intel/compiler: Make brw_nir_lower_intrinsics compute-specific
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 if (type_sz(dst.type) == 8) {
195 shuffle_32bit_load_result_to_64bit_data(
196 bld, retype(vec4_result, dst.type), vec4_result, 2);
197 }
198
199 vec4_result.type = dst.type;
200 bld.MOV(dst, offset(vec4_result, bld,
201 (const_offset & 0xf) / type_sz(vec4_result.type)));
202 }
203
204 /**
205 * A helper for MOV generation for fixing up broken hardware SEND dependency
206 * handling.
207 */
208 void
209 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
210 {
211 /* The caller always wants uncompressed to emit the minimal extra
212 * dependencies, and to avoid having to deal with aligning its regs to 2.
213 */
214 const fs_builder ubld = bld.annotate("send dependency resolve")
215 .half(0);
216
217 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
218 }
219
220 bool
221 fs_inst::equals(fs_inst *inst) const
222 {
223 return (opcode == inst->opcode &&
224 dst.equals(inst->dst) &&
225 src[0].equals(inst->src[0]) &&
226 src[1].equals(inst->src[1]) &&
227 src[2].equals(inst->src[2]) &&
228 saturate == inst->saturate &&
229 predicate == inst->predicate &&
230 conditional_mod == inst->conditional_mod &&
231 mlen == inst->mlen &&
232 base_mrf == inst->base_mrf &&
233 target == inst->target &&
234 eot == inst->eot &&
235 header_size == inst->header_size &&
236 shadow_compare == inst->shadow_compare &&
237 exec_size == inst->exec_size &&
238 offset == inst->offset);
239 }
240
241 bool
242 fs_inst::is_send_from_grf() const
243 {
244 switch (opcode) {
245 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
246 case SHADER_OPCODE_SHADER_TIME_ADD:
247 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
248 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
249 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
250 case SHADER_OPCODE_UNTYPED_ATOMIC:
251 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
252 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
253 case SHADER_OPCODE_TYPED_ATOMIC:
254 case SHADER_OPCODE_TYPED_SURFACE_READ:
255 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
256 case SHADER_OPCODE_URB_WRITE_SIMD8:
257 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
258 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
260 case SHADER_OPCODE_URB_READ_SIMD8:
261 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
262 return true;
263 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
264 return src[1].file == VGRF;
265 case FS_OPCODE_FB_WRITE:
266 case FS_OPCODE_FB_READ:
267 return src[0].file == VGRF;
268 default:
269 if (is_tex())
270 return src[0].file == VGRF;
271
272 return false;
273 }
274 }
275
276 /**
277 * Returns true if this instruction's sources and destinations cannot
278 * safely be the same register.
279 *
280 * In most cases, a register can be written over safely by the same
281 * instruction that is its last use. For a single instruction, the
282 * sources are dereferenced before writing of the destination starts
283 * (naturally).
284 *
285 * However, there are a few cases where this can be problematic:
286 *
287 * - Virtual opcodes that translate to multiple instructions in the
288 * code generator: if src == dst and one instruction writes the
289 * destination before a later instruction reads the source, then
290 * src will have been clobbered.
291 *
292 * - SIMD16 compressed instructions with certain regioning (see below).
293 *
294 * The register allocator uses this information to set up conflicts between
295 * GRF sources and the destination.
296 */
297 bool
298 fs_inst::has_source_and_destination_hazard() const
299 {
300 switch (opcode) {
301 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
302 /* Multiple partial writes to the destination */
303 return true;
304 default:
305 /* The SIMD16 compressed instruction
306 *
307 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
308 *
309 * is actually decoded in hardware as:
310 *
311 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
312 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
313 *
314 * Which is safe. However, if we have uniform accesses
315 * happening, we get into trouble:
316 *
317 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
318 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
319 *
320 * Now our destination for the first instruction overwrote the
321 * second instruction's src0, and we get garbage for those 8
322 * pixels. There's a similar issue for the pre-gen6
323 * pixel_x/pixel_y, which are registers of 16-bit values and thus
324 * would get stomped by the first decode as well.
325 */
326 if (exec_size == 16) {
327 for (int i = 0; i < sources; i++) {
328 if (src[i].file == VGRF && (src[i].stride == 0 ||
329 src[i].type == BRW_REGISTER_TYPE_UW ||
330 src[i].type == BRW_REGISTER_TYPE_W ||
331 src[i].type == BRW_REGISTER_TYPE_UB ||
332 src[i].type == BRW_REGISTER_TYPE_B)) {
333 return true;
334 }
335 }
336 }
337 return false;
338 }
339 }
340
341 bool
342 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
343 {
344 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
345 return false;
346
347 fs_reg reg = this->src[0];
348 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
349 return false;
350
351 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
352 return false;
353
354 for (int i = 0; i < this->sources; i++) {
355 reg.type = this->src[i].type;
356 if (!this->src[i].equals(reg))
357 return false;
358
359 if (i < this->header_size) {
360 reg.offset += REG_SIZE;
361 } else {
362 reg = horiz_offset(reg, this->exec_size);
363 }
364 }
365
366 return true;
367 }
368
369 bool
370 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
371 {
372 if (devinfo->gen == 6 && is_math())
373 return false;
374
375 if (is_send_from_grf())
376 return false;
377
378 if (!backend_instruction::can_do_source_mods())
379 return false;
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_change_types() const
386 {
387 return dst.type == src[0].type &&
388 !src[0].abs && !src[0].negate && !saturate &&
389 (opcode == BRW_OPCODE_MOV ||
390 (opcode == BRW_OPCODE_SEL &&
391 dst.type == src[1].type &&
392 predicate != BRW_PREDICATE_NONE &&
393 !src[1].abs && !src[1].negate));
394 }
395
396 bool
397 fs_inst::has_side_effects() const
398 {
399 return this->eot || backend_instruction::has_side_effects();
400 }
401
402 void
403 fs_reg::init()
404 {
405 memset(this, 0, sizeof(*this));
406 type = BRW_REGISTER_TYPE_UD;
407 stride = 1;
408 }
409
410 /** Generic unset register constructor. */
411 fs_reg::fs_reg()
412 {
413 init();
414 this->file = BAD_FILE;
415 }
416
417 fs_reg::fs_reg(struct ::brw_reg reg) :
418 backend_reg(reg)
419 {
420 this->offset = 0;
421 this->stride = 1;
422 if (this->file == IMM &&
423 (this->type != BRW_REGISTER_TYPE_V &&
424 this->type != BRW_REGISTER_TYPE_UV &&
425 this->type != BRW_REGISTER_TYPE_VF)) {
426 this->stride = 0;
427 }
428 }
429
430 bool
431 fs_reg::equals(const fs_reg &r) const
432 {
433 return (this->backend_reg::equals(r) &&
434 stride == r.stride);
435 }
436
437 bool
438 fs_reg::is_contiguous() const
439 {
440 return stride == 1;
441 }
442
443 unsigned
444 fs_reg::component_size(unsigned width) const
445 {
446 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
447 hstride == 0 ? 0 :
448 1 << (hstride - 1));
449 return MAX2(width * stride, 1) * type_sz(type);
450 }
451
452 extern "C" int
453 type_size_scalar(const struct glsl_type *type)
454 {
455 unsigned int size, i;
456
457 switch (type->base_type) {
458 case GLSL_TYPE_UINT:
459 case GLSL_TYPE_INT:
460 case GLSL_TYPE_FLOAT:
461 case GLSL_TYPE_BOOL:
462 return type->components();
463 case GLSL_TYPE_DOUBLE:
464 case GLSL_TYPE_UINT64:
465 case GLSL_TYPE_INT64:
466 return type->components() * 2;
467 case GLSL_TYPE_ARRAY:
468 return type_size_scalar(type->fields.array) * type->length;
469 case GLSL_TYPE_STRUCT:
470 size = 0;
471 for (i = 0; i < type->length; i++) {
472 size += type_size_scalar(type->fields.structure[i].type);
473 }
474 return size;
475 case GLSL_TYPE_SAMPLER:
476 /* Samplers take up no register space, since they're baked in at
477 * link time.
478 */
479 return 0;
480 case GLSL_TYPE_ATOMIC_UINT:
481 return 0;
482 case GLSL_TYPE_SUBROUTINE:
483 return 1;
484 case GLSL_TYPE_IMAGE:
485 return BRW_IMAGE_PARAM_SIZE;
486 case GLSL_TYPE_VOID:
487 case GLSL_TYPE_ERROR:
488 case GLSL_TYPE_INTERFACE:
489 case GLSL_TYPE_FUNCTION:
490 unreachable("not reached");
491 }
492
493 return 0;
494 }
495
496 /**
497 * Create a MOV to read the timestamp register.
498 *
499 * The caller is responsible for emitting the MOV. The return value is
500 * the destination of the MOV, with extra parameters set.
501 */
502 fs_reg
503 fs_visitor::get_timestamp(const fs_builder &bld)
504 {
505 assert(devinfo->gen >= 7);
506
507 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
508 BRW_ARF_TIMESTAMP,
509 0),
510 BRW_REGISTER_TYPE_UD));
511
512 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
513
514 /* We want to read the 3 fields we care about even if it's not enabled in
515 * the dispatch.
516 */
517 bld.group(4, 0).exec_all().MOV(dst, ts);
518
519 return dst;
520 }
521
522 void
523 fs_visitor::emit_shader_time_begin()
524 {
525 /* We want only the low 32 bits of the timestamp. Since it's running
526 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
527 * which is plenty of time for our purposes. It is identical across the
528 * EUs, but since it's tracking GPU core speed it will increment at a
529 * varying rate as render P-states change.
530 */
531 shader_start_time = component(
532 get_timestamp(bld.annotate("shader time start")), 0);
533 }
534
535 void
536 fs_visitor::emit_shader_time_end()
537 {
538 /* Insert our code just before the final SEND with EOT. */
539 exec_node *end = this->instructions.get_tail();
540 assert(end && ((fs_inst *) end)->eot);
541 const fs_builder ibld = bld.annotate("shader time end")
542 .exec_all().at(NULL, end);
543 const fs_reg timestamp = get_timestamp(ibld);
544
545 /* We only use the low 32 bits of the timestamp - see
546 * emit_shader_time_begin()).
547 *
548 * We could also check if render P-states have changed (or anything
549 * else that might disrupt timing) by setting smear to 2 and checking if
550 * that field is != 0.
551 */
552 const fs_reg shader_end_time = component(timestamp, 0);
553
554 /* Check that there weren't any timestamp reset events (assuming these
555 * were the only two timestamp reads that happened).
556 */
557 const fs_reg reset = component(timestamp, 2);
558 set_condmod(BRW_CONDITIONAL_Z,
559 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
560 ibld.IF(BRW_PREDICATE_NORMAL);
561
562 fs_reg start = shader_start_time;
563 start.negate = true;
564 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
565 BRW_REGISTER_TYPE_UD),
566 0);
567 const fs_builder cbld = ibld.group(1, 0);
568 cbld.group(1, 0).ADD(diff, start, shader_end_time);
569
570 /* If there were no instructions between the two timestamp gets, the diff
571 * is 2 cycles. Remove that overhead, so I can forget about that when
572 * trying to determine the time taken for single instructions.
573 */
574 cbld.ADD(diff, diff, brw_imm_ud(-2u));
575 SHADER_TIME_ADD(cbld, 0, diff);
576 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
577 ibld.emit(BRW_OPCODE_ELSE);
578 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
579 ibld.emit(BRW_OPCODE_ENDIF);
580 }
581
582 void
583 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
584 int shader_time_subindex,
585 fs_reg value)
586 {
587 int index = shader_time_index * 3 + shader_time_subindex;
588 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
589
590 fs_reg payload;
591 if (dispatch_width == 8)
592 payload = vgrf(glsl_type::uvec2_type);
593 else
594 payload = vgrf(glsl_type::uint_type);
595
596 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
597 }
598
599 void
600 fs_visitor::vfail(const char *format, va_list va)
601 {
602 char *msg;
603
604 if (failed)
605 return;
606
607 failed = true;
608
609 msg = ralloc_vasprintf(mem_ctx, format, va);
610 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
611
612 this->fail_msg = msg;
613
614 if (debug_enabled) {
615 fprintf(stderr, "%s", msg);
616 }
617 }
618
619 void
620 fs_visitor::fail(const char *format, ...)
621 {
622 va_list va;
623
624 va_start(va, format);
625 vfail(format, va);
626 va_end(va);
627 }
628
629 /**
630 * Mark this program as impossible to compile with dispatch width greater
631 * than n.
632 *
633 * During the SIMD8 compile (which happens first), we can detect and flag
634 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
635 * SIMD16+ compile altogether.
636 *
637 * During a compile of dispatch width greater than n (if one happens anyway),
638 * this just calls fail().
639 */
640 void
641 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
642 {
643 if (dispatch_width > n) {
644 fail("%s", msg);
645 } else {
646 max_dispatch_width = n;
647 compiler->shader_perf_log(log_data,
648 "Shader dispatch width limited to SIMD%d: %s",
649 n, msg);
650 }
651 }
652
653 /**
654 * Returns true if the instruction has a flag that means it won't
655 * update an entire destination register.
656 *
657 * For example, dead code elimination and live variable analysis want to know
658 * when a write to a variable screens off any preceding values that were in
659 * it.
660 */
661 bool
662 fs_inst::is_partial_write() const
663 {
664 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
665 (this->exec_size * type_sz(this->dst.type)) < 32 ||
666 !this->dst.is_contiguous() ||
667 this->dst.offset % REG_SIZE != 0);
668 }
669
670 unsigned
671 fs_inst::components_read(unsigned i) const
672 {
673 /* Return zero if the source is not present. */
674 if (src[i].file == BAD_FILE)
675 return 0;
676
677 switch (opcode) {
678 case FS_OPCODE_LINTERP:
679 if (i == 0)
680 return 2;
681 else
682 return 1;
683
684 case FS_OPCODE_PIXEL_X:
685 case FS_OPCODE_PIXEL_Y:
686 assert(i == 0);
687 return 2;
688
689 case FS_OPCODE_FB_WRITE_LOGICAL:
690 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
691 /* First/second FB write color. */
692 if (i < 2)
693 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
694 else
695 return 1;
696
697 case SHADER_OPCODE_TEX_LOGICAL:
698 case SHADER_OPCODE_TXD_LOGICAL:
699 case SHADER_OPCODE_TXF_LOGICAL:
700 case SHADER_OPCODE_TXL_LOGICAL:
701 case SHADER_OPCODE_TXS_LOGICAL:
702 case FS_OPCODE_TXB_LOGICAL:
703 case SHADER_OPCODE_TXF_CMS_LOGICAL:
704 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
705 case SHADER_OPCODE_TXF_UMS_LOGICAL:
706 case SHADER_OPCODE_TXF_MCS_LOGICAL:
707 case SHADER_OPCODE_LOD_LOGICAL:
708 case SHADER_OPCODE_TG4_LOGICAL:
709 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
710 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
711 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
712 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
713 /* Texture coordinates. */
714 if (i == TEX_LOGICAL_SRC_COORDINATE)
715 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
716 /* Texture derivatives. */
717 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
718 opcode == SHADER_OPCODE_TXD_LOGICAL)
719 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
720 /* Texture offset. */
721 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
722 return 2;
723 /* MCS */
724 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
725 return 2;
726 else
727 return 1;
728
729 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
730 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
731 assert(src[3].file == IMM);
732 /* Surface coordinates. */
733 if (i == 0)
734 return src[3].ud;
735 /* Surface operation source (ignored for reads). */
736 else if (i == 1)
737 return 0;
738 else
739 return 1;
740
741 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
742 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
743 assert(src[3].file == IMM &&
744 src[4].file == IMM);
745 /* Surface coordinates. */
746 if (i == 0)
747 return src[3].ud;
748 /* Surface operation source. */
749 else if (i == 1)
750 return src[4].ud;
751 else
752 return 1;
753
754 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
755 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
756 assert(src[3].file == IMM &&
757 src[4].file == IMM);
758 const unsigned op = src[4].ud;
759 /* Surface coordinates. */
760 if (i == 0)
761 return src[3].ud;
762 /* Surface operation source. */
763 else if (i == 1 && op == BRW_AOP_CMPWR)
764 return 2;
765 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
766 op == BRW_AOP_PREDEC))
767 return 0;
768 else
769 return 1;
770 }
771
772 default:
773 return 1;
774 }
775 }
776
777 unsigned
778 fs_inst::size_read(int arg) const
779 {
780 switch (opcode) {
781 case FS_OPCODE_FB_WRITE:
782 case FS_OPCODE_FB_READ:
783 case SHADER_OPCODE_URB_WRITE_SIMD8:
784 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
785 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
786 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
787 case SHADER_OPCODE_URB_READ_SIMD8:
788 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
789 case SHADER_OPCODE_UNTYPED_ATOMIC:
790 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
791 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
792 case SHADER_OPCODE_TYPED_ATOMIC:
793 case SHADER_OPCODE_TYPED_SURFACE_READ:
794 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
795 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
796 if (arg == 0)
797 return mlen * REG_SIZE;
798 break;
799
800 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
801 /* The payload is actually stored in src1 */
802 if (arg == 1)
803 return mlen * REG_SIZE;
804 break;
805
806 case FS_OPCODE_LINTERP:
807 if (arg == 1)
808 return 16;
809 break;
810
811 case SHADER_OPCODE_LOAD_PAYLOAD:
812 if (arg < this->header_size)
813 return REG_SIZE;
814 break;
815
816 case CS_OPCODE_CS_TERMINATE:
817 case SHADER_OPCODE_BARRIER:
818 return REG_SIZE;
819
820 case SHADER_OPCODE_MOV_INDIRECT:
821 if (arg == 0) {
822 assert(src[2].file == IMM);
823 return src[2].ud;
824 }
825 break;
826
827 default:
828 if (is_tex() && arg == 0 && src[0].file == VGRF)
829 return mlen * REG_SIZE;
830 break;
831 }
832
833 switch (src[arg].file) {
834 case UNIFORM:
835 case IMM:
836 return components_read(arg) * type_sz(src[arg].type);
837 case BAD_FILE:
838 case ARF:
839 case FIXED_GRF:
840 case VGRF:
841 case ATTR:
842 return components_read(arg) * src[arg].component_size(exec_size);
843 case MRF:
844 unreachable("MRF registers are not allowed as sources");
845 }
846 return 0;
847 }
848
849 namespace {
850 /* Return the subset of flag registers that an instruction could
851 * potentially read or write based on the execution controls and flag
852 * subregister number of the instruction.
853 */
854 unsigned
855 flag_mask(const fs_inst *inst)
856 {
857 const unsigned start = inst->flag_subreg * 16 + inst->group;
858 const unsigned end = start + inst->exec_size;
859 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
860 }
861
862 unsigned
863 bit_mask(unsigned n)
864 {
865 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
866 }
867
868 unsigned
869 flag_mask(const fs_reg &r, unsigned sz)
870 {
871 if (r.file == ARF) {
872 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
873 const unsigned end = start + sz;
874 return bit_mask(end) & ~bit_mask(start);
875 } else {
876 return 0;
877 }
878 }
879 }
880
881 unsigned
882 fs_inst::flags_read(const gen_device_info *devinfo) const
883 {
884 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
885 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
886 /* The vertical predication modes combine corresponding bits from
887 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
888 */
889 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
890 return flag_mask(this) << shift | flag_mask(this);
891 } else if (predicate) {
892 return flag_mask(this);
893 } else {
894 unsigned mask = 0;
895 for (int i = 0; i < sources; i++) {
896 mask |= flag_mask(src[i], size_read(i));
897 }
898 return mask;
899 }
900 }
901
902 unsigned
903 fs_inst::flags_written() const
904 {
905 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
906 opcode != BRW_OPCODE_IF &&
907 opcode != BRW_OPCODE_WHILE)) ||
908 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
909 return flag_mask(this);
910 } else {
911 return flag_mask(dst, size_written);
912 }
913 }
914
915 /**
916 * Returns how many MRFs an FS opcode will write over.
917 *
918 * Note that this is not the 0 or 1 implied writes in an actual gen
919 * instruction -- the FS opcodes often generate MOVs in addition.
920 */
921 int
922 fs_visitor::implied_mrf_writes(fs_inst *inst)
923 {
924 if (inst->mlen == 0)
925 return 0;
926
927 if (inst->base_mrf == -1)
928 return 0;
929
930 switch (inst->opcode) {
931 case SHADER_OPCODE_RCP:
932 case SHADER_OPCODE_RSQ:
933 case SHADER_OPCODE_SQRT:
934 case SHADER_OPCODE_EXP2:
935 case SHADER_OPCODE_LOG2:
936 case SHADER_OPCODE_SIN:
937 case SHADER_OPCODE_COS:
938 return 1 * dispatch_width / 8;
939 case SHADER_OPCODE_POW:
940 case SHADER_OPCODE_INT_QUOTIENT:
941 case SHADER_OPCODE_INT_REMAINDER:
942 return 2 * dispatch_width / 8;
943 case SHADER_OPCODE_TEX:
944 case FS_OPCODE_TXB:
945 case SHADER_OPCODE_TXD:
946 case SHADER_OPCODE_TXF:
947 case SHADER_OPCODE_TXF_CMS:
948 case SHADER_OPCODE_TXF_MCS:
949 case SHADER_OPCODE_TG4:
950 case SHADER_OPCODE_TG4_OFFSET:
951 case SHADER_OPCODE_TXL:
952 case SHADER_OPCODE_TXS:
953 case SHADER_OPCODE_LOD:
954 case SHADER_OPCODE_SAMPLEINFO:
955 return 1;
956 case FS_OPCODE_FB_WRITE:
957 return 2;
958 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
959 case SHADER_OPCODE_GEN4_SCRATCH_READ:
960 return 1;
961 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
962 return inst->mlen;
963 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
964 return inst->mlen;
965 default:
966 unreachable("not reached");
967 }
968 }
969
970 fs_reg
971 fs_visitor::vgrf(const glsl_type *const type)
972 {
973 int reg_width = dispatch_width / 8;
974 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
975 brw_type_for_base_type(type));
976 }
977
978 fs_reg::fs_reg(enum brw_reg_file file, int nr)
979 {
980 init();
981 this->file = file;
982 this->nr = nr;
983 this->type = BRW_REGISTER_TYPE_F;
984 this->stride = (file == UNIFORM ? 0 : 1);
985 }
986
987 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
988 {
989 init();
990 this->file = file;
991 this->nr = nr;
992 this->type = type;
993 this->stride = (file == UNIFORM ? 0 : 1);
994 }
995
996 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
997 * This brings in those uniform definitions
998 */
999 void
1000 fs_visitor::import_uniforms(fs_visitor *v)
1001 {
1002 this->push_constant_loc = v->push_constant_loc;
1003 this->pull_constant_loc = v->pull_constant_loc;
1004 this->uniforms = v->uniforms;
1005 }
1006
1007 void
1008 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1009 {
1010 assert(stage == MESA_SHADER_FRAGMENT);
1011
1012 /* gl_FragCoord.x */
1013 bld.MOV(wpos, this->pixel_x);
1014 wpos = offset(wpos, bld, 1);
1015
1016 /* gl_FragCoord.y */
1017 bld.MOV(wpos, this->pixel_y);
1018 wpos = offset(wpos, bld, 1);
1019
1020 /* gl_FragCoord.z */
1021 if (devinfo->gen >= 6) {
1022 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1023 } else {
1024 bld.emit(FS_OPCODE_LINTERP, wpos,
1025 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1026 interp_reg(VARYING_SLOT_POS, 2));
1027 }
1028 wpos = offset(wpos, bld, 1);
1029
1030 /* gl_FragCoord.w: Already set up in emit_interpolation */
1031 bld.MOV(wpos, this->wpos_w);
1032 }
1033
1034 enum brw_barycentric_mode
1035 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1036 {
1037 /* Barycentric modes don't make sense for flat inputs. */
1038 assert(mode != INTERP_MODE_FLAT);
1039
1040 unsigned bary;
1041 switch (op) {
1042 case nir_intrinsic_load_barycentric_pixel:
1043 case nir_intrinsic_load_barycentric_at_offset:
1044 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1045 break;
1046 case nir_intrinsic_load_barycentric_centroid:
1047 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1048 break;
1049 case nir_intrinsic_load_barycentric_sample:
1050 case nir_intrinsic_load_barycentric_at_sample:
1051 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1052 break;
1053 default:
1054 unreachable("invalid intrinsic");
1055 }
1056
1057 if (mode == INTERP_MODE_NOPERSPECTIVE)
1058 bary += 3;
1059
1060 return (enum brw_barycentric_mode) bary;
1061 }
1062
1063 /**
1064 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1065 */
1066 static enum brw_barycentric_mode
1067 centroid_to_pixel(enum brw_barycentric_mode bary)
1068 {
1069 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1070 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1071 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1072 }
1073
1074 fs_reg *
1075 fs_visitor::emit_frontfacing_interpolation()
1076 {
1077 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1078
1079 if (devinfo->gen >= 6) {
1080 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1081 * a boolean result from this (~0/true or 0/false).
1082 *
1083 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1084 * this task in only one instruction:
1085 * - a negation source modifier will flip the bit; and
1086 * - a W -> D type conversion will sign extend the bit into the high
1087 * word of the destination.
1088 *
1089 * An ASR 15 fills the low word of the destination.
1090 */
1091 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1092 g0.negate = true;
1093
1094 bld.ASR(*reg, g0, brw_imm_d(15));
1095 } else {
1096 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1097 * a boolean result from this (1/true or 0/false).
1098 *
1099 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1100 * the negation source modifier to flip it. Unfortunately the SHR
1101 * instruction only operates on UD (or D with an abs source modifier)
1102 * sources without negation.
1103 *
1104 * Instead, use ASR (which will give ~0/true or 0/false).
1105 */
1106 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1107 g1_6.negate = true;
1108
1109 bld.ASR(*reg, g1_6, brw_imm_d(31));
1110 }
1111
1112 return reg;
1113 }
1114
1115 void
1116 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1117 {
1118 assert(stage == MESA_SHADER_FRAGMENT);
1119 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1120 assert(dst.type == BRW_REGISTER_TYPE_F);
1121
1122 if (wm_prog_data->persample_dispatch) {
1123 /* Convert int_sample_pos to floating point */
1124 bld.MOV(dst, int_sample_pos);
1125 /* Scale to the range [0, 1] */
1126 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1127 }
1128 else {
1129 /* From ARB_sample_shading specification:
1130 * "When rendering to a non-multisample buffer, or if multisample
1131 * rasterization is disabled, gl_SamplePosition will always be
1132 * (0.5, 0.5).
1133 */
1134 bld.MOV(dst, brw_imm_f(0.5f));
1135 }
1136 }
1137
1138 fs_reg *
1139 fs_visitor::emit_samplepos_setup()
1140 {
1141 assert(devinfo->gen >= 6);
1142
1143 const fs_builder abld = bld.annotate("compute sample position");
1144 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1145 fs_reg pos = *reg;
1146 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1147 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1148
1149 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1150 * mode will be enabled.
1151 *
1152 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1153 * R31.1:0 Position Offset X/Y for Slot[3:0]
1154 * R31.3:2 Position Offset X/Y for Slot[7:4]
1155 * .....
1156 *
1157 * The X, Y sample positions come in as bytes in thread payload. So, read
1158 * the positions using vstride=16, width=8, hstride=2.
1159 */
1160 struct brw_reg sample_pos_reg =
1161 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1162 BRW_REGISTER_TYPE_B), 16, 8, 2);
1163
1164 if (dispatch_width == 8) {
1165 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1166 } else {
1167 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1168 abld.half(1).MOV(half(int_sample_x, 1),
1169 fs_reg(suboffset(sample_pos_reg, 16)));
1170 }
1171 /* Compute gl_SamplePosition.x */
1172 compute_sample_position(pos, int_sample_x);
1173 pos = offset(pos, abld, 1);
1174 if (dispatch_width == 8) {
1175 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1176 } else {
1177 abld.half(0).MOV(half(int_sample_y, 0),
1178 fs_reg(suboffset(sample_pos_reg, 1)));
1179 abld.half(1).MOV(half(int_sample_y, 1),
1180 fs_reg(suboffset(sample_pos_reg, 17)));
1181 }
1182 /* Compute gl_SamplePosition.y */
1183 compute_sample_position(pos, int_sample_y);
1184 return reg;
1185 }
1186
1187 fs_reg *
1188 fs_visitor::emit_sampleid_setup()
1189 {
1190 assert(stage == MESA_SHADER_FRAGMENT);
1191 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1192 assert(devinfo->gen >= 6);
1193
1194 const fs_builder abld = bld.annotate("compute sample id");
1195 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1196
1197 if (!key->multisample_fbo) {
1198 /* As per GL_ARB_sample_shading specification:
1199 * "When rendering to a non-multisample buffer, or if multisample
1200 * rasterization is disabled, gl_SampleID will always be zero."
1201 */
1202 abld.MOV(*reg, brw_imm_d(0));
1203 } else if (devinfo->gen >= 8) {
1204 /* Sample ID comes in as 4-bit numbers in g1.0:
1205 *
1206 * 15:12 Slot 3 SampleID (only used in SIMD16)
1207 * 11:8 Slot 2 SampleID (only used in SIMD16)
1208 * 7:4 Slot 1 SampleID
1209 * 3:0 Slot 0 SampleID
1210 *
1211 * Each slot corresponds to four channels, so we want to replicate each
1212 * half-byte value to 4 channels in a row:
1213 *
1214 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1215 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1216 *
1217 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1218 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1219 *
1220 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1221 * channels to read the first byte (7:0), and the second group of 8
1222 * channels to read the second byte (15:8). Then, we shift right by
1223 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1224 * values into place. Finally, we AND with 0xf to keep the low nibble.
1225 *
1226 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1227 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1228 *
1229 * TODO: These payload bits exist on Gen7 too, but they appear to always
1230 * be zero, so this code fails to work. We should find out why.
1231 */
1232 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1233
1234 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1235 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1236 brw_imm_v(0x44440000));
1237 abld.AND(*reg, tmp, brw_imm_w(0xf));
1238 } else {
1239 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1240 BRW_REGISTER_TYPE_D), 0);
1241 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1242
1243 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1244 * 8x multisampling, subspan 0 will represent sample N (where N
1245 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1246 * 7. We can find the value of N by looking at R0.0 bits 7:6
1247 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1248 * (since samples are always delivered in pairs). That is, we
1249 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1250 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1251 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1252 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1253 * populating a temporary variable with the sequence (0, 1, 2, 3),
1254 * and then reading from it using vstride=1, width=4, hstride=0.
1255 * These computations hold good for 4x multisampling as well.
1256 *
1257 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1258 * the first four slots are sample 0 of subspan 0; the next four
1259 * are sample 1 of subspan 0; the third group is sample 0 of
1260 * subspan 1, and finally sample 1 of subspan 1.
1261 */
1262
1263 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1264 * accomodate 16x MSAA.
1265 */
1266 abld.exec_all().group(1, 0)
1267 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1268 brw_imm_ud(0xc0));
1269 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1270
1271 /* This works for both SIMD8 and SIMD16 */
1272 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1273
1274 /* This special instruction takes care of setting vstride=1,
1275 * width=4, hstride=0 of t2 during an ADD instruction.
1276 */
1277 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1278 }
1279
1280 return reg;
1281 }
1282
1283 fs_reg *
1284 fs_visitor::emit_samplemaskin_setup()
1285 {
1286 assert(stage == MESA_SHADER_FRAGMENT);
1287 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1288 assert(devinfo->gen >= 6);
1289
1290 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1291
1292 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1293 BRW_REGISTER_TYPE_D));
1294
1295 if (wm_prog_data->persample_dispatch) {
1296 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1297 * and a mask representing which sample is being processed by the
1298 * current shader invocation.
1299 *
1300 * From the OES_sample_variables specification:
1301 * "When per-sample shading is active due to the use of a fragment input
1302 * qualified by "sample" or due to the use of the gl_SampleID or
1303 * gl_SamplePosition variables, only the bit for the current sample is
1304 * set in gl_SampleMaskIn."
1305 */
1306 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1307
1308 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1309 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1310
1311 fs_reg one = vgrf(glsl_type::int_type);
1312 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1313 abld.MOV(one, brw_imm_d(1));
1314 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1315 abld.AND(*reg, enabled_mask, coverage_mask);
1316 } else {
1317 /* In per-pixel mode, the coverage mask is sufficient. */
1318 *reg = coverage_mask;
1319 }
1320 return reg;
1321 }
1322
1323 fs_reg
1324 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1325 {
1326 if (!src.abs && !src.negate)
1327 return src;
1328
1329 fs_reg temp = bld.vgrf(src.type);
1330 bld.MOV(temp, src);
1331
1332 return temp;
1333 }
1334
1335 void
1336 fs_visitor::emit_discard_jump()
1337 {
1338 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1339
1340 /* For performance, after a discard, jump to the end of the
1341 * shader if all relevant channels have been discarded.
1342 */
1343 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1344 discard_jump->flag_subreg = 1;
1345
1346 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1347 discard_jump->predicate_inverse = true;
1348 }
1349
1350 void
1351 fs_visitor::emit_gs_thread_end()
1352 {
1353 assert(stage == MESA_SHADER_GEOMETRY);
1354
1355 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1356
1357 if (gs_compile->control_data_header_size_bits > 0) {
1358 emit_gs_control_data_bits(this->final_gs_vertex_count);
1359 }
1360
1361 const fs_builder abld = bld.annotate("thread end");
1362 fs_inst *inst;
1363
1364 if (gs_prog_data->static_vertex_count != -1) {
1365 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1366 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1367 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1368 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1369 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1370 prev->eot = true;
1371
1372 /* Delete now dead instructions. */
1373 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1374 if (dead == prev)
1375 break;
1376 dead->remove();
1377 }
1378 return;
1379 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1380 break;
1381 }
1382 }
1383 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1384 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1385 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1386 inst->mlen = 1;
1387 } else {
1388 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1389 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1390 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1391 sources[1] = this->final_gs_vertex_count;
1392 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1393 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1394 inst->mlen = 2;
1395 }
1396 inst->eot = true;
1397 inst->offset = 0;
1398 }
1399
1400 void
1401 fs_visitor::assign_curb_setup()
1402 {
1403 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1404
1405 unsigned ubo_push_length = 0;
1406 unsigned ubo_push_start[4];
1407 for (int i = 0; i < 4; i++) {
1408 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1409 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1410 }
1411
1412 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1413
1414 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1415 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1416 for (unsigned int i = 0; i < inst->sources; i++) {
1417 if (inst->src[i].file == UNIFORM) {
1418 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1419 int constant_nr;
1420 if (inst->src[i].nr >= UBO_START) {
1421 /* constant_nr is in 32-bit units, the rest are in bytes */
1422 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1423 inst->src[i].offset / 4;
1424 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1425 constant_nr = push_constant_loc[uniform_nr];
1426 } else {
1427 /* Section 5.11 of the OpenGL 4.1 spec says:
1428 * "Out-of-bounds reads return undefined values, which include
1429 * values from other variables of the active program or zero."
1430 * Just return the first push constant.
1431 */
1432 constant_nr = 0;
1433 }
1434
1435 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1436 constant_nr / 8,
1437 constant_nr % 8);
1438 brw_reg.abs = inst->src[i].abs;
1439 brw_reg.negate = inst->src[i].negate;
1440
1441 assert(inst->src[i].stride == 0);
1442 inst->src[i] = byte_offset(
1443 retype(brw_reg, inst->src[i].type),
1444 inst->src[i].offset % 4);
1445 }
1446 }
1447 }
1448
1449 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1450 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1451 }
1452
1453 void
1454 fs_visitor::calculate_urb_setup()
1455 {
1456 assert(stage == MESA_SHADER_FRAGMENT);
1457 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1458 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1459
1460 memset(prog_data->urb_setup, -1,
1461 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1462
1463 int urb_next = 0;
1464 /* Figure out where each of the incoming setup attributes lands. */
1465 if (devinfo->gen >= 6) {
1466 if (_mesa_bitcount_64(nir->info.inputs_read &
1467 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1468 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1469 * first 16 varying inputs, so we can put them wherever we want.
1470 * Just put them in order.
1471 *
1472 * This is useful because it means that (a) inputs not used by the
1473 * fragment shader won't take up valuable register space, and (b) we
1474 * won't have to recompile the fragment shader if it gets paired with
1475 * a different vertex (or geometry) shader.
1476 */
1477 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1478 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1479 BITFIELD64_BIT(i)) {
1480 prog_data->urb_setup[i] = urb_next++;
1481 }
1482 }
1483 } else {
1484 /* We have enough input varyings that the SF/SBE pipeline stage can't
1485 * arbitrarily rearrange them to suit our whim; we have to put them
1486 * in an order that matches the output of the previous pipeline stage
1487 * (geometry or vertex shader).
1488 */
1489 struct brw_vue_map prev_stage_vue_map;
1490 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1491 key->input_slots_valid,
1492 nir->info.separate_shader);
1493
1494 int first_slot =
1495 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1496 &prev_stage_vue_map);
1497
1498 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1499 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1500 slot++) {
1501 int varying = prev_stage_vue_map.slot_to_varying[slot];
1502 if (varying != BRW_VARYING_SLOT_PAD &&
1503 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1504 BITFIELD64_BIT(varying))) {
1505 prog_data->urb_setup[varying] = slot - first_slot;
1506 }
1507 }
1508 urb_next = prev_stage_vue_map.num_slots - first_slot;
1509 }
1510 } else {
1511 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1512 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1513 /* Point size is packed into the header, not as a general attribute */
1514 if (i == VARYING_SLOT_PSIZ)
1515 continue;
1516
1517 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1518 /* The back color slot is skipped when the front color is
1519 * also written to. In addition, some slots can be
1520 * written in the vertex shader and not read in the
1521 * fragment shader. So the register number must always be
1522 * incremented, mapped or not.
1523 */
1524 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1525 prog_data->urb_setup[i] = urb_next;
1526 urb_next++;
1527 }
1528 }
1529
1530 /*
1531 * It's a FS only attribute, and we did interpolation for this attribute
1532 * in SF thread. So, count it here, too.
1533 *
1534 * See compile_sf_prog() for more info.
1535 */
1536 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1537 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1538 }
1539
1540 prog_data->num_varying_inputs = urb_next;
1541 }
1542
1543 void
1544 fs_visitor::assign_urb_setup()
1545 {
1546 assert(stage == MESA_SHADER_FRAGMENT);
1547 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1548
1549 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1550
1551 /* Offset all the urb_setup[] index by the actual position of the
1552 * setup regs, now that the location of the constants has been chosen.
1553 */
1554 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1555 if (inst->opcode == FS_OPCODE_LINTERP) {
1556 assert(inst->src[1].file == FIXED_GRF);
1557 inst->src[1].nr += urb_start;
1558 }
1559
1560 if (inst->opcode == FS_OPCODE_CINTERP) {
1561 assert(inst->src[0].file == FIXED_GRF);
1562 inst->src[0].nr += urb_start;
1563 }
1564 }
1565
1566 /* Each attribute is 4 setup channels, each of which is half a reg. */
1567 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1568 }
1569
1570 void
1571 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1572 {
1573 for (int i = 0; i < inst->sources; i++) {
1574 if (inst->src[i].file == ATTR) {
1575 int grf = payload.num_regs +
1576 prog_data->curb_read_length +
1577 inst->src[i].nr +
1578 inst->src[i].offset / REG_SIZE;
1579
1580 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1581 *
1582 * VertStride must be used to cross GRF register boundaries. This
1583 * rule implies that elements within a 'Width' cannot cross GRF
1584 * boundaries.
1585 *
1586 * So, for registers that are large enough, we have to split the exec
1587 * size in two and trust the compression state to sort it out.
1588 */
1589 unsigned total_size = inst->exec_size *
1590 inst->src[i].stride *
1591 type_sz(inst->src[i].type);
1592
1593 assert(total_size <= 2 * REG_SIZE);
1594 const unsigned exec_size =
1595 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1596
1597 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1598 struct brw_reg reg =
1599 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1600 inst->src[i].offset % REG_SIZE),
1601 exec_size * inst->src[i].stride,
1602 width, inst->src[i].stride);
1603 reg.abs = inst->src[i].abs;
1604 reg.negate = inst->src[i].negate;
1605
1606 inst->src[i] = reg;
1607 }
1608 }
1609 }
1610
1611 void
1612 fs_visitor::assign_vs_urb_setup()
1613 {
1614 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1615
1616 assert(stage == MESA_SHADER_VERTEX);
1617
1618 /* Each attribute is 4 regs. */
1619 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1620
1621 assert(vs_prog_data->base.urb_read_length <= 15);
1622
1623 /* Rewrite all ATTR file references to the hw grf that they land in. */
1624 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1625 convert_attr_sources_to_hw_regs(inst);
1626 }
1627 }
1628
1629 void
1630 fs_visitor::assign_tcs_single_patch_urb_setup()
1631 {
1632 assert(stage == MESA_SHADER_TESS_CTRL);
1633
1634 /* Rewrite all ATTR file references to HW_REGs. */
1635 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1636 convert_attr_sources_to_hw_regs(inst);
1637 }
1638 }
1639
1640 void
1641 fs_visitor::assign_tes_urb_setup()
1642 {
1643 assert(stage == MESA_SHADER_TESS_EVAL);
1644
1645 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1646
1647 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1648
1649 /* Rewrite all ATTR file references to HW_REGs. */
1650 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1651 convert_attr_sources_to_hw_regs(inst);
1652 }
1653 }
1654
1655 void
1656 fs_visitor::assign_gs_urb_setup()
1657 {
1658 assert(stage == MESA_SHADER_GEOMETRY);
1659
1660 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1661
1662 first_non_payload_grf +=
1663 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1664
1665 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1666 /* Rewrite all ATTR file references to GRFs. */
1667 convert_attr_sources_to_hw_regs(inst);
1668 }
1669 }
1670
1671
1672 /**
1673 * Split large virtual GRFs into separate components if we can.
1674 *
1675 * This is mostly duplicated with what brw_fs_vector_splitting does,
1676 * but that's really conservative because it's afraid of doing
1677 * splitting that doesn't result in real progress after the rest of
1678 * the optimization phases, which would cause infinite looping in
1679 * optimization. We can do it once here, safely. This also has the
1680 * opportunity to split interpolated values, or maybe even uniforms,
1681 * which we don't have at the IR level.
1682 *
1683 * We want to split, because virtual GRFs are what we register
1684 * allocate and spill (due to contiguousness requirements for some
1685 * instructions), and they're what we naturally generate in the
1686 * codegen process, but most virtual GRFs don't actually need to be
1687 * contiguous sets of GRFs. If we split, we'll end up with reduced
1688 * live intervals and better dead code elimination and coalescing.
1689 */
1690 void
1691 fs_visitor::split_virtual_grfs()
1692 {
1693 /* Compact the register file so we eliminate dead vgrfs. This
1694 * only defines split points for live registers, so if we have
1695 * too large dead registers they will hit assertions later.
1696 */
1697 compact_virtual_grfs();
1698
1699 int num_vars = this->alloc.count;
1700
1701 /* Count the total number of registers */
1702 int reg_count = 0;
1703 int vgrf_to_reg[num_vars];
1704 for (int i = 0; i < num_vars; i++) {
1705 vgrf_to_reg[i] = reg_count;
1706 reg_count += alloc.sizes[i];
1707 }
1708
1709 /* An array of "split points". For each register slot, this indicates
1710 * if this slot can be separated from the previous slot. Every time an
1711 * instruction uses multiple elements of a register (as a source or
1712 * destination), we mark the used slots as inseparable. Then we go
1713 * through and split the registers into the smallest pieces we can.
1714 */
1715 bool split_points[reg_count];
1716 memset(split_points, 0, sizeof(split_points));
1717
1718 /* Mark all used registers as fully splittable */
1719 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1720 if (inst->dst.file == VGRF) {
1721 int reg = vgrf_to_reg[inst->dst.nr];
1722 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1723 split_points[reg + j] = true;
1724 }
1725
1726 for (int i = 0; i < inst->sources; i++) {
1727 if (inst->src[i].file == VGRF) {
1728 int reg = vgrf_to_reg[inst->src[i].nr];
1729 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1730 split_points[reg + j] = true;
1731 }
1732 }
1733 }
1734
1735 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1736 if (inst->dst.file == VGRF) {
1737 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1738 for (unsigned j = 1; j < regs_written(inst); j++)
1739 split_points[reg + j] = false;
1740 }
1741 for (int i = 0; i < inst->sources; i++) {
1742 if (inst->src[i].file == VGRF) {
1743 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1744 for (unsigned j = 1; j < regs_read(inst, i); j++)
1745 split_points[reg + j] = false;
1746 }
1747 }
1748 }
1749
1750 int new_virtual_grf[reg_count];
1751 int new_reg_offset[reg_count];
1752
1753 int reg = 0;
1754 for (int i = 0; i < num_vars; i++) {
1755 /* The first one should always be 0 as a quick sanity check. */
1756 assert(split_points[reg] == false);
1757
1758 /* j = 0 case */
1759 new_reg_offset[reg] = 0;
1760 reg++;
1761 int offset = 1;
1762
1763 /* j > 0 case */
1764 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1765 /* If this is a split point, reset the offset to 0 and allocate a
1766 * new virtual GRF for the previous offset many registers
1767 */
1768 if (split_points[reg]) {
1769 assert(offset <= MAX_VGRF_SIZE);
1770 int grf = alloc.allocate(offset);
1771 for (int k = reg - offset; k < reg; k++)
1772 new_virtual_grf[k] = grf;
1773 offset = 0;
1774 }
1775 new_reg_offset[reg] = offset;
1776 offset++;
1777 reg++;
1778 }
1779
1780 /* The last one gets the original register number */
1781 assert(offset <= MAX_VGRF_SIZE);
1782 alloc.sizes[i] = offset;
1783 for (int k = reg - offset; k < reg; k++)
1784 new_virtual_grf[k] = i;
1785 }
1786 assert(reg == reg_count);
1787
1788 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1789 if (inst->dst.file == VGRF) {
1790 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1791 inst->dst.nr = new_virtual_grf[reg];
1792 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1793 inst->dst.offset % REG_SIZE;
1794 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1795 }
1796 for (int i = 0; i < inst->sources; i++) {
1797 if (inst->src[i].file == VGRF) {
1798 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1799 inst->src[i].nr = new_virtual_grf[reg];
1800 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1801 inst->src[i].offset % REG_SIZE;
1802 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1803 }
1804 }
1805 }
1806 invalidate_live_intervals();
1807 }
1808
1809 /**
1810 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1811 *
1812 * During code generation, we create tons of temporary variables, many of
1813 * which get immediately killed and are never used again. Yet, in later
1814 * optimization and analysis passes, such as compute_live_intervals, we need
1815 * to loop over all the virtual GRFs. Compacting them can save a lot of
1816 * overhead.
1817 */
1818 bool
1819 fs_visitor::compact_virtual_grfs()
1820 {
1821 bool progress = false;
1822 int remap_table[this->alloc.count];
1823 memset(remap_table, -1, sizeof(remap_table));
1824
1825 /* Mark which virtual GRFs are used. */
1826 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1827 if (inst->dst.file == VGRF)
1828 remap_table[inst->dst.nr] = 0;
1829
1830 for (int i = 0; i < inst->sources; i++) {
1831 if (inst->src[i].file == VGRF)
1832 remap_table[inst->src[i].nr] = 0;
1833 }
1834 }
1835
1836 /* Compact the GRF arrays. */
1837 int new_index = 0;
1838 for (unsigned i = 0; i < this->alloc.count; i++) {
1839 if (remap_table[i] == -1) {
1840 /* We just found an unused register. This means that we are
1841 * actually going to compact something.
1842 */
1843 progress = true;
1844 } else {
1845 remap_table[i] = new_index;
1846 alloc.sizes[new_index] = alloc.sizes[i];
1847 invalidate_live_intervals();
1848 ++new_index;
1849 }
1850 }
1851
1852 this->alloc.count = new_index;
1853
1854 /* Patch all the instructions to use the newly renumbered registers */
1855 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1856 if (inst->dst.file == VGRF)
1857 inst->dst.nr = remap_table[inst->dst.nr];
1858
1859 for (int i = 0; i < inst->sources; i++) {
1860 if (inst->src[i].file == VGRF)
1861 inst->src[i].nr = remap_table[inst->src[i].nr];
1862 }
1863 }
1864
1865 /* Patch all the references to delta_xy, since they're used in register
1866 * allocation. If they're unused, switch them to BAD_FILE so we don't
1867 * think some random VGRF is delta_xy.
1868 */
1869 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1870 if (delta_xy[i].file == VGRF) {
1871 if (remap_table[delta_xy[i].nr] != -1) {
1872 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1873 } else {
1874 delta_xy[i].file = BAD_FILE;
1875 }
1876 }
1877 }
1878
1879 return progress;
1880 }
1881
1882 static void
1883 set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1884 unsigned *max_chunk_bitsize,
1885 bool contiguous, unsigned bitsize,
1886 const unsigned target_bitsize,
1887 int *push_constant_loc, int *pull_constant_loc,
1888 unsigned *num_push_constants,
1889 unsigned *num_pull_constants,
1890 const unsigned max_push_components,
1891 const unsigned max_chunk_size,
1892 bool allow_pull_constants,
1893 struct brw_stage_prog_data *stage_prog_data)
1894 {
1895 /* This is the first live uniform in the chunk */
1896 if (*chunk_start < 0)
1897 *chunk_start = uniform;
1898
1899 /* Keep track of the maximum bit size access in contiguous uniforms */
1900 *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1901
1902 /* If this element does not need to be contiguous with the next, we
1903 * split at this point and everything between chunk_start and u forms a
1904 * single chunk.
1905 */
1906 if (!contiguous) {
1907 /* If bitsize doesn't match the target one, skip it */
1908 if (*max_chunk_bitsize != target_bitsize) {
1909 /* FIXME: right now we only support 32 and 64-bit accesses */
1910 assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1911 *max_chunk_bitsize = 0;
1912 *chunk_start = -1;
1913 return;
1914 }
1915
1916 unsigned chunk_size = uniform - *chunk_start + 1;
1917
1918 /* Decide whether we should push or pull this parameter. In the
1919 * Vulkan driver, push constants are explicitly exposed via the API
1920 * so we push everything. In GL, we only push small arrays.
1921 */
1922 if (!allow_pull_constants ||
1923 (*num_push_constants + chunk_size <= max_push_components &&
1924 chunk_size <= max_chunk_size)) {
1925 assert(*num_push_constants + chunk_size <= max_push_components);
1926 for (unsigned j = *chunk_start; j <= uniform; j++)
1927 push_constant_loc[j] = (*num_push_constants)++;
1928 } else {
1929 for (unsigned j = *chunk_start; j <= uniform; j++)
1930 pull_constant_loc[j] = (*num_pull_constants)++;
1931 }
1932
1933 *max_chunk_bitsize = 0;
1934 *chunk_start = -1;
1935 }
1936 }
1937
1938 /**
1939 * Assign UNIFORM file registers to either push constants or pull constants.
1940 *
1941 * We allow a fragment shader to have more than the specified minimum
1942 * maximum number of fragment shader uniform components (64). If
1943 * there are too many of these, they'd fill up all of register space.
1944 * So, this will push some of them out to the pull constant buffer and
1945 * update the program to load them.
1946 */
1947 void
1948 fs_visitor::assign_constant_locations()
1949 {
1950 /* Only the first compile gets to decide on locations. */
1951 if (dispatch_width != min_dispatch_width)
1952 return;
1953
1954 bool is_live[uniforms];
1955 memset(is_live, 0, sizeof(is_live));
1956 unsigned bitsize_access[uniforms];
1957 memset(bitsize_access, 0, sizeof(bitsize_access));
1958
1959 /* For each uniform slot, a value of true indicates that the given slot and
1960 * the next slot must remain contiguous. This is used to keep us from
1961 * splitting arrays apart.
1962 */
1963 bool contiguous[uniforms];
1964 memset(contiguous, 0, sizeof(contiguous));
1965
1966 int thread_local_id_index =
1967 (stage == MESA_SHADER_COMPUTE) ?
1968 brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1969
1970 /* First, we walk through the instructions and do two things:
1971 *
1972 * 1) Figure out which uniforms are live.
1973 *
1974 * 2) Mark any indirectly used ranges of registers as contiguous.
1975 *
1976 * Note that we don't move constant-indexed accesses to arrays. No
1977 * testing has been done of the performance impact of this choice.
1978 */
1979 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1980 for (int i = 0 ; i < inst->sources; i++) {
1981 if (inst->src[i].file != UNIFORM)
1982 continue;
1983
1984 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1985
1986 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1987 assert(inst->src[2].ud % 4 == 0);
1988 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1989 assert(last < uniforms);
1990
1991 for (unsigned j = constant_nr; j < last; j++) {
1992 is_live[j] = true;
1993 contiguous[j] = true;
1994 bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
1995 }
1996 is_live[last] = true;
1997 bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
1998 } else {
1999 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
2000 int regs_read = inst->components_read(i) *
2001 type_sz(inst->src[i].type) / 4;
2002 for (int j = 0; j < regs_read; j++) {
2003 is_live[constant_nr + j] = true;
2004 bitsize_access[constant_nr + j] =
2005 MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
2006 }
2007 }
2008 }
2009 }
2010 }
2011
2012 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
2013 thread_local_id_index = -1;
2014
2015 /* Only allow 16 registers (128 uniform components) as push constants.
2016 *
2017 * Just demote the end of the list. We could probably do better
2018 * here, demoting things that are rarely used in the program first.
2019 *
2020 * If changing this value, note the limitation about total_regs in
2021 * brw_curbe.c.
2022 */
2023 unsigned int max_push_components = 16 * 8;
2024 if (thread_local_id_index >= 0)
2025 max_push_components--; /* Save a slot for the thread ID */
2026
2027 /* We push small arrays, but no bigger than 16 floats. This is big enough
2028 * for a vec4 but hopefully not large enough to push out other stuff. We
2029 * should probably use a better heuristic at some point.
2030 */
2031 const unsigned int max_chunk_size = 16;
2032
2033 unsigned int num_push_constants = 0;
2034 unsigned int num_pull_constants = 0;
2035
2036 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2037 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2038
2039 /* Default to -1 meaning no location */
2040 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2041 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2042
2043 int chunk_start = -1;
2044 unsigned max_chunk_bitsize = 0;
2045
2046 /* First push 64-bit uniforms to ensure they are properly aligned */
2047 const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2048 for (unsigned u = 0; u < uniforms; u++) {
2049 if (!is_live[u])
2050 continue;
2051
2052 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2053 contiguous[u], bitsize_access[u],
2054 uniform_64_bit_size,
2055 push_constant_loc, pull_constant_loc,
2056 &num_push_constants, &num_pull_constants,
2057 max_push_components, max_chunk_size,
2058 compiler->supports_pull_constants,
2059 stage_prog_data);
2060
2061 }
2062
2063 /* Then push the rest of uniforms */
2064 const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2065 for (unsigned u = 0; u < uniforms; u++) {
2066 if (!is_live[u])
2067 continue;
2068
2069 /* Skip thread_local_id_index to put it in the last push register. */
2070 if (thread_local_id_index == (int)u)
2071 continue;
2072
2073 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2074 contiguous[u], bitsize_access[u],
2075 uniform_32_bit_size,
2076 push_constant_loc, pull_constant_loc,
2077 &num_push_constants, &num_pull_constants,
2078 max_push_components, max_chunk_size,
2079 compiler->supports_pull_constants,
2080 stage_prog_data);
2081 }
2082
2083 /* Add the CS local thread ID uniform at the end of the push constants */
2084 if (thread_local_id_index >= 0)
2085 push_constant_loc[thread_local_id_index] = num_push_constants++;
2086
2087 /* As the uniforms are going to be reordered, take the data from a temporary
2088 * copy of the original param[].
2089 */
2090 uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params);
2091 memcpy(param, stage_prog_data->param,
2092 sizeof(uint32_t) * stage_prog_data->nr_params);
2093 stage_prog_data->nr_params = num_push_constants;
2094 stage_prog_data->nr_pull_params = num_pull_constants;
2095
2096 /* Now that we know how many regular uniforms we'll push, reduce the
2097 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2098 */
2099 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2100 for (int i = 0; i < 4; i++) {
2101 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2102
2103 if (push_length + range->length > 64)
2104 range->length = 64 - push_length;
2105
2106 push_length += range->length;
2107 }
2108 assert(push_length <= 64);
2109
2110 /* Up until now, the param[] array has been indexed by reg + offset
2111 * of UNIFORM registers. Move pull constants into pull_param[] and
2112 * condense param[] to only contain the uniforms we chose to push.
2113 *
2114 * NOTE: Because we are condensing the params[] array, we know that
2115 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2116 * having to make a copy.
2117 */
2118 int new_thread_local_id_index = -1;
2119 for (unsigned int i = 0; i < uniforms; i++) {
2120 uint32_t value = param[i];
2121 if (pull_constant_loc[i] != -1) {
2122 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2123 } else if (push_constant_loc[i] != -1) {
2124 stage_prog_data->param[push_constant_loc[i]] = value;
2125 if (thread_local_id_index == (int)i)
2126 new_thread_local_id_index = push_constant_loc[i];
2127 }
2128 }
2129 ralloc_free(param);
2130
2131 if (stage == MESA_SHADER_COMPUTE)
2132 brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2133 new_thread_local_id_index;
2134 }
2135
2136 bool
2137 fs_visitor::get_pull_locs(const fs_reg &src,
2138 unsigned *out_surf_index,
2139 unsigned *out_pull_index)
2140 {
2141 assert(src.file == UNIFORM);
2142
2143 if (src.nr >= UBO_START) {
2144 const struct brw_ubo_range *range =
2145 &prog_data->ubo_ranges[src.nr - UBO_START];
2146
2147 /* If this access is in our (reduced) range, use the push data. */
2148 if (src.offset / 32 < range->length)
2149 return false;
2150
2151 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2152 *out_pull_index = (32 * range->start + src.offset) / 4;
2153 return true;
2154 }
2155
2156 const unsigned location = src.nr + src.offset / 4;
2157
2158 if (location < uniforms && pull_constant_loc[location] != -1) {
2159 /* A regular uniform push constant */
2160 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2161 *out_pull_index = pull_constant_loc[location];
2162 return true;
2163 }
2164
2165 return false;
2166 }
2167
2168 /**
2169 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2170 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2171 */
2172 void
2173 fs_visitor::lower_constant_loads()
2174 {
2175 unsigned index, pull_index;
2176
2177 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2178 /* Set up the annotation tracking for new generated instructions. */
2179 const fs_builder ibld(this, block, inst);
2180
2181 for (int i = 0; i < inst->sources; i++) {
2182 if (inst->src[i].file != UNIFORM)
2183 continue;
2184
2185 /* We'll handle this case later */
2186 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2187 continue;
2188
2189 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2190 continue;
2191
2192 assert(inst->src[i].stride == 0);
2193
2194 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2195 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2196 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2197 const unsigned base = pull_index * 4;
2198
2199 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2200 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2201
2202 /* Rewrite the instruction to use the temporary VGRF. */
2203 inst->src[i].file = VGRF;
2204 inst->src[i].nr = dst.nr;
2205 inst->src[i].offset = (base & (block_sz - 1)) +
2206 inst->src[i].offset % 4;
2207
2208 brw_mark_surface_used(prog_data, index);
2209 }
2210
2211 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2212 inst->src[0].file == UNIFORM) {
2213
2214 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2215 continue;
2216
2217 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2218 brw_imm_ud(index),
2219 inst->src[1],
2220 pull_index * 4);
2221 inst->remove(block);
2222
2223 brw_mark_surface_used(prog_data, index);
2224 }
2225 }
2226 invalidate_live_intervals();
2227 }
2228
2229 bool
2230 fs_visitor::opt_algebraic()
2231 {
2232 bool progress = false;
2233
2234 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2235 switch (inst->opcode) {
2236 case BRW_OPCODE_MOV:
2237 if (inst->src[0].file != IMM)
2238 break;
2239
2240 if (inst->saturate) {
2241 if (inst->dst.type != inst->src[0].type)
2242 assert(!"unimplemented: saturate mixed types");
2243
2244 if (brw_saturate_immediate(inst->dst.type,
2245 &inst->src[0].as_brw_reg())) {
2246 inst->saturate = false;
2247 progress = true;
2248 }
2249 }
2250 break;
2251
2252 case BRW_OPCODE_MUL:
2253 if (inst->src[1].file != IMM)
2254 continue;
2255
2256 /* a * 1.0 = a */
2257 if (inst->src[1].is_one()) {
2258 inst->opcode = BRW_OPCODE_MOV;
2259 inst->src[1] = reg_undef;
2260 progress = true;
2261 break;
2262 }
2263
2264 /* a * -1.0 = -a */
2265 if (inst->src[1].is_negative_one()) {
2266 inst->opcode = BRW_OPCODE_MOV;
2267 inst->src[0].negate = !inst->src[0].negate;
2268 inst->src[1] = reg_undef;
2269 progress = true;
2270 break;
2271 }
2272
2273 /* a * 0.0 = 0.0 */
2274 if (inst->src[1].is_zero()) {
2275 inst->opcode = BRW_OPCODE_MOV;
2276 inst->src[0] = inst->src[1];
2277 inst->src[1] = reg_undef;
2278 progress = true;
2279 break;
2280 }
2281
2282 if (inst->src[0].file == IMM) {
2283 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2284 inst->opcode = BRW_OPCODE_MOV;
2285 inst->src[0].f *= inst->src[1].f;
2286 inst->src[1] = reg_undef;
2287 progress = true;
2288 break;
2289 }
2290 break;
2291 case BRW_OPCODE_ADD:
2292 if (inst->src[1].file != IMM)
2293 continue;
2294
2295 /* a + 0.0 = a */
2296 if (inst->src[1].is_zero()) {
2297 inst->opcode = BRW_OPCODE_MOV;
2298 inst->src[1] = reg_undef;
2299 progress = true;
2300 break;
2301 }
2302
2303 if (inst->src[0].file == IMM) {
2304 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2305 inst->opcode = BRW_OPCODE_MOV;
2306 inst->src[0].f += inst->src[1].f;
2307 inst->src[1] = reg_undef;
2308 progress = true;
2309 break;
2310 }
2311 break;
2312 case BRW_OPCODE_OR:
2313 if (inst->src[0].equals(inst->src[1])) {
2314 inst->opcode = BRW_OPCODE_MOV;
2315 inst->src[1] = reg_undef;
2316 progress = true;
2317 break;
2318 }
2319 break;
2320 case BRW_OPCODE_LRP:
2321 if (inst->src[1].equals(inst->src[2])) {
2322 inst->opcode = BRW_OPCODE_MOV;
2323 inst->src[0] = inst->src[1];
2324 inst->src[1] = reg_undef;
2325 inst->src[2] = reg_undef;
2326 progress = true;
2327 break;
2328 }
2329 break;
2330 case BRW_OPCODE_CMP:
2331 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2332 inst->src[0].abs &&
2333 inst->src[0].negate &&
2334 inst->src[1].is_zero()) {
2335 inst->src[0].abs = false;
2336 inst->src[0].negate = false;
2337 inst->conditional_mod = BRW_CONDITIONAL_Z;
2338 progress = true;
2339 break;
2340 }
2341 break;
2342 case BRW_OPCODE_SEL:
2343 if (inst->src[0].equals(inst->src[1])) {
2344 inst->opcode = BRW_OPCODE_MOV;
2345 inst->src[1] = reg_undef;
2346 inst->predicate = BRW_PREDICATE_NONE;
2347 inst->predicate_inverse = false;
2348 progress = true;
2349 } else if (inst->saturate && inst->src[1].file == IMM) {
2350 switch (inst->conditional_mod) {
2351 case BRW_CONDITIONAL_LE:
2352 case BRW_CONDITIONAL_L:
2353 switch (inst->src[1].type) {
2354 case BRW_REGISTER_TYPE_F:
2355 if (inst->src[1].f >= 1.0f) {
2356 inst->opcode = BRW_OPCODE_MOV;
2357 inst->src[1] = reg_undef;
2358 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2359 progress = true;
2360 }
2361 break;
2362 default:
2363 break;
2364 }
2365 break;
2366 case BRW_CONDITIONAL_GE:
2367 case BRW_CONDITIONAL_G:
2368 switch (inst->src[1].type) {
2369 case BRW_REGISTER_TYPE_F:
2370 if (inst->src[1].f <= 0.0f) {
2371 inst->opcode = BRW_OPCODE_MOV;
2372 inst->src[1] = reg_undef;
2373 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2374 progress = true;
2375 }
2376 break;
2377 default:
2378 break;
2379 }
2380 default:
2381 break;
2382 }
2383 }
2384 break;
2385 case BRW_OPCODE_MAD:
2386 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2387 inst->opcode = BRW_OPCODE_MOV;
2388 inst->src[1] = reg_undef;
2389 inst->src[2] = reg_undef;
2390 progress = true;
2391 } else if (inst->src[0].is_zero()) {
2392 inst->opcode = BRW_OPCODE_MUL;
2393 inst->src[0] = inst->src[2];
2394 inst->src[2] = reg_undef;
2395 progress = true;
2396 } else if (inst->src[1].is_one()) {
2397 inst->opcode = BRW_OPCODE_ADD;
2398 inst->src[1] = inst->src[2];
2399 inst->src[2] = reg_undef;
2400 progress = true;
2401 } else if (inst->src[2].is_one()) {
2402 inst->opcode = BRW_OPCODE_ADD;
2403 inst->src[2] = reg_undef;
2404 progress = true;
2405 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2406 inst->opcode = BRW_OPCODE_ADD;
2407 inst->src[1].f *= inst->src[2].f;
2408 inst->src[2] = reg_undef;
2409 progress = true;
2410 }
2411 break;
2412 case SHADER_OPCODE_BROADCAST:
2413 if (is_uniform(inst->src[0])) {
2414 inst->opcode = BRW_OPCODE_MOV;
2415 inst->sources = 1;
2416 inst->force_writemask_all = true;
2417 progress = true;
2418 } else if (inst->src[1].file == IMM) {
2419 inst->opcode = BRW_OPCODE_MOV;
2420 inst->src[0] = component(inst->src[0],
2421 inst->src[1].ud);
2422 inst->sources = 1;
2423 inst->force_writemask_all = true;
2424 progress = true;
2425 }
2426 break;
2427
2428 default:
2429 break;
2430 }
2431
2432 /* Swap if src[0] is immediate. */
2433 if (progress && inst->is_commutative()) {
2434 if (inst->src[0].file == IMM) {
2435 fs_reg tmp = inst->src[1];
2436 inst->src[1] = inst->src[0];
2437 inst->src[0] = tmp;
2438 }
2439 }
2440 }
2441 return progress;
2442 }
2443
2444 /**
2445 * Optimize sample messages that have constant zero values for the trailing
2446 * texture coordinates. We can just reduce the message length for these
2447 * instructions instead of reserving a register for it. Trailing parameters
2448 * that aren't sent default to zero anyway. This will cause the dead code
2449 * eliminator to remove the MOV instruction that would otherwise be emitted to
2450 * set up the zero value.
2451 */
2452 bool
2453 fs_visitor::opt_zero_samples()
2454 {
2455 /* Gen4 infers the texturing opcode based on the message length so we can't
2456 * change it.
2457 */
2458 if (devinfo->gen < 5)
2459 return false;
2460
2461 bool progress = false;
2462
2463 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2464 if (!inst->is_tex())
2465 continue;
2466
2467 fs_inst *load_payload = (fs_inst *) inst->prev;
2468
2469 if (load_payload->is_head_sentinel() ||
2470 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2471 continue;
2472
2473 /* We don't want to remove the message header or the first parameter.
2474 * Removing the first parameter is not allowed, see the Haswell PRM
2475 * volume 7, page 149:
2476 *
2477 * "Parameter 0 is required except for the sampleinfo message, which
2478 * has no parameter 0"
2479 */
2480 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2481 load_payload->src[(inst->mlen - inst->header_size) /
2482 (inst->exec_size / 8) +
2483 inst->header_size - 1].is_zero()) {
2484 inst->mlen -= inst->exec_size / 8;
2485 progress = true;
2486 }
2487 }
2488
2489 if (progress)
2490 invalidate_live_intervals();
2491
2492 return progress;
2493 }
2494
2495 /**
2496 * Optimize sample messages which are followed by the final RT write.
2497 *
2498 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2499 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2500 * final texturing results copied to the framebuffer write payload and modify
2501 * them to write to the framebuffer directly.
2502 */
2503 bool
2504 fs_visitor::opt_sampler_eot()
2505 {
2506 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2507
2508 if (stage != MESA_SHADER_FRAGMENT)
2509 return false;
2510
2511 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2512 return false;
2513
2514 /* FINISHME: It should be possible to implement this optimization when there
2515 * are multiple drawbuffers.
2516 */
2517 if (key->nr_color_regions != 1)
2518 return false;
2519
2520 /* Requires emitting a bunch of saturating MOV instructions during logical
2521 * send lowering to clamp the color payload, which the sampler unit isn't
2522 * going to do for us.
2523 */
2524 if (key->clamp_fragment_color)
2525 return false;
2526
2527 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2528 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2529 fs_inst *fb_write = (fs_inst *)block->end();
2530 assert(fb_write->eot);
2531 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2532
2533 /* There wasn't one; nothing to do. */
2534 if (unlikely(fb_write->prev->is_head_sentinel()))
2535 return false;
2536
2537 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2538
2539 /* 3D Sampler » Messages » Message Format
2540 *
2541 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2542 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2543 */
2544 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2545 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2546 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2547 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2548 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2549 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2550 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2551 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2552 return false;
2553
2554 /* XXX - This shouldn't be necessary. */
2555 if (tex_inst->prev->is_head_sentinel())
2556 return false;
2557
2558 /* Check that the FB write sources are fully initialized by the single
2559 * texturing instruction.
2560 */
2561 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2562 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2563 if (!fb_write->src[i].equals(tex_inst->dst) ||
2564 fb_write->size_read(i) != tex_inst->size_written)
2565 return false;
2566 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2567 if (fb_write->src[i].file != BAD_FILE)
2568 return false;
2569 }
2570 }
2571
2572 assert(!tex_inst->eot); /* We can't get here twice */
2573 assert((tex_inst->offset & (0xff << 24)) == 0);
2574
2575 const fs_builder ibld(this, block, tex_inst);
2576
2577 tex_inst->offset |= fb_write->target << 24;
2578 tex_inst->eot = true;
2579 tex_inst->dst = ibld.null_reg_ud();
2580 tex_inst->size_written = 0;
2581 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2582
2583 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2584 * flag and submit a header together with the sampler message as required
2585 * by the hardware.
2586 */
2587 invalidate_live_intervals();
2588 return true;
2589 }
2590
2591 bool
2592 fs_visitor::opt_register_renaming()
2593 {
2594 bool progress = false;
2595 int depth = 0;
2596
2597 int remap[alloc.count];
2598 memset(remap, -1, sizeof(int) * alloc.count);
2599
2600 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2601 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2602 depth++;
2603 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2604 inst->opcode == BRW_OPCODE_WHILE) {
2605 depth--;
2606 }
2607
2608 /* Rewrite instruction sources. */
2609 for (int i = 0; i < inst->sources; i++) {
2610 if (inst->src[i].file == VGRF &&
2611 remap[inst->src[i].nr] != -1 &&
2612 remap[inst->src[i].nr] != inst->src[i].nr) {
2613 inst->src[i].nr = remap[inst->src[i].nr];
2614 progress = true;
2615 }
2616 }
2617
2618 const int dst = inst->dst.nr;
2619
2620 if (depth == 0 &&
2621 inst->dst.file == VGRF &&
2622 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2623 !inst->is_partial_write()) {
2624 if (remap[dst] == -1) {
2625 remap[dst] = dst;
2626 } else {
2627 remap[dst] = alloc.allocate(regs_written(inst));
2628 inst->dst.nr = remap[dst];
2629 progress = true;
2630 }
2631 } else if (inst->dst.file == VGRF &&
2632 remap[dst] != -1 &&
2633 remap[dst] != dst) {
2634 inst->dst.nr = remap[dst];
2635 progress = true;
2636 }
2637 }
2638
2639 if (progress) {
2640 invalidate_live_intervals();
2641
2642 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2643 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2644 delta_xy[i].nr = remap[delta_xy[i].nr];
2645 }
2646 }
2647 }
2648
2649 return progress;
2650 }
2651
2652 /**
2653 * Remove redundant or useless discard jumps.
2654 *
2655 * For example, we can eliminate jumps in the following sequence:
2656 *
2657 * discard-jump (redundant with the next jump)
2658 * discard-jump (useless; jumps to the next instruction)
2659 * placeholder-halt
2660 */
2661 bool
2662 fs_visitor::opt_redundant_discard_jumps()
2663 {
2664 bool progress = false;
2665
2666 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2667
2668 fs_inst *placeholder_halt = NULL;
2669 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2670 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2671 placeholder_halt = inst;
2672 break;
2673 }
2674 }
2675
2676 if (!placeholder_halt)
2677 return false;
2678
2679 /* Delete any HALTs immediately before the placeholder halt. */
2680 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2681 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2682 prev = (fs_inst *) placeholder_halt->prev) {
2683 prev->remove(last_bblock);
2684 progress = true;
2685 }
2686
2687 if (progress)
2688 invalidate_live_intervals();
2689
2690 return progress;
2691 }
2692
2693 /**
2694 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2695 * from \p r.offset which overlaps the region starting at \p s.offset and
2696 * spanning \p ds bytes.
2697 */
2698 static inline unsigned
2699 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2700 {
2701 const int rel_offset = reg_offset(s) - reg_offset(r);
2702 const int shift = rel_offset / REG_SIZE;
2703 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2704 assert(reg_space(r) == reg_space(s) &&
2705 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2706 return ((1 << n) - 1) << shift;
2707 }
2708
2709 bool
2710 fs_visitor::compute_to_mrf()
2711 {
2712 bool progress = false;
2713 int next_ip = 0;
2714
2715 /* No MRFs on Gen >= 7. */
2716 if (devinfo->gen >= 7)
2717 return false;
2718
2719 calculate_live_intervals();
2720
2721 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2722 int ip = next_ip;
2723 next_ip++;
2724
2725 if (inst->opcode != BRW_OPCODE_MOV ||
2726 inst->is_partial_write() ||
2727 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2728 inst->dst.type != inst->src[0].type ||
2729 inst->src[0].abs || inst->src[0].negate ||
2730 !inst->src[0].is_contiguous() ||
2731 inst->src[0].offset % REG_SIZE != 0)
2732 continue;
2733
2734 /* Can't compute-to-MRF this GRF if someone else was going to
2735 * read it later.
2736 */
2737 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2738 continue;
2739
2740 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2741 * things that computed the value of all GRFs of the source region. The
2742 * regs_left bitset keeps track of the registers we haven't yet found a
2743 * generating instruction for.
2744 */
2745 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2746
2747 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2748 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2749 inst->src[0], inst->size_read(0))) {
2750 /* Found the last thing to write our reg we want to turn
2751 * into a compute-to-MRF.
2752 */
2753
2754 /* If this one instruction didn't populate all the
2755 * channels, bail. We might be able to rewrite everything
2756 * that writes that reg, but it would require smarter
2757 * tracking.
2758 */
2759 if (scan_inst->is_partial_write())
2760 break;
2761
2762 /* Handling things not fully contained in the source of the copy
2763 * would need us to understand coalescing out more than one MOV at
2764 * a time.
2765 */
2766 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2767 inst->src[0], inst->size_read(0)))
2768 break;
2769
2770 /* SEND instructions can't have MRF as a destination. */
2771 if (scan_inst->mlen)
2772 break;
2773
2774 if (devinfo->gen == 6) {
2775 /* gen6 math instructions must have the destination be
2776 * GRF, so no compute-to-MRF for them.
2777 */
2778 if (scan_inst->is_math()) {
2779 break;
2780 }
2781 }
2782
2783 /* Clear the bits for any registers this instruction overwrites. */
2784 regs_left &= ~mask_relative_to(
2785 inst->src[0], scan_inst->dst, scan_inst->size_written);
2786 if (!regs_left)
2787 break;
2788 }
2789
2790 /* We don't handle control flow here. Most computation of
2791 * values that end up in MRFs are shortly before the MRF
2792 * write anyway.
2793 */
2794 if (block->start() == scan_inst)
2795 break;
2796
2797 /* You can't read from an MRF, so if someone else reads our
2798 * MRF's source GRF that we wanted to rewrite, that stops us.
2799 */
2800 bool interfered = false;
2801 for (int i = 0; i < scan_inst->sources; i++) {
2802 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2803 inst->src[0], inst->size_read(0))) {
2804 interfered = true;
2805 }
2806 }
2807 if (interfered)
2808 break;
2809
2810 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2811 inst->dst, inst->size_written)) {
2812 /* If somebody else writes our MRF here, we can't
2813 * compute-to-MRF before that.
2814 */
2815 break;
2816 }
2817
2818 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2819 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2820 inst->dst, inst->size_written)) {
2821 /* Found a SEND instruction, which means that there are
2822 * live values in MRFs from base_mrf to base_mrf +
2823 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2824 * above it.
2825 */
2826 break;
2827 }
2828 }
2829
2830 if (regs_left)
2831 continue;
2832
2833 /* Found all generating instructions of our MRF's source value, so it
2834 * should be safe to rewrite them to point to the MRF directly.
2835 */
2836 regs_left = (1 << regs_read(inst, 0)) - 1;
2837
2838 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2839 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2840 inst->src[0], inst->size_read(0))) {
2841 /* Clear the bits for any registers this instruction overwrites. */
2842 regs_left &= ~mask_relative_to(
2843 inst->src[0], scan_inst->dst, scan_inst->size_written);
2844
2845 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2846 reg_offset(inst->src[0]);
2847
2848 if (inst->dst.nr & BRW_MRF_COMPR4) {
2849 /* Apply the same address transformation done by the hardware
2850 * for COMPR4 MRF writes.
2851 */
2852 assert(rel_offset < 2 * REG_SIZE);
2853 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2854
2855 /* Clear the COMPR4 bit if the generating instruction is not
2856 * compressed.
2857 */
2858 if (scan_inst->size_written < 2 * REG_SIZE)
2859 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2860
2861 } else {
2862 /* Calculate the MRF number the result of this instruction is
2863 * ultimately written to.
2864 */
2865 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2866 }
2867
2868 scan_inst->dst.file = MRF;
2869 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2870 scan_inst->saturate |= inst->saturate;
2871 if (!regs_left)
2872 break;
2873 }
2874 }
2875
2876 assert(!regs_left);
2877 inst->remove(block);
2878 progress = true;
2879 }
2880
2881 if (progress)
2882 invalidate_live_intervals();
2883
2884 return progress;
2885 }
2886
2887 /**
2888 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2889 * flow. We could probably do better here with some form of divergence
2890 * analysis.
2891 */
2892 bool
2893 fs_visitor::eliminate_find_live_channel()
2894 {
2895 bool progress = false;
2896 unsigned depth = 0;
2897
2898 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2899 /* The optimization below assumes that channel zero is live on thread
2900 * dispatch, which may not be the case if the fixed function dispatches
2901 * threads sparsely.
2902 */
2903 return false;
2904 }
2905
2906 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2907 switch (inst->opcode) {
2908 case BRW_OPCODE_IF:
2909 case BRW_OPCODE_DO:
2910 depth++;
2911 break;
2912
2913 case BRW_OPCODE_ENDIF:
2914 case BRW_OPCODE_WHILE:
2915 depth--;
2916 break;
2917
2918 case FS_OPCODE_DISCARD_JUMP:
2919 /* This can potentially make control flow non-uniform until the end
2920 * of the program.
2921 */
2922 return progress;
2923
2924 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2925 if (depth == 0) {
2926 inst->opcode = BRW_OPCODE_MOV;
2927 inst->src[0] = brw_imm_ud(0u);
2928 inst->sources = 1;
2929 inst->force_writemask_all = true;
2930 progress = true;
2931 }
2932 break;
2933
2934 default:
2935 break;
2936 }
2937 }
2938
2939 return progress;
2940 }
2941
2942 /**
2943 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2944 * instructions to FS_OPCODE_REP_FB_WRITE.
2945 */
2946 void
2947 fs_visitor::emit_repclear_shader()
2948 {
2949 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2950 int base_mrf = 0;
2951 int color_mrf = base_mrf + 2;
2952 fs_inst *mov;
2953
2954 if (uniforms > 0) {
2955 mov = bld.exec_all().group(4, 0)
2956 .MOV(brw_message_reg(color_mrf),
2957 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2958 } else {
2959 struct brw_reg reg =
2960 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2961 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2962 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2963
2964 mov = bld.exec_all().group(4, 0)
2965 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2966 }
2967
2968 fs_inst *write;
2969 if (key->nr_color_regions == 1) {
2970 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2971 write->saturate = key->clamp_fragment_color;
2972 write->base_mrf = color_mrf;
2973 write->target = 0;
2974 write->header_size = 0;
2975 write->mlen = 1;
2976 } else {
2977 assume(key->nr_color_regions > 0);
2978 for (int i = 0; i < key->nr_color_regions; ++i) {
2979 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2980 write->saturate = key->clamp_fragment_color;
2981 write->base_mrf = base_mrf;
2982 write->target = i;
2983 write->header_size = 2;
2984 write->mlen = 3;
2985 }
2986 }
2987 write->eot = true;
2988
2989 calculate_cfg();
2990
2991 assign_constant_locations();
2992 assign_curb_setup();
2993
2994 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2995 if (uniforms > 0) {
2996 assert(mov->src[0].file == FIXED_GRF);
2997 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2998 }
2999 }
3000
3001 /**
3002 * Walks through basic blocks, looking for repeated MRF writes and
3003 * removing the later ones.
3004 */
3005 bool
3006 fs_visitor::remove_duplicate_mrf_writes()
3007 {
3008 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3009 bool progress = false;
3010
3011 /* Need to update the MRF tracking for compressed instructions. */
3012 if (dispatch_width >= 16)
3013 return false;
3014
3015 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3016
3017 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3018 if (inst->is_control_flow()) {
3019 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3020 }
3021
3022 if (inst->opcode == BRW_OPCODE_MOV &&
3023 inst->dst.file == MRF) {
3024 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3025 if (prev_inst && inst->equals(prev_inst)) {
3026 inst->remove(block);
3027 progress = true;
3028 continue;
3029 }
3030 }
3031
3032 /* Clear out the last-write records for MRFs that were overwritten. */
3033 if (inst->dst.file == MRF) {
3034 last_mrf_move[inst->dst.nr] = NULL;
3035 }
3036
3037 if (inst->mlen > 0 && inst->base_mrf != -1) {
3038 /* Found a SEND instruction, which will include two or fewer
3039 * implied MRF writes. We could do better here.
3040 */
3041 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3042 last_mrf_move[inst->base_mrf + i] = NULL;
3043 }
3044 }
3045
3046 /* Clear out any MRF move records whose sources got overwritten. */
3047 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3048 if (last_mrf_move[i] &&
3049 regions_overlap(inst->dst, inst->size_written,
3050 last_mrf_move[i]->src[0],
3051 last_mrf_move[i]->size_read(0))) {
3052 last_mrf_move[i] = NULL;
3053 }
3054 }
3055
3056 if (inst->opcode == BRW_OPCODE_MOV &&
3057 inst->dst.file == MRF &&
3058 inst->src[0].file != ARF &&
3059 !inst->is_partial_write()) {
3060 last_mrf_move[inst->dst.nr] = inst;
3061 }
3062 }
3063
3064 if (progress)
3065 invalidate_live_intervals();
3066
3067 return progress;
3068 }
3069
3070 static void
3071 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3072 {
3073 /* Clear the flag for registers that actually got read (as expected). */
3074 for (int i = 0; i < inst->sources; i++) {
3075 int grf;
3076 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3077 grf = inst->src[i].nr;
3078 } else {
3079 continue;
3080 }
3081
3082 if (grf >= first_grf &&
3083 grf < first_grf + grf_len) {
3084 deps[grf - first_grf] = false;
3085 if (inst->exec_size == 16)
3086 deps[grf - first_grf + 1] = false;
3087 }
3088 }
3089 }
3090
3091 /**
3092 * Implements this workaround for the original 965:
3093 *
3094 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3095 * check for post destination dependencies on this instruction, software
3096 * must ensure that there is no destination hazard for the case of ‘write
3097 * followed by a posted write’ shown in the following example.
3098 *
3099 * 1. mov r3 0
3100 * 2. send r3.xy <rest of send instruction>
3101 * 3. mov r2 r3
3102 *
3103 * Due to no post-destination dependency check on the ‘send’, the above
3104 * code sequence could have two instructions (1 and 2) in flight at the
3105 * same time that both consider ‘r3’ as the target of their final writes.
3106 */
3107 void
3108 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3109 fs_inst *inst)
3110 {
3111 int write_len = regs_written(inst);
3112 int first_write_grf = inst->dst.nr;
3113 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3114 assert(write_len < (int)sizeof(needs_dep) - 1);
3115
3116 memset(needs_dep, false, sizeof(needs_dep));
3117 memset(needs_dep, true, write_len);
3118
3119 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3120
3121 /* Walk backwards looking for writes to registers we're writing which
3122 * aren't read since being written. If we hit the start of the program,
3123 * we assume that there are no outstanding dependencies on entry to the
3124 * program.
3125 */
3126 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3127 /* If we hit control flow, assume that there *are* outstanding
3128 * dependencies, and force their cleanup before our instruction.
3129 */
3130 if (block->start() == scan_inst && block->num != 0) {
3131 for (int i = 0; i < write_len; i++) {
3132 if (needs_dep[i])
3133 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3134 first_write_grf + i);
3135 }
3136 return;
3137 }
3138
3139 /* We insert our reads as late as possible on the assumption that any
3140 * instruction but a MOV that might have left us an outstanding
3141 * dependency has more latency than a MOV.
3142 */
3143 if (scan_inst->dst.file == VGRF) {
3144 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3145 int reg = scan_inst->dst.nr + i;
3146
3147 if (reg >= first_write_grf &&
3148 reg < first_write_grf + write_len &&
3149 needs_dep[reg - first_write_grf]) {
3150 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3151 needs_dep[reg - first_write_grf] = false;
3152 if (scan_inst->exec_size == 16)
3153 needs_dep[reg - first_write_grf + 1] = false;
3154 }
3155 }
3156 }
3157
3158 /* Clear the flag for registers that actually got read (as expected). */
3159 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3160
3161 /* Continue the loop only if we haven't resolved all the dependencies */
3162 int i;
3163 for (i = 0; i < write_len; i++) {
3164 if (needs_dep[i])
3165 break;
3166 }
3167 if (i == write_len)
3168 return;
3169 }
3170 }
3171
3172 /**
3173 * Implements this workaround for the original 965:
3174 *
3175 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3176 * used as a destination register until after it has been sourced by an
3177 * instruction with a different destination register.
3178 */
3179 void
3180 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3181 {
3182 int write_len = regs_written(inst);
3183 int first_write_grf = inst->dst.nr;
3184 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3185 assert(write_len < (int)sizeof(needs_dep) - 1);
3186
3187 memset(needs_dep, false, sizeof(needs_dep));
3188 memset(needs_dep, true, write_len);
3189 /* Walk forwards looking for writes to registers we're writing which aren't
3190 * read before being written.
3191 */
3192 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3193 /* If we hit control flow, force resolve all remaining dependencies. */
3194 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3195 for (int i = 0; i < write_len; i++) {
3196 if (needs_dep[i])
3197 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3198 first_write_grf + i);
3199 }
3200 return;
3201 }
3202
3203 /* Clear the flag for registers that actually got read (as expected). */
3204 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3205
3206 /* We insert our reads as late as possible since they're reading the
3207 * result of a SEND, which has massive latency.
3208 */
3209 if (scan_inst->dst.file == VGRF &&
3210 scan_inst->dst.nr >= first_write_grf &&
3211 scan_inst->dst.nr < first_write_grf + write_len &&
3212 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3213 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3214 scan_inst->dst.nr);
3215 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3216 }
3217
3218 /* Continue the loop only if we haven't resolved all the dependencies */
3219 int i;
3220 for (i = 0; i < write_len; i++) {
3221 if (needs_dep[i])
3222 break;
3223 }
3224 if (i == write_len)
3225 return;
3226 }
3227 }
3228
3229 void
3230 fs_visitor::insert_gen4_send_dependency_workarounds()
3231 {
3232 if (devinfo->gen != 4 || devinfo->is_g4x)
3233 return;
3234
3235 bool progress = false;
3236
3237 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3238 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3239 insert_gen4_pre_send_dependency_workarounds(block, inst);
3240 insert_gen4_post_send_dependency_workarounds(block, inst);
3241 progress = true;
3242 }
3243 }
3244
3245 if (progress)
3246 invalidate_live_intervals();
3247 }
3248
3249 /**
3250 * Turns the generic expression-style uniform pull constant load instruction
3251 * into a hardware-specific series of instructions for loading a pull
3252 * constant.
3253 *
3254 * The expression style allows the CSE pass before this to optimize out
3255 * repeated loads from the same offset, and gives the pre-register-allocation
3256 * scheduling full flexibility, while the conversion to native instructions
3257 * allows the post-register-allocation scheduler the best information
3258 * possible.
3259 *
3260 * Note that execution masking for setting up pull constant loads is special:
3261 * the channels that need to be written are unrelated to the current execution
3262 * mask, since a later instruction will use one of the result channels as a
3263 * source operand for all 8 or 16 of its channels.
3264 */
3265 void
3266 fs_visitor::lower_uniform_pull_constant_loads()
3267 {
3268 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3269 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3270 continue;
3271
3272 if (devinfo->gen >= 7) {
3273 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3274 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3275
3276 ubld.group(8, 0).MOV(payload,
3277 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3278 ubld.group(1, 0).MOV(component(payload, 2),
3279 brw_imm_ud(inst->src[1].ud / 16));
3280
3281 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3282 inst->src[1] = payload;
3283 inst->header_size = 1;
3284 inst->mlen = 1;
3285
3286 invalidate_live_intervals();
3287 } else {
3288 /* Before register allocation, we didn't tell the scheduler about the
3289 * MRF we use. We know it's safe to use this MRF because nothing
3290 * else does except for register spill/unspill, which generates and
3291 * uses its MRF within a single IR instruction.
3292 */
3293 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3294 inst->mlen = 1;
3295 }
3296 }
3297 }
3298
3299 bool
3300 fs_visitor::lower_load_payload()
3301 {
3302 bool progress = false;
3303
3304 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3305 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3306 continue;
3307
3308 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3309 assert(inst->saturate == false);
3310 fs_reg dst = inst->dst;
3311
3312 /* Get rid of COMPR4. We'll add it back in if we need it */
3313 if (dst.file == MRF)
3314 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3315
3316 const fs_builder ibld(this, block, inst);
3317 const fs_builder hbld = ibld.exec_all().group(8, 0);
3318
3319 for (uint8_t i = 0; i < inst->header_size; i++) {
3320 if (inst->src[i].file != BAD_FILE) {
3321 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3322 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3323 hbld.MOV(mov_dst, mov_src);
3324 }
3325 dst = offset(dst, hbld, 1);
3326 }
3327
3328 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3329 inst->exec_size > 8) {
3330 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3331 * a straightforward copy. Instead, the result of the
3332 * LOAD_PAYLOAD is treated as interleaved and the first four
3333 * non-header sources are unpacked as:
3334 *
3335 * m + 0: r0
3336 * m + 1: g0
3337 * m + 2: b0
3338 * m + 3: a0
3339 * m + 4: r1
3340 * m + 5: g1
3341 * m + 6: b1
3342 * m + 7: a1
3343 *
3344 * This is used for gen <= 5 fb writes.
3345 */
3346 assert(inst->exec_size == 16);
3347 assert(inst->header_size + 4 <= inst->sources);
3348 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3349 if (inst->src[i].file != BAD_FILE) {
3350 if (devinfo->has_compr4) {
3351 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3352 compr4_dst.nr |= BRW_MRF_COMPR4;
3353 ibld.MOV(compr4_dst, inst->src[i]);
3354 } else {
3355 /* Platform doesn't have COMPR4. We have to fake it */
3356 fs_reg mov_dst = retype(dst, inst->src[i].type);
3357 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3358 mov_dst.nr += 4;
3359 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3360 }
3361 }
3362
3363 dst.nr++;
3364 }
3365
3366 /* The loop above only ever incremented us through the first set
3367 * of 4 registers. However, thanks to the magic of COMPR4, we
3368 * actually wrote to the first 8 registers, so we need to take
3369 * that into account now.
3370 */
3371 dst.nr += 4;
3372
3373 /* The COMPR4 code took care of the first 4 sources. We'll let
3374 * the regular path handle any remaining sources. Yes, we are
3375 * modifying the instruction but we're about to delete it so
3376 * this really doesn't hurt anything.
3377 */
3378 inst->header_size += 4;
3379 }
3380
3381 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3382 if (inst->src[i].file != BAD_FILE)
3383 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3384 dst = offset(dst, ibld, 1);
3385 }
3386
3387 inst->remove(block);
3388 progress = true;
3389 }
3390
3391 if (progress)
3392 invalidate_live_intervals();
3393
3394 return progress;
3395 }
3396
3397 bool
3398 fs_visitor::lower_integer_multiplication()
3399 {
3400 bool progress = false;
3401
3402 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3403 const fs_builder ibld(this, block, inst);
3404
3405 if (inst->opcode == BRW_OPCODE_MUL) {
3406 if (inst->dst.is_accumulator() ||
3407 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3408 inst->dst.type != BRW_REGISTER_TYPE_UD))
3409 continue;
3410
3411 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3412 * operation directly, but CHV/BXT cannot.
3413 */
3414 if (devinfo->gen >= 8 &&
3415 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3416 continue;
3417
3418 if (inst->src[1].file == IMM &&
3419 inst->src[1].ud < (1 << 16)) {
3420 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3421 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3422 * src1 are used.
3423 *
3424 * If multiplying by an immediate value that fits in 16-bits, do a
3425 * single MUL instruction with that value in the proper location.
3426 */
3427 if (devinfo->gen < 7) {
3428 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3429 inst->dst.type);
3430 ibld.MOV(imm, inst->src[1]);
3431 ibld.MUL(inst->dst, imm, inst->src[0]);
3432 } else {
3433 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3434 ibld.MUL(inst->dst, inst->src[0],
3435 ud ? brw_imm_uw(inst->src[1].ud)
3436 : brw_imm_w(inst->src[1].d));
3437 }
3438 } else {
3439 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3440 * do 32-bit integer multiplication in one instruction, but instead
3441 * must do a sequence (which actually calculates a 64-bit result):
3442 *
3443 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3444 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3445 * mov(8) g2<1>D acc0<8,8,1>D
3446 *
3447 * But on Gen > 6, the ability to use second accumulator register
3448 * (acc1) for non-float data types was removed, preventing a simple
3449 * implementation in SIMD16. A 16-channel result can be calculated by
3450 * executing the three instructions twice in SIMD8, once with quarter
3451 * control of 1Q for the first eight channels and again with 2Q for
3452 * the second eight channels.
3453 *
3454 * Which accumulator register is implicitly accessed (by AccWrEnable
3455 * for instance) is determined by the quarter control. Unfortunately
3456 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3457 * implicit accumulator access by an instruction with 2Q will access
3458 * acc1 regardless of whether the data type is usable in acc1.
3459 *
3460 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3461 * integer data types.
3462 *
3463 * Since we only want the low 32-bits of the result, we can do two
3464 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3465 * adjust the high result and add them (like the mach is doing):
3466 *
3467 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3468 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3469 * shl(8) g9<1>D g8<8,8,1>D 16D
3470 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3471 *
3472 * We avoid the shl instruction by realizing that we only want to add
3473 * the low 16-bits of the "high" result to the high 16-bits of the
3474 * "low" result and using proper regioning on the add:
3475 *
3476 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3477 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3478 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3479 *
3480 * Since it does not use the (single) accumulator register, we can
3481 * schedule multi-component multiplications much better.
3482 */
3483
3484 fs_reg orig_dst = inst->dst;
3485 if (orig_dst.is_null() || orig_dst.file == MRF) {
3486 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3487 inst->dst.type);
3488 }
3489 fs_reg low = inst->dst;
3490 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3491 inst->dst.type);
3492
3493 if (devinfo->gen >= 7) {
3494 if (inst->src[1].file == IMM) {
3495 ibld.MUL(low, inst->src[0],
3496 brw_imm_uw(inst->src[1].ud & 0xffff));
3497 ibld.MUL(high, inst->src[0],
3498 brw_imm_uw(inst->src[1].ud >> 16));
3499 } else {
3500 ibld.MUL(low, inst->src[0],
3501 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3502 ibld.MUL(high, inst->src[0],
3503 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3504 }
3505 } else {
3506 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3507 inst->src[1]);
3508 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3509 inst->src[1]);
3510 }
3511
3512 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3513 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3514 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3515
3516 if (inst->conditional_mod || orig_dst.file == MRF) {
3517 set_condmod(inst->conditional_mod,
3518 ibld.MOV(orig_dst, inst->dst));
3519 }
3520 }
3521
3522 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3523 /* Should have been lowered to 8-wide. */
3524 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3525 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3526 inst->dst.type);
3527 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3528 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3529
3530 if (devinfo->gen >= 8) {
3531 /* Until Gen8, integer multiplies read 32-bits from one source,
3532 * and 16-bits from the other, and relying on the MACH instruction
3533 * to generate the high bits of the result.
3534 *
3535 * On Gen8, the multiply instruction does a full 32x32-bit
3536 * multiply, but in order to do a 64-bit multiply we can simulate
3537 * the previous behavior and then use a MACH instruction.
3538 *
3539 * FINISHME: Don't use source modifiers on src1.
3540 */
3541 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3542 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3543 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3544 mul->src[1].stride *= 2;
3545
3546 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3547 inst->group > 0) {
3548 /* Among other things the quarter control bits influence which
3549 * accumulator register is used by the hardware for instructions
3550 * that access the accumulator implicitly (e.g. MACH). A
3551 * second-half instruction would normally map to acc1, which
3552 * doesn't exist on Gen7 and up (the hardware does emulate it for
3553 * floating-point instructions *only* by taking advantage of the
3554 * extra precision of acc0 not normally used for floating point
3555 * arithmetic).
3556 *
3557 * HSW and up are careful enough not to try to access an
3558 * accumulator register that doesn't exist, but on earlier Gen7
3559 * hardware we need to make sure that the quarter control bits are
3560 * zero to avoid non-deterministic behaviour and emit an extra MOV
3561 * to get the result masked correctly according to the current
3562 * channel enables.
3563 */
3564 mach->group = 0;
3565 mach->force_writemask_all = true;
3566 mach->dst = ibld.vgrf(inst->dst.type);
3567 ibld.MOV(inst->dst, mach->dst);
3568 }
3569 } else {
3570 continue;
3571 }
3572
3573 inst->remove(block);
3574 progress = true;
3575 }
3576
3577 if (progress)
3578 invalidate_live_intervals();
3579
3580 return progress;
3581 }
3582
3583 bool
3584 fs_visitor::lower_minmax()
3585 {
3586 assert(devinfo->gen < 6);
3587
3588 bool progress = false;
3589
3590 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3591 const fs_builder ibld(this, block, inst);
3592
3593 if (inst->opcode == BRW_OPCODE_SEL &&
3594 inst->predicate == BRW_PREDICATE_NONE) {
3595 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3596 * the original SEL.L/GE instruction
3597 */
3598 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3599 inst->conditional_mod);
3600 inst->predicate = BRW_PREDICATE_NORMAL;
3601 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3602
3603 progress = true;
3604 }
3605 }
3606
3607 if (progress)
3608 invalidate_live_intervals();
3609
3610 return progress;
3611 }
3612
3613 static void
3614 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3615 fs_reg *dst, fs_reg color, unsigned components)
3616 {
3617 if (key->clamp_fragment_color) {
3618 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3619 assert(color.type == BRW_REGISTER_TYPE_F);
3620
3621 for (unsigned i = 0; i < components; i++)
3622 set_saturate(true,
3623 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3624
3625 color = tmp;
3626 }
3627
3628 for (unsigned i = 0; i < components; i++)
3629 dst[i] = offset(color, bld, i);
3630 }
3631
3632 static void
3633 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3634 const struct brw_wm_prog_data *prog_data,
3635 const brw_wm_prog_key *key,
3636 const fs_visitor::thread_payload &payload)
3637 {
3638 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3639 const gen_device_info *devinfo = bld.shader->devinfo;
3640 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3641 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3642 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3643 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3644 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3645 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3646 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3647 const unsigned components =
3648 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3649
3650 /* We can potentially have a message length of up to 15, so we have to set
3651 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3652 */
3653 fs_reg sources[15];
3654 int header_size = 2, payload_header_size;
3655 unsigned length = 0;
3656
3657 /* From the Sandy Bridge PRM, volume 4, page 198:
3658 *
3659 * "Dispatched Pixel Enables. One bit per pixel indicating
3660 * which pixels were originally enabled when the thread was
3661 * dispatched. This field is only required for the end-of-
3662 * thread message and on all dual-source messages."
3663 */
3664 if (devinfo->gen >= 6 &&
3665 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3666 color1.file == BAD_FILE &&
3667 key->nr_color_regions == 1) {
3668 header_size = 0;
3669 }
3670
3671 if (header_size != 0) {
3672 assert(header_size == 2);
3673 /* Allocate 2 registers for a header */
3674 length += 2;
3675 }
3676
3677 if (payload.aa_dest_stencil_reg) {
3678 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3679 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3680 .MOV(sources[length],
3681 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3682 length++;
3683 }
3684
3685 if (sample_mask.file != BAD_FILE) {
3686 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3687 BRW_REGISTER_TYPE_UD);
3688
3689 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3690 * relevant. Since it's unsigned single words one vgrf is always
3691 * 16-wide, but only the lower or higher 8 channels will be used by the
3692 * hardware when doing a SIMD8 write depending on whether we have
3693 * selected the subspans for the first or second half respectively.
3694 */
3695 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3696 sample_mask.type = BRW_REGISTER_TYPE_UW;
3697 sample_mask.stride *= 2;
3698
3699 bld.exec_all().annotate("FB write oMask")
3700 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3701 inst->group),
3702 sample_mask);
3703 length++;
3704 }
3705
3706 payload_header_size = length;
3707
3708 if (src0_alpha.file != BAD_FILE) {
3709 /* FIXME: This is being passed at the wrong location in the payload and
3710 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3711 * It's supposed to be immediately before oMask but there seems to be no
3712 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3713 * requires header sources to form a contiguous segment at the beginning
3714 * of the message and src0_alpha has per-channel semantics.
3715 */
3716 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3717 length++;
3718 } else if (key->replicate_alpha && inst->target != 0) {
3719 /* Handle the case when fragment shader doesn't write to draw buffer
3720 * zero. No need to call setup_color_payload() for src0_alpha because
3721 * alpha value will be undefined.
3722 */
3723 length++;
3724 }
3725
3726 setup_color_payload(bld, key, &sources[length], color0, components);
3727 length += 4;
3728
3729 if (color1.file != BAD_FILE) {
3730 setup_color_payload(bld, key, &sources[length], color1, components);
3731 length += 4;
3732 }
3733
3734 if (src_depth.file != BAD_FILE) {
3735 sources[length] = src_depth;
3736 length++;
3737 }
3738
3739 if (dst_depth.file != BAD_FILE) {
3740 sources[length] = dst_depth;
3741 length++;
3742 }
3743
3744 if (src_stencil.file != BAD_FILE) {
3745 assert(devinfo->gen >= 9);
3746 assert(bld.dispatch_width() != 16);
3747
3748 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3749 * available on gen9+. As such it's impossible to have both enabled at the
3750 * same time and therefore length cannot overrun the array.
3751 */
3752 assert(length < 15);
3753
3754 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3755 bld.exec_all().annotate("FB write OS")
3756 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3757 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3758 length++;
3759 }
3760
3761 fs_inst *load;
3762 if (devinfo->gen >= 7) {
3763 /* Send from the GRF */
3764 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3765 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3766 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3767 load->dst = payload;
3768
3769 inst->src[0] = payload;
3770 inst->resize_sources(1);
3771 } else {
3772 /* Send from the MRF */
3773 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3774 sources, length, payload_header_size);
3775
3776 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3777 * will do this for us if we just give it a COMPR4 destination.
3778 */
3779 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3780 load->dst.nr |= BRW_MRF_COMPR4;
3781
3782 inst->resize_sources(0);
3783 inst->base_mrf = 1;
3784 }
3785
3786 inst->opcode = FS_OPCODE_FB_WRITE;
3787 inst->mlen = regs_written(load);
3788 inst->header_size = header_size;
3789 }
3790
3791 static void
3792 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3793 {
3794 const fs_builder &ubld = bld.exec_all();
3795 const unsigned length = 2;
3796 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3797
3798 ubld.group(16, 0)
3799 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3800
3801 inst->resize_sources(1);
3802 inst->src[0] = header;
3803 inst->opcode = FS_OPCODE_FB_READ;
3804 inst->mlen = length;
3805 inst->header_size = length;
3806 }
3807
3808 static void
3809 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3810 const fs_reg &coordinate,
3811 const fs_reg &shadow_c,
3812 const fs_reg &lod, const fs_reg &lod2,
3813 const fs_reg &surface,
3814 const fs_reg &sampler,
3815 unsigned coord_components,
3816 unsigned grad_components)
3817 {
3818 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3819 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3820 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3821 fs_reg msg_end = msg_begin;
3822
3823 /* g0 header. */
3824 msg_end = offset(msg_end, bld.group(8, 0), 1);
3825
3826 for (unsigned i = 0; i < coord_components; i++)
3827 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3828 offset(coordinate, bld, i));
3829
3830 msg_end = offset(msg_end, bld, coord_components);
3831
3832 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3833 * require all three components to be present and zero if they are unused.
3834 */
3835 if (coord_components > 0 &&
3836 (has_lod || shadow_c.file != BAD_FILE ||
3837 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3838 for (unsigned i = coord_components; i < 3; i++)
3839 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3840
3841 msg_end = offset(msg_end, bld, 3 - coord_components);
3842 }
3843
3844 if (op == SHADER_OPCODE_TXD) {
3845 /* TXD unsupported in SIMD16 mode. */
3846 assert(bld.dispatch_width() == 8);
3847
3848 /* the slots for u and v are always present, but r is optional */
3849 if (coord_components < 2)
3850 msg_end = offset(msg_end, bld, 2 - coord_components);
3851
3852 /* P = u, v, r
3853 * dPdx = dudx, dvdx, drdx
3854 * dPdy = dudy, dvdy, drdy
3855 *
3856 * 1-arg: Does not exist.
3857 *
3858 * 2-arg: dudx dvdx dudy dvdy
3859 * dPdx.x dPdx.y dPdy.x dPdy.y
3860 * m4 m5 m6 m7
3861 *
3862 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3863 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3864 * m5 m6 m7 m8 m9 m10
3865 */
3866 for (unsigned i = 0; i < grad_components; i++)
3867 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3868
3869 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3870
3871 for (unsigned i = 0; i < grad_components; i++)
3872 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3873
3874 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3875 }
3876
3877 if (has_lod) {
3878 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3879 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3880 */
3881 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3882 bld.dispatch_width() == 16);
3883
3884 const brw_reg_type type =
3885 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3886 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3887 bld.MOV(retype(msg_end, type), lod);
3888 msg_end = offset(msg_end, bld, 1);
3889 }
3890
3891 if (shadow_c.file != BAD_FILE) {
3892 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3893 /* There's no plain shadow compare message, so we use shadow
3894 * compare with a bias of 0.0.
3895 */
3896 bld.MOV(msg_end, brw_imm_f(0.0f));
3897 msg_end = offset(msg_end, bld, 1);
3898 }
3899
3900 bld.MOV(msg_end, shadow_c);
3901 msg_end = offset(msg_end, bld, 1);
3902 }
3903
3904 inst->opcode = op;
3905 inst->src[0] = reg_undef;
3906 inst->src[1] = surface;
3907 inst->src[2] = sampler;
3908 inst->resize_sources(3);
3909 inst->base_mrf = msg_begin.nr;
3910 inst->mlen = msg_end.nr - msg_begin.nr;
3911 inst->header_size = 1;
3912 }
3913
3914 static void
3915 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3916 const fs_reg &coordinate,
3917 const fs_reg &shadow_c,
3918 const fs_reg &lod, const fs_reg &lod2,
3919 const fs_reg &sample_index,
3920 const fs_reg &surface,
3921 const fs_reg &sampler,
3922 unsigned coord_components,
3923 unsigned grad_components)
3924 {
3925 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3926 fs_reg msg_coords = message;
3927 unsigned header_size = 0;
3928
3929 if (inst->offset != 0) {
3930 /* The offsets set up by the visitor are in the m1 header, so we can't
3931 * go headerless.
3932 */
3933 header_size = 1;
3934 message.nr--;
3935 }
3936
3937 for (unsigned i = 0; i < coord_components; i++)
3938 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3939 offset(coordinate, bld, i));
3940
3941 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3942 fs_reg msg_lod = offset(msg_coords, bld, 4);
3943
3944 if (shadow_c.file != BAD_FILE) {
3945 fs_reg msg_shadow = msg_lod;
3946 bld.MOV(msg_shadow, shadow_c);
3947 msg_lod = offset(msg_shadow, bld, 1);
3948 msg_end = msg_lod;
3949 }
3950
3951 switch (op) {
3952 case SHADER_OPCODE_TXL:
3953 case FS_OPCODE_TXB:
3954 bld.MOV(msg_lod, lod);
3955 msg_end = offset(msg_lod, bld, 1);
3956 break;
3957 case SHADER_OPCODE_TXD:
3958 /**
3959 * P = u, v, r
3960 * dPdx = dudx, dvdx, drdx
3961 * dPdy = dudy, dvdy, drdy
3962 *
3963 * Load up these values:
3964 * - dudx dudy dvdx dvdy drdx drdy
3965 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3966 */
3967 msg_end = msg_lod;
3968 for (unsigned i = 0; i < grad_components; i++) {
3969 bld.MOV(msg_end, offset(lod, bld, i));
3970 msg_end = offset(msg_end, bld, 1);
3971
3972 bld.MOV(msg_end, offset(lod2, bld, i));
3973 msg_end = offset(msg_end, bld, 1);
3974 }
3975 break;
3976 case SHADER_OPCODE_TXS:
3977 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3978 bld.MOV(msg_lod, lod);
3979 msg_end = offset(msg_lod, bld, 1);
3980 break;
3981 case SHADER_OPCODE_TXF:
3982 msg_lod = offset(msg_coords, bld, 3);
3983 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3984 msg_end = offset(msg_lod, bld, 1);
3985 break;
3986 case SHADER_OPCODE_TXF_CMS:
3987 msg_lod = offset(msg_coords, bld, 3);
3988 /* lod */
3989 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3990 /* sample index */
3991 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3992 msg_end = offset(msg_lod, bld, 2);
3993 break;
3994 default:
3995 break;
3996 }
3997
3998 inst->opcode = op;
3999 inst->src[0] = reg_undef;
4000 inst->src[1] = surface;
4001 inst->src[2] = sampler;
4002 inst->resize_sources(3);
4003 inst->base_mrf = message.nr;
4004 inst->mlen = msg_end.nr - message.nr;
4005 inst->header_size = header_size;
4006
4007 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4008 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4009 }
4010
4011 static bool
4012 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4013 {
4014 if (devinfo->gen < 8 && !devinfo->is_haswell)
4015 return false;
4016
4017 return sampler.file != IMM || sampler.ud >= 16;
4018 }
4019
4020 static void
4021 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4022 const fs_reg &coordinate,
4023 const fs_reg &shadow_c,
4024 fs_reg lod, const fs_reg &lod2,
4025 const fs_reg &sample_index,
4026 const fs_reg &mcs,
4027 const fs_reg &surface,
4028 const fs_reg &sampler,
4029 const fs_reg &tg4_offset,
4030 unsigned coord_components,
4031 unsigned grad_components)
4032 {
4033 const gen_device_info *devinfo = bld.shader->devinfo;
4034 unsigned reg_width = bld.dispatch_width() / 8;
4035 unsigned header_size = 0, length = 0;
4036 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4037 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4038 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4039
4040 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4041 inst->offset != 0 || inst->eot ||
4042 op == SHADER_OPCODE_SAMPLEINFO ||
4043 is_high_sampler(devinfo, sampler)) {
4044 /* For general texture offsets (no txf workaround), we need a header to
4045 * put them in. Note that we're only reserving space for it in the
4046 * message payload as it will be initialized implicitly by the
4047 * generator.
4048 *
4049 * TG4 needs to place its channel select in the header, for interaction
4050 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4051 * larger sampler numbers we need to offset the Sampler State Pointer in
4052 * the header.
4053 */
4054 header_size = 1;
4055 sources[0] = fs_reg();
4056 length++;
4057
4058 /* If we're requesting fewer than four channels worth of response,
4059 * and we have an explicit header, we need to set up the sampler
4060 * writemask. It's reversed from normal: 1 means "don't write".
4061 */
4062 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4063 assert(regs_written(inst) % reg_width == 0);
4064 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4065 inst->offset |= mask << 12;
4066 }
4067 }
4068
4069 if (shadow_c.file != BAD_FILE) {
4070 bld.MOV(sources[length], shadow_c);
4071 length++;
4072 }
4073
4074 bool coordinate_done = false;
4075
4076 /* Set up the LOD info */
4077 switch (op) {
4078 case FS_OPCODE_TXB:
4079 case SHADER_OPCODE_TXL:
4080 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4081 op = SHADER_OPCODE_TXL_LZ;
4082 break;
4083 }
4084 bld.MOV(sources[length], lod);
4085 length++;
4086 break;
4087 case SHADER_OPCODE_TXD:
4088 /* TXD should have been lowered in SIMD16 mode. */
4089 assert(bld.dispatch_width() == 8);
4090
4091 /* Load dPdx and the coordinate together:
4092 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4093 */
4094 for (unsigned i = 0; i < coord_components; i++) {
4095 bld.MOV(sources[length++], offset(coordinate, bld, i));
4096
4097 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4098 * only derivatives for (u, v, r).
4099 */
4100 if (i < grad_components) {
4101 bld.MOV(sources[length++], offset(lod, bld, i));
4102 bld.MOV(sources[length++], offset(lod2, bld, i));
4103 }
4104 }
4105
4106 coordinate_done = true;
4107 break;
4108 case SHADER_OPCODE_TXS:
4109 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4110 length++;
4111 break;
4112 case SHADER_OPCODE_TXF:
4113 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4114 * On Gen9 they are u, v, lod, r
4115 */
4116 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4117
4118 if (devinfo->gen >= 9) {
4119 if (coord_components >= 2) {
4120 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4121 offset(coordinate, bld, 1));
4122 } else {
4123 sources[length] = brw_imm_d(0);
4124 }
4125 length++;
4126 }
4127
4128 if (devinfo->gen >= 9 && lod.is_zero()) {
4129 op = SHADER_OPCODE_TXF_LZ;
4130 } else {
4131 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4132 length++;
4133 }
4134
4135 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4136 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4137 offset(coordinate, bld, i));
4138
4139 coordinate_done = true;
4140 break;
4141
4142 case SHADER_OPCODE_TXF_CMS:
4143 case SHADER_OPCODE_TXF_CMS_W:
4144 case SHADER_OPCODE_TXF_UMS:
4145 case SHADER_OPCODE_TXF_MCS:
4146 if (op == SHADER_OPCODE_TXF_UMS ||
4147 op == SHADER_OPCODE_TXF_CMS ||
4148 op == SHADER_OPCODE_TXF_CMS_W) {
4149 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4150 length++;
4151 }
4152
4153 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4154 /* Data from the multisample control surface. */
4155 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4156 length++;
4157
4158 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4159 * the MCS data.
4160 */
4161 if (op == SHADER_OPCODE_TXF_CMS_W) {
4162 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4163 mcs.file == IMM ?
4164 mcs :
4165 offset(mcs, bld, 1));
4166 length++;
4167 }
4168 }
4169
4170 /* There is no offsetting for this message; just copy in the integer
4171 * texture coordinates.
4172 */
4173 for (unsigned i = 0; i < coord_components; i++)
4174 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4175 offset(coordinate, bld, i));
4176
4177 coordinate_done = true;
4178 break;
4179 case SHADER_OPCODE_TG4_OFFSET:
4180 /* More crazy intermixing */
4181 for (unsigned i = 0; i < 2; i++) /* u, v */
4182 bld.MOV(sources[length++], offset(coordinate, bld, i));
4183
4184 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4185 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4186 offset(tg4_offset, bld, i));
4187
4188 if (coord_components == 3) /* r if present */
4189 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4190
4191 coordinate_done = true;
4192 break;
4193 default:
4194 break;
4195 }
4196
4197 /* Set up the coordinate (except for cases where it was done above) */
4198 if (!coordinate_done) {
4199 for (unsigned i = 0; i < coord_components; i++)
4200 bld.MOV(sources[length++], offset(coordinate, bld, i));
4201 }
4202
4203 int mlen;
4204 if (reg_width == 2)
4205 mlen = length * reg_width - header_size;
4206 else
4207 mlen = length * reg_width;
4208
4209 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4210 BRW_REGISTER_TYPE_F);
4211 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4212
4213 /* Generate the SEND. */
4214 inst->opcode = op;
4215 inst->src[0] = src_payload;
4216 inst->src[1] = surface;
4217 inst->src[2] = sampler;
4218 inst->resize_sources(3);
4219 inst->mlen = mlen;
4220 inst->header_size = header_size;
4221
4222 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4223 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4224 }
4225
4226 static void
4227 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4228 {
4229 const gen_device_info *devinfo = bld.shader->devinfo;
4230 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4231 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4232 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4233 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4234 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4235 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4236 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4237 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4238 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4239 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4240 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4241 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4242 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4243
4244 if (devinfo->gen >= 7) {
4245 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4246 shadow_c, lod, lod2, sample_index,
4247 mcs, surface, sampler, tg4_offset,
4248 coord_components, grad_components);
4249 } else if (devinfo->gen >= 5) {
4250 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4251 shadow_c, lod, lod2, sample_index,
4252 surface, sampler,
4253 coord_components, grad_components);
4254 } else {
4255 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4256 shadow_c, lod, lod2,
4257 surface, sampler,
4258 coord_components, grad_components);
4259 }
4260 }
4261
4262 /**
4263 * Initialize the header present in some typed and untyped surface
4264 * messages.
4265 */
4266 static fs_reg
4267 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4268 {
4269 fs_builder ubld = bld.exec_all().group(8, 0);
4270 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4271 ubld.MOV(dst, brw_imm_d(0));
4272 ubld.MOV(component(dst, 7), sample_mask);
4273 return dst;
4274 }
4275
4276 static void
4277 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4278 const fs_reg &sample_mask)
4279 {
4280 /* Get the logical send arguments. */
4281 const fs_reg &addr = inst->src[0];
4282 const fs_reg &src = inst->src[1];
4283 const fs_reg &surface = inst->src[2];
4284 const UNUSED fs_reg &dims = inst->src[3];
4285 const fs_reg &arg = inst->src[4];
4286
4287 /* Calculate the total number of components of the payload. */
4288 const unsigned addr_sz = inst->components_read(0);
4289 const unsigned src_sz = inst->components_read(1);
4290 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4291 const unsigned sz = header_sz + addr_sz + src_sz;
4292
4293 /* Allocate space for the payload. */
4294 fs_reg *const components = new fs_reg[sz];
4295 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4296 unsigned n = 0;
4297
4298 /* Construct the payload. */
4299 if (header_sz)
4300 components[n++] = emit_surface_header(bld, sample_mask);
4301
4302 for (unsigned i = 0; i < addr_sz; i++)
4303 components[n++] = offset(addr, bld, i);
4304
4305 for (unsigned i = 0; i < src_sz; i++)
4306 components[n++] = offset(src, bld, i);
4307
4308 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4309
4310 /* Update the original instruction. */
4311 inst->opcode = op;
4312 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4313 inst->header_size = header_sz;
4314
4315 inst->src[0] = payload;
4316 inst->src[1] = surface;
4317 inst->src[2] = arg;
4318 inst->resize_sources(3);
4319
4320 delete[] components;
4321 }
4322
4323 static void
4324 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4325 {
4326 const gen_device_info *devinfo = bld.shader->devinfo;
4327
4328 if (devinfo->gen >= 7) {
4329 /* We are switching the instruction from an ALU-like instruction to a
4330 * send-from-grf instruction. Since sends can't handle strides or
4331 * source modifiers, we have to make a copy of the offset source.
4332 */
4333 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4334 bld.MOV(tmp, inst->src[1]);
4335 inst->src[1] = tmp;
4336
4337 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4338
4339 } else {
4340 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4341 BRW_REGISTER_TYPE_UD);
4342
4343 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4344
4345 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4346 inst->resize_sources(1);
4347 inst->base_mrf = payload.nr;
4348 inst->header_size = 1;
4349 inst->mlen = 1 + inst->exec_size / 8;
4350 }
4351 }
4352
4353 static void
4354 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4355 {
4356 assert(bld.shader->devinfo->gen < 6);
4357
4358 inst->base_mrf = 2;
4359 inst->mlen = inst->sources * inst->exec_size / 8;
4360
4361 if (inst->sources > 1) {
4362 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4363 * "Message Payload":
4364 *
4365 * "Operand0[7]. For the INT DIV functions, this operand is the
4366 * denominator."
4367 * ...
4368 * "Operand1[7]. For the INT DIV functions, this operand is the
4369 * numerator."
4370 */
4371 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4372 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4373 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4374
4375 inst->resize_sources(1);
4376 inst->src[0] = src0;
4377
4378 assert(inst->exec_size == 8);
4379 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4380 }
4381 }
4382
4383 bool
4384 fs_visitor::lower_logical_sends()
4385 {
4386 bool progress = false;
4387
4388 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4389 const fs_builder ibld(this, block, inst);
4390
4391 switch (inst->opcode) {
4392 case FS_OPCODE_FB_WRITE_LOGICAL:
4393 assert(stage == MESA_SHADER_FRAGMENT);
4394 lower_fb_write_logical_send(ibld, inst,
4395 brw_wm_prog_data(prog_data),
4396 (const brw_wm_prog_key *)key,
4397 payload);
4398 break;
4399
4400 case FS_OPCODE_FB_READ_LOGICAL:
4401 lower_fb_read_logical_send(ibld, inst);
4402 break;
4403
4404 case SHADER_OPCODE_TEX_LOGICAL:
4405 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4406 break;
4407
4408 case SHADER_OPCODE_TXD_LOGICAL:
4409 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4410 break;
4411
4412 case SHADER_OPCODE_TXF_LOGICAL:
4413 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4414 break;
4415
4416 case SHADER_OPCODE_TXL_LOGICAL:
4417 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4418 break;
4419
4420 case SHADER_OPCODE_TXS_LOGICAL:
4421 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4422 break;
4423
4424 case FS_OPCODE_TXB_LOGICAL:
4425 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4426 break;
4427
4428 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4429 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4430 break;
4431
4432 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4433 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4434 break;
4435
4436 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4437 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4438 break;
4439
4440 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4441 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4442 break;
4443
4444 case SHADER_OPCODE_LOD_LOGICAL:
4445 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4446 break;
4447
4448 case SHADER_OPCODE_TG4_LOGICAL:
4449 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4450 break;
4451
4452 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4453 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4454 break;
4455
4456 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4457 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4458 break;
4459
4460 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4461 lower_surface_logical_send(ibld, inst,
4462 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4463 fs_reg());
4464 break;
4465
4466 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4467 lower_surface_logical_send(ibld, inst,
4468 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4469 ibld.sample_mask_reg());
4470 break;
4471
4472 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4473 lower_surface_logical_send(ibld, inst,
4474 SHADER_OPCODE_UNTYPED_ATOMIC,
4475 ibld.sample_mask_reg());
4476 break;
4477
4478 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4479 lower_surface_logical_send(ibld, inst,
4480 SHADER_OPCODE_TYPED_SURFACE_READ,
4481 brw_imm_d(0xffff));
4482 break;
4483
4484 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4485 lower_surface_logical_send(ibld, inst,
4486 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4487 ibld.sample_mask_reg());
4488 break;
4489
4490 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4491 lower_surface_logical_send(ibld, inst,
4492 SHADER_OPCODE_TYPED_ATOMIC,
4493 ibld.sample_mask_reg());
4494 break;
4495
4496 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4497 lower_varying_pull_constant_logical_send(ibld, inst);
4498 break;
4499
4500 case SHADER_OPCODE_RCP:
4501 case SHADER_OPCODE_RSQ:
4502 case SHADER_OPCODE_SQRT:
4503 case SHADER_OPCODE_EXP2:
4504 case SHADER_OPCODE_LOG2:
4505 case SHADER_OPCODE_SIN:
4506 case SHADER_OPCODE_COS:
4507 case SHADER_OPCODE_POW:
4508 case SHADER_OPCODE_INT_QUOTIENT:
4509 case SHADER_OPCODE_INT_REMAINDER:
4510 /* The math opcodes are overloaded for the send-like and
4511 * expression-like instructions which seems kind of icky. Gen6+ has
4512 * a native (but rather quirky) MATH instruction so we don't need to
4513 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4514 * logical instructions (which we can easily recognize because they
4515 * have mlen = 0) into send-like virtual instructions.
4516 */
4517 if (devinfo->gen < 6 && inst->mlen == 0) {
4518 lower_math_logical_send(ibld, inst);
4519 break;
4520
4521 } else {
4522 continue;
4523 }
4524
4525 default:
4526 continue;
4527 }
4528
4529 progress = true;
4530 }
4531
4532 if (progress)
4533 invalidate_live_intervals();
4534
4535 return progress;
4536 }
4537
4538 /**
4539 * Get the closest allowed SIMD width for instruction \p inst accounting for
4540 * some common regioning and execution control restrictions that apply to FPU
4541 * instructions. These restrictions don't necessarily have any relevance to
4542 * instructions not executed by the FPU pipeline like extended math, control
4543 * flow or send message instructions.
4544 *
4545 * For virtual opcodes it's really up to the instruction -- In some cases
4546 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4547 * instructions) it may simplify virtual instruction lowering if we can
4548 * enforce FPU-like regioning restrictions already on the virtual instruction,
4549 * in other cases (e.g. virtual send-like instructions) this may be
4550 * excessively restrictive.
4551 */
4552 static unsigned
4553 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4554 const fs_inst *inst)
4555 {
4556 /* Maximum execution size representable in the instruction controls. */
4557 unsigned max_width = MIN2(32, inst->exec_size);
4558
4559 /* According to the PRMs:
4560 * "A. In Direct Addressing mode, a source cannot span more than 2
4561 * adjacent GRF registers.
4562 * B. A destination cannot span more than 2 adjacent GRF registers."
4563 *
4564 * Look for the source or destination with the largest register region
4565 * which is the one that is going to limit the overall execution size of
4566 * the instruction due to this rule.
4567 */
4568 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4569
4570 for (unsigned i = 0; i < inst->sources; i++)
4571 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4572
4573 /* Calculate the maximum execution size of the instruction based on the
4574 * factor by which it goes over the hardware limit of 2 GRFs.
4575 */
4576 if (reg_count > 2)
4577 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4578
4579 /* According to the IVB PRMs:
4580 * "When destination spans two registers, the source MUST span two
4581 * registers. The exception to the above rule:
4582 *
4583 * - When source is scalar, the source registers are not incremented.
4584 * - When source is packed integer Word and destination is packed
4585 * integer DWord, the source register is not incremented but the
4586 * source sub register is incremented."
4587 *
4588 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4589 * restrictions. The code below intentionally doesn't check whether the
4590 * destination type is integer because empirically the hardware doesn't
4591 * seem to care what the actual type is as long as it's dword-aligned.
4592 */
4593 if (devinfo->gen < 8) {
4594 for (unsigned i = 0; i < inst->sources; i++) {
4595 /* IVB implements DF scalars as <0;2,1> regions. */
4596 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4597 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4598 const bool is_packed_word_exception =
4599 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4600 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4601
4602 if (inst->size_written > REG_SIZE &&
4603 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4604 !is_scalar_exception && !is_packed_word_exception) {
4605 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4606 max_width = MIN2(max_width, inst->exec_size / reg_count);
4607 }
4608 }
4609 }
4610
4611 /* From the IVB PRMs:
4612 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4613 * are applied for both halves of the SIMD32 instruction. If different
4614 * execution mask channels are required, split the instruction into two
4615 * SIMD16 instructions."
4616 *
4617 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4618 * 32-wide control flow support in hardware and will behave similarly.
4619 */
4620 if (devinfo->gen < 8 && !inst->force_writemask_all)
4621 max_width = MIN2(max_width, 16);
4622
4623 /* From the IVB PRMs (applies to HSW too):
4624 * "Instructions with condition modifiers must not use SIMD32."
4625 *
4626 * From the BDW PRMs (applies to later hardware too):
4627 * "Ternary instruction with condition modifiers must not use SIMD32."
4628 */
4629 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4630 max_width = MIN2(max_width, 16);
4631
4632 /* From the IVB PRMs (applies to other devices that don't have the
4633 * gen_device_info::supports_simd16_3src flag set):
4634 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4635 * SIMD8 is not allowed for DF operations."
4636 */
4637 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4638 max_width = MIN2(max_width, inst->exec_size / reg_count);
4639
4640 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4641 * the 8-bit quarter of the execution mask signals specified in the
4642 * instruction control fields) for the second compressed half of any
4643 * single-precision instruction (for double-precision instructions
4644 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4645 * the EU will apply the wrong execution controls for the second
4646 * sequential GRF write if the number of channels per GRF is not exactly
4647 * eight in single-precision mode (or four in double-float mode).
4648 *
4649 * In this situation we calculate the maximum size of the split
4650 * instructions so they only ever write to a single register.
4651 */
4652 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4653 !inst->force_writemask_all) {
4654 const unsigned channels_per_grf = inst->exec_size /
4655 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4656 const unsigned exec_type_size = get_exec_type_size(inst);
4657 assert(exec_type_size);
4658
4659 /* The hardware shifts exactly 8 channels per compressed half of the
4660 * instruction in single-precision mode and exactly 4 in double-precision.
4661 */
4662 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4663 max_width = MIN2(max_width, channels_per_grf);
4664
4665 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4666 * because HW applies the same channel enable signals to both halves of
4667 * the compressed instruction which will be just wrong under
4668 * non-uniform control flow.
4669 */
4670 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4671 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4672 max_width = MIN2(max_width, 4);
4673 }
4674
4675 /* Only power-of-two execution sizes are representable in the instruction
4676 * control fields.
4677 */
4678 return 1 << _mesa_logbase2(max_width);
4679 }
4680
4681 /**
4682 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4683 * various payload size restrictions that apply to sampler message
4684 * instructions.
4685 *
4686 * This is only intended to provide a maximum theoretical bound for the
4687 * execution size of the message based on the number of argument components
4688 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4689 * variant of the message can be used, though some messages may have
4690 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4691 * the message length to determine the exact SIMD width and argument count,
4692 * which makes a number of sampler message combinations impossible to
4693 * represent).
4694 */
4695 static unsigned
4696 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4697 const fs_inst *inst)
4698 {
4699 /* Calculate the number of coordinate components that have to be present
4700 * assuming that additional arguments follow the texel coordinates in the
4701 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4702 * need to pad to four or three components depending on the message,
4703 * pre-ILK we need to pad to at most three components.
4704 */
4705 const unsigned req_coord_components =
4706 (devinfo->gen >= 7 ||
4707 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4708 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4709 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4710 3;
4711
4712 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4713 * variant of the TXL or TXF message.
4714 */
4715 const bool implicit_lod = devinfo->gen >= 9 &&
4716 (inst->opcode == SHADER_OPCODE_TXL ||
4717 inst->opcode == SHADER_OPCODE_TXF) &&
4718 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4719
4720 /* Calculate the total number of argument components that need to be passed
4721 * to the sampler unit.
4722 */
4723 const unsigned num_payload_components =
4724 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4725 req_coord_components) +
4726 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4727 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4728 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4729 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4730 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4731 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4732 inst->components_read(TEX_LOGICAL_SRC_MCS);
4733
4734 /* SIMD16 messages with more than five arguments exceed the maximum message
4735 * size supported by the sampler, regardless of whether a header is
4736 * provided or not.
4737 */
4738 return MIN2(inst->exec_size,
4739 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4740 }
4741
4742 /**
4743 * Get the closest native SIMD width supported by the hardware for instruction
4744 * \p inst. The instruction will be left untouched by
4745 * fs_visitor::lower_simd_width() if the returned value is equal to the
4746 * original execution size.
4747 */
4748 static unsigned
4749 get_lowered_simd_width(const struct gen_device_info *devinfo,
4750 const fs_inst *inst)
4751 {
4752 switch (inst->opcode) {
4753 case BRW_OPCODE_MOV:
4754 case BRW_OPCODE_SEL:
4755 case BRW_OPCODE_NOT:
4756 case BRW_OPCODE_AND:
4757 case BRW_OPCODE_OR:
4758 case BRW_OPCODE_XOR:
4759 case BRW_OPCODE_SHR:
4760 case BRW_OPCODE_SHL:
4761 case BRW_OPCODE_ASR:
4762 case BRW_OPCODE_CMPN:
4763 case BRW_OPCODE_CSEL:
4764 case BRW_OPCODE_F32TO16:
4765 case BRW_OPCODE_F16TO32:
4766 case BRW_OPCODE_BFREV:
4767 case BRW_OPCODE_BFE:
4768 case BRW_OPCODE_ADD:
4769 case BRW_OPCODE_MUL:
4770 case BRW_OPCODE_AVG:
4771 case BRW_OPCODE_FRC:
4772 case BRW_OPCODE_RNDU:
4773 case BRW_OPCODE_RNDD:
4774 case BRW_OPCODE_RNDE:
4775 case BRW_OPCODE_RNDZ:
4776 case BRW_OPCODE_LZD:
4777 case BRW_OPCODE_FBH:
4778 case BRW_OPCODE_FBL:
4779 case BRW_OPCODE_CBIT:
4780 case BRW_OPCODE_SAD2:
4781 case BRW_OPCODE_MAD:
4782 case BRW_OPCODE_LRP:
4783 case FS_OPCODE_PACK:
4784 return get_fpu_lowered_simd_width(devinfo, inst);
4785
4786 case BRW_OPCODE_CMP: {
4787 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4788 * when the destination is a GRF the dependency-clear bit on the flag
4789 * register is cleared early.
4790 *
4791 * Suggested workarounds are to disable coissuing CMP instructions
4792 * or to split CMP(16) instructions into two CMP(8) instructions.
4793 *
4794 * We choose to split into CMP(8) instructions since disabling
4795 * coissuing would affect CMP instructions not otherwise affected by
4796 * the errata.
4797 */
4798 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4799 !inst->dst.is_null() ? 8 : ~0);
4800 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4801 }
4802 case BRW_OPCODE_BFI1:
4803 case BRW_OPCODE_BFI2:
4804 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4805 * should
4806 * "Force BFI instructions to be executed always in SIMD8."
4807 */
4808 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4809 get_fpu_lowered_simd_width(devinfo, inst));
4810
4811 case BRW_OPCODE_IF:
4812 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4813 return inst->exec_size;
4814
4815 case SHADER_OPCODE_RCP:
4816 case SHADER_OPCODE_RSQ:
4817 case SHADER_OPCODE_SQRT:
4818 case SHADER_OPCODE_EXP2:
4819 case SHADER_OPCODE_LOG2:
4820 case SHADER_OPCODE_SIN:
4821 case SHADER_OPCODE_COS:
4822 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4823 * Gen6.
4824 */
4825 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4826 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4827 MIN2(8, inst->exec_size));
4828
4829 case SHADER_OPCODE_POW:
4830 /* SIMD16 is only allowed on Gen7+. */
4831 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4832 MIN2(8, inst->exec_size));
4833
4834 case SHADER_OPCODE_INT_QUOTIENT:
4835 case SHADER_OPCODE_INT_REMAINDER:
4836 /* Integer division is limited to SIMD8 on all generations. */
4837 return MIN2(8, inst->exec_size);
4838
4839 case FS_OPCODE_LINTERP:
4840 case FS_OPCODE_GET_BUFFER_SIZE:
4841 case FS_OPCODE_DDX_COARSE:
4842 case FS_OPCODE_DDX_FINE:
4843 case FS_OPCODE_DDY_COARSE:
4844 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4845 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4846 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4847 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4848 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4849 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4850 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4851 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4852 return MIN2(16, inst->exec_size);
4853
4854 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4855 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4856 * message used to implement varying pull constant loads, so expand it
4857 * to SIMD16. An alternative with longer message payload length but
4858 * shorter return payload would be to use the SIMD8 sampler message that
4859 * takes (header, u, v, r) as parameters instead of (header, u).
4860 */
4861 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4862
4863 case FS_OPCODE_DDY_FINE:
4864 /* The implementation of this virtual opcode may require emitting
4865 * compressed Align16 instructions, which are severely limited on some
4866 * generations.
4867 *
4868 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4869 * Region Restrictions):
4870 *
4871 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4872 * and SIMD8 is not allowed for DF operations."
4873 *
4874 * In this context, "DW operations" means "operations acting on 32-bit
4875 * values", so it includes operations on floats.
4876 *
4877 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4878 * (Instruction Compression -> Rules and Restrictions):
4879 *
4880 * "A compressed instruction must be in Align1 access mode. Align16
4881 * mode instructions cannot be compressed."
4882 *
4883 * Similar text exists in the g45 PRM.
4884 *
4885 * Empirically, compressed align16 instructions using odd register
4886 * numbers don't appear to work on Sandybridge either.
4887 */
4888 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4889 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4890 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4891
4892 case SHADER_OPCODE_MULH:
4893 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4894 * is 8-wide on Gen7+.
4895 */
4896 return (devinfo->gen >= 7 ? 8 :
4897 get_fpu_lowered_simd_width(devinfo, inst));
4898
4899 case FS_OPCODE_FB_WRITE_LOGICAL:
4900 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4901 * here.
4902 */
4903 assert(devinfo->gen != 6 ||
4904 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4905 inst->exec_size == 8);
4906 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4907 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4908 8 : MIN2(16, inst->exec_size));
4909
4910 case FS_OPCODE_FB_READ_LOGICAL:
4911 return MIN2(16, inst->exec_size);
4912
4913 case SHADER_OPCODE_TEX_LOGICAL:
4914 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4915 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4916 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4917 case SHADER_OPCODE_LOD_LOGICAL:
4918 case SHADER_OPCODE_TG4_LOGICAL:
4919 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4920 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4921 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4922 return get_sampler_lowered_simd_width(devinfo, inst);
4923
4924 case SHADER_OPCODE_TXD_LOGICAL:
4925 /* TXD is unsupported in SIMD16 mode. */
4926 return 8;
4927
4928 case SHADER_OPCODE_TXL_LOGICAL:
4929 case FS_OPCODE_TXB_LOGICAL:
4930 /* Only one execution size is representable pre-ILK depending on whether
4931 * the shadow reference argument is present.
4932 */
4933 if (devinfo->gen == 4)
4934 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4935 else
4936 return get_sampler_lowered_simd_width(devinfo, inst);
4937
4938 case SHADER_OPCODE_TXF_LOGICAL:
4939 case SHADER_OPCODE_TXS_LOGICAL:
4940 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4941 * messages. Use SIMD16 instead.
4942 */
4943 if (devinfo->gen == 4)
4944 return 16;
4945 else
4946 return get_sampler_lowered_simd_width(devinfo, inst);
4947
4948 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4949 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4950 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4951 return 8;
4952
4953 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4954 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4955 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4956 return MIN2(16, inst->exec_size);
4957
4958 case SHADER_OPCODE_URB_READ_SIMD8:
4959 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4960 case SHADER_OPCODE_URB_WRITE_SIMD8:
4961 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4962 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4963 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4964 return MIN2(8, inst->exec_size);
4965
4966 case SHADER_OPCODE_MOV_INDIRECT: {
4967 /* From IVB and HSW PRMs:
4968 *
4969 * "2.When the destination requires two registers and the sources are
4970 * indirect, the sources must use 1x1 regioning mode.
4971 *
4972 * In case of DF instructions in HSW/IVB, the exec_size is limited by
4973 * the EU decompression logic not handling VxH indirect addressing
4974 * correctly.
4975 */
4976 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
4977 /* Prior to Broadwell, we only have 8 address subregisters. */
4978 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4979 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
4980 inst->exec_size);
4981 }
4982
4983 case SHADER_OPCODE_LOAD_PAYLOAD: {
4984 const unsigned reg_count =
4985 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4986
4987 if (reg_count > 2) {
4988 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4989 * can be easily lowered (which excludes headers and heterogeneous
4990 * types).
4991 */
4992 assert(!inst->header_size);
4993 for (unsigned i = 0; i < inst->sources; i++)
4994 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4995 inst->src[i].file == BAD_FILE);
4996
4997 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4998 } else {
4999 return inst->exec_size;
5000 }
5001 }
5002 default:
5003 return inst->exec_size;
5004 }
5005 }
5006
5007 /**
5008 * Return true if splitting out the group of channels of instruction \p inst
5009 * given by lbld.group() requires allocating a temporary for the i-th source
5010 * of the lowered instruction.
5011 */
5012 static inline bool
5013 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5014 {
5015 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5016 (inst->components_read(i) == 1 &&
5017 lbld.dispatch_width() <= inst->exec_size));
5018 }
5019
5020 /**
5021 * Extract the data that would be consumed by the channel group given by
5022 * lbld.group() from the i-th source region of instruction \p inst and return
5023 * it as result in packed form. If any copy instructions are required they
5024 * will be emitted before the given \p inst in \p block.
5025 */
5026 static fs_reg
5027 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
5028 unsigned i)
5029 {
5030 /* Specified channel group from the source region. */
5031 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5032
5033 if (needs_src_copy(lbld, inst, i)) {
5034 /* Builder of the right width to perform the copy avoiding uninitialized
5035 * data if the lowered execution size is greater than the original
5036 * execution size of the instruction.
5037 */
5038 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5039 inst->exec_size), 0);
5040 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5041
5042 for (unsigned k = 0; k < inst->components_read(i); ++k)
5043 cbld.at(block, inst)
5044 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5045
5046 return tmp;
5047
5048 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5049 /* The source is invariant for all dispatch_width-wide groups of the
5050 * original region.
5051 */
5052 return inst->src[i];
5053
5054 } else {
5055 /* We can just point the lowered instruction at the right channel group
5056 * from the original region.
5057 */
5058 return src;
5059 }
5060 }
5061
5062 /**
5063 * Return true if splitting out the group of channels of instruction \p inst
5064 * given by lbld.group() requires allocating a temporary for the destination
5065 * of the lowered instruction and copying the data back to the original
5066 * destination region.
5067 */
5068 static inline bool
5069 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5070 {
5071 /* If the instruction writes more than one component we'll have to shuffle
5072 * the results of multiple lowered instructions in order to make sure that
5073 * they end up arranged correctly in the original destination region.
5074 */
5075 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5076 return true;
5077
5078 /* If the lowered execution size is larger than the original the result of
5079 * the instruction won't fit in the original destination, so we'll have to
5080 * allocate a temporary in any case.
5081 */
5082 if (lbld.dispatch_width() > inst->exec_size)
5083 return true;
5084
5085 for (unsigned i = 0; i < inst->sources; i++) {
5086 /* If we already made a copy of the source for other reasons there won't
5087 * be any overlap with the destination.
5088 */
5089 if (needs_src_copy(lbld, inst, i))
5090 continue;
5091
5092 /* In order to keep the logic simple we emit a copy whenever the
5093 * destination region doesn't exactly match an overlapping source, which
5094 * may point at the source and destination not being aligned group by
5095 * group which could cause one of the lowered instructions to overwrite
5096 * the data read from the same source by other lowered instructions.
5097 */
5098 if (regions_overlap(inst->dst, inst->size_written,
5099 inst->src[i], inst->size_read(i)) &&
5100 !inst->dst.equals(inst->src[i]))
5101 return true;
5102 }
5103
5104 return false;
5105 }
5106
5107 /**
5108 * Insert data from a packed temporary into the channel group given by
5109 * lbld.group() of the destination region of instruction \p inst and return
5110 * the temporary as result. If any copy instructions are required they will
5111 * be emitted around the given \p inst in \p block.
5112 */
5113 static fs_reg
5114 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5115 {
5116 /* Builder of the right width to perform the copy avoiding uninitialized
5117 * data if the lowered execution size is greater than the original
5118 * execution size of the instruction.
5119 */
5120 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5121 inst->exec_size), 0);
5122
5123 /* Specified channel group from the destination region. */
5124 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5125 const unsigned dst_size = inst->size_written /
5126 inst->dst.component_size(inst->exec_size);
5127
5128 if (needs_dst_copy(lbld, inst)) {
5129 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5130
5131 if (inst->predicate) {
5132 /* Handle predication by copying the original contents of
5133 * the destination into the temporary before emitting the
5134 * lowered instruction.
5135 */
5136 for (unsigned k = 0; k < dst_size; ++k)
5137 cbld.at(block, inst)
5138 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5139 }
5140
5141 for (unsigned k = 0; k < dst_size; ++k)
5142 cbld.at(block, inst->next)
5143 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5144
5145 return tmp;
5146
5147 } else {
5148 /* No need to allocate a temporary for the lowered instruction, just
5149 * take the right group of channels from the original region.
5150 */
5151 return dst;
5152 }
5153 }
5154
5155 bool
5156 fs_visitor::lower_simd_width()
5157 {
5158 bool progress = false;
5159
5160 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5161 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5162
5163 if (lower_width != inst->exec_size) {
5164 /* Builder matching the original instruction. We may also need to
5165 * emit an instruction of width larger than the original, set the
5166 * execution size of the builder to the highest of both for now so
5167 * we're sure that both cases can be handled.
5168 */
5169 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5170 const fs_builder ibld = bld.at(block, inst)
5171 .exec_all(inst->force_writemask_all)
5172 .group(max_width, inst->group / max_width);
5173
5174 /* Split the copies in chunks of the execution width of either the
5175 * original or the lowered instruction, whichever is lower.
5176 */
5177 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5178 const unsigned dst_size = inst->size_written /
5179 inst->dst.component_size(inst->exec_size);
5180
5181 assert(!inst->writes_accumulator && !inst->mlen);
5182
5183 for (unsigned i = 0; i < n; i++) {
5184 /* Emit a copy of the original instruction with the lowered width.
5185 * If the EOT flag was set throw it away except for the last
5186 * instruction to avoid killing the thread prematurely.
5187 */
5188 fs_inst split_inst = *inst;
5189 split_inst.exec_size = lower_width;
5190 split_inst.eot = inst->eot && i == n - 1;
5191
5192 /* Select the correct channel enables for the i-th group, then
5193 * transform the sources and destination and emit the lowered
5194 * instruction.
5195 */
5196 const fs_builder lbld = ibld.group(lower_width, i);
5197
5198 for (unsigned j = 0; j < inst->sources; j++)
5199 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5200
5201 split_inst.dst = emit_zip(lbld, block, inst);
5202 split_inst.size_written =
5203 split_inst.dst.component_size(lower_width) * dst_size;
5204
5205 lbld.emit(split_inst);
5206 }
5207
5208 inst->remove(block);
5209 progress = true;
5210 }
5211 }
5212
5213 if (progress)
5214 invalidate_live_intervals();
5215
5216 return progress;
5217 }
5218
5219 void
5220 fs_visitor::dump_instructions()
5221 {
5222 dump_instructions(NULL);
5223 }
5224
5225 void
5226 fs_visitor::dump_instructions(const char *name)
5227 {
5228 FILE *file = stderr;
5229 if (name && geteuid() != 0) {
5230 file = fopen(name, "w");
5231 if (!file)
5232 file = stderr;
5233 }
5234
5235 if (cfg) {
5236 calculate_register_pressure();
5237 int ip = 0, max_pressure = 0;
5238 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5239 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5240 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5241 dump_instruction(inst, file);
5242 ip++;
5243 }
5244 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5245 } else {
5246 int ip = 0;
5247 foreach_in_list(backend_instruction, inst, &instructions) {
5248 fprintf(file, "%4d: ", ip++);
5249 dump_instruction(inst, file);
5250 }
5251 }
5252
5253 if (file != stderr) {
5254 fclose(file);
5255 }
5256 }
5257
5258 void
5259 fs_visitor::dump_instruction(backend_instruction *be_inst)
5260 {
5261 dump_instruction(be_inst, stderr);
5262 }
5263
5264 void
5265 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5266 {
5267 fs_inst *inst = (fs_inst *)be_inst;
5268
5269 if (inst->predicate) {
5270 fprintf(file, "(%cf0.%d) ",
5271 inst->predicate_inverse ? '-' : '+',
5272 inst->flag_subreg);
5273 }
5274
5275 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5276 if (inst->saturate)
5277 fprintf(file, ".sat");
5278 if (inst->conditional_mod) {
5279 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5280 if (!inst->predicate &&
5281 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5282 inst->opcode != BRW_OPCODE_IF &&
5283 inst->opcode != BRW_OPCODE_WHILE))) {
5284 fprintf(file, ".f0.%d", inst->flag_subreg);
5285 }
5286 }
5287 fprintf(file, "(%d) ", inst->exec_size);
5288
5289 if (inst->mlen) {
5290 fprintf(file, "(mlen: %d) ", inst->mlen);
5291 }
5292
5293 if (inst->eot) {
5294 fprintf(file, "(EOT) ");
5295 }
5296
5297 switch (inst->dst.file) {
5298 case VGRF:
5299 fprintf(file, "vgrf%d", inst->dst.nr);
5300 break;
5301 case FIXED_GRF:
5302 fprintf(file, "g%d", inst->dst.nr);
5303 break;
5304 case MRF:
5305 fprintf(file, "m%d", inst->dst.nr);
5306 break;
5307 case BAD_FILE:
5308 fprintf(file, "(null)");
5309 break;
5310 case UNIFORM:
5311 fprintf(file, "***u%d***", inst->dst.nr);
5312 break;
5313 case ATTR:
5314 fprintf(file, "***attr%d***", inst->dst.nr);
5315 break;
5316 case ARF:
5317 switch (inst->dst.nr) {
5318 case BRW_ARF_NULL:
5319 fprintf(file, "null");
5320 break;
5321 case BRW_ARF_ADDRESS:
5322 fprintf(file, "a0.%d", inst->dst.subnr);
5323 break;
5324 case BRW_ARF_ACCUMULATOR:
5325 fprintf(file, "acc%d", inst->dst.subnr);
5326 break;
5327 case BRW_ARF_FLAG:
5328 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5329 break;
5330 default:
5331 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5332 break;
5333 }
5334 break;
5335 case IMM:
5336 unreachable("not reached");
5337 }
5338
5339 if (inst->dst.offset ||
5340 (inst->dst.file == VGRF &&
5341 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5342 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5343 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5344 inst->dst.offset % reg_size);
5345 }
5346
5347 if (inst->dst.stride != 1)
5348 fprintf(file, "<%u>", inst->dst.stride);
5349 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5350
5351 for (int i = 0; i < inst->sources; i++) {
5352 if (inst->src[i].negate)
5353 fprintf(file, "-");
5354 if (inst->src[i].abs)
5355 fprintf(file, "|");
5356 switch (inst->src[i].file) {
5357 case VGRF:
5358 fprintf(file, "vgrf%d", inst->src[i].nr);
5359 break;
5360 case FIXED_GRF:
5361 fprintf(file, "g%d", inst->src[i].nr);
5362 break;
5363 case MRF:
5364 fprintf(file, "***m%d***", inst->src[i].nr);
5365 break;
5366 case ATTR:
5367 fprintf(file, "attr%d", inst->src[i].nr);
5368 break;
5369 case UNIFORM:
5370 fprintf(file, "u%d", inst->src[i].nr);
5371 break;
5372 case BAD_FILE:
5373 fprintf(file, "(null)");
5374 break;
5375 case IMM:
5376 switch (inst->src[i].type) {
5377 case BRW_REGISTER_TYPE_F:
5378 fprintf(file, "%-gf", inst->src[i].f);
5379 break;
5380 case BRW_REGISTER_TYPE_DF:
5381 fprintf(file, "%fdf", inst->src[i].df);
5382 break;
5383 case BRW_REGISTER_TYPE_W:
5384 case BRW_REGISTER_TYPE_D:
5385 fprintf(file, "%dd", inst->src[i].d);
5386 break;
5387 case BRW_REGISTER_TYPE_UW:
5388 case BRW_REGISTER_TYPE_UD:
5389 fprintf(file, "%uu", inst->src[i].ud);
5390 break;
5391 case BRW_REGISTER_TYPE_VF:
5392 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5393 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5394 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5395 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5396 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5397 break;
5398 default:
5399 fprintf(file, "???");
5400 break;
5401 }
5402 break;
5403 case ARF:
5404 switch (inst->src[i].nr) {
5405 case BRW_ARF_NULL:
5406 fprintf(file, "null");
5407 break;
5408 case BRW_ARF_ADDRESS:
5409 fprintf(file, "a0.%d", inst->src[i].subnr);
5410 break;
5411 case BRW_ARF_ACCUMULATOR:
5412 fprintf(file, "acc%d", inst->src[i].subnr);
5413 break;
5414 case BRW_ARF_FLAG:
5415 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5416 break;
5417 default:
5418 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5419 break;
5420 }
5421 break;
5422 }
5423
5424 if (inst->src[i].offset ||
5425 (inst->src[i].file == VGRF &&
5426 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5427 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5428 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5429 inst->src[i].offset % reg_size);
5430 }
5431
5432 if (inst->src[i].abs)
5433 fprintf(file, "|");
5434
5435 if (inst->src[i].file != IMM) {
5436 unsigned stride;
5437 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5438 unsigned hstride = inst->src[i].hstride;
5439 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5440 } else {
5441 stride = inst->src[i].stride;
5442 }
5443 if (stride != 1)
5444 fprintf(file, "<%u>", stride);
5445
5446 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5447 }
5448
5449 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5450 fprintf(file, ", ");
5451 }
5452
5453 fprintf(file, " ");
5454
5455 if (inst->force_writemask_all)
5456 fprintf(file, "NoMask ");
5457
5458 if (inst->exec_size != dispatch_width)
5459 fprintf(file, "group%d ", inst->group);
5460
5461 fprintf(file, "\n");
5462 }
5463
5464 /**
5465 * Possibly returns an instruction that set up @param reg.
5466 *
5467 * Sometimes we want to take the result of some expression/variable
5468 * dereference tree and rewrite the instruction generating the result
5469 * of the tree. When processing the tree, we know that the
5470 * instructions generated are all writing temporaries that are dead
5471 * outside of this tree. So, if we have some instructions that write
5472 * a temporary, we're free to point that temp write somewhere else.
5473 *
5474 * Note that this doesn't guarantee that the instruction generated
5475 * only reg -- it might be the size=4 destination of a texture instruction.
5476 */
5477 fs_inst *
5478 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5479 fs_inst *end,
5480 const fs_reg &reg)
5481 {
5482 if (end == start ||
5483 end->is_partial_write() ||
5484 !reg.equals(end->dst)) {
5485 return NULL;
5486 } else {
5487 return end;
5488 }
5489 }
5490
5491 void
5492 fs_visitor::setup_fs_payload_gen6()
5493 {
5494 assert(stage == MESA_SHADER_FRAGMENT);
5495 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5496
5497 assert(devinfo->gen >= 6);
5498
5499 /* R0-1: masks, pixel X/Y coordinates. */
5500 payload.num_regs = 2;
5501 /* R2: only for 32-pixel dispatch.*/
5502
5503 /* R3-26: barycentric interpolation coordinates. These appear in the
5504 * same order that they appear in the brw_barycentric_mode
5505 * enum. Each set of coordinates occupies 2 registers if dispatch width
5506 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5507 * appear if they were enabled using the "Barycentric Interpolation
5508 * Mode" bits in WM_STATE.
5509 */
5510 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5511 if (prog_data->barycentric_interp_modes & (1 << i)) {
5512 payload.barycentric_coord_reg[i] = payload.num_regs;
5513 payload.num_regs += 2;
5514 if (dispatch_width == 16) {
5515 payload.num_regs += 2;
5516 }
5517 }
5518 }
5519
5520 /* R27: interpolated depth if uses source depth */
5521 prog_data->uses_src_depth =
5522 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5523 if (prog_data->uses_src_depth) {
5524 payload.source_depth_reg = payload.num_regs;
5525 payload.num_regs++;
5526 if (dispatch_width == 16) {
5527 /* R28: interpolated depth if not SIMD8. */
5528 payload.num_regs++;
5529 }
5530 }
5531
5532 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5533 prog_data->uses_src_w =
5534 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5535 if (prog_data->uses_src_w) {
5536 payload.source_w_reg = payload.num_regs;
5537 payload.num_regs++;
5538 if (dispatch_width == 16) {
5539 /* R30: interpolated W if not SIMD8. */
5540 payload.num_regs++;
5541 }
5542 }
5543
5544 /* R31: MSAA position offsets. */
5545 if (prog_data->persample_dispatch &&
5546 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5547 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5548 *
5549 * "MSDISPMODE_PERSAMPLE is required in order to select
5550 * POSOFFSET_SAMPLE"
5551 *
5552 * So we can only really get sample positions if we are doing real
5553 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5554 * persample dispatch, we hard-code it to 0.5.
5555 */
5556 prog_data->uses_pos_offset = true;
5557 payload.sample_pos_reg = payload.num_regs;
5558 payload.num_regs++;
5559 }
5560
5561 /* R32: MSAA input coverage mask */
5562 prog_data->uses_sample_mask =
5563 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5564 if (prog_data->uses_sample_mask) {
5565 assert(devinfo->gen >= 7);
5566 payload.sample_mask_in_reg = payload.num_regs;
5567 payload.num_regs++;
5568 if (dispatch_width == 16) {
5569 /* R33: input coverage mask if not SIMD8. */
5570 payload.num_regs++;
5571 }
5572 }
5573
5574 /* R34-: bary for 32-pixel. */
5575 /* R58-59: interp W for 32-pixel. */
5576
5577 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5578 source_depth_to_render_target = true;
5579 }
5580 }
5581
5582 void
5583 fs_visitor::setup_vs_payload()
5584 {
5585 /* R0: thread header, R1: urb handles */
5586 payload.num_regs = 2;
5587 }
5588
5589 void
5590 fs_visitor::setup_gs_payload()
5591 {
5592 assert(stage == MESA_SHADER_GEOMETRY);
5593
5594 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5595 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5596
5597 /* R0: thread header, R1: output URB handles */
5598 payload.num_regs = 2;
5599
5600 if (gs_prog_data->include_primitive_id) {
5601 /* R2: Primitive ID 0..7 */
5602 payload.num_regs++;
5603 }
5604
5605 /* Always enable VUE handles so we can safely use pull model if needed.
5606 *
5607 * The push model for a GS uses a ton of register space even for trivial
5608 * scenarios with just a few inputs, so just make things easier and a bit
5609 * safer by always having pull model available.
5610 */
5611 gs_prog_data->base.include_vue_handles = true;
5612
5613 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5614 payload.num_regs += nir->info.gs.vertices_in;
5615
5616 /* Use a maximum of 24 registers for push-model inputs. */
5617 const unsigned max_push_components = 24;
5618
5619 /* If pushing our inputs would take too many registers, reduce the URB read
5620 * length (which is in HWords, or 8 registers), and resort to pulling.
5621 *
5622 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5623 * have to multiply by VerticesIn to obtain the total storage requirement.
5624 */
5625 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5626 max_push_components) {
5627 vue_prog_data->urb_read_length =
5628 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5629 }
5630 }
5631
5632 void
5633 fs_visitor::setup_cs_payload()
5634 {
5635 assert(devinfo->gen >= 7);
5636 payload.num_regs = 1;
5637 }
5638
5639 void
5640 fs_visitor::calculate_register_pressure()
5641 {
5642 invalidate_live_intervals();
5643 calculate_live_intervals();
5644
5645 unsigned num_instructions = 0;
5646 foreach_block(block, cfg)
5647 num_instructions += block->instructions.length();
5648
5649 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5650
5651 for (unsigned reg = 0; reg < alloc.count; reg++) {
5652 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5653 regs_live_at_ip[ip] += alloc.sizes[reg];
5654 }
5655 }
5656
5657 /**
5658 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5659 *
5660 * The needs_unlit_centroid_workaround ends up producing one of these per
5661 * channel of centroid input, so it's good to clean them up.
5662 *
5663 * An assumption here is that nothing ever modifies the dispatched pixels
5664 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5665 * dictates that anyway.
5666 */
5667 bool
5668 fs_visitor::opt_drop_redundant_mov_to_flags()
5669 {
5670 bool flag_mov_found[2] = {false};
5671 bool progress = false;
5672
5673 /* Instructions removed by this pass can only be added if this were true */
5674 if (!devinfo->needs_unlit_centroid_workaround)
5675 return false;
5676
5677 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5678 if (inst->is_control_flow()) {
5679 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5680 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5681 if (!flag_mov_found[inst->flag_subreg]) {
5682 flag_mov_found[inst->flag_subreg] = true;
5683 } else {
5684 inst->remove(block);
5685 progress = true;
5686 }
5687 } else if (inst->flags_written()) {
5688 flag_mov_found[inst->flag_subreg] = false;
5689 }
5690 }
5691
5692 return progress;
5693 }
5694
5695 void
5696 fs_visitor::optimize()
5697 {
5698 /* Start by validating the shader we currently have. */
5699 validate();
5700
5701 /* bld is the common builder object pointing at the end of the program we
5702 * used to translate it into i965 IR. For the optimization and lowering
5703 * passes coming next, any code added after the end of the program without
5704 * having explicitly called fs_builder::at() clearly points at a mistake.
5705 * Ideally optimization passes wouldn't be part of the visitor so they
5706 * wouldn't have access to bld at all, but they do, so just in case some
5707 * pass forgets to ask for a location explicitly set it to NULL here to
5708 * make it trip. The dispatch width is initialized to a bogus value to
5709 * make sure that optimizations set the execution controls explicitly to
5710 * match the code they are manipulating instead of relying on the defaults.
5711 */
5712 bld = fs_builder(this, 64);
5713
5714 assign_constant_locations();
5715 lower_constant_loads();
5716
5717 validate();
5718
5719 split_virtual_grfs();
5720 validate();
5721
5722 #define OPT(pass, args...) ({ \
5723 pass_num++; \
5724 bool this_progress = pass(args); \
5725 \
5726 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5727 char filename[64]; \
5728 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5729 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5730 \
5731 backend_shader::dump_instructions(filename); \
5732 } \
5733 \
5734 validate(); \
5735 \
5736 progress = progress || this_progress; \
5737 this_progress; \
5738 })
5739
5740 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5741 char filename[64];
5742 snprintf(filename, 64, "%s%d-%s-00-00-start",
5743 stage_abbrev, dispatch_width, nir->info.name);
5744
5745 backend_shader::dump_instructions(filename);
5746 }
5747
5748 bool progress = false;
5749 int iteration = 0;
5750 int pass_num = 0;
5751
5752 OPT(opt_drop_redundant_mov_to_flags);
5753
5754 do {
5755 progress = false;
5756 pass_num = 0;
5757 iteration++;
5758
5759 OPT(remove_duplicate_mrf_writes);
5760
5761 OPT(opt_algebraic);
5762 OPT(opt_cse);
5763 OPT(opt_copy_propagation);
5764 OPT(opt_predicated_break, this);
5765 OPT(opt_cmod_propagation);
5766 OPT(dead_code_eliminate);
5767 OPT(opt_peephole_sel);
5768 OPT(dead_control_flow_eliminate, this);
5769 OPT(opt_register_renaming);
5770 OPT(opt_saturate_propagation);
5771 OPT(register_coalesce);
5772 OPT(compute_to_mrf);
5773 OPT(eliminate_find_live_channel);
5774
5775 OPT(compact_virtual_grfs);
5776 } while (progress);
5777
5778 progress = false;
5779 pass_num = 0;
5780
5781 if (OPT(lower_pack)) {
5782 OPT(register_coalesce);
5783 OPT(dead_code_eliminate);
5784 }
5785
5786 OPT(lower_simd_width);
5787
5788 /* After SIMD lowering just in case we had to unroll the EOT send. */
5789 OPT(opt_sampler_eot);
5790
5791 OPT(lower_logical_sends);
5792
5793 if (progress) {
5794 OPT(opt_copy_propagation);
5795 /* Only run after logical send lowering because it's easier to implement
5796 * in terms of physical sends.
5797 */
5798 if (OPT(opt_zero_samples))
5799 OPT(opt_copy_propagation);
5800 /* Run after logical send lowering to give it a chance to CSE the
5801 * LOAD_PAYLOAD instructions created to construct the payloads of
5802 * e.g. texturing messages in cases where it wasn't possible to CSE the
5803 * whole logical instruction.
5804 */
5805 OPT(opt_cse);
5806 OPT(register_coalesce);
5807 OPT(compute_to_mrf);
5808 OPT(dead_code_eliminate);
5809 OPT(remove_duplicate_mrf_writes);
5810 OPT(opt_peephole_sel);
5811 }
5812
5813 OPT(opt_redundant_discard_jumps);
5814
5815 if (OPT(lower_load_payload)) {
5816 split_virtual_grfs();
5817 OPT(register_coalesce);
5818 OPT(compute_to_mrf);
5819 OPT(dead_code_eliminate);
5820 }
5821
5822 OPT(opt_combine_constants);
5823 OPT(lower_integer_multiplication);
5824
5825 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5826 OPT(opt_cmod_propagation);
5827 OPT(opt_cse);
5828 OPT(opt_copy_propagation);
5829 OPT(dead_code_eliminate);
5830 }
5831
5832 if (OPT(lower_conversions)) {
5833 OPT(opt_copy_propagation);
5834 OPT(dead_code_eliminate);
5835 OPT(lower_simd_width);
5836 }
5837
5838 lower_uniform_pull_constant_loads();
5839
5840 validate();
5841 }
5842
5843 /**
5844 * Three source instruction must have a GRF/MRF destination register.
5845 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5846 */
5847 void
5848 fs_visitor::fixup_3src_null_dest()
5849 {
5850 bool progress = false;
5851
5852 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5853 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5854 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5855 inst->dst.type);
5856 progress = true;
5857 }
5858 }
5859
5860 if (progress)
5861 invalidate_live_intervals();
5862 }
5863
5864 void
5865 fs_visitor::allocate_registers(bool allow_spilling)
5866 {
5867 bool allocated_without_spills;
5868
5869 static const enum instruction_scheduler_mode pre_modes[] = {
5870 SCHEDULE_PRE,
5871 SCHEDULE_PRE_NON_LIFO,
5872 SCHEDULE_PRE_LIFO,
5873 };
5874
5875 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5876
5877 /* Try each scheduling heuristic to see if it can successfully register
5878 * allocate without spilling. They should be ordered by decreasing
5879 * performance but increasing likelihood of allocating.
5880 */
5881 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5882 schedule_instructions(pre_modes[i]);
5883
5884 if (0) {
5885 assign_regs_trivial();
5886 allocated_without_spills = true;
5887 } else {
5888 allocated_without_spills = assign_regs(false, spill_all);
5889 }
5890 if (allocated_without_spills)
5891 break;
5892 }
5893
5894 if (!allocated_without_spills) {
5895 if (!allow_spilling)
5896 fail("Failure to register allocate and spilling is not allowed.");
5897
5898 /* We assume that any spilling is worse than just dropping back to
5899 * SIMD8. There's probably actually some intermediate point where
5900 * SIMD16 with a couple of spills is still better.
5901 */
5902 if (dispatch_width > min_dispatch_width) {
5903 fail("Failure to register allocate. Reduce number of "
5904 "live scalar values to avoid this.");
5905 } else {
5906 compiler->shader_perf_log(log_data,
5907 "%s shader triggered register spilling. "
5908 "Try reducing the number of live scalar "
5909 "values to improve performance.\n",
5910 stage_name);
5911 }
5912
5913 /* Since we're out of heuristics, just go spill registers until we
5914 * get an allocation.
5915 */
5916 while (!assign_regs(true, spill_all)) {
5917 if (failed)
5918 break;
5919 }
5920 }
5921
5922 /* This must come after all optimization and register allocation, since
5923 * it inserts dead code that happens to have side effects, and it does
5924 * so based on the actual physical registers in use.
5925 */
5926 insert_gen4_send_dependency_workarounds();
5927
5928 if (failed)
5929 return;
5930
5931 schedule_instructions(SCHEDULE_POST);
5932
5933 if (last_scratch > 0) {
5934 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5935
5936 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5937
5938 if (stage == MESA_SHADER_COMPUTE) {
5939 if (devinfo->is_haswell) {
5940 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5941 * field documentation, Haswell supports a minimum of 2kB of
5942 * scratch space for compute shaders, unlike every other stage
5943 * and platform.
5944 */
5945 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5946 } else if (devinfo->gen <= 7) {
5947 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5948 * field documentation, platforms prior to Haswell measure scratch
5949 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5950 */
5951 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5952 max_scratch_size = 12 * 1024;
5953 }
5954 }
5955
5956 /* We currently only support up to 2MB of scratch space. If we
5957 * need to support more eventually, the documentation suggests
5958 * that we could allocate a larger buffer, and partition it out
5959 * ourselves. We'd just have to undo the hardware's address
5960 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5961 * and then add FFTID * (Larger Per Thread Scratch Space).
5962 *
5963 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5964 * Thread Group Tracking > Local Memory/Scratch Space.
5965 */
5966 assert(prog_data->total_scratch < max_scratch_size);
5967 }
5968 }
5969
5970 bool
5971 fs_visitor::run_vs()
5972 {
5973 assert(stage == MESA_SHADER_VERTEX);
5974
5975 setup_vs_payload();
5976
5977 if (shader_time_index >= 0)
5978 emit_shader_time_begin();
5979
5980 emit_nir_code();
5981
5982 if (failed)
5983 return false;
5984
5985 compute_clip_distance();
5986
5987 emit_urb_writes();
5988
5989 if (shader_time_index >= 0)
5990 emit_shader_time_end();
5991
5992 calculate_cfg();
5993
5994 optimize();
5995
5996 assign_curb_setup();
5997 assign_vs_urb_setup();
5998
5999 fixup_3src_null_dest();
6000 allocate_registers(true);
6001
6002 return !failed;
6003 }
6004
6005 bool
6006 fs_visitor::run_tcs_single_patch()
6007 {
6008 assert(stage == MESA_SHADER_TESS_CTRL);
6009
6010 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6011
6012 /* r1-r4 contain the ICP handles. */
6013 payload.num_regs = 5;
6014
6015 if (shader_time_index >= 0)
6016 emit_shader_time_begin();
6017
6018 /* Initialize gl_InvocationID */
6019 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6020 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6021 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6022 bld.MOV(channels_ud, channels_uw);
6023
6024 if (tcs_prog_data->instances == 1) {
6025 invocation_id = channels_ud;
6026 } else {
6027 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6028
6029 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6030 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6031 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6032 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6033 brw_imm_ud(INTEL_MASK(23, 17)));
6034 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6035
6036 bld.ADD(invocation_id, instance_times_8, channels_ud);
6037 }
6038
6039 /* Fix the disptach mask */
6040 if (nir->info.tess.tcs_vertices_out % 8) {
6041 bld.CMP(bld.null_reg_ud(), invocation_id,
6042 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6043 bld.IF(BRW_PREDICATE_NORMAL);
6044 }
6045
6046 emit_nir_code();
6047
6048 if (nir->info.tess.tcs_vertices_out % 8) {
6049 bld.emit(BRW_OPCODE_ENDIF);
6050 }
6051
6052 /* Emit EOT write; set TR DS Cache bit */
6053 fs_reg srcs[3] = {
6054 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6055 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6056 fs_reg(brw_imm_ud(0)),
6057 };
6058 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6059 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6060
6061 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6062 bld.null_reg_ud(), payload);
6063 inst->mlen = 3;
6064 inst->eot = true;
6065
6066 if (shader_time_index >= 0)
6067 emit_shader_time_end();
6068
6069 if (failed)
6070 return false;
6071
6072 calculate_cfg();
6073
6074 optimize();
6075
6076 assign_curb_setup();
6077 assign_tcs_single_patch_urb_setup();
6078
6079 fixup_3src_null_dest();
6080 allocate_registers(true);
6081
6082 return !failed;
6083 }
6084
6085 bool
6086 fs_visitor::run_tes()
6087 {
6088 assert(stage == MESA_SHADER_TESS_EVAL);
6089
6090 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6091 payload.num_regs = 5;
6092
6093 if (shader_time_index >= 0)
6094 emit_shader_time_begin();
6095
6096 emit_nir_code();
6097
6098 if (failed)
6099 return false;
6100
6101 emit_urb_writes();
6102
6103 if (shader_time_index >= 0)
6104 emit_shader_time_end();
6105
6106 calculate_cfg();
6107
6108 optimize();
6109
6110 assign_curb_setup();
6111 assign_tes_urb_setup();
6112
6113 fixup_3src_null_dest();
6114 allocate_registers(true);
6115
6116 return !failed;
6117 }
6118
6119 bool
6120 fs_visitor::run_gs()
6121 {
6122 assert(stage == MESA_SHADER_GEOMETRY);
6123
6124 setup_gs_payload();
6125
6126 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6127
6128 if (gs_compile->control_data_header_size_bits > 0) {
6129 /* Create a VGRF to store accumulated control data bits. */
6130 this->control_data_bits = vgrf(glsl_type::uint_type);
6131
6132 /* If we're outputting more than 32 control data bits, then EmitVertex()
6133 * will set control_data_bits to 0 after emitting the first vertex.
6134 * Otherwise, we need to initialize it to 0 here.
6135 */
6136 if (gs_compile->control_data_header_size_bits <= 32) {
6137 const fs_builder abld = bld.annotate("initialize control data bits");
6138 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6139 }
6140 }
6141
6142 if (shader_time_index >= 0)
6143 emit_shader_time_begin();
6144
6145 emit_nir_code();
6146
6147 emit_gs_thread_end();
6148
6149 if (shader_time_index >= 0)
6150 emit_shader_time_end();
6151
6152 if (failed)
6153 return false;
6154
6155 calculate_cfg();
6156
6157 optimize();
6158
6159 assign_curb_setup();
6160 assign_gs_urb_setup();
6161
6162 fixup_3src_null_dest();
6163 allocate_registers(true);
6164
6165 return !failed;
6166 }
6167
6168 bool
6169 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6170 {
6171 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6172 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6173
6174 assert(stage == MESA_SHADER_FRAGMENT);
6175
6176 if (devinfo->gen >= 6)
6177 setup_fs_payload_gen6();
6178 else
6179 setup_fs_payload_gen4();
6180
6181 if (0) {
6182 emit_dummy_fs();
6183 } else if (do_rep_send) {
6184 assert(dispatch_width == 16);
6185 emit_repclear_shader();
6186 } else {
6187 if (shader_time_index >= 0)
6188 emit_shader_time_begin();
6189
6190 calculate_urb_setup();
6191 if (nir->info.inputs_read > 0 ||
6192 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6193 if (devinfo->gen < 6)
6194 emit_interpolation_setup_gen4();
6195 else
6196 emit_interpolation_setup_gen6();
6197 }
6198
6199 /* We handle discards by keeping track of the still-live pixels in f0.1.
6200 * Initialize it with the dispatched pixels.
6201 */
6202 if (wm_prog_data->uses_kill) {
6203 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6204 discard_init->flag_subreg = 1;
6205 }
6206
6207 /* Generate FS IR for main(). (the visitor only descends into
6208 * functions called "main").
6209 */
6210 emit_nir_code();
6211
6212 if (failed)
6213 return false;
6214
6215 if (wm_prog_data->uses_kill)
6216 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6217
6218 if (wm_key->alpha_test_func)
6219 emit_alpha_test();
6220
6221 emit_fb_writes();
6222
6223 if (shader_time_index >= 0)
6224 emit_shader_time_end();
6225
6226 calculate_cfg();
6227
6228 optimize();
6229
6230 assign_curb_setup();
6231 assign_urb_setup();
6232
6233 fixup_3src_null_dest();
6234 allocate_registers(allow_spilling);
6235
6236 if (failed)
6237 return false;
6238 }
6239
6240 return !failed;
6241 }
6242
6243 bool
6244 fs_visitor::run_cs()
6245 {
6246 assert(stage == MESA_SHADER_COMPUTE);
6247
6248 setup_cs_payload();
6249
6250 if (shader_time_index >= 0)
6251 emit_shader_time_begin();
6252
6253 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6254 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6255 const fs_builder abld = bld.exec_all().group(1, 0);
6256 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6257 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6258 }
6259
6260 emit_nir_code();
6261
6262 if (failed)
6263 return false;
6264
6265 emit_cs_terminate();
6266
6267 if (shader_time_index >= 0)
6268 emit_shader_time_end();
6269
6270 calculate_cfg();
6271
6272 optimize();
6273
6274 assign_curb_setup();
6275
6276 fixup_3src_null_dest();
6277 allocate_registers(true);
6278
6279 if (failed)
6280 return false;
6281
6282 return !failed;
6283 }
6284
6285 /**
6286 * Return a bitfield where bit n is set if barycentric interpolation mode n
6287 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6288 *
6289 * We examine the load_barycentric intrinsics rather than looking at input
6290 * variables so that we catch interpolateAtCentroid() messages too, which
6291 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6292 */
6293 static unsigned
6294 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6295 const nir_shader *shader)
6296 {
6297 unsigned barycentric_interp_modes = 0;
6298
6299 nir_foreach_function(f, shader) {
6300 if (!f->impl)
6301 continue;
6302
6303 nir_foreach_block(block, f->impl) {
6304 nir_foreach_instr(instr, block) {
6305 if (instr->type != nir_instr_type_intrinsic)
6306 continue;
6307
6308 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6309 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6310 continue;
6311
6312 /* Ignore WPOS; it doesn't require interpolation. */
6313 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6314 continue;
6315
6316 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6317 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6318 nir_intrinsic_interp_mode(intrin);
6319 nir_intrinsic_op bary_op = intrin->intrinsic;
6320 enum brw_barycentric_mode bary =
6321 brw_barycentric_mode(interp, bary_op);
6322
6323 barycentric_interp_modes |= 1 << bary;
6324
6325 if (devinfo->needs_unlit_centroid_workaround &&
6326 bary_op == nir_intrinsic_load_barycentric_centroid)
6327 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6328 }
6329 }
6330 }
6331
6332 return barycentric_interp_modes;
6333 }
6334
6335 static void
6336 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6337 const nir_shader *shader)
6338 {
6339 prog_data->flat_inputs = 0;
6340
6341 nir_foreach_variable(var, &shader->inputs) {
6342 int input_index = prog_data->urb_setup[var->data.location];
6343
6344 if (input_index < 0)
6345 continue;
6346
6347 /* flat shading */
6348 if (var->data.interpolation == INTERP_MODE_FLAT)
6349 prog_data->flat_inputs |= (1 << input_index);
6350 }
6351 }
6352
6353 static uint8_t
6354 computed_depth_mode(const nir_shader *shader)
6355 {
6356 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6357 switch (shader->info.fs.depth_layout) {
6358 case FRAG_DEPTH_LAYOUT_NONE:
6359 case FRAG_DEPTH_LAYOUT_ANY:
6360 return BRW_PSCDEPTH_ON;
6361 case FRAG_DEPTH_LAYOUT_GREATER:
6362 return BRW_PSCDEPTH_ON_GE;
6363 case FRAG_DEPTH_LAYOUT_LESS:
6364 return BRW_PSCDEPTH_ON_LE;
6365 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6366 return BRW_PSCDEPTH_OFF;
6367 }
6368 }
6369 return BRW_PSCDEPTH_OFF;
6370 }
6371
6372 /**
6373 * Move load_interpolated_input with simple (payload-based) barycentric modes
6374 * to the top of the program so we don't emit multiple PLNs for the same input.
6375 *
6376 * This works around CSE not being able to handle non-dominating cases
6377 * such as:
6378 *
6379 * if (...) {
6380 * interpolate input
6381 * } else {
6382 * interpolate the same exact input
6383 * }
6384 *
6385 * This should be replaced by global value numbering someday.
6386 */
6387 static bool
6388 move_interpolation_to_top(nir_shader *nir)
6389 {
6390 bool progress = false;
6391
6392 nir_foreach_function(f, nir) {
6393 if (!f->impl)
6394 continue;
6395
6396 nir_block *top = nir_start_block(f->impl);
6397 exec_node *cursor_node = NULL;
6398
6399 nir_foreach_block(block, f->impl) {
6400 if (block == top)
6401 continue;
6402
6403 nir_foreach_instr_safe(instr, block) {
6404 if (instr->type != nir_instr_type_intrinsic)
6405 continue;
6406
6407 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6408 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6409 continue;
6410 nir_intrinsic_instr *bary_intrinsic =
6411 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6412 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6413
6414 /* Leave interpolateAtSample/Offset() where they are. */
6415 if (op == nir_intrinsic_load_barycentric_at_sample ||
6416 op == nir_intrinsic_load_barycentric_at_offset)
6417 continue;
6418
6419 nir_instr *move[3] = {
6420 &bary_intrinsic->instr,
6421 intrin->src[1].ssa->parent_instr,
6422 instr
6423 };
6424
6425 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6426 if (move[i]->block != top) {
6427 move[i]->block = top;
6428 exec_node_remove(&move[i]->node);
6429 if (cursor_node) {
6430 exec_node_insert_after(cursor_node, &move[i]->node);
6431 } else {
6432 exec_list_push_head(&top->instr_list, &move[i]->node);
6433 }
6434 cursor_node = &move[i]->node;
6435 progress = true;
6436 }
6437 }
6438 }
6439 }
6440 nir_metadata_preserve(f->impl, (nir_metadata)
6441 ((unsigned) nir_metadata_block_index |
6442 (unsigned) nir_metadata_dominance));
6443 }
6444
6445 return progress;
6446 }
6447
6448 /**
6449 * Demote per-sample barycentric intrinsics to centroid.
6450 *
6451 * Useful when rendering to a non-multisampled buffer.
6452 */
6453 static bool
6454 demote_sample_qualifiers(nir_shader *nir)
6455 {
6456 bool progress = true;
6457
6458 nir_foreach_function(f, nir) {
6459 if (!f->impl)
6460 continue;
6461
6462 nir_builder b;
6463 nir_builder_init(&b, f->impl);
6464
6465 nir_foreach_block(block, f->impl) {
6466 nir_foreach_instr_safe(instr, block) {
6467 if (instr->type != nir_instr_type_intrinsic)
6468 continue;
6469
6470 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6471 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6472 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6473 continue;
6474
6475 b.cursor = nir_before_instr(instr);
6476 nir_ssa_def *centroid =
6477 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6478 nir_intrinsic_interp_mode(intrin));
6479 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6480 nir_src_for_ssa(centroid));
6481 nir_instr_remove(instr);
6482 progress = true;
6483 }
6484 }
6485
6486 nir_metadata_preserve(f->impl, (nir_metadata)
6487 ((unsigned) nir_metadata_block_index |
6488 (unsigned) nir_metadata_dominance));
6489 }
6490
6491 return progress;
6492 }
6493
6494 /**
6495 * Pre-gen6, the register file of the EUs was shared between threads,
6496 * and each thread used some subset allocated on a 16-register block
6497 * granularity. The unit states wanted these block counts.
6498 */
6499 static inline int
6500 brw_register_blocks(int reg_count)
6501 {
6502 return ALIGN(reg_count, 16) / 16 - 1;
6503 }
6504
6505 const unsigned *
6506 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6507 void *mem_ctx,
6508 const struct brw_wm_prog_key *key,
6509 struct brw_wm_prog_data *prog_data,
6510 const nir_shader *src_shader,
6511 struct gl_program *prog,
6512 int shader_time_index8, int shader_time_index16,
6513 bool allow_spilling,
6514 bool use_rep_send, struct brw_vue_map *vue_map,
6515 unsigned *final_assembly_size,
6516 char **error_str)
6517 {
6518 const struct gen_device_info *devinfo = compiler->devinfo;
6519
6520 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6521 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6522 brw_nir_lower_fs_inputs(shader, devinfo, key);
6523 brw_nir_lower_fs_outputs(shader);
6524
6525 if (devinfo->gen < 6) {
6526 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6527 }
6528
6529 if (!key->multisample_fbo)
6530 NIR_PASS_V(shader, demote_sample_qualifiers);
6531 NIR_PASS_V(shader, move_interpolation_to_top);
6532 shader = brw_postprocess_nir(shader, compiler, true);
6533
6534 /* key->alpha_test_func means simulating alpha testing via discards,
6535 * so the shader definitely kills pixels.
6536 */
6537 prog_data->uses_kill = shader->info.fs.uses_discard ||
6538 key->alpha_test_func;
6539 prog_data->uses_omask = key->multisample_fbo &&
6540 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6541 prog_data->computed_depth_mode = computed_depth_mode(shader);
6542 prog_data->computed_stencil =
6543 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6544
6545 prog_data->persample_dispatch =
6546 key->multisample_fbo &&
6547 (key->persample_interp ||
6548 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6549 SYSTEM_BIT_SAMPLE_POS)) ||
6550 shader->info.fs.uses_sample_qualifier ||
6551 shader->info.outputs_read);
6552
6553 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
6554
6555 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6556 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6557 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6558
6559 prog_data->barycentric_interp_modes =
6560 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6561
6562 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6563 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6564 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6565
6566 fs_visitor v8(compiler, log_data, mem_ctx, key,
6567 &prog_data->base, prog, shader, 8,
6568 shader_time_index8);
6569 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6570 if (error_str)
6571 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6572
6573 return NULL;
6574 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6575 simd8_cfg = v8.cfg;
6576 simd8_grf_start = v8.payload.num_regs;
6577 simd8_grf_used = v8.grf_used;
6578 }
6579
6580 if (v8.max_dispatch_width >= 16 &&
6581 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6582 /* Try a SIMD16 compile */
6583 fs_visitor v16(compiler, log_data, mem_ctx, key,
6584 &prog_data->base, prog, shader, 16,
6585 shader_time_index16);
6586 v16.import_uniforms(&v8);
6587 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6588 compiler->shader_perf_log(log_data,
6589 "SIMD16 shader failed to compile: %s",
6590 v16.fail_msg);
6591 } else {
6592 simd16_cfg = v16.cfg;
6593 simd16_grf_start = v16.payload.num_regs;
6594 simd16_grf_used = v16.grf_used;
6595 }
6596 }
6597
6598 /* When the caller requests a repclear shader, they want SIMD16-only */
6599 if (use_rep_send)
6600 simd8_cfg = NULL;
6601
6602 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6603 * at the top to select the shader. We've never implemented that.
6604 * Instead, we just give them exactly one shader and we pick the widest one
6605 * available.
6606 */
6607 if (compiler->devinfo->gen < 5 && simd16_cfg)
6608 simd8_cfg = NULL;
6609
6610 if (prog_data->persample_dispatch) {
6611 /* Starting with SandyBridge (where we first get MSAA), the different
6612 * pixel dispatch combinations are grouped into classifications A
6613 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6614 * generations, the only configurations supporting persample dispatch
6615 * are are this in which only one dispatch width is enabled.
6616 *
6617 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6618 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6619 */
6620 if (compiler->devinfo->gen == 6 &&
6621 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6622 simd16_cfg = NULL;
6623 } else if (simd16_cfg) {
6624 simd8_cfg = NULL;
6625 }
6626 }
6627
6628 /* We have to compute the flat inputs after the visitor is finished running
6629 * because it relies on prog_data->urb_setup which is computed in
6630 * fs_visitor::calculate_urb_setup().
6631 */
6632 brw_compute_flat_inputs(prog_data, shader);
6633
6634 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6635 v8.promoted_constants, v8.runtime_check_aads_emit,
6636 MESA_SHADER_FRAGMENT);
6637
6638 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6639 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6640 shader->info.label ?
6641 shader->info.label : "unnamed",
6642 shader->info.name));
6643 }
6644
6645 if (simd8_cfg) {
6646 prog_data->dispatch_8 = true;
6647 g.generate_code(simd8_cfg, 8);
6648 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6649 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6650
6651 if (simd16_cfg) {
6652 prog_data->dispatch_16 = true;
6653 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6654 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6655 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6656 }
6657 } else if (simd16_cfg) {
6658 prog_data->dispatch_16 = true;
6659 g.generate_code(simd16_cfg, 16);
6660 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6661 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6662 }
6663
6664 return g.get_assembly(final_assembly_size);
6665 }
6666
6667 fs_reg *
6668 fs_visitor::emit_cs_work_group_id_setup()
6669 {
6670 assert(stage == MESA_SHADER_COMPUTE);
6671
6672 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6673
6674 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6675 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6676 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6677
6678 bld.MOV(*reg, r0_1);
6679 bld.MOV(offset(*reg, bld, 1), r0_6);
6680 bld.MOV(offset(*reg, bld, 2), r0_7);
6681
6682 return reg;
6683 }
6684
6685 static void
6686 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6687 {
6688 block->dwords = dwords;
6689 block->regs = DIV_ROUND_UP(dwords, 8);
6690 block->size = block->regs * 32;
6691 }
6692
6693 static void
6694 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6695 struct brw_cs_prog_data *cs_prog_data)
6696 {
6697 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6698 bool fill_thread_id =
6699 cs_prog_data->thread_local_id_index >= 0 &&
6700 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6701 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6702
6703 /* The thread ID should be stored in the last param dword */
6704 assert(prog_data->nr_params > 0 || !fill_thread_id);
6705 assert(!fill_thread_id ||
6706 cs_prog_data->thread_local_id_index ==
6707 (int)prog_data->nr_params - 1);
6708
6709 unsigned cross_thread_dwords, per_thread_dwords;
6710 if (!cross_thread_supported) {
6711 cross_thread_dwords = 0u;
6712 per_thread_dwords = prog_data->nr_params;
6713 } else if (fill_thread_id) {
6714 /* Fill all but the last register with cross-thread payload */
6715 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6716 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6717 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6718 } else {
6719 /* Fill all data using cross-thread payload */
6720 cross_thread_dwords = prog_data->nr_params;
6721 per_thread_dwords = 0u;
6722 }
6723
6724 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6725 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6726
6727 unsigned total_dwords =
6728 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6729 cs_prog_data->push.cross_thread.size) / 4;
6730 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6731
6732 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6733 cs_prog_data->push.per_thread.size == 0);
6734 assert(cs_prog_data->push.cross_thread.dwords +
6735 cs_prog_data->push.per_thread.dwords ==
6736 prog_data->nr_params);
6737 }
6738
6739 static void
6740 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6741 {
6742 cs_prog_data->simd_size = size;
6743 unsigned group_size = cs_prog_data->local_size[0] *
6744 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6745 cs_prog_data->threads = (group_size + size - 1) / size;
6746 }
6747
6748 const unsigned *
6749 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6750 void *mem_ctx,
6751 const struct brw_cs_prog_key *key,
6752 struct brw_cs_prog_data *prog_data,
6753 const nir_shader *src_shader,
6754 int shader_time_index,
6755 unsigned *final_assembly_size,
6756 char **error_str)
6757 {
6758 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6759 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6760
6761 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6762 * the thread_local_id_index.
6763 */
6764 assert(prog_data->thread_local_id_index >= 0);
6765 shader->num_uniforms =
6766 MAX2(shader->num_uniforms,
6767 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6768
6769 brw_nir_lower_cs_intrinsics(shader, prog_data);
6770 shader = brw_postprocess_nir(shader, compiler, true);
6771
6772 prog_data->local_size[0] = shader->info.cs.local_size[0];
6773 prog_data->local_size[1] = shader->info.cs.local_size[1];
6774 prog_data->local_size[2] = shader->info.cs.local_size[2];
6775 unsigned local_workgroup_size =
6776 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6777 shader->info.cs.local_size[2];
6778
6779 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6780 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6781
6782 cfg_t *cfg = NULL;
6783 const char *fail_msg = NULL;
6784
6785 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6786 */
6787 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6788 NULL, /* Never used in core profile */
6789 shader, 8, shader_time_index);
6790 if (simd_required <= 8) {
6791 if (!v8.run_cs()) {
6792 fail_msg = v8.fail_msg;
6793 } else {
6794 cfg = v8.cfg;
6795 cs_set_simd_size(prog_data, 8);
6796 cs_fill_push_const_info(compiler->devinfo, prog_data);
6797 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6798 }
6799 }
6800
6801 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6802 NULL, /* Never used in core profile */
6803 shader, 16, shader_time_index);
6804 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6805 !fail_msg && v8.max_dispatch_width >= 16 &&
6806 simd_required <= 16) {
6807 /* Try a SIMD16 compile */
6808 if (simd_required <= 8)
6809 v16.import_uniforms(&v8);
6810 if (!v16.run_cs()) {
6811 compiler->shader_perf_log(log_data,
6812 "SIMD16 shader failed to compile: %s",
6813 v16.fail_msg);
6814 if (!cfg) {
6815 fail_msg =
6816 "Couldn't generate SIMD16 program and not "
6817 "enough threads for SIMD8";
6818 }
6819 } else {
6820 cfg = v16.cfg;
6821 cs_set_simd_size(prog_data, 16);
6822 cs_fill_push_const_info(compiler->devinfo, prog_data);
6823 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6824 }
6825 }
6826
6827 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6828 NULL, /* Never used in core profile */
6829 shader, 32, shader_time_index);
6830 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6831 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6832 /* Try a SIMD32 compile */
6833 if (simd_required <= 8)
6834 v32.import_uniforms(&v8);
6835 else if (simd_required <= 16)
6836 v32.import_uniforms(&v16);
6837
6838 if (!v32.run_cs()) {
6839 compiler->shader_perf_log(log_data,
6840 "SIMD32 shader failed to compile: %s",
6841 v16.fail_msg);
6842 if (!cfg) {
6843 fail_msg =
6844 "Couldn't generate SIMD32 program and not "
6845 "enough threads for SIMD16";
6846 }
6847 } else {
6848 cfg = v32.cfg;
6849 cs_set_simd_size(prog_data, 32);
6850 cs_fill_push_const_info(compiler->devinfo, prog_data);
6851 }
6852 }
6853
6854 if (unlikely(cfg == NULL)) {
6855 assert(fail_msg);
6856 if (error_str)
6857 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6858
6859 return NULL;
6860 }
6861
6862 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6863 v8.promoted_constants, v8.runtime_check_aads_emit,
6864 MESA_SHADER_COMPUTE);
6865 if (INTEL_DEBUG & DEBUG_CS) {
6866 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6867 shader->info.label ? shader->info.label :
6868 "unnamed",
6869 shader->info.name);
6870 g.enable_debug(name);
6871 }
6872
6873 g.generate_code(cfg, prog_data->simd_size);
6874
6875 return g.get_assembly(final_assembly_size);
6876 }
6877
6878 /**
6879 * Test the dispatch mask packing assumptions of
6880 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6881 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6882 * executed with an unexpected dispatch mask.
6883 */
6884 static UNUSED void
6885 brw_fs_test_dispatch_packing(const fs_builder &bld)
6886 {
6887 const gl_shader_stage stage = bld.shader->stage;
6888
6889 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6890 bld.shader->stage_prog_data)) {
6891 const fs_builder ubld = bld.exec_all().group(1, 0);
6892 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6893 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6894 brw_dmask_reg());
6895
6896 ubld.ADD(tmp, mask, brw_imm_ud(1));
6897 ubld.AND(tmp, mask, tmp);
6898
6899 /* This will loop forever if the dispatch mask doesn't have the expected
6900 * form '2^n-1', in which case tmp will be non-zero.
6901 */
6902 bld.emit(BRW_OPCODE_DO);
6903 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6904 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6905 }
6906 }