4821 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4822 * variant of the TXL or TXF message.
4823 */
4824 const bool implicit_lod = devinfo->gen >= 9 &&
4825 (inst->opcode == SHADER_OPCODE_TXL ||
4826 inst->opcode == SHADER_OPCODE_TXF) &&
4827 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4828
4829 /* Calculate the total number of argument components that need to be passed
4830 * to the sampler unit.
4831 */
4832 const unsigned num_payload_components =
4833 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4834 req_coord_components) +
4835 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4836 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4837 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4838 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4839 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4840 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4841 inst->components_read(TEX_LOGICAL_SRC_MCS);
4842
4843 /* SIMD16 messages with more than five arguments exceed the maximum message
4844 * size supported by the sampler, regardless of whether a header is
4845 * provided or not.
4846 */
4847 return MIN2(inst->exec_size,
4848 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4849 }
4850
4851 /**
4852 * Get the closest native SIMD width supported by the hardware for instruction
4853 * \p inst. The instruction will be left untouched by
4854 * fs_visitor::lower_simd_width() if the returned value is equal to the
4855 * original execution size.
4856 */
4857 static unsigned
4858 get_lowered_simd_width(const struct gen_device_info *devinfo,
4859 const fs_inst *inst)
4860 {
4861 switch (inst->opcode) {
4862 case BRW_OPCODE_MOV:
4863 case BRW_OPCODE_SEL:
4864 case BRW_OPCODE_NOT:
4865 case BRW_OPCODE_AND:
4866 case BRW_OPCODE_OR:
4867 case BRW_OPCODE_XOR:
4868 case BRW_OPCODE_SHR:
4869 case BRW_OPCODE_SHL:
4870 case BRW_OPCODE_ASR:
4871 case BRW_OPCODE_CMPN:
4872 case BRW_OPCODE_CSEL:
4873 case BRW_OPCODE_F32TO16:
4874 case BRW_OPCODE_F16TO32:
4875 case BRW_OPCODE_BFREV:
4876 case BRW_OPCODE_BFE:
4877 case BRW_OPCODE_ADD:
4878 case BRW_OPCODE_MUL:
4879 case BRW_OPCODE_AVG:
4880 case BRW_OPCODE_FRC:
4881 case BRW_OPCODE_RNDU:
4882 case BRW_OPCODE_RNDD:
4883 case BRW_OPCODE_RNDE:
4884 case BRW_OPCODE_RNDZ:
4885 case BRW_OPCODE_LZD:
4886 case BRW_OPCODE_FBH:
4887 case BRW_OPCODE_FBL:
4888 case BRW_OPCODE_CBIT:
4889 case BRW_OPCODE_SAD2:
4890 case BRW_OPCODE_MAD:
4891 case BRW_OPCODE_LRP:
4892 case FS_OPCODE_PACK:
4893 return get_fpu_lowered_simd_width(devinfo, inst);
4894
4895 case BRW_OPCODE_CMP: {
4896 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4897 * when the destination is a GRF the dependency-clear bit on the flag
4898 * register is cleared early.
4899 *
4900 * Suggested workarounds are to disable coissuing CMP instructions
4901 * or to split CMP(16) instructions into two CMP(8) instructions.
4902 *
4903 * We choose to split into CMP(8) instructions since disabling
4904 * coissuing would affect CMP instructions not otherwise affected by
4905 * the errata.
4906 */
4907 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4908 !inst->dst.is_null() ? 8 : ~0);
4909 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4910 }
4911 case BRW_OPCODE_BFI1:
4912 case BRW_OPCODE_BFI2:
4913 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4914 * should
4915 * "Force BFI instructions to be executed always in SIMD8."
4916 */
4917 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4918 get_fpu_lowered_simd_width(devinfo, inst));
4919
4920 case BRW_OPCODE_IF:
4921 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4922 return inst->exec_size;
4923
4924 case SHADER_OPCODE_RCP:
4925 case SHADER_OPCODE_RSQ:
4926 case SHADER_OPCODE_SQRT:
4927 case SHADER_OPCODE_EXP2:
4928 case SHADER_OPCODE_LOG2:
4929 case SHADER_OPCODE_SIN:
4930 case SHADER_OPCODE_COS:
4931 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4932 * Gen6.
4933 */
4934 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4935 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4936 MIN2(8, inst->exec_size));
4937
4938 case SHADER_OPCODE_POW:
4939 /* SIMD16 is only allowed on Gen7+. */
4940 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4941 MIN2(8, inst->exec_size));
4942
4943 case SHADER_OPCODE_INT_QUOTIENT:
4944 case SHADER_OPCODE_INT_REMAINDER:
4945 /* Integer division is limited to SIMD8 on all generations. */
4946 return MIN2(8, inst->exec_size);
4947
4948 case FS_OPCODE_LINTERP:
4949 case FS_OPCODE_GET_BUFFER_SIZE:
4950 case FS_OPCODE_DDX_COARSE:
4951 case FS_OPCODE_DDX_FINE:
4952 case FS_OPCODE_DDY_COARSE:
4953 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4954 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4955 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4956 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4957 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4958 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4959 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4960 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4961 return MIN2(16, inst->exec_size);
4962
4963 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4964 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4965 * message used to implement varying pull constant loads, so expand it
4966 * to SIMD16. An alternative with longer message payload length but
4967 * shorter return payload would be to use the SIMD8 sampler message that
4968 * takes (header, u, v, r) as parameters instead of (header, u).
4969 */
4970 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4971
4972 case FS_OPCODE_DDY_FINE:
4973 /* The implementation of this virtual opcode may require emitting
4974 * compressed Align16 instructions, which are severely limited on some
4975 * generations.
4976 *
4977 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4978 * Region Restrictions):
4979 *
4980 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4981 * and SIMD8 is not allowed for DF operations."
4982 *
4983 * In this context, "DW operations" means "operations acting on 32-bit
4984 * values", so it includes operations on floats.
4985 *
4986 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4987 * (Instruction Compression -> Rules and Restrictions):
4988 *
4989 * "A compressed instruction must be in Align1 access mode. Align16
4990 * mode instructions cannot be compressed."
4991 *
4992 * Similar text exists in the g45 PRM.
4993 *
4994 * Empirically, compressed align16 instructions using odd register
4995 * numbers don't appear to work on Sandybridge either.
4996 */
4997 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4998 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4999 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
5000
5001 case SHADER_OPCODE_MULH:
5002 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
5003 * is 8-wide on Gen7+.
5004 */
5005 return (devinfo->gen >= 7 ? 8 :
5006 get_fpu_lowered_simd_width(devinfo, inst));
5007
5008 case FS_OPCODE_FB_WRITE_LOGICAL:
5009 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
5010 * here.
5011 */
5012 assert(devinfo->gen != 6 ||
5013 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
5014 inst->exec_size == 8);
5015 /* Dual-source FB writes are unsupported in SIMD16 mode. */
5016 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
5017 8 : MIN2(16, inst->exec_size));
5018
5019 case FS_OPCODE_FB_READ_LOGICAL:
5020 return MIN2(16, inst->exec_size);
5021
5022 case SHADER_OPCODE_TEX_LOGICAL:
5023 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5024 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5025 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5026 case SHADER_OPCODE_LOD_LOGICAL:
5027 case SHADER_OPCODE_TG4_LOGICAL:
5028 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5029 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5030 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5031 return get_sampler_lowered_simd_width(devinfo, inst);
5032
5033 case SHADER_OPCODE_TXD_LOGICAL:
5034 /* TXD is unsupported in SIMD16 mode. */
5035 return 8;
5036
5037 case SHADER_OPCODE_TXL_LOGICAL:
5038 case FS_OPCODE_TXB_LOGICAL:
5039 /* Only one execution size is representable pre-ILK depending on whether
5040 * the shadow reference argument is present.
5041 */
5042 if (devinfo->gen == 4)
5043 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
5044 else
5045 return get_sampler_lowered_simd_width(devinfo, inst);
5046
5047 case SHADER_OPCODE_TXF_LOGICAL:
5048 case SHADER_OPCODE_TXS_LOGICAL:
5049 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
5050 * messages. Use SIMD16 instead.
5051 */
5052 if (devinfo->gen == 4)
5053 return 16;
5054 else
5055 return get_sampler_lowered_simd_width(devinfo, inst);
5056
5057 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5058 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5059 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5060 return 8;
5061
5062 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5063 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5064 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5065 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5066 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5067 return MIN2(16, inst->exec_size);
5068
5069 case SHADER_OPCODE_URB_READ_SIMD8:
5070 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
5071 case SHADER_OPCODE_URB_WRITE_SIMD8:
5072 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
5073 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
5074 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
5075 return MIN2(8, inst->exec_size);
5076
5077 case SHADER_OPCODE_MOV_INDIRECT: {
5078 /* From IVB and HSW PRMs:
5079 *
5080 * "2.When the destination requires two registers and the sources are
5081 * indirect, the sources must use 1x1 regioning mode.
5082 *
5083 * In case of DF instructions in HSW/IVB, the exec_size is limited by
5084 * the EU decompression logic not handling VxH indirect addressing
5085 * correctly.
5086 */
5087 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
5088 /* Prior to Broadwell, we only have 8 address subregisters. */
5089 return MIN3(devinfo->gen >= 8 ? 16 : 8,
5090 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
5091 inst->exec_size);
5092 }
5093
5094 case SHADER_OPCODE_LOAD_PAYLOAD: {
5095 const unsigned reg_count =
5096 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
5097
5098 if (reg_count > 2) {
5099 /* Only LOAD_PAYLOAD instructions with per-channel destination region
5100 * can be easily lowered (which excludes headers and heterogeneous
5101 * types).
5102 */
5103 assert(!inst->header_size);
5104 for (unsigned i = 0; i < inst->sources; i++)
5105 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
5106 inst->src[i].file == BAD_FILE);
5107
5108 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
5109 } else {
5110 return inst->exec_size;
5111 }
5112 }
5113 default:
5114 return inst->exec_size;
5115 }
5116 }
5117
5118 /**
5119 * Return true if splitting out the group of channels of instruction \p inst
5120 * given by lbld.group() requires allocating a temporary for the i-th source
5121 * of the lowered instruction.
5122 */
5123 static inline bool
5124 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5125 {
5126 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5127 (inst->components_read(i) == 1 &&
5128 lbld.dispatch_width() <= inst->exec_size)) ||
5129 (inst->flags_written() &
5130 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
5131 }
5132
5133 /**
5134 * Extract the data that would be consumed by the channel group given by
5135 * lbld.group() from the i-th source region of instruction \p inst and return
5136 * it as result in packed form.
5137 */
5138 static fs_reg
5139 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
5140 {
5141 /* Specified channel group from the source region. */
5142 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5143
5144 if (needs_src_copy(lbld, inst, i)) {
5145 /* Builder of the right width to perform the copy avoiding uninitialized
5146 * data if the lowered execution size is greater than the original
5147 * execution size of the instruction.
5148 */
5149 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5150 inst->exec_size), 0);
5151 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5152
5153 for (unsigned k = 0; k < inst->components_read(i); ++k)
5154 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5155
5156 return tmp;
5157
5158 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5159 /* The source is invariant for all dispatch_width-wide groups of the
5160 * original region.
5161 */
5162 return inst->src[i];
5163
5164 } else {
5165 /* We can just point the lowered instruction at the right channel group
5166 * from the original region.
5167 */
5168 return src;
5169 }
5170 }
5171
5172 /**
5173 * Return true if splitting out the group of channels of instruction \p inst
5174 * given by lbld.group() requires allocating a temporary for the destination
5175 * of the lowered instruction and copying the data back to the original
5176 * destination region.
5177 */
5178 static inline bool
5179 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5180 {
5181 /* If the instruction writes more than one component we'll have to shuffle
5182 * the results of multiple lowered instructions in order to make sure that
5183 * they end up arranged correctly in the original destination region.
5184 */
5185 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5186 return true;
5187
5188 /* If the lowered execution size is larger than the original the result of
5189 * the instruction won't fit in the original destination, so we'll have to
5190 * allocate a temporary in any case.
5191 */
5192 if (lbld.dispatch_width() > inst->exec_size)
5193 return true;
5194
5195 for (unsigned i = 0; i < inst->sources; i++) {
5196 /* If we already made a copy of the source for other reasons there won't
5197 * be any overlap with the destination.
5198 */
5199 if (needs_src_copy(lbld, inst, i))
5200 continue;
5201
5202 /* In order to keep the logic simple we emit a copy whenever the
5203 * destination region doesn't exactly match an overlapping source, which
5204 * may point at the source and destination not being aligned group by
5205 * group which could cause one of the lowered instructions to overwrite
5206 * the data read from the same source by other lowered instructions.
5207 */
5208 if (regions_overlap(inst->dst, inst->size_written,
5209 inst->src[i], inst->size_read(i)) &&
5210 !inst->dst.equals(inst->src[i]))
5211 return true;
5212 }
5213
5214 return false;
5215 }
5216
5217 /**
5218 * Insert data from a packed temporary into the channel group given by
5219 * lbld.group() of the destination region of instruction \p inst and return
5220 * the temporary as result. Any copy instructions that are required for
5221 * unzipping the previous value (in the case of partial writes) will be
5222 * inserted using \p lbld_before and any copy instructions required for
5223 * zipping up the destination of \p inst will be inserted using \p lbld_after.
5224 */
5225 static fs_reg
5226 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
5227 fs_inst *inst)
5228 {
5229 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
5230 assert(lbld_before.group() == lbld_after.group());
5231
5232 /* Specified channel group from the destination region. */
5233 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group());
5234 const unsigned dst_size = inst->size_written /
5235 inst->dst.component_size(inst->exec_size);
5236
5237 if (needs_dst_copy(lbld_after, inst)) {
5238 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
5239
5240 if (inst->predicate) {
5241 /* Handle predication by copying the original contents of
5242 * the destination into the temporary before emitting the
5243 * lowered instruction.
5244 */
5245 const fs_builder gbld_before =
5246 lbld_before.group(MIN2(lbld_before.dispatch_width(),
5247 inst->exec_size), 0);
5248 for (unsigned k = 0; k < dst_size; ++k) {
5249 gbld_before.MOV(offset(tmp, lbld_before, k),
5250 offset(dst, inst->exec_size, k));
5251 }
5252 }
5253
5254 const fs_builder gbld_after =
5255 lbld_after.group(MIN2(lbld_after.dispatch_width(),
5256 inst->exec_size), 0);
5257 for (unsigned k = 0; k < dst_size; ++k) {
5258 /* Use a builder of the right width to perform the copy avoiding
5259 * uninitialized data if the lowered execution size is greater than
5260 * the original execution size of the instruction.
5261 */
5262 gbld_after.MOV(offset(dst, inst->exec_size, k),
5263 offset(tmp, lbld_after, k));
5264 }
5265
5266 return tmp;
5267
5268 } else {
5269 /* No need to allocate a temporary for the lowered instruction, just
5270 * take the right group of channels from the original region.
5271 */
5272 return dst;
5273 }
5274 }
5275
5276 bool
5277 fs_visitor::lower_simd_width()
5278 {
5279 bool progress = false;
5280
5281 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5282 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5283
5284 if (lower_width != inst->exec_size) {
5285 /* Builder matching the original instruction. We may also need to
5286 * emit an instruction of width larger than the original, set the
5287 * execution size of the builder to the highest of both for now so
5288 * we're sure that both cases can be handled.
5289 */
5290 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5291 const fs_builder ibld = bld.at(block, inst)
5292 .exec_all(inst->force_writemask_all)
5293 .group(max_width, inst->group / max_width);
5294
5295 /* Split the copies in chunks of the execution width of either the
5296 * original or the lowered instruction, whichever is lower.
5297 */
5298 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5299 const unsigned dst_size = inst->size_written /
5300 inst->dst.component_size(inst->exec_size);
5301
5302 assert(!inst->writes_accumulator && !inst->mlen);
5303
5304 /* Inserting the zip, unzip, and duplicated instructions in all of
5305 * the right spots is somewhat tricky. All of the unzip and any
5306 * instructions from the zip which unzip the destination prior to
5307 * writing need to happen before all of the per-group instructions
5308 * and the zip instructions need to happen after. In order to sort
5309 * this all out, we insert the unzip instructions before \p inst,
5310 * insert the per-group instructions after \p inst (i.e. before
5311 * inst->next), and insert the zip instructions before the
5312 * instruction after \p inst. Since we are inserting instructions
5313 * after \p inst, inst->next is a moving target and we need to save
5314 * it off here so that we insert the zip instructions in the right
5315 * place.
5316 */
5317 exec_node *const after_inst = inst->next;
5318 for (unsigned i = 0; i < n; i++) {
5319 /* Emit a copy of the original instruction with the lowered width.
5320 * If the EOT flag was set throw it away except for the last
5321 * instruction to avoid killing the thread prematurely.
5322 */
5323 fs_inst split_inst = *inst;
5324 split_inst.exec_size = lower_width;
5325 split_inst.eot = inst->eot && i == 0;
5326
5327 /* Select the correct channel enables for the i-th group, then
5328 * transform the sources and destination and emit the lowered
5329 * instruction.
5330 */
5331 const fs_builder lbld = ibld.group(lower_width, i);
5332
5333 for (unsigned j = 0; j < inst->sources; j++)
5334 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
5335
5336 split_inst.dst = emit_zip(lbld.at(block, inst),
5337 lbld.at(block, after_inst), inst);
5338 split_inst.size_written =
5339 split_inst.dst.component_size(lower_width) * dst_size;
5340
5341 lbld.at(block, inst->next).emit(split_inst);
5342 }
5343
5344 inst->remove(block);
5345 progress = true;
5346 }
5347 }
5348
5349 if (progress)
5350 invalidate_live_intervals();
5351
5352 return progress;
5353 }
5354
5355 void
5356 fs_visitor::dump_instructions()
5357 {
5358 dump_instructions(NULL);
5359 }
5360
5361 void
5362 fs_visitor::dump_instructions(const char *name)
5363 {
5364 FILE *file = stderr;
5365 if (name && geteuid() != 0) {
5366 file = fopen(name, "w");
5367 if (!file)
5368 file = stderr;
5369 }
5370
5371 if (cfg) {
5372 calculate_register_pressure();
5373 int ip = 0, max_pressure = 0;
5374 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5375 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5376 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5377 dump_instruction(inst, file);
5378 ip++;
5379 }
5380 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5381 } else {
5382 int ip = 0;
5383 foreach_in_list(backend_instruction, inst, &instructions) {
5384 fprintf(file, "%4d: ", ip++);
5385 dump_instruction(inst, file);
5386 }
5387 }
5388
5389 if (file != stderr) {
5390 fclose(file);
5391 }
5392 }
5393
5394 void
5395 fs_visitor::dump_instruction(backend_instruction *be_inst)
5396 {
5397 dump_instruction(be_inst, stderr);
5398 }
5399
5400 void
5401 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5402 {
5403 fs_inst *inst = (fs_inst *)be_inst;
5404
5405 if (inst->predicate) {
5406 fprintf(file, "(%cf0.%d) ",
5407 inst->predicate_inverse ? '-' : '+',
5408 inst->flag_subreg);
5409 }
5410
5411 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5412 if (inst->saturate)
5413 fprintf(file, ".sat");
5414 if (inst->conditional_mod) {
5415 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5416 if (!inst->predicate &&
5417 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5418 inst->opcode != BRW_OPCODE_IF &&
5419 inst->opcode != BRW_OPCODE_WHILE))) {
5420 fprintf(file, ".f0.%d", inst->flag_subreg);
5421 }
5422 }
5423 fprintf(file, "(%d) ", inst->exec_size);
5424
5425 if (inst->mlen) {
5426 fprintf(file, "(mlen: %d) ", inst->mlen);
5427 }
5428
5429 if (inst->eot) {
5430 fprintf(file, "(EOT) ");
5431 }
5432
5433 switch (inst->dst.file) {
5434 case VGRF:
5435 fprintf(file, "vgrf%d", inst->dst.nr);
5436 break;
5437 case FIXED_GRF:
5438 fprintf(file, "g%d", inst->dst.nr);
5439 break;
5440 case MRF:
5441 fprintf(file, "m%d", inst->dst.nr);
5442 break;
5443 case BAD_FILE:
5444 fprintf(file, "(null)");
5445 break;
5446 case UNIFORM:
5447 fprintf(file, "***u%d***", inst->dst.nr);
5448 break;
5449 case ATTR:
5450 fprintf(file, "***attr%d***", inst->dst.nr);
5451 break;
5452 case ARF:
5453 switch (inst->dst.nr) {
5454 case BRW_ARF_NULL:
5455 fprintf(file, "null");
5456 break;
5457 case BRW_ARF_ADDRESS:
5458 fprintf(file, "a0.%d", inst->dst.subnr);
5459 break;
5460 case BRW_ARF_ACCUMULATOR:
5461 fprintf(file, "acc%d", inst->dst.subnr);
5462 break;
5463 case BRW_ARF_FLAG:
5464 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5465 break;
5466 default:
5467 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5468 break;
5469 }
5470 break;
5471 case IMM:
5472 unreachable("not reached");
5473 }
5474
5475 if (inst->dst.offset ||
5476 (inst->dst.file == VGRF &&
5477 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5478 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5479 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5480 inst->dst.offset % reg_size);
5481 }
5482
5483 if (inst->dst.stride != 1)
5484 fprintf(file, "<%u>", inst->dst.stride);
5485 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5486
5487 for (int i = 0; i < inst->sources; i++) {
5488 if (inst->src[i].negate)
5489 fprintf(file, "-");
5490 if (inst->src[i].abs)
5491 fprintf(file, "|");
5492 switch (inst->src[i].file) {
5493 case VGRF:
5494 fprintf(file, "vgrf%d", inst->src[i].nr);
5495 break;
5496 case FIXED_GRF:
5497 fprintf(file, "g%d", inst->src[i].nr);
5498 break;
5499 case MRF:
5500 fprintf(file, "***m%d***", inst->src[i].nr);
5501 break;
5502 case ATTR:
5503 fprintf(file, "attr%d", inst->src[i].nr);
5504 break;
5505 case UNIFORM:
5506 fprintf(file, "u%d", inst->src[i].nr);
5507 break;
5508 case BAD_FILE:
5509 fprintf(file, "(null)");
5510 break;
5511 case IMM:
5512 switch (inst->src[i].type) {
5513 case BRW_REGISTER_TYPE_F:
5514 fprintf(file, "%-gf", inst->src[i].f);
5515 break;
5516 case BRW_REGISTER_TYPE_DF:
5517 fprintf(file, "%fdf", inst->src[i].df);
5518 break;
5519 case BRW_REGISTER_TYPE_W:
5520 case BRW_REGISTER_TYPE_D:
5521 fprintf(file, "%dd", inst->src[i].d);
5522 break;
5523 case BRW_REGISTER_TYPE_UW:
5524 case BRW_REGISTER_TYPE_UD:
5525 fprintf(file, "%uu", inst->src[i].ud);
5526 break;
5527 case BRW_REGISTER_TYPE_VF:
5528 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5529 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5530 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5531 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5532 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5533 break;
5534 default:
5535 fprintf(file, "???");
5536 break;
5537 }
5538 break;
5539 case ARF:
5540 switch (inst->src[i].nr) {
5541 case BRW_ARF_NULL:
5542 fprintf(file, "null");
5543 break;
5544 case BRW_ARF_ADDRESS:
5545 fprintf(file, "a0.%d", inst->src[i].subnr);
5546 break;
5547 case BRW_ARF_ACCUMULATOR:
5548 fprintf(file, "acc%d", inst->src[i].subnr);
5549 break;
5550 case BRW_ARF_FLAG:
5551 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5552 break;
5553 default:
5554 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5555 break;
5556 }
5557 break;
5558 }
5559
5560 if (inst->src[i].offset ||
5561 (inst->src[i].file == VGRF &&
5562 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5563 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5564 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5565 inst->src[i].offset % reg_size);
5566 }
5567
5568 if (inst->src[i].abs)
5569 fprintf(file, "|");
5570
5571 if (inst->src[i].file != IMM) {
5572 unsigned stride;
5573 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5574 unsigned hstride = inst->src[i].hstride;
5575 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5576 } else {
5577 stride = inst->src[i].stride;
5578 }
5579 if (stride != 1)
5580 fprintf(file, "<%u>", stride);
5581
5582 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5583 }
5584
5585 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5586 fprintf(file, ", ");
5587 }
5588
5589 fprintf(file, " ");
5590
5591 if (inst->force_writemask_all)
5592 fprintf(file, "NoMask ");
5593
5594 if (inst->exec_size != dispatch_width)
5595 fprintf(file, "group%d ", inst->group);
5596
5597 fprintf(file, "\n");
5598 }
5599
5600 /**
5601 * Possibly returns an instruction that set up @param reg.
5602 *
5603 * Sometimes we want to take the result of some expression/variable
5604 * dereference tree and rewrite the instruction generating the result
5605 * of the tree. When processing the tree, we know that the
5606 * instructions generated are all writing temporaries that are dead
5607 * outside of this tree. So, if we have some instructions that write
5608 * a temporary, we're free to point that temp write somewhere else.
5609 *
5610 * Note that this doesn't guarantee that the instruction generated
5611 * only reg -- it might be the size=4 destination of a texture instruction.
5612 */
5613 fs_inst *
5614 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5615 fs_inst *end,
5616 const fs_reg &reg)
5617 {
5618 if (end == start ||
5619 end->is_partial_write() ||
5620 !reg.equals(end->dst)) {
5621 return NULL;
5622 } else {
5623 return end;
5624 }
5625 }
5626
5627 void
5628 fs_visitor::setup_fs_payload_gen6()
5629 {
5630 assert(stage == MESA_SHADER_FRAGMENT);
5631 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5632
5633 assert(devinfo->gen >= 6);
5634
5635 /* R0-1: masks, pixel X/Y coordinates. */
5636 payload.num_regs = 2;
5637 /* R2: only for 32-pixel dispatch.*/
5638
5639 /* R3-26: barycentric interpolation coordinates. These appear in the
5640 * same order that they appear in the brw_barycentric_mode
5641 * enum. Each set of coordinates occupies 2 registers if dispatch width
5642 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5643 * appear if they were enabled using the "Barycentric Interpolation
5644 * Mode" bits in WM_STATE.
5645 */
5646 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5647 if (prog_data->barycentric_interp_modes & (1 << i)) {
5648 payload.barycentric_coord_reg[i] = payload.num_regs;
5649 payload.num_regs += 2;
5650 if (dispatch_width == 16) {
5651 payload.num_regs += 2;
5652 }
5653 }
5654 }
5655
5656 /* R27: interpolated depth if uses source depth */
5657 prog_data->uses_src_depth =
5658 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5659 if (prog_data->uses_src_depth) {
5660 payload.source_depth_reg = payload.num_regs;
5661 payload.num_regs++;
5662 if (dispatch_width == 16) {
5663 /* R28: interpolated depth if not SIMD8. */
5664 payload.num_regs++;
5665 }
5666 }
5667
5668 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5669 prog_data->uses_src_w =
5670 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5671 if (prog_data->uses_src_w) {
5672 payload.source_w_reg = payload.num_regs;
5673 payload.num_regs++;
5674 if (dispatch_width == 16) {
5675 /* R30: interpolated W if not SIMD8. */
5676 payload.num_regs++;
5677 }
5678 }
5679
5680 /* R31: MSAA position offsets. */
5681 if (prog_data->persample_dispatch &&
5682 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5683 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5684 *
5685 * "MSDISPMODE_PERSAMPLE is required in order to select
5686 * POSOFFSET_SAMPLE"
5687 *
5688 * So we can only really get sample positions if we are doing real
5689 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5690 * persample dispatch, we hard-code it to 0.5.
5691 */
5692 prog_data->uses_pos_offset = true;
5693 payload.sample_pos_reg = payload.num_regs;
5694 payload.num_regs++;
5695 }
5696
5697 /* R32: MSAA input coverage mask */
5698 prog_data->uses_sample_mask =
5699 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5700 if (prog_data->uses_sample_mask) {
5701 assert(devinfo->gen >= 7);
5702 payload.sample_mask_in_reg = payload.num_regs;
5703 payload.num_regs++;
5704 if (dispatch_width == 16) {
5705 /* R33: input coverage mask if not SIMD8. */
5706 payload.num_regs++;
5707 }
5708 }
5709
5710 /* R34-: bary for 32-pixel. */
5711 /* R58-59: interp W for 32-pixel. */
5712
5713 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5714 source_depth_to_render_target = true;
5715 }
5716 }
5717
5718 void
5719 fs_visitor::setup_vs_payload()
5720 {
5721 /* R0: thread header, R1: urb handles */
5722 payload.num_regs = 2;
5723 }
5724
5725 void
5726 fs_visitor::setup_gs_payload()
5727 {
5728 assert(stage == MESA_SHADER_GEOMETRY);
5729
5730 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5731 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5732
5733 /* R0: thread header, R1: output URB handles */
5734 payload.num_regs = 2;
5735
5736 if (gs_prog_data->include_primitive_id) {
5737 /* R2: Primitive ID 0..7 */
5738 payload.num_regs++;
5739 }
5740
5741 /* Always enable VUE handles so we can safely use pull model if needed.
5742 *
5743 * The push model for a GS uses a ton of register space even for trivial
5744 * scenarios with just a few inputs, so just make things easier and a bit
5745 * safer by always having pull model available.
5746 */
5747 gs_prog_data->base.include_vue_handles = true;
5748
5749 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5750 payload.num_regs += nir->info.gs.vertices_in;
5751
5752 /* Use a maximum of 24 registers for push-model inputs. */
5753 const unsigned max_push_components = 24;
5754
5755 /* If pushing our inputs would take too many registers, reduce the URB read
5756 * length (which is in HWords, or 8 registers), and resort to pulling.
5757 *
5758 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5759 * have to multiply by VerticesIn to obtain the total storage requirement.
5760 */
5761 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5762 max_push_components) {
5763 vue_prog_data->urb_read_length =
5764 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5765 }
5766 }
5767
5768 void
5769 fs_visitor::setup_cs_payload()
5770 {
5771 assert(devinfo->gen >= 7);
5772 payload.num_regs = 1;
5773 }
5774
5775 void
5776 fs_visitor::calculate_register_pressure()
5777 {
5778 invalidate_live_intervals();
5779 calculate_live_intervals();
5780
5781 unsigned num_instructions = 0;
5782 foreach_block(block, cfg)
5783 num_instructions += block->instructions.length();
5784
5785 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5786
5787 for (unsigned reg = 0; reg < alloc.count; reg++) {
5788 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5789 regs_live_at_ip[ip] += alloc.sizes[reg];
5790 }
5791 }
5792
5793 /**
5794 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5795 *
5796 * The needs_unlit_centroid_workaround ends up producing one of these per
5797 * channel of centroid input, so it's good to clean them up.
5798 *
5799 * An assumption here is that nothing ever modifies the dispatched pixels
5800 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5801 * dictates that anyway.
5802 */
5803 bool
5804 fs_visitor::opt_drop_redundant_mov_to_flags()
5805 {
5806 bool flag_mov_found[2] = {false};
5807 bool progress = false;
5808
5809 /* Instructions removed by this pass can only be added if this were true */
5810 if (!devinfo->needs_unlit_centroid_workaround)
5811 return false;
5812
5813 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5814 if (inst->is_control_flow()) {
5815 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5816 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5817 if (!flag_mov_found[inst->flag_subreg]) {
5818 flag_mov_found[inst->flag_subreg] = true;
5819 } else {
5820 inst->remove(block);
5821 progress = true;
5822 }
5823 } else if (inst->flags_written()) {
5824 flag_mov_found[inst->flag_subreg] = false;
5825 }
5826 }
5827
5828 return progress;
5829 }
5830
5831 void
5832 fs_visitor::optimize()
5833 {
5834 /* Start by validating the shader we currently have. */
5835 validate();
5836
5837 /* bld is the common builder object pointing at the end of the program we
5838 * used to translate it into i965 IR. For the optimization and lowering
5839 * passes coming next, any code added after the end of the program without
5840 * having explicitly called fs_builder::at() clearly points at a mistake.
5841 * Ideally optimization passes wouldn't be part of the visitor so they
5842 * wouldn't have access to bld at all, but they do, so just in case some
5843 * pass forgets to ask for a location explicitly set it to NULL here to
5844 * make it trip. The dispatch width is initialized to a bogus value to
5845 * make sure that optimizations set the execution controls explicitly to
5846 * match the code they are manipulating instead of relying on the defaults.
5847 */
5848 bld = fs_builder(this, 64);
5849
5850 assign_constant_locations();
5851 lower_constant_loads();
5852
5853 validate();
5854
5855 split_virtual_grfs();
5856 validate();
5857
5858 #define OPT(pass, args...) ({ \
5859 pass_num++; \
5860 bool this_progress = pass(args); \
5861 \
5862 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5863 char filename[64]; \
5864 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5865 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5866 \
5867 backend_shader::dump_instructions(filename); \
5868 } \
5869 \
5870 validate(); \
5871 \
5872 progress = progress || this_progress; \
5873 this_progress; \
5874 })
5875
5876 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5877 char filename[64];
5878 snprintf(filename, 64, "%s%d-%s-00-00-start",
5879 stage_abbrev, dispatch_width, nir->info.name);
5880
5881 backend_shader::dump_instructions(filename);
5882 }
5883
5884 bool progress = false;
5885 int iteration = 0;
5886 int pass_num = 0;
5887
5888 OPT(opt_drop_redundant_mov_to_flags);
5889 OPT(remove_extra_rounding_modes);
5890
5891 do {
5892 progress = false;
5893 pass_num = 0;
5894 iteration++;
5895
5896 OPT(remove_duplicate_mrf_writes);
5897
5898 OPT(opt_algebraic);
5899 OPT(opt_cse);
5900 OPT(opt_copy_propagation);
5901 OPT(opt_predicated_break, this);
5902 OPT(opt_cmod_propagation);
5903 OPT(dead_code_eliminate);
5904 OPT(opt_peephole_sel);
5905 OPT(dead_control_flow_eliminate, this);
5906 OPT(opt_register_renaming);
5907 OPT(opt_saturate_propagation);
5908 OPT(register_coalesce);
5909 OPT(compute_to_mrf);
5910 OPT(eliminate_find_live_channel);
5911
5912 OPT(compact_virtual_grfs);
5913 } while (progress);
5914
5915 progress = false;
5916 pass_num = 0;
5917
5918 if (OPT(lower_pack)) {
5919 OPT(register_coalesce);
5920 OPT(dead_code_eliminate);
5921 }
5922
5923 OPT(lower_simd_width);
5924
5925 /* After SIMD lowering just in case we had to unroll the EOT send. */
5926 OPT(opt_sampler_eot);
5927
5928 OPT(lower_logical_sends);
5929
5930 if (progress) {
5931 OPT(opt_copy_propagation);
5932 /* Only run after logical send lowering because it's easier to implement
5933 * in terms of physical sends.
5934 */
5935 if (OPT(opt_zero_samples))
5936 OPT(opt_copy_propagation);
5937 /* Run after logical send lowering to give it a chance to CSE the
5938 * LOAD_PAYLOAD instructions created to construct the payloads of
5939 * e.g. texturing messages in cases where it wasn't possible to CSE the
5940 * whole logical instruction.
5941 */
5942 OPT(opt_cse);
5943 OPT(register_coalesce);
5944 OPT(compute_to_mrf);
5945 OPT(dead_code_eliminate);
5946 OPT(remove_duplicate_mrf_writes);
5947 OPT(opt_peephole_sel);
5948 }
5949
5950 OPT(opt_redundant_discard_jumps);
5951
5952 if (OPT(lower_load_payload)) {
5953 split_virtual_grfs();
5954 OPT(register_coalesce);
5955 OPT(compute_to_mrf);
5956 OPT(dead_code_eliminate);
5957 }
5958
5959 OPT(opt_combine_constants);
5960 OPT(lower_integer_multiplication);
5961
5962 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5963 OPT(opt_cmod_propagation);
5964 OPT(opt_cse);
5965 OPT(opt_copy_propagation);
5966 OPT(dead_code_eliminate);
5967 }
5968
5969 if (OPT(lower_conversions)) {
5970 OPT(opt_copy_propagation);
5971 OPT(dead_code_eliminate);
5972 OPT(lower_simd_width);
5973 }
5974
5975 lower_uniform_pull_constant_loads();
5976
5977 validate();
5978 }
5979
5980 /**
5981 * Three source instruction must have a GRF/MRF destination register.
5982 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5983 */
5984 void
5985 fs_visitor::fixup_3src_null_dest()
5986 {
5987 bool progress = false;
5988
5989 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5990 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5991 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5992 inst->dst.type);
5993 progress = true;
5994 }
5995 }
5996
5997 if (progress)
5998 invalidate_live_intervals();
5999 }
6000
6001 void
6002 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
6003 {
6004 bool allocated_without_spills;
6005
6006 static const enum instruction_scheduler_mode pre_modes[] = {
6007 SCHEDULE_PRE,
6008 SCHEDULE_PRE_NON_LIFO,
6009 SCHEDULE_PRE_LIFO,
6010 };
6011
6012 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
6013
6014 /* Try each scheduling heuristic to see if it can successfully register
6015 * allocate without spilling. They should be ordered by decreasing
6016 * performance but increasing likelihood of allocating.
6017 */
6018 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
6019 schedule_instructions(pre_modes[i]);
6020
6021 if (0) {
6022 assign_regs_trivial();
6023 allocated_without_spills = true;
6024 } else {
6025 allocated_without_spills = assign_regs(false, spill_all);
6026 }
6027 if (allocated_without_spills)
6028 break;
6029 }
6030
6031 if (!allocated_without_spills) {
6032 if (!allow_spilling)
6033 fail("Failure to register allocate and spilling is not allowed.");
6034
6035 /* We assume that any spilling is worse than just dropping back to
6036 * SIMD8. There's probably actually some intermediate point where
6037 * SIMD16 with a couple of spills is still better.
6038 */
6039 if (dispatch_width > min_dispatch_width) {
6040 fail("Failure to register allocate. Reduce number of "
6041 "live scalar values to avoid this.");
6042 } else {
6043 compiler->shader_perf_log(log_data,
6044 "%s shader triggered register spilling. "
6045 "Try reducing the number of live scalar "
6046 "values to improve performance.\n",
6047 stage_name);
6048 }
6049
6050 /* Since we're out of heuristics, just go spill registers until we
6051 * get an allocation.
6052 */
6053 while (!assign_regs(true, spill_all)) {
6054 if (failed)
6055 break;
6056 }
6057 }
6058
6059 /* This must come after all optimization and register allocation, since
6060 * it inserts dead code that happens to have side effects, and it does
6061 * so based on the actual physical registers in use.
6062 */
6063 insert_gen4_send_dependency_workarounds();
6064
6065 if (failed)
6066 return;
6067
6068 opt_bank_conflicts();
6069
6070 schedule_instructions(SCHEDULE_POST);
6071
6072 if (last_scratch > 0) {
6073 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
6074
6075 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
6076
6077 if (stage == MESA_SHADER_COMPUTE) {
6078 if (devinfo->is_haswell) {
6079 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6080 * field documentation, Haswell supports a minimum of 2kB of
6081 * scratch space for compute shaders, unlike every other stage
6082 * and platform.
6083 */
6084 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
6085 } else if (devinfo->gen <= 7) {
6086 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6087 * field documentation, platforms prior to Haswell measure scratch
6088 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
6089 */
6090 prog_data->total_scratch = ALIGN(last_scratch, 1024);
6091 max_scratch_size = 12 * 1024;
6092 }
6093 }
6094
6095 /* We currently only support up to 2MB of scratch space. If we
6096 * need to support more eventually, the documentation suggests
6097 * that we could allocate a larger buffer, and partition it out
6098 * ourselves. We'd just have to undo the hardware's address
6099 * calculation by subtracting (FFTID * Per Thread Scratch Space)
6100 * and then add FFTID * (Larger Per Thread Scratch Space).
6101 *
6102 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
6103 * Thread Group Tracking > Local Memory/Scratch Space.
6104 */
6105 assert(prog_data->total_scratch < max_scratch_size);
6106 }
6107 }
6108
6109 bool
6110 fs_visitor::run_vs()
6111 {
6112 assert(stage == MESA_SHADER_VERTEX);
6113
6114 setup_vs_payload();
6115
6116 if (shader_time_index >= 0)
6117 emit_shader_time_begin();
6118
6119 emit_nir_code();
6120
6121 if (failed)
6122 return false;
6123
6124 compute_clip_distance();
6125
6126 emit_urb_writes();
6127
6128 if (shader_time_index >= 0)
6129 emit_shader_time_end();
6130
6131 calculate_cfg();
6132
6133 optimize();
6134
6135 assign_curb_setup();
6136 assign_vs_urb_setup();
6137
6138 fixup_3src_null_dest();
6139 allocate_registers(8, true);
6140
6141 return !failed;
6142 }
6143
6144 bool
6145 fs_visitor::run_tcs_single_patch()
6146 {
6147 assert(stage == MESA_SHADER_TESS_CTRL);
6148
6149 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6150
6151 /* r1-r4 contain the ICP handles. */
6152 payload.num_regs = 5;
6153
6154 if (shader_time_index >= 0)
6155 emit_shader_time_begin();
6156
6157 /* Initialize gl_InvocationID */
6158 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6159 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6160 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6161 bld.MOV(channels_ud, channels_uw);
6162
6163 if (tcs_prog_data->instances == 1) {
6164 invocation_id = channels_ud;
6165 } else {
6166 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6167
6168 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6169 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6170 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6171 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6172 brw_imm_ud(INTEL_MASK(23, 17)));
6173 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6174
6175 bld.ADD(invocation_id, instance_times_8, channels_ud);
6176 }
6177
6178 /* Fix the disptach mask */
6179 if (nir->info.tess.tcs_vertices_out % 8) {
6180 bld.CMP(bld.null_reg_ud(), invocation_id,
6181 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6182 bld.IF(BRW_PREDICATE_NORMAL);
6183 }
6184
6185 emit_nir_code();
6186
6187 if (nir->info.tess.tcs_vertices_out % 8) {
6188 bld.emit(BRW_OPCODE_ENDIF);
6189 }
6190
6191 /* Emit EOT write; set TR DS Cache bit */
6192 fs_reg srcs[3] = {
6193 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6194 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6195 fs_reg(brw_imm_ud(0)),
6196 };
6197 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6198 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6199
6200 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6201 bld.null_reg_ud(), payload);
6202 inst->mlen = 3;
6203 inst->eot = true;
6204
6205 if (shader_time_index >= 0)
6206 emit_shader_time_end();
6207
6208 if (failed)
6209 return false;
6210
6211 calculate_cfg();
6212
6213 optimize();
6214
6215 assign_curb_setup();
6216 assign_tcs_single_patch_urb_setup();
6217
6218 fixup_3src_null_dest();
6219 allocate_registers(8, true);
6220
6221 return !failed;
6222 }
6223
6224 bool
6225 fs_visitor::run_tes()
6226 {
6227 assert(stage == MESA_SHADER_TESS_EVAL);
6228
6229 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6230 payload.num_regs = 5;
6231
6232 if (shader_time_index >= 0)
6233 emit_shader_time_begin();
6234
6235 emit_nir_code();
6236
6237 if (failed)
6238 return false;
6239
6240 emit_urb_writes();
6241
6242 if (shader_time_index >= 0)
6243 emit_shader_time_end();
6244
6245 calculate_cfg();
6246
6247 optimize();
6248
6249 assign_curb_setup();
6250 assign_tes_urb_setup();
6251
6252 fixup_3src_null_dest();
6253 allocate_registers(8, true);
6254
6255 return !failed;
6256 }
6257
6258 bool
6259 fs_visitor::run_gs()
6260 {
6261 assert(stage == MESA_SHADER_GEOMETRY);
6262
6263 setup_gs_payload();
6264
6265 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6266
6267 if (gs_compile->control_data_header_size_bits > 0) {
6268 /* Create a VGRF to store accumulated control data bits. */
6269 this->control_data_bits = vgrf(glsl_type::uint_type);
6270
6271 /* If we're outputting more than 32 control data bits, then EmitVertex()
6272 * will set control_data_bits to 0 after emitting the first vertex.
6273 * Otherwise, we need to initialize it to 0 here.
6274 */
6275 if (gs_compile->control_data_header_size_bits <= 32) {
6276 const fs_builder abld = bld.annotate("initialize control data bits");
6277 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6278 }
6279 }
6280
6281 if (shader_time_index >= 0)
6282 emit_shader_time_begin();
6283
6284 emit_nir_code();
6285
6286 emit_gs_thread_end();
6287
6288 if (shader_time_index >= 0)
6289 emit_shader_time_end();
6290
6291 if (failed)
6292 return false;
6293
6294 calculate_cfg();
6295
6296 optimize();
6297
6298 assign_curb_setup();
6299 assign_gs_urb_setup();
6300
6301 fixup_3src_null_dest();
6302 allocate_registers(8, true);
6303
6304 return !failed;
6305 }
6306
6307 /* From the SKL PRM, Volume 16, Workarounds:
6308 *
6309 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
6310 * only header phases (R0-R2)
6311 *
6312 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
6313 * have been header only.
6314 *
6315 * Instead of enabling push constants one can alternatively enable one of the
6316 * inputs. Here one simply chooses "layer" which shouldn't impose much
6317 * overhead.
6318 */
6319 static void
6320 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
6321 {
6322 if (wm_prog_data->num_varying_inputs)
6323 return;
6324
6325 if (wm_prog_data->base.curb_read_length)
6326 return;
6327
6328 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
6329 wm_prog_data->num_varying_inputs = 1;
6330 }
6331
6332 bool
6333 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6334 {
6335 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6336 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6337
6338 assert(stage == MESA_SHADER_FRAGMENT);
6339
6340 if (devinfo->gen >= 6)
6341 setup_fs_payload_gen6();
6342 else
6343 setup_fs_payload_gen4();
6344
6345 if (0) {
6346 emit_dummy_fs();
6347 } else if (do_rep_send) {
6348 assert(dispatch_width == 16);
6349 emit_repclear_shader();
6350 } else {
6351 if (shader_time_index >= 0)
6352 emit_shader_time_begin();
6353
6354 calculate_urb_setup();
6355 if (nir->info.inputs_read > 0 ||
6356 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6357 if (devinfo->gen < 6)
6358 emit_interpolation_setup_gen4();
6359 else
6360 emit_interpolation_setup_gen6();
6361 }
6362
6363 /* We handle discards by keeping track of the still-live pixels in f0.1.
6364 * Initialize it with the dispatched pixels.
6365 */
6366 if (wm_prog_data->uses_kill) {
6367 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6368 discard_init->flag_subreg = 1;
6369 }
6370
6371 /* Generate FS IR for main(). (the visitor only descends into
6372 * functions called "main").
6373 */
6374 emit_nir_code();
6375
6376 if (failed)
6377 return false;
6378
6379 if (wm_prog_data->uses_kill)
6380 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6381
6382 if (wm_key->alpha_test_func)
6383 emit_alpha_test();
6384
6385 emit_fb_writes();
6386
6387 if (shader_time_index >= 0)
6388 emit_shader_time_end();
6389
6390 calculate_cfg();
6391
6392 optimize();
6393
6394 assign_curb_setup();
6395
6396 if (devinfo->gen >= 9)
6397 gen9_ps_header_only_workaround(wm_prog_data);
6398
6399 assign_urb_setup();
6400
6401 fixup_3src_null_dest();
6402 allocate_registers(8, allow_spilling);
6403
6404 if (failed)
6405 return false;
6406 }
6407
6408 return !failed;
6409 }
6410
6411 bool
6412 fs_visitor::run_cs(unsigned min_dispatch_width)
6413 {
6414 assert(stage == MESA_SHADER_COMPUTE);
6415 assert(dispatch_width >= min_dispatch_width);
6416
6417 setup_cs_payload();
6418
6419 if (shader_time_index >= 0)
6420 emit_shader_time_begin();
6421
6422 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6423 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6424 const fs_builder abld = bld.exec_all().group(1, 0);
6425 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6426 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6427 }
6428
6429 emit_nir_code();
6430
6431 if (failed)
6432 return false;
6433
6434 emit_cs_terminate();
6435
6436 if (shader_time_index >= 0)
6437 emit_shader_time_end();
6438
6439 calculate_cfg();
6440
6441 optimize();
6442
6443 assign_curb_setup();
6444
6445 fixup_3src_null_dest();
6446 allocate_registers(min_dispatch_width, true);
6447
6448 if (failed)
6449 return false;
6450
6451 return !failed;
6452 }
6453
6454 /**
6455 * Return a bitfield where bit n is set if barycentric interpolation mode n
6456 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6457 *
6458 * We examine the load_barycentric intrinsics rather than looking at input
6459 * variables so that we catch interpolateAtCentroid() messages too, which
6460 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6461 */
6462 static unsigned
6463 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6464 const nir_shader *shader)
6465 {
6466 unsigned barycentric_interp_modes = 0;
6467
6468 nir_foreach_function(f, shader) {
6469 if (!f->impl)
6470 continue;
6471
6472 nir_foreach_block(block, f->impl) {
6473 nir_foreach_instr(instr, block) {
6474 if (instr->type != nir_instr_type_intrinsic)
6475 continue;
6476
6477 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6478 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6479 continue;
6480
6481 /* Ignore WPOS; it doesn't require interpolation. */
6482 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6483 continue;
6484
6485 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6486 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6487 nir_intrinsic_interp_mode(intrin);
6488 nir_intrinsic_op bary_op = intrin->intrinsic;
6489 enum brw_barycentric_mode bary =
6490 brw_barycentric_mode(interp, bary_op);
6491
6492 barycentric_interp_modes |= 1 << bary;
6493
6494 if (devinfo->needs_unlit_centroid_workaround &&
6495 bary_op == nir_intrinsic_load_barycentric_centroid)
6496 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6497 }
6498 }
6499 }
6500
6501 return barycentric_interp_modes;
6502 }
6503
6504 static void
6505 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6506 const nir_shader *shader)
6507 {
6508 prog_data->flat_inputs = 0;
6509
6510 nir_foreach_variable(var, &shader->inputs) {
6511 int input_index = prog_data->urb_setup[var->data.location];
6512
6513 if (input_index < 0)
6514 continue;
6515
6516 /* flat shading */
6517 if (var->data.interpolation == INTERP_MODE_FLAT)
6518 prog_data->flat_inputs |= (1 << input_index);
6519 }
6520 }
6521
6522 static uint8_t
6523 computed_depth_mode(const nir_shader *shader)
6524 {
6525 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6526 switch (shader->info.fs.depth_layout) {
6527 case FRAG_DEPTH_LAYOUT_NONE:
6528 case FRAG_DEPTH_LAYOUT_ANY:
6529 return BRW_PSCDEPTH_ON;
6530 case FRAG_DEPTH_LAYOUT_GREATER:
6531 return BRW_PSCDEPTH_ON_GE;
6532 case FRAG_DEPTH_LAYOUT_LESS:
6533 return BRW_PSCDEPTH_ON_LE;
6534 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6535 return BRW_PSCDEPTH_OFF;
6536 }
6537 }
6538 return BRW_PSCDEPTH_OFF;
6539 }
6540
6541 /**
6542 * Move load_interpolated_input with simple (payload-based) barycentric modes
6543 * to the top of the program so we don't emit multiple PLNs for the same input.
6544 *
6545 * This works around CSE not being able to handle non-dominating cases
6546 * such as:
6547 *
6548 * if (...) {
6549 * interpolate input
6550 * } else {
6551 * interpolate the same exact input
6552 * }
6553 *
6554 * This should be replaced by global value numbering someday.
6555 */
6556 static bool
6557 move_interpolation_to_top(nir_shader *nir)
6558 {
6559 bool progress = false;
6560
6561 nir_foreach_function(f, nir) {
6562 if (!f->impl)
6563 continue;
6564
6565 nir_block *top = nir_start_block(f->impl);
6566 exec_node *cursor_node = NULL;
6567
6568 nir_foreach_block(block, f->impl) {
6569 if (block == top)
6570 continue;
6571
6572 nir_foreach_instr_safe(instr, block) {
6573 if (instr->type != nir_instr_type_intrinsic)
6574 continue;
6575
6576 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6577 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6578 continue;
6579 nir_intrinsic_instr *bary_intrinsic =
6580 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6581 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6582
6583 /* Leave interpolateAtSample/Offset() where they are. */
6584 if (op == nir_intrinsic_load_barycentric_at_sample ||
6585 op == nir_intrinsic_load_barycentric_at_offset)
6586 continue;
6587
6588 nir_instr *move[3] = {
6589 &bary_intrinsic->instr,
6590 intrin->src[1].ssa->parent_instr,
6591 instr
6592 };
6593
6594 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6595 if (move[i]->block != top) {
6596 move[i]->block = top;
6597 exec_node_remove(&move[i]->node);
6598 if (cursor_node) {
6599 exec_node_insert_after(cursor_node, &move[i]->node);
6600 } else {
6601 exec_list_push_head(&top->instr_list, &move[i]->node);
6602 }
6603 cursor_node = &move[i]->node;
6604 progress = true;
6605 }
6606 }
6607 }
6608 }
6609 nir_metadata_preserve(f->impl, (nir_metadata)
6610 ((unsigned) nir_metadata_block_index |
6611 (unsigned) nir_metadata_dominance));
6612 }
6613
6614 return progress;
6615 }
6616
6617 /**
6618 * Demote per-sample barycentric intrinsics to centroid.
6619 *
6620 * Useful when rendering to a non-multisampled buffer.
6621 */
6622 static bool
6623 demote_sample_qualifiers(nir_shader *nir)
6624 {
6625 bool progress = true;
6626
6627 nir_foreach_function(f, nir) {
6628 if (!f->impl)
6629 continue;
6630
6631 nir_builder b;
6632 nir_builder_init(&b, f->impl);
6633
6634 nir_foreach_block(block, f->impl) {
6635 nir_foreach_instr_safe(instr, block) {
6636 if (instr->type != nir_instr_type_intrinsic)
6637 continue;
6638
6639 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6640 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6641 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6642 continue;
6643
6644 b.cursor = nir_before_instr(instr);
6645 nir_ssa_def *centroid =
6646 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6647 nir_intrinsic_interp_mode(intrin));
6648 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6649 nir_src_for_ssa(centroid));
6650 nir_instr_remove(instr);
6651 progress = true;
6652 }
6653 }
6654
6655 nir_metadata_preserve(f->impl, (nir_metadata)
6656 ((unsigned) nir_metadata_block_index |
6657 (unsigned) nir_metadata_dominance));
6658 }
6659
6660 return progress;
6661 }
6662
6663 /**
6664 * Pre-gen6, the register file of the EUs was shared between threads,
6665 * and each thread used some subset allocated on a 16-register block
6666 * granularity. The unit states wanted these block counts.
6667 */
6668 static inline int
6669 brw_register_blocks(int reg_count)
6670 {
6671 return ALIGN(reg_count, 16) / 16 - 1;
6672 }
6673
6674 const unsigned *
6675 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6676 void *mem_ctx,
6677 const struct brw_wm_prog_key *key,
6678 struct brw_wm_prog_data *prog_data,
6679 const nir_shader *src_shader,
6680 struct gl_program *prog,
6681 int shader_time_index8, int shader_time_index16,
6682 bool allow_spilling,
6683 bool use_rep_send, struct brw_vue_map *vue_map,
6684 char **error_str)
6685 {
6686 const struct gen_device_info *devinfo = compiler->devinfo;
6687
6688 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6689 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6690 brw_nir_lower_fs_inputs(shader, devinfo, key);
6691 brw_nir_lower_fs_outputs(shader);
6692
6693 if (devinfo->gen < 6) {
6694 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6695 }
6696
6697 if (!key->multisample_fbo)
6698 NIR_PASS_V(shader, demote_sample_qualifiers);
6699 NIR_PASS_V(shader, move_interpolation_to_top);
6700 shader = brw_postprocess_nir(shader, compiler, true);
6701
6702 /* key->alpha_test_func means simulating alpha testing via discards,
6703 * so the shader definitely kills pixels.
6704 */
6705 prog_data->uses_kill = shader->info.fs.uses_discard ||
6706 key->alpha_test_func;
6707 prog_data->uses_omask = key->multisample_fbo &&
6708 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6709 prog_data->computed_depth_mode = computed_depth_mode(shader);
6710 prog_data->computed_stencil =
6711 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6712
6713 prog_data->persample_dispatch =
6714 key->multisample_fbo &&
6715 (key->persample_interp ||
6716 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6717 SYSTEM_BIT_SAMPLE_POS)) ||
6718 shader->info.fs.uses_sample_qualifier ||
6719 shader->info.outputs_read);
6720
6721 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
6722
6723 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6724 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6725 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6726
6727 prog_data->barycentric_interp_modes =
6728 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6729
6730 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6731 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6732 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6733
6734 fs_visitor v8(compiler, log_data, mem_ctx, key,
6735 &prog_data->base, prog, shader, 8,
6736 shader_time_index8);
6737 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6738 if (error_str)
6739 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6740
6741 return NULL;
6742 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6743 simd8_cfg = v8.cfg;
6744 simd8_grf_start = v8.payload.num_regs;
6745 simd8_grf_used = v8.grf_used;
6746 }
6747
6748 if (v8.max_dispatch_width >= 16 &&
6749 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6750 /* Try a SIMD16 compile */
6751 fs_visitor v16(compiler, log_data, mem_ctx, key,
6752 &prog_data->base, prog, shader, 16,
6753 shader_time_index16);
6754 v16.import_uniforms(&v8);
6755 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6756 compiler->shader_perf_log(log_data,
6757 "SIMD16 shader failed to compile: %s",
6758 v16.fail_msg);
6759 } else {
6760 simd16_cfg = v16.cfg;
6761 simd16_grf_start = v16.payload.num_regs;
6762 simd16_grf_used = v16.grf_used;
6763 }
6764 }
6765
6766 /* When the caller requests a repclear shader, they want SIMD16-only */
6767 if (use_rep_send)
6768 simd8_cfg = NULL;
6769
6770 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6771 * at the top to select the shader. We've never implemented that.
6772 * Instead, we just give them exactly one shader and we pick the widest one
6773 * available.
6774 */
6775 if (compiler->devinfo->gen < 5 && simd16_cfg)
6776 simd8_cfg = NULL;
6777
6778 if (prog_data->persample_dispatch) {
6779 /* Starting with SandyBridge (where we first get MSAA), the different
6780 * pixel dispatch combinations are grouped into classifications A
6781 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6782 * generations, the only configurations supporting persample dispatch
6783 * are are this in which only one dispatch width is enabled.
6784 *
6785 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6786 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6787 */
6788 if (compiler->devinfo->gen == 6 &&
6789 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6790 simd16_cfg = NULL;
6791 } else if (simd16_cfg) {
6792 simd8_cfg = NULL;
6793 }
6794 }
6795
6796 /* We have to compute the flat inputs after the visitor is finished running
6797 * because it relies on prog_data->urb_setup which is computed in
6798 * fs_visitor::calculate_urb_setup().
6799 */
6800 brw_compute_flat_inputs(prog_data, shader);
6801
6802 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6803 v8.promoted_constants, v8.runtime_check_aads_emit,
6804 MESA_SHADER_FRAGMENT);
6805
6806 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6807 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6808 shader->info.label ?
6809 shader->info.label : "unnamed",
6810 shader->info.name));
6811 }
6812
6813 if (simd8_cfg) {
6814 prog_data->dispatch_8 = true;
6815 g.generate_code(simd8_cfg, 8);
6816 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6817 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6818
6819 if (simd16_cfg) {
6820 prog_data->dispatch_16 = true;
6821 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6822 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6823 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6824 }
6825 } else if (simd16_cfg) {
6826 prog_data->dispatch_16 = true;
6827 g.generate_code(simd16_cfg, 16);
6828 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6829 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6830 }
6831
6832 return g.get_assembly(&prog_data->base.program_size);
6833 }
6834
6835 fs_reg *
6836 fs_visitor::emit_cs_work_group_id_setup()
6837 {
6838 assert(stage == MESA_SHADER_COMPUTE);
6839
6840 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6841
6842 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6843 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6844 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6845
6846 bld.MOV(*reg, r0_1);
6847 bld.MOV(offset(*reg, bld, 1), r0_6);
6848 bld.MOV(offset(*reg, bld, 2), r0_7);
6849
6850 return reg;
6851 }
6852
6853 static void
6854 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6855 {
6856 block->dwords = dwords;
6857 block->regs = DIV_ROUND_UP(dwords, 8);
6858 block->size = block->regs * 32;
6859 }
6860
6861 static void
6862 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6863 struct brw_cs_prog_data *cs_prog_data)
6864 {
6865 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6866 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
6867 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6868
6869 /* The thread ID should be stored in the last param dword */
6870 assert(subgroup_id_index == -1 ||
6871 subgroup_id_index == (int)prog_data->nr_params - 1);
6872
6873 unsigned cross_thread_dwords, per_thread_dwords;
6874 if (!cross_thread_supported) {
6875 cross_thread_dwords = 0u;
6876 per_thread_dwords = prog_data->nr_params;
6877 } else if (subgroup_id_index >= 0) {
6878 /* Fill all but the last register with cross-thread payload */
6879 cross_thread_dwords = 8 * (subgroup_id_index / 8);
6880 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6881 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6882 } else {
6883 /* Fill all data using cross-thread payload */
6884 cross_thread_dwords = prog_data->nr_params;
6885 per_thread_dwords = 0u;
6886 }
6887
6888 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6889 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6890
6891 unsigned total_dwords =
6892 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6893 cs_prog_data->push.cross_thread.size) / 4;
6894 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6895
6896 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6897 cs_prog_data->push.per_thread.size == 0);
6898 assert(cs_prog_data->push.cross_thread.dwords +
6899 cs_prog_data->push.per_thread.dwords ==
6900 prog_data->nr_params);
6901 }
6902
6903 static void
6904 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6905 {
6906 cs_prog_data->simd_size = size;
6907 unsigned group_size = cs_prog_data->local_size[0] *
6908 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6909 cs_prog_data->threads = (group_size + size - 1) / size;
6910 }
6911
6912 static nir_shader *
6913 compile_cs_to_nir(const struct brw_compiler *compiler,
6914 void *mem_ctx,
6915 const struct brw_cs_prog_key *key,
6916 struct brw_cs_prog_data *prog_data,
6917 const nir_shader *src_shader,
6918 unsigned dispatch_width)
6919 {
6920 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6921 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6922 brw_nir_lower_cs_intrinsics(shader, dispatch_width);
6923 return brw_postprocess_nir(shader, compiler, true);
6924 }
6925
6926 const unsigned *
6927 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6928 void *mem_ctx,
6929 const struct brw_cs_prog_key *key,
6930 struct brw_cs_prog_data *prog_data,
6931 const nir_shader *src_shader,
6932 int shader_time_index,
6933 char **error_str)
6934 {
6935 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
6936 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
6937 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
6938 unsigned local_workgroup_size =
6939 src_shader->info.cs.local_size[0] * src_shader->info.cs.local_size[1] *
6940 src_shader->info.cs.local_size[2];
6941
6942 unsigned min_dispatch_width =
6943 DIV_ROUND_UP(local_workgroup_size, compiler->devinfo->max_cs_threads);
6944 min_dispatch_width = MAX2(8, min_dispatch_width);
6945 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
6946 assert(min_dispatch_width <= 32);
6947
6948 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
6949 cfg_t *cfg = NULL;
6950 const char *fail_msg = NULL;
6951 unsigned promoted_constants;
6952
6953 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6954 */
6955 if (min_dispatch_width <= 8) {
6956 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
6957 prog_data, src_shader, 8);
6958 v8 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
6959 NULL, /* Never used in core profile */
6960 nir8, 8, shader_time_index);
6961 if (!v8->run_cs(min_dispatch_width)) {
6962 fail_msg = v8->fail_msg;
6963 } else {
6964 /* We should always be able to do SIMD32 for compute shaders */
6965 assert(v8->max_dispatch_width >= 32);
6966
6967 cfg = v8->cfg;
6968 cs_set_simd_size(prog_data, 8);
6969 cs_fill_push_const_info(compiler->devinfo, prog_data);
6970 promoted_constants = v8->promoted_constants;
6971 }
6972 }
6973
6974 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6975 !fail_msg && min_dispatch_width <= 16) {
6976 /* Try a SIMD16 compile */
6977 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
6978 prog_data, src_shader, 16);
6979 v16 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
6980 NULL, /* Never used in core profile */
6981 nir16, 16, shader_time_index);
6982 if (v8)
6983 v16->import_uniforms(v8);
6984
6985 if (!v16->run_cs(min_dispatch_width)) {
6986 compiler->shader_perf_log(log_data,
6987 "SIMD16 shader failed to compile: %s",
6988 v16->fail_msg);
6989 if (!cfg) {
6990 fail_msg =
6991 "Couldn't generate SIMD16 program and not "
6992 "enough threads for SIMD8";
6993 }
6994 } else {
6995 /* We should always be able to do SIMD32 for compute shaders */
6996 assert(v16->max_dispatch_width >= 32);
6997
6998 cfg = v16->cfg;
6999 cs_set_simd_size(prog_data, 16);
7000 cs_fill_push_const_info(compiler->devinfo, prog_data);
7001 promoted_constants = v16->promoted_constants;
7002 }
7003 }
7004
7005 /* We should always be able to do SIMD32 for compute shaders */
7006 assert(!v16 || v16->max_dispatch_width >= 32);
7007
7008 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
7009 /* Try a SIMD32 compile */
7010 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
7011 prog_data, src_shader, 32);
7012 v32 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7013 NULL, /* Never used in core profile */
7014 nir32, 32, shader_time_index);
7015 if (v8)
7016 v32->import_uniforms(v8);
7017 else if (v16)
7018 v32->import_uniforms(v16);
7019
7020 if (!v32->run_cs(min_dispatch_width)) {
7021 compiler->shader_perf_log(log_data,
7022 "SIMD32 shader failed to compile: %s",
7023 v16->fail_msg);
7024 if (!cfg) {
7025 fail_msg =
7026 "Couldn't generate SIMD32 program and not "
7027 "enough threads for SIMD16";
7028 }
7029 } else {
7030 cfg = v32->cfg;
7031 cs_set_simd_size(prog_data, 32);
7032 cs_fill_push_const_info(compiler->devinfo, prog_data);
7033 promoted_constants = v32->promoted_constants;
7034 }
7035 }
7036
7037 const unsigned *ret = NULL;
7038 if (unlikely(cfg == NULL)) {
7039 assert(fail_msg);
7040 if (error_str)
7041 *error_str = ralloc_strdup(mem_ctx, fail_msg);
7042 } else {
7043 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
7044 promoted_constants, false, MESA_SHADER_COMPUTE);
7045 if (INTEL_DEBUG & DEBUG_CS) {
7046 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
7047 src_shader->info.label ?
7048 src_shader->info.label : "unnamed",
7049 src_shader->info.name);
7050 g.enable_debug(name);
7051 }
7052
7053 g.generate_code(cfg, prog_data->simd_size);
7054
7055 ret = g.get_assembly(&prog_data->base.program_size);
7056 }
7057
7058 delete v8;
7059 delete v16;
7060 delete v32;
7061
7062 return ret;
7063 }
7064
7065 /**
7066 * Test the dispatch mask packing assumptions of
7067 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
7068 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
7069 * executed with an unexpected dispatch mask.
7070 */
7071 static UNUSED void
7072 brw_fs_test_dispatch_packing(const fs_builder &bld)
7073 {
7074 const gl_shader_stage stage = bld.shader->stage;
7075
7076 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
7077 bld.shader->stage_prog_data)) {
7078 const fs_builder ubld = bld.exec_all().group(1, 0);
7079 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
7080 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
7081 brw_dmask_reg());
7082
7083 ubld.ADD(tmp, mask, brw_imm_ud(1));
7084 ubld.AND(tmp, mask, tmp);
7085
7086 /* This will loop forever if the dispatch mask doesn't have the expected
7087 * form '2^n-1', in which case tmp will be non-zero.
7088 */
7089 bld.emit(BRW_OPCODE_DO);
7090 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
7091 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
7092 }
7093 }