i965: Use pushed UBO data in the scalar backend.
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 if (type_sz(dst.type) == 8) {
195 shuffle_32bit_load_result_to_64bit_data(
196 bld, retype(vec4_result, dst.type), vec4_result, 2);
197 }
198
199 vec4_result.type = dst.type;
200 bld.MOV(dst, offset(vec4_result, bld,
201 (const_offset & 0xf) / type_sz(vec4_result.type)));
202 }
203
204 /**
205 * A helper for MOV generation for fixing up broken hardware SEND dependency
206 * handling.
207 */
208 void
209 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
210 {
211 /* The caller always wants uncompressed to emit the minimal extra
212 * dependencies, and to avoid having to deal with aligning its regs to 2.
213 */
214 const fs_builder ubld = bld.annotate("send dependency resolve")
215 .half(0);
216
217 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
218 }
219
220 bool
221 fs_inst::equals(fs_inst *inst) const
222 {
223 return (opcode == inst->opcode &&
224 dst.equals(inst->dst) &&
225 src[0].equals(inst->src[0]) &&
226 src[1].equals(inst->src[1]) &&
227 src[2].equals(inst->src[2]) &&
228 saturate == inst->saturate &&
229 predicate == inst->predicate &&
230 conditional_mod == inst->conditional_mod &&
231 mlen == inst->mlen &&
232 base_mrf == inst->base_mrf &&
233 target == inst->target &&
234 eot == inst->eot &&
235 header_size == inst->header_size &&
236 shadow_compare == inst->shadow_compare &&
237 exec_size == inst->exec_size &&
238 offset == inst->offset);
239 }
240
241 bool
242 fs_inst::is_send_from_grf() const
243 {
244 switch (opcode) {
245 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
246 case SHADER_OPCODE_SHADER_TIME_ADD:
247 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
248 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
249 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
250 case SHADER_OPCODE_UNTYPED_ATOMIC:
251 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
252 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
253 case SHADER_OPCODE_TYPED_ATOMIC:
254 case SHADER_OPCODE_TYPED_SURFACE_READ:
255 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
256 case SHADER_OPCODE_URB_WRITE_SIMD8:
257 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
258 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
260 case SHADER_OPCODE_URB_READ_SIMD8:
261 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
262 return true;
263 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
264 return src[1].file == VGRF;
265 case FS_OPCODE_FB_WRITE:
266 case FS_OPCODE_FB_READ:
267 return src[0].file == VGRF;
268 default:
269 if (is_tex())
270 return src[0].file == VGRF;
271
272 return false;
273 }
274 }
275
276 /**
277 * Returns true if this instruction's sources and destinations cannot
278 * safely be the same register.
279 *
280 * In most cases, a register can be written over safely by the same
281 * instruction that is its last use. For a single instruction, the
282 * sources are dereferenced before writing of the destination starts
283 * (naturally).
284 *
285 * However, there are a few cases where this can be problematic:
286 *
287 * - Virtual opcodes that translate to multiple instructions in the
288 * code generator: if src == dst and one instruction writes the
289 * destination before a later instruction reads the source, then
290 * src will have been clobbered.
291 *
292 * - SIMD16 compressed instructions with certain regioning (see below).
293 *
294 * The register allocator uses this information to set up conflicts between
295 * GRF sources and the destination.
296 */
297 bool
298 fs_inst::has_source_and_destination_hazard() const
299 {
300 switch (opcode) {
301 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
302 /* Multiple partial writes to the destination */
303 return true;
304 default:
305 /* The SIMD16 compressed instruction
306 *
307 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
308 *
309 * is actually decoded in hardware as:
310 *
311 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
312 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
313 *
314 * Which is safe. However, if we have uniform accesses
315 * happening, we get into trouble:
316 *
317 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
318 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
319 *
320 * Now our destination for the first instruction overwrote the
321 * second instruction's src0, and we get garbage for those 8
322 * pixels. There's a similar issue for the pre-gen6
323 * pixel_x/pixel_y, which are registers of 16-bit values and thus
324 * would get stomped by the first decode as well.
325 */
326 if (exec_size == 16) {
327 for (int i = 0; i < sources; i++) {
328 if (src[i].file == VGRF && (src[i].stride == 0 ||
329 src[i].type == BRW_REGISTER_TYPE_UW ||
330 src[i].type == BRW_REGISTER_TYPE_W ||
331 src[i].type == BRW_REGISTER_TYPE_UB ||
332 src[i].type == BRW_REGISTER_TYPE_B)) {
333 return true;
334 }
335 }
336 }
337 return false;
338 }
339 }
340
341 bool
342 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
343 {
344 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
345 return false;
346
347 fs_reg reg = this->src[0];
348 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
349 return false;
350
351 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
352 return false;
353
354 for (int i = 0; i < this->sources; i++) {
355 reg.type = this->src[i].type;
356 if (!this->src[i].equals(reg))
357 return false;
358
359 if (i < this->header_size) {
360 reg.offset += REG_SIZE;
361 } else {
362 reg = horiz_offset(reg, this->exec_size);
363 }
364 }
365
366 return true;
367 }
368
369 bool
370 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
371 {
372 if (devinfo->gen == 6 && is_math())
373 return false;
374
375 if (is_send_from_grf())
376 return false;
377
378 if (!backend_instruction::can_do_source_mods())
379 return false;
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_change_types() const
386 {
387 return dst.type == src[0].type &&
388 !src[0].abs && !src[0].negate && !saturate &&
389 (opcode == BRW_OPCODE_MOV ||
390 (opcode == BRW_OPCODE_SEL &&
391 dst.type == src[1].type &&
392 predicate != BRW_PREDICATE_NONE &&
393 !src[1].abs && !src[1].negate));
394 }
395
396 bool
397 fs_inst::has_side_effects() const
398 {
399 return this->eot || backend_instruction::has_side_effects();
400 }
401
402 void
403 fs_reg::init()
404 {
405 memset(this, 0, sizeof(*this));
406 stride = 1;
407 }
408
409 /** Generic unset register constructor. */
410 fs_reg::fs_reg()
411 {
412 init();
413 this->file = BAD_FILE;
414 }
415
416 fs_reg::fs_reg(struct ::brw_reg reg) :
417 backend_reg(reg)
418 {
419 this->offset = 0;
420 this->stride = 1;
421 if (this->file == IMM &&
422 (this->type != BRW_REGISTER_TYPE_V &&
423 this->type != BRW_REGISTER_TYPE_UV &&
424 this->type != BRW_REGISTER_TYPE_VF)) {
425 this->stride = 0;
426 }
427 }
428
429 bool
430 fs_reg::equals(const fs_reg &r) const
431 {
432 return (this->backend_reg::equals(r) &&
433 stride == r.stride);
434 }
435
436 bool
437 fs_reg::is_contiguous() const
438 {
439 return stride == 1;
440 }
441
442 unsigned
443 fs_reg::component_size(unsigned width) const
444 {
445 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
446 hstride == 0 ? 0 :
447 1 << (hstride - 1));
448 return MAX2(width * stride, 1) * type_sz(type);
449 }
450
451 extern "C" int
452 type_size_scalar(const struct glsl_type *type)
453 {
454 unsigned int size, i;
455
456 switch (type->base_type) {
457 case GLSL_TYPE_UINT:
458 case GLSL_TYPE_INT:
459 case GLSL_TYPE_FLOAT:
460 case GLSL_TYPE_BOOL:
461 return type->components();
462 case GLSL_TYPE_DOUBLE:
463 case GLSL_TYPE_UINT64:
464 case GLSL_TYPE_INT64:
465 return type->components() * 2;
466 case GLSL_TYPE_ARRAY:
467 return type_size_scalar(type->fields.array) * type->length;
468 case GLSL_TYPE_STRUCT:
469 size = 0;
470 for (i = 0; i < type->length; i++) {
471 size += type_size_scalar(type->fields.structure[i].type);
472 }
473 return size;
474 case GLSL_TYPE_SAMPLER:
475 /* Samplers take up no register space, since they're baked in at
476 * link time.
477 */
478 return 0;
479 case GLSL_TYPE_ATOMIC_UINT:
480 return 0;
481 case GLSL_TYPE_SUBROUTINE:
482 return 1;
483 case GLSL_TYPE_IMAGE:
484 return BRW_IMAGE_PARAM_SIZE;
485 case GLSL_TYPE_VOID:
486 case GLSL_TYPE_ERROR:
487 case GLSL_TYPE_INTERFACE:
488 case GLSL_TYPE_FUNCTION:
489 unreachable("not reached");
490 }
491
492 return 0;
493 }
494
495 /**
496 * Create a MOV to read the timestamp register.
497 *
498 * The caller is responsible for emitting the MOV. The return value is
499 * the destination of the MOV, with extra parameters set.
500 */
501 fs_reg
502 fs_visitor::get_timestamp(const fs_builder &bld)
503 {
504 assert(devinfo->gen >= 7);
505
506 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
507 BRW_ARF_TIMESTAMP,
508 0),
509 BRW_REGISTER_TYPE_UD));
510
511 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
512
513 /* We want to read the 3 fields we care about even if it's not enabled in
514 * the dispatch.
515 */
516 bld.group(4, 0).exec_all().MOV(dst, ts);
517
518 return dst;
519 }
520
521 void
522 fs_visitor::emit_shader_time_begin()
523 {
524 /* We want only the low 32 bits of the timestamp. Since it's running
525 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
526 * which is plenty of time for our purposes. It is identical across the
527 * EUs, but since it's tracking GPU core speed it will increment at a
528 * varying rate as render P-states change.
529 */
530 shader_start_time = component(
531 get_timestamp(bld.annotate("shader time start")), 0);
532 }
533
534 void
535 fs_visitor::emit_shader_time_end()
536 {
537 /* Insert our code just before the final SEND with EOT. */
538 exec_node *end = this->instructions.get_tail();
539 assert(end && ((fs_inst *) end)->eot);
540 const fs_builder ibld = bld.annotate("shader time end")
541 .exec_all().at(NULL, end);
542 const fs_reg timestamp = get_timestamp(ibld);
543
544 /* We only use the low 32 bits of the timestamp - see
545 * emit_shader_time_begin()).
546 *
547 * We could also check if render P-states have changed (or anything
548 * else that might disrupt timing) by setting smear to 2 and checking if
549 * that field is != 0.
550 */
551 const fs_reg shader_end_time = component(timestamp, 0);
552
553 /* Check that there weren't any timestamp reset events (assuming these
554 * were the only two timestamp reads that happened).
555 */
556 const fs_reg reset = component(timestamp, 2);
557 set_condmod(BRW_CONDITIONAL_Z,
558 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
559 ibld.IF(BRW_PREDICATE_NORMAL);
560
561 fs_reg start = shader_start_time;
562 start.negate = true;
563 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
564 BRW_REGISTER_TYPE_UD),
565 0);
566 const fs_builder cbld = ibld.group(1, 0);
567 cbld.group(1, 0).ADD(diff, start, shader_end_time);
568
569 /* If there were no instructions between the two timestamp gets, the diff
570 * is 2 cycles. Remove that overhead, so I can forget about that when
571 * trying to determine the time taken for single instructions.
572 */
573 cbld.ADD(diff, diff, brw_imm_ud(-2u));
574 SHADER_TIME_ADD(cbld, 0, diff);
575 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
576 ibld.emit(BRW_OPCODE_ELSE);
577 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
578 ibld.emit(BRW_OPCODE_ENDIF);
579 }
580
581 void
582 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
583 int shader_time_subindex,
584 fs_reg value)
585 {
586 int index = shader_time_index * 3 + shader_time_subindex;
587 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
588
589 fs_reg payload;
590 if (dispatch_width == 8)
591 payload = vgrf(glsl_type::uvec2_type);
592 else
593 payload = vgrf(glsl_type::uint_type);
594
595 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
596 }
597
598 void
599 fs_visitor::vfail(const char *format, va_list va)
600 {
601 char *msg;
602
603 if (failed)
604 return;
605
606 failed = true;
607
608 msg = ralloc_vasprintf(mem_ctx, format, va);
609 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
610
611 this->fail_msg = msg;
612
613 if (debug_enabled) {
614 fprintf(stderr, "%s", msg);
615 }
616 }
617
618 void
619 fs_visitor::fail(const char *format, ...)
620 {
621 va_list va;
622
623 va_start(va, format);
624 vfail(format, va);
625 va_end(va);
626 }
627
628 /**
629 * Mark this program as impossible to compile with dispatch width greater
630 * than n.
631 *
632 * During the SIMD8 compile (which happens first), we can detect and flag
633 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
634 * SIMD16+ compile altogether.
635 *
636 * During a compile of dispatch width greater than n (if one happens anyway),
637 * this just calls fail().
638 */
639 void
640 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
641 {
642 if (dispatch_width > n) {
643 fail("%s", msg);
644 } else {
645 max_dispatch_width = n;
646 compiler->shader_perf_log(log_data,
647 "Shader dispatch width limited to SIMD%d: %s",
648 n, msg);
649 }
650 }
651
652 /**
653 * Returns true if the instruction has a flag that means it won't
654 * update an entire destination register.
655 *
656 * For example, dead code elimination and live variable analysis want to know
657 * when a write to a variable screens off any preceding values that were in
658 * it.
659 */
660 bool
661 fs_inst::is_partial_write() const
662 {
663 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
664 (this->exec_size * type_sz(this->dst.type)) < 32 ||
665 !this->dst.is_contiguous() ||
666 this->dst.offset % REG_SIZE != 0);
667 }
668
669 unsigned
670 fs_inst::components_read(unsigned i) const
671 {
672 /* Return zero if the source is not present. */
673 if (src[i].file == BAD_FILE)
674 return 0;
675
676 switch (opcode) {
677 case FS_OPCODE_LINTERP:
678 if (i == 0)
679 return 2;
680 else
681 return 1;
682
683 case FS_OPCODE_PIXEL_X:
684 case FS_OPCODE_PIXEL_Y:
685 assert(i == 0);
686 return 2;
687
688 case FS_OPCODE_FB_WRITE_LOGICAL:
689 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
690 /* First/second FB write color. */
691 if (i < 2)
692 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
693 else
694 return 1;
695
696 case SHADER_OPCODE_TEX_LOGICAL:
697 case SHADER_OPCODE_TXD_LOGICAL:
698 case SHADER_OPCODE_TXF_LOGICAL:
699 case SHADER_OPCODE_TXL_LOGICAL:
700 case SHADER_OPCODE_TXS_LOGICAL:
701 case FS_OPCODE_TXB_LOGICAL:
702 case SHADER_OPCODE_TXF_CMS_LOGICAL:
703 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
704 case SHADER_OPCODE_TXF_UMS_LOGICAL:
705 case SHADER_OPCODE_TXF_MCS_LOGICAL:
706 case SHADER_OPCODE_LOD_LOGICAL:
707 case SHADER_OPCODE_TG4_LOGICAL:
708 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
709 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
710 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
711 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
712 /* Texture coordinates. */
713 if (i == TEX_LOGICAL_SRC_COORDINATE)
714 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
715 /* Texture derivatives. */
716 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
717 opcode == SHADER_OPCODE_TXD_LOGICAL)
718 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
719 /* Texture offset. */
720 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
721 return 2;
722 /* MCS */
723 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
724 return 2;
725 else
726 return 1;
727
728 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
729 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
730 assert(src[3].file == IMM);
731 /* Surface coordinates. */
732 if (i == 0)
733 return src[3].ud;
734 /* Surface operation source (ignored for reads). */
735 else if (i == 1)
736 return 0;
737 else
738 return 1;
739
740 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
741 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
742 assert(src[3].file == IMM &&
743 src[4].file == IMM);
744 /* Surface coordinates. */
745 if (i == 0)
746 return src[3].ud;
747 /* Surface operation source. */
748 else if (i == 1)
749 return src[4].ud;
750 else
751 return 1;
752
753 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
754 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
755 assert(src[3].file == IMM &&
756 src[4].file == IMM);
757 const unsigned op = src[4].ud;
758 /* Surface coordinates. */
759 if (i == 0)
760 return src[3].ud;
761 /* Surface operation source. */
762 else if (i == 1 && op == BRW_AOP_CMPWR)
763 return 2;
764 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
765 op == BRW_AOP_PREDEC))
766 return 0;
767 else
768 return 1;
769 }
770
771 default:
772 return 1;
773 }
774 }
775
776 unsigned
777 fs_inst::size_read(int arg) const
778 {
779 switch (opcode) {
780 case FS_OPCODE_FB_WRITE:
781 case FS_OPCODE_FB_READ:
782 case SHADER_OPCODE_URB_WRITE_SIMD8:
783 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
784 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
785 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
786 case SHADER_OPCODE_URB_READ_SIMD8:
787 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
788 case SHADER_OPCODE_UNTYPED_ATOMIC:
789 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
790 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
791 case SHADER_OPCODE_TYPED_ATOMIC:
792 case SHADER_OPCODE_TYPED_SURFACE_READ:
793 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
794 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
795 if (arg == 0)
796 return mlen * REG_SIZE;
797 break;
798
799 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
800 /* The payload is actually stored in src1 */
801 if (arg == 1)
802 return mlen * REG_SIZE;
803 break;
804
805 case FS_OPCODE_LINTERP:
806 if (arg == 1)
807 return 16;
808 break;
809
810 case SHADER_OPCODE_LOAD_PAYLOAD:
811 if (arg < this->header_size)
812 return REG_SIZE;
813 break;
814
815 case CS_OPCODE_CS_TERMINATE:
816 case SHADER_OPCODE_BARRIER:
817 return REG_SIZE;
818
819 case SHADER_OPCODE_MOV_INDIRECT:
820 if (arg == 0) {
821 assert(src[2].file == IMM);
822 return src[2].ud;
823 }
824 break;
825
826 default:
827 if (is_tex() && arg == 0 && src[0].file == VGRF)
828 return mlen * REG_SIZE;
829 break;
830 }
831
832 switch (src[arg].file) {
833 case UNIFORM:
834 case IMM:
835 return components_read(arg) * type_sz(src[arg].type);
836 case BAD_FILE:
837 case ARF:
838 case FIXED_GRF:
839 case VGRF:
840 case ATTR:
841 return components_read(arg) * src[arg].component_size(exec_size);
842 case MRF:
843 unreachable("MRF registers are not allowed as sources");
844 }
845 return 0;
846 }
847
848 namespace {
849 /* Return the subset of flag registers that an instruction could
850 * potentially read or write based on the execution controls and flag
851 * subregister number of the instruction.
852 */
853 unsigned
854 flag_mask(const fs_inst *inst)
855 {
856 const unsigned start = inst->flag_subreg * 16 + inst->group;
857 const unsigned end = start + inst->exec_size;
858 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
859 }
860 }
861
862 unsigned
863 fs_inst::flags_read(const gen_device_info *devinfo) const
864 {
865 /* XXX - This doesn't consider explicit uses of the flag register as source
866 * region.
867 */
868 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
869 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
870 /* The vertical predication modes combine corresponding bits from
871 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
872 */
873 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
874 return flag_mask(this) << shift | flag_mask(this);
875 } else if (predicate) {
876 return flag_mask(this);
877 } else {
878 return 0;
879 }
880 }
881
882 unsigned
883 fs_inst::flags_written() const
884 {
885 /* XXX - This doesn't consider explicit uses of the flag register as
886 * destination region.
887 */
888 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
889 opcode != BRW_OPCODE_IF &&
890 opcode != BRW_OPCODE_WHILE)) ||
891 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
892 return flag_mask(this);
893 } else {
894 return 0;
895 }
896 }
897
898 /**
899 * Returns how many MRFs an FS opcode will write over.
900 *
901 * Note that this is not the 0 or 1 implied writes in an actual gen
902 * instruction -- the FS opcodes often generate MOVs in addition.
903 */
904 int
905 fs_visitor::implied_mrf_writes(fs_inst *inst)
906 {
907 if (inst->mlen == 0)
908 return 0;
909
910 if (inst->base_mrf == -1)
911 return 0;
912
913 switch (inst->opcode) {
914 case SHADER_OPCODE_RCP:
915 case SHADER_OPCODE_RSQ:
916 case SHADER_OPCODE_SQRT:
917 case SHADER_OPCODE_EXP2:
918 case SHADER_OPCODE_LOG2:
919 case SHADER_OPCODE_SIN:
920 case SHADER_OPCODE_COS:
921 return 1 * dispatch_width / 8;
922 case SHADER_OPCODE_POW:
923 case SHADER_OPCODE_INT_QUOTIENT:
924 case SHADER_OPCODE_INT_REMAINDER:
925 return 2 * dispatch_width / 8;
926 case SHADER_OPCODE_TEX:
927 case FS_OPCODE_TXB:
928 case SHADER_OPCODE_TXD:
929 case SHADER_OPCODE_TXF:
930 case SHADER_OPCODE_TXF_CMS:
931 case SHADER_OPCODE_TXF_MCS:
932 case SHADER_OPCODE_TG4:
933 case SHADER_OPCODE_TG4_OFFSET:
934 case SHADER_OPCODE_TXL:
935 case SHADER_OPCODE_TXS:
936 case SHADER_OPCODE_LOD:
937 case SHADER_OPCODE_SAMPLEINFO:
938 return 1;
939 case FS_OPCODE_FB_WRITE:
940 return 2;
941 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
942 case SHADER_OPCODE_GEN4_SCRATCH_READ:
943 return 1;
944 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
945 return inst->mlen;
946 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
947 return inst->mlen;
948 default:
949 unreachable("not reached");
950 }
951 }
952
953 fs_reg
954 fs_visitor::vgrf(const glsl_type *const type)
955 {
956 int reg_width = dispatch_width / 8;
957 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
958 brw_type_for_base_type(type));
959 }
960
961 fs_reg::fs_reg(enum brw_reg_file file, int nr)
962 {
963 init();
964 this->file = file;
965 this->nr = nr;
966 this->type = BRW_REGISTER_TYPE_F;
967 this->stride = (file == UNIFORM ? 0 : 1);
968 }
969
970 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
971 {
972 init();
973 this->file = file;
974 this->nr = nr;
975 this->type = type;
976 this->stride = (file == UNIFORM ? 0 : 1);
977 }
978
979 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
980 * This brings in those uniform definitions
981 */
982 void
983 fs_visitor::import_uniforms(fs_visitor *v)
984 {
985 this->push_constant_loc = v->push_constant_loc;
986 this->pull_constant_loc = v->pull_constant_loc;
987 this->uniforms = v->uniforms;
988 }
989
990 void
991 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
992 {
993 assert(stage == MESA_SHADER_FRAGMENT);
994
995 /* gl_FragCoord.x */
996 bld.MOV(wpos, this->pixel_x);
997 wpos = offset(wpos, bld, 1);
998
999 /* gl_FragCoord.y */
1000 bld.MOV(wpos, this->pixel_y);
1001 wpos = offset(wpos, bld, 1);
1002
1003 /* gl_FragCoord.z */
1004 if (devinfo->gen >= 6) {
1005 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1006 } else {
1007 bld.emit(FS_OPCODE_LINTERP, wpos,
1008 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1009 interp_reg(VARYING_SLOT_POS, 2));
1010 }
1011 wpos = offset(wpos, bld, 1);
1012
1013 /* gl_FragCoord.w: Already set up in emit_interpolation */
1014 bld.MOV(wpos, this->wpos_w);
1015 }
1016
1017 enum brw_barycentric_mode
1018 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1019 {
1020 /* Barycentric modes don't make sense for flat inputs. */
1021 assert(mode != INTERP_MODE_FLAT);
1022
1023 unsigned bary;
1024 switch (op) {
1025 case nir_intrinsic_load_barycentric_pixel:
1026 case nir_intrinsic_load_barycentric_at_offset:
1027 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1028 break;
1029 case nir_intrinsic_load_barycentric_centroid:
1030 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1031 break;
1032 case nir_intrinsic_load_barycentric_sample:
1033 case nir_intrinsic_load_barycentric_at_sample:
1034 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1035 break;
1036 default:
1037 unreachable("invalid intrinsic");
1038 }
1039
1040 if (mode == INTERP_MODE_NOPERSPECTIVE)
1041 bary += 3;
1042
1043 return (enum brw_barycentric_mode) bary;
1044 }
1045
1046 /**
1047 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1048 */
1049 static enum brw_barycentric_mode
1050 centroid_to_pixel(enum brw_barycentric_mode bary)
1051 {
1052 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1053 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1054 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1055 }
1056
1057 fs_reg *
1058 fs_visitor::emit_frontfacing_interpolation()
1059 {
1060 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1061
1062 if (devinfo->gen >= 6) {
1063 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1064 * a boolean result from this (~0/true or 0/false).
1065 *
1066 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1067 * this task in only one instruction:
1068 * - a negation source modifier will flip the bit; and
1069 * - a W -> D type conversion will sign extend the bit into the high
1070 * word of the destination.
1071 *
1072 * An ASR 15 fills the low word of the destination.
1073 */
1074 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1075 g0.negate = true;
1076
1077 bld.ASR(*reg, g0, brw_imm_d(15));
1078 } else {
1079 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1080 * a boolean result from this (1/true or 0/false).
1081 *
1082 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1083 * the negation source modifier to flip it. Unfortunately the SHR
1084 * instruction only operates on UD (or D with an abs source modifier)
1085 * sources without negation.
1086 *
1087 * Instead, use ASR (which will give ~0/true or 0/false).
1088 */
1089 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1090 g1_6.negate = true;
1091
1092 bld.ASR(*reg, g1_6, brw_imm_d(31));
1093 }
1094
1095 return reg;
1096 }
1097
1098 void
1099 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1100 {
1101 assert(stage == MESA_SHADER_FRAGMENT);
1102 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1103 assert(dst.type == BRW_REGISTER_TYPE_F);
1104
1105 if (wm_prog_data->persample_dispatch) {
1106 /* Convert int_sample_pos to floating point */
1107 bld.MOV(dst, int_sample_pos);
1108 /* Scale to the range [0, 1] */
1109 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1110 }
1111 else {
1112 /* From ARB_sample_shading specification:
1113 * "When rendering to a non-multisample buffer, or if multisample
1114 * rasterization is disabled, gl_SamplePosition will always be
1115 * (0.5, 0.5).
1116 */
1117 bld.MOV(dst, brw_imm_f(0.5f));
1118 }
1119 }
1120
1121 fs_reg *
1122 fs_visitor::emit_samplepos_setup()
1123 {
1124 assert(devinfo->gen >= 6);
1125
1126 const fs_builder abld = bld.annotate("compute sample position");
1127 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1128 fs_reg pos = *reg;
1129 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1130 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1131
1132 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1133 * mode will be enabled.
1134 *
1135 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1136 * R31.1:0 Position Offset X/Y for Slot[3:0]
1137 * R31.3:2 Position Offset X/Y for Slot[7:4]
1138 * .....
1139 *
1140 * The X, Y sample positions come in as bytes in thread payload. So, read
1141 * the positions using vstride=16, width=8, hstride=2.
1142 */
1143 struct brw_reg sample_pos_reg =
1144 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1145 BRW_REGISTER_TYPE_B), 16, 8, 2);
1146
1147 if (dispatch_width == 8) {
1148 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1149 } else {
1150 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1151 abld.half(1).MOV(half(int_sample_x, 1),
1152 fs_reg(suboffset(sample_pos_reg, 16)));
1153 }
1154 /* Compute gl_SamplePosition.x */
1155 compute_sample_position(pos, int_sample_x);
1156 pos = offset(pos, abld, 1);
1157 if (dispatch_width == 8) {
1158 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1159 } else {
1160 abld.half(0).MOV(half(int_sample_y, 0),
1161 fs_reg(suboffset(sample_pos_reg, 1)));
1162 abld.half(1).MOV(half(int_sample_y, 1),
1163 fs_reg(suboffset(sample_pos_reg, 17)));
1164 }
1165 /* Compute gl_SamplePosition.y */
1166 compute_sample_position(pos, int_sample_y);
1167 return reg;
1168 }
1169
1170 fs_reg *
1171 fs_visitor::emit_sampleid_setup()
1172 {
1173 assert(stage == MESA_SHADER_FRAGMENT);
1174 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1175 assert(devinfo->gen >= 6);
1176
1177 const fs_builder abld = bld.annotate("compute sample id");
1178 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1179
1180 if (!key->multisample_fbo) {
1181 /* As per GL_ARB_sample_shading specification:
1182 * "When rendering to a non-multisample buffer, or if multisample
1183 * rasterization is disabled, gl_SampleID will always be zero."
1184 */
1185 abld.MOV(*reg, brw_imm_d(0));
1186 } else if (devinfo->gen >= 8) {
1187 /* Sample ID comes in as 4-bit numbers in g1.0:
1188 *
1189 * 15:12 Slot 3 SampleID (only used in SIMD16)
1190 * 11:8 Slot 2 SampleID (only used in SIMD16)
1191 * 7:4 Slot 1 SampleID
1192 * 3:0 Slot 0 SampleID
1193 *
1194 * Each slot corresponds to four channels, so we want to replicate each
1195 * half-byte value to 4 channels in a row:
1196 *
1197 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1198 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1199 *
1200 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1201 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1202 *
1203 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1204 * channels to read the first byte (7:0), and the second group of 8
1205 * channels to read the second byte (15:8). Then, we shift right by
1206 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1207 * values into place. Finally, we AND with 0xf to keep the low nibble.
1208 *
1209 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1210 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1211 *
1212 * TODO: These payload bits exist on Gen7 too, but they appear to always
1213 * be zero, so this code fails to work. We should find out why.
1214 */
1215 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1216
1217 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1218 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1219 brw_imm_v(0x44440000));
1220 abld.AND(*reg, tmp, brw_imm_w(0xf));
1221 } else {
1222 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1223 BRW_REGISTER_TYPE_D), 0);
1224 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1225
1226 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1227 * 8x multisampling, subspan 0 will represent sample N (where N
1228 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1229 * 7. We can find the value of N by looking at R0.0 bits 7:6
1230 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1231 * (since samples are always delivered in pairs). That is, we
1232 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1233 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1234 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1235 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1236 * populating a temporary variable with the sequence (0, 1, 2, 3),
1237 * and then reading from it using vstride=1, width=4, hstride=0.
1238 * These computations hold good for 4x multisampling as well.
1239 *
1240 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1241 * the first four slots are sample 0 of subspan 0; the next four
1242 * are sample 1 of subspan 0; the third group is sample 0 of
1243 * subspan 1, and finally sample 1 of subspan 1.
1244 */
1245
1246 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1247 * accomodate 16x MSAA.
1248 */
1249 abld.exec_all().group(1, 0)
1250 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1251 brw_imm_ud(0xc0));
1252 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1253
1254 /* This works for both SIMD8 and SIMD16 */
1255 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1256
1257 /* This special instruction takes care of setting vstride=1,
1258 * width=4, hstride=0 of t2 during an ADD instruction.
1259 */
1260 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1261 }
1262
1263 return reg;
1264 }
1265
1266 fs_reg *
1267 fs_visitor::emit_samplemaskin_setup()
1268 {
1269 assert(stage == MESA_SHADER_FRAGMENT);
1270 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1271 assert(devinfo->gen >= 6);
1272
1273 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1274
1275 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1276 BRW_REGISTER_TYPE_D));
1277
1278 if (wm_prog_data->persample_dispatch) {
1279 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1280 * and a mask representing which sample is being processed by the
1281 * current shader invocation.
1282 *
1283 * From the OES_sample_variables specification:
1284 * "When per-sample shading is active due to the use of a fragment input
1285 * qualified by "sample" or due to the use of the gl_SampleID or
1286 * gl_SamplePosition variables, only the bit for the current sample is
1287 * set in gl_SampleMaskIn."
1288 */
1289 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1290
1291 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1292 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1293
1294 fs_reg one = vgrf(glsl_type::int_type);
1295 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1296 abld.MOV(one, brw_imm_d(1));
1297 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1298 abld.AND(*reg, enabled_mask, coverage_mask);
1299 } else {
1300 /* In per-pixel mode, the coverage mask is sufficient. */
1301 *reg = coverage_mask;
1302 }
1303 return reg;
1304 }
1305
1306 fs_reg
1307 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1308 {
1309 if (!src.abs && !src.negate)
1310 return src;
1311
1312 fs_reg temp = bld.vgrf(src.type);
1313 bld.MOV(temp, src);
1314
1315 return temp;
1316 }
1317
1318 void
1319 fs_visitor::emit_discard_jump()
1320 {
1321 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1322
1323 /* For performance, after a discard, jump to the end of the
1324 * shader if all relevant channels have been discarded.
1325 */
1326 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1327 discard_jump->flag_subreg = 1;
1328
1329 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1330 discard_jump->predicate_inverse = true;
1331 }
1332
1333 void
1334 fs_visitor::emit_gs_thread_end()
1335 {
1336 assert(stage == MESA_SHADER_GEOMETRY);
1337
1338 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1339
1340 if (gs_compile->control_data_header_size_bits > 0) {
1341 emit_gs_control_data_bits(this->final_gs_vertex_count);
1342 }
1343
1344 const fs_builder abld = bld.annotate("thread end");
1345 fs_inst *inst;
1346
1347 if (gs_prog_data->static_vertex_count != -1) {
1348 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1349 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1350 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1351 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1352 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1353 prev->eot = true;
1354
1355 /* Delete now dead instructions. */
1356 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1357 if (dead == prev)
1358 break;
1359 dead->remove();
1360 }
1361 return;
1362 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1363 break;
1364 }
1365 }
1366 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1367 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1368 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1369 inst->mlen = 1;
1370 } else {
1371 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1372 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1373 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1374 sources[1] = this->final_gs_vertex_count;
1375 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1376 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1377 inst->mlen = 2;
1378 }
1379 inst->eot = true;
1380 inst->offset = 0;
1381 }
1382
1383 void
1384 fs_visitor::assign_curb_setup()
1385 {
1386 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1387
1388 unsigned ubo_push_length = 0;
1389 unsigned ubo_push_start[4];
1390 for (int i = 0; i < 4; i++) {
1391 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1392 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1393 }
1394
1395 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1396
1397 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1398 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1399 for (unsigned int i = 0; i < inst->sources; i++) {
1400 if (inst->src[i].file == UNIFORM) {
1401 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1402 int constant_nr;
1403 if (inst->src[i].nr >= UBO_START) {
1404 /* constant_nr is in 32-bit units, the rest are in bytes */
1405 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1406 inst->src[i].offset / 4;
1407 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1408 constant_nr = push_constant_loc[uniform_nr];
1409 } else {
1410 /* Section 5.11 of the OpenGL 4.1 spec says:
1411 * "Out-of-bounds reads return undefined values, which include
1412 * values from other variables of the active program or zero."
1413 * Just return the first push constant.
1414 */
1415 constant_nr = 0;
1416 }
1417
1418 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1419 constant_nr / 8,
1420 constant_nr % 8);
1421 brw_reg.abs = inst->src[i].abs;
1422 brw_reg.negate = inst->src[i].negate;
1423
1424 assert(inst->src[i].stride == 0);
1425 inst->src[i] = byte_offset(
1426 retype(brw_reg, inst->src[i].type),
1427 inst->src[i].offset % 4);
1428 }
1429 }
1430 }
1431
1432 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1433 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1434 }
1435
1436 void
1437 fs_visitor::calculate_urb_setup()
1438 {
1439 assert(stage == MESA_SHADER_FRAGMENT);
1440 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1441 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1442
1443 memset(prog_data->urb_setup, -1,
1444 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1445
1446 int urb_next = 0;
1447 /* Figure out where each of the incoming setup attributes lands. */
1448 if (devinfo->gen >= 6) {
1449 if (_mesa_bitcount_64(nir->info.inputs_read &
1450 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1451 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1452 * first 16 varying inputs, so we can put them wherever we want.
1453 * Just put them in order.
1454 *
1455 * This is useful because it means that (a) inputs not used by the
1456 * fragment shader won't take up valuable register space, and (b) we
1457 * won't have to recompile the fragment shader if it gets paired with
1458 * a different vertex (or geometry) shader.
1459 */
1460 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1461 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1462 BITFIELD64_BIT(i)) {
1463 prog_data->urb_setup[i] = urb_next++;
1464 }
1465 }
1466 } else {
1467 bool include_vue_header =
1468 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1469
1470 /* We have enough input varyings that the SF/SBE pipeline stage can't
1471 * arbitrarily rearrange them to suit our whim; we have to put them
1472 * in an order that matches the output of the previous pipeline stage
1473 * (geometry or vertex shader).
1474 */
1475 struct brw_vue_map prev_stage_vue_map;
1476 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1477 key->input_slots_valid,
1478 nir->info.separate_shader);
1479 int first_slot =
1480 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1481
1482 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1483 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1484 slot++) {
1485 int varying = prev_stage_vue_map.slot_to_varying[slot];
1486 if (varying != BRW_VARYING_SLOT_PAD &&
1487 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1488 BITFIELD64_BIT(varying))) {
1489 prog_data->urb_setup[varying] = slot - first_slot;
1490 }
1491 }
1492 urb_next = prev_stage_vue_map.num_slots - first_slot;
1493 }
1494 } else {
1495 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1496 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1497 /* Point size is packed into the header, not as a general attribute */
1498 if (i == VARYING_SLOT_PSIZ)
1499 continue;
1500
1501 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1502 /* The back color slot is skipped when the front color is
1503 * also written to. In addition, some slots can be
1504 * written in the vertex shader and not read in the
1505 * fragment shader. So the register number must always be
1506 * incremented, mapped or not.
1507 */
1508 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1509 prog_data->urb_setup[i] = urb_next;
1510 urb_next++;
1511 }
1512 }
1513
1514 /*
1515 * It's a FS only attribute, and we did interpolation for this attribute
1516 * in SF thread. So, count it here, too.
1517 *
1518 * See compile_sf_prog() for more info.
1519 */
1520 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1521 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1522 }
1523
1524 prog_data->num_varying_inputs = urb_next;
1525 }
1526
1527 void
1528 fs_visitor::assign_urb_setup()
1529 {
1530 assert(stage == MESA_SHADER_FRAGMENT);
1531 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1532
1533 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1534
1535 /* Offset all the urb_setup[] index by the actual position of the
1536 * setup regs, now that the location of the constants has been chosen.
1537 */
1538 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1539 if (inst->opcode == FS_OPCODE_LINTERP) {
1540 assert(inst->src[1].file == FIXED_GRF);
1541 inst->src[1].nr += urb_start;
1542 }
1543
1544 if (inst->opcode == FS_OPCODE_CINTERP) {
1545 assert(inst->src[0].file == FIXED_GRF);
1546 inst->src[0].nr += urb_start;
1547 }
1548 }
1549
1550 /* Each attribute is 4 setup channels, each of which is half a reg. */
1551 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1552 }
1553
1554 void
1555 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1556 {
1557 for (int i = 0; i < inst->sources; i++) {
1558 if (inst->src[i].file == ATTR) {
1559 int grf = payload.num_regs +
1560 prog_data->curb_read_length +
1561 inst->src[i].nr +
1562 inst->src[i].offset / REG_SIZE;
1563
1564 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1565 *
1566 * VertStride must be used to cross GRF register boundaries. This
1567 * rule implies that elements within a 'Width' cannot cross GRF
1568 * boundaries.
1569 *
1570 * So, for registers that are large enough, we have to split the exec
1571 * size in two and trust the compression state to sort it out.
1572 */
1573 unsigned total_size = inst->exec_size *
1574 inst->src[i].stride *
1575 type_sz(inst->src[i].type);
1576
1577 assert(total_size <= 2 * REG_SIZE);
1578 const unsigned exec_size =
1579 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1580
1581 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1582 struct brw_reg reg =
1583 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1584 inst->src[i].offset % REG_SIZE),
1585 exec_size * inst->src[i].stride,
1586 width, inst->src[i].stride);
1587 reg.abs = inst->src[i].abs;
1588 reg.negate = inst->src[i].negate;
1589
1590 inst->src[i] = reg;
1591 }
1592 }
1593 }
1594
1595 void
1596 fs_visitor::assign_vs_urb_setup()
1597 {
1598 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1599
1600 assert(stage == MESA_SHADER_VERTEX);
1601
1602 /* Each attribute is 4 regs. */
1603 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1604
1605 assert(vs_prog_data->base.urb_read_length <= 15);
1606
1607 /* Rewrite all ATTR file references to the hw grf that they land in. */
1608 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1609 convert_attr_sources_to_hw_regs(inst);
1610 }
1611 }
1612
1613 void
1614 fs_visitor::assign_tcs_single_patch_urb_setup()
1615 {
1616 assert(stage == MESA_SHADER_TESS_CTRL);
1617
1618 /* Rewrite all ATTR file references to HW_REGs. */
1619 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1620 convert_attr_sources_to_hw_regs(inst);
1621 }
1622 }
1623
1624 void
1625 fs_visitor::assign_tes_urb_setup()
1626 {
1627 assert(stage == MESA_SHADER_TESS_EVAL);
1628
1629 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1630
1631 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1632
1633 /* Rewrite all ATTR file references to HW_REGs. */
1634 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1635 convert_attr_sources_to_hw_regs(inst);
1636 }
1637 }
1638
1639 void
1640 fs_visitor::assign_gs_urb_setup()
1641 {
1642 assert(stage == MESA_SHADER_GEOMETRY);
1643
1644 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1645
1646 first_non_payload_grf +=
1647 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1648
1649 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1650 /* Rewrite all ATTR file references to GRFs. */
1651 convert_attr_sources_to_hw_regs(inst);
1652 }
1653 }
1654
1655
1656 /**
1657 * Split large virtual GRFs into separate components if we can.
1658 *
1659 * This is mostly duplicated with what brw_fs_vector_splitting does,
1660 * but that's really conservative because it's afraid of doing
1661 * splitting that doesn't result in real progress after the rest of
1662 * the optimization phases, which would cause infinite looping in
1663 * optimization. We can do it once here, safely. This also has the
1664 * opportunity to split interpolated values, or maybe even uniforms,
1665 * which we don't have at the IR level.
1666 *
1667 * We want to split, because virtual GRFs are what we register
1668 * allocate and spill (due to contiguousness requirements for some
1669 * instructions), and they're what we naturally generate in the
1670 * codegen process, but most virtual GRFs don't actually need to be
1671 * contiguous sets of GRFs. If we split, we'll end up with reduced
1672 * live intervals and better dead code elimination and coalescing.
1673 */
1674 void
1675 fs_visitor::split_virtual_grfs()
1676 {
1677 /* Compact the register file so we eliminate dead vgrfs. This
1678 * only defines split points for live registers, so if we have
1679 * too large dead registers they will hit assertions later.
1680 */
1681 compact_virtual_grfs();
1682
1683 int num_vars = this->alloc.count;
1684
1685 /* Count the total number of registers */
1686 int reg_count = 0;
1687 int vgrf_to_reg[num_vars];
1688 for (int i = 0; i < num_vars; i++) {
1689 vgrf_to_reg[i] = reg_count;
1690 reg_count += alloc.sizes[i];
1691 }
1692
1693 /* An array of "split points". For each register slot, this indicates
1694 * if this slot can be separated from the previous slot. Every time an
1695 * instruction uses multiple elements of a register (as a source or
1696 * destination), we mark the used slots as inseparable. Then we go
1697 * through and split the registers into the smallest pieces we can.
1698 */
1699 bool split_points[reg_count];
1700 memset(split_points, 0, sizeof(split_points));
1701
1702 /* Mark all used registers as fully splittable */
1703 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1704 if (inst->dst.file == VGRF) {
1705 int reg = vgrf_to_reg[inst->dst.nr];
1706 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1707 split_points[reg + j] = true;
1708 }
1709
1710 for (int i = 0; i < inst->sources; i++) {
1711 if (inst->src[i].file == VGRF) {
1712 int reg = vgrf_to_reg[inst->src[i].nr];
1713 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1714 split_points[reg + j] = true;
1715 }
1716 }
1717 }
1718
1719 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1720 if (inst->dst.file == VGRF) {
1721 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1722 for (unsigned j = 1; j < regs_written(inst); j++)
1723 split_points[reg + j] = false;
1724 }
1725 for (int i = 0; i < inst->sources; i++) {
1726 if (inst->src[i].file == VGRF) {
1727 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1728 for (unsigned j = 1; j < regs_read(inst, i); j++)
1729 split_points[reg + j] = false;
1730 }
1731 }
1732 }
1733
1734 int new_virtual_grf[reg_count];
1735 int new_reg_offset[reg_count];
1736
1737 int reg = 0;
1738 for (int i = 0; i < num_vars; i++) {
1739 /* The first one should always be 0 as a quick sanity check. */
1740 assert(split_points[reg] == false);
1741
1742 /* j = 0 case */
1743 new_reg_offset[reg] = 0;
1744 reg++;
1745 int offset = 1;
1746
1747 /* j > 0 case */
1748 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1749 /* If this is a split point, reset the offset to 0 and allocate a
1750 * new virtual GRF for the previous offset many registers
1751 */
1752 if (split_points[reg]) {
1753 assert(offset <= MAX_VGRF_SIZE);
1754 int grf = alloc.allocate(offset);
1755 for (int k = reg - offset; k < reg; k++)
1756 new_virtual_grf[k] = grf;
1757 offset = 0;
1758 }
1759 new_reg_offset[reg] = offset;
1760 offset++;
1761 reg++;
1762 }
1763
1764 /* The last one gets the original register number */
1765 assert(offset <= MAX_VGRF_SIZE);
1766 alloc.sizes[i] = offset;
1767 for (int k = reg - offset; k < reg; k++)
1768 new_virtual_grf[k] = i;
1769 }
1770 assert(reg == reg_count);
1771
1772 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1773 if (inst->dst.file == VGRF) {
1774 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1775 inst->dst.nr = new_virtual_grf[reg];
1776 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1777 inst->dst.offset % REG_SIZE;
1778 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1779 }
1780 for (int i = 0; i < inst->sources; i++) {
1781 if (inst->src[i].file == VGRF) {
1782 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1783 inst->src[i].nr = new_virtual_grf[reg];
1784 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1785 inst->src[i].offset % REG_SIZE;
1786 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1787 }
1788 }
1789 }
1790 invalidate_live_intervals();
1791 }
1792
1793 /**
1794 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1795 *
1796 * During code generation, we create tons of temporary variables, many of
1797 * which get immediately killed and are never used again. Yet, in later
1798 * optimization and analysis passes, such as compute_live_intervals, we need
1799 * to loop over all the virtual GRFs. Compacting them can save a lot of
1800 * overhead.
1801 */
1802 bool
1803 fs_visitor::compact_virtual_grfs()
1804 {
1805 bool progress = false;
1806 int remap_table[this->alloc.count];
1807 memset(remap_table, -1, sizeof(remap_table));
1808
1809 /* Mark which virtual GRFs are used. */
1810 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1811 if (inst->dst.file == VGRF)
1812 remap_table[inst->dst.nr] = 0;
1813
1814 for (int i = 0; i < inst->sources; i++) {
1815 if (inst->src[i].file == VGRF)
1816 remap_table[inst->src[i].nr] = 0;
1817 }
1818 }
1819
1820 /* Compact the GRF arrays. */
1821 int new_index = 0;
1822 for (unsigned i = 0; i < this->alloc.count; i++) {
1823 if (remap_table[i] == -1) {
1824 /* We just found an unused register. This means that we are
1825 * actually going to compact something.
1826 */
1827 progress = true;
1828 } else {
1829 remap_table[i] = new_index;
1830 alloc.sizes[new_index] = alloc.sizes[i];
1831 invalidate_live_intervals();
1832 ++new_index;
1833 }
1834 }
1835
1836 this->alloc.count = new_index;
1837
1838 /* Patch all the instructions to use the newly renumbered registers */
1839 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1840 if (inst->dst.file == VGRF)
1841 inst->dst.nr = remap_table[inst->dst.nr];
1842
1843 for (int i = 0; i < inst->sources; i++) {
1844 if (inst->src[i].file == VGRF)
1845 inst->src[i].nr = remap_table[inst->src[i].nr];
1846 }
1847 }
1848
1849 /* Patch all the references to delta_xy, since they're used in register
1850 * allocation. If they're unused, switch them to BAD_FILE so we don't
1851 * think some random VGRF is delta_xy.
1852 */
1853 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1854 if (delta_xy[i].file == VGRF) {
1855 if (remap_table[delta_xy[i].nr] != -1) {
1856 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1857 } else {
1858 delta_xy[i].file = BAD_FILE;
1859 }
1860 }
1861 }
1862
1863 return progress;
1864 }
1865
1866 static void
1867 set_push_pull_constant_loc(unsigned uniform, int *chunk_start,
1868 unsigned *max_chunk_bitsize,
1869 bool contiguous, unsigned bitsize,
1870 const unsigned target_bitsize,
1871 int *push_constant_loc, int *pull_constant_loc,
1872 unsigned *num_push_constants,
1873 unsigned *num_pull_constants,
1874 const unsigned max_push_components,
1875 const unsigned max_chunk_size,
1876 struct brw_stage_prog_data *stage_prog_data)
1877 {
1878 /* This is the first live uniform in the chunk */
1879 if (*chunk_start < 0)
1880 *chunk_start = uniform;
1881
1882 /* Keep track of the maximum bit size access in contiguous uniforms */
1883 *max_chunk_bitsize = MAX2(*max_chunk_bitsize, bitsize);
1884
1885 /* If this element does not need to be contiguous with the next, we
1886 * split at this point and everything between chunk_start and u forms a
1887 * single chunk.
1888 */
1889 if (!contiguous) {
1890 /* If bitsize doesn't match the target one, skip it */
1891 if (*max_chunk_bitsize != target_bitsize) {
1892 /* FIXME: right now we only support 32 and 64-bit accesses */
1893 assert(*max_chunk_bitsize == 4 || *max_chunk_bitsize == 8);
1894 *max_chunk_bitsize = 0;
1895 *chunk_start = -1;
1896 return;
1897 }
1898
1899 unsigned chunk_size = uniform - *chunk_start + 1;
1900
1901 /* Decide whether we should push or pull this parameter. In the
1902 * Vulkan driver, push constants are explicitly exposed via the API
1903 * so we push everything. In GL, we only push small arrays.
1904 */
1905 if (stage_prog_data->pull_param == NULL ||
1906 (*num_push_constants + chunk_size <= max_push_components &&
1907 chunk_size <= max_chunk_size)) {
1908 assert(*num_push_constants + chunk_size <= max_push_components);
1909 for (unsigned j = *chunk_start; j <= uniform; j++)
1910 push_constant_loc[j] = (*num_push_constants)++;
1911 } else {
1912 for (unsigned j = *chunk_start; j <= uniform; j++)
1913 pull_constant_loc[j] = (*num_pull_constants)++;
1914 }
1915
1916 *max_chunk_bitsize = 0;
1917 *chunk_start = -1;
1918 }
1919 }
1920
1921 /**
1922 * Assign UNIFORM file registers to either push constants or pull constants.
1923 *
1924 * We allow a fragment shader to have more than the specified minimum
1925 * maximum number of fragment shader uniform components (64). If
1926 * there are too many of these, they'd fill up all of register space.
1927 * So, this will push some of them out to the pull constant buffer and
1928 * update the program to load them.
1929 */
1930 void
1931 fs_visitor::assign_constant_locations()
1932 {
1933 /* Only the first compile gets to decide on locations. */
1934 if (dispatch_width != min_dispatch_width)
1935 return;
1936
1937 bool is_live[uniforms];
1938 memset(is_live, 0, sizeof(is_live));
1939 unsigned bitsize_access[uniforms];
1940 memset(bitsize_access, 0, sizeof(bitsize_access));
1941
1942 /* For each uniform slot, a value of true indicates that the given slot and
1943 * the next slot must remain contiguous. This is used to keep us from
1944 * splitting arrays apart.
1945 */
1946 bool contiguous[uniforms];
1947 memset(contiguous, 0, sizeof(contiguous));
1948
1949 int thread_local_id_index =
1950 (stage == MESA_SHADER_COMPUTE) ?
1951 brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1952
1953 /* First, we walk through the instructions and do two things:
1954 *
1955 * 1) Figure out which uniforms are live.
1956 *
1957 * 2) Mark any indirectly used ranges of registers as contiguous.
1958 *
1959 * Note that we don't move constant-indexed accesses to arrays. No
1960 * testing has been done of the performance impact of this choice.
1961 */
1962 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1963 for (int i = 0 ; i < inst->sources; i++) {
1964 if (inst->src[i].file != UNIFORM)
1965 continue;
1966
1967 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1968
1969 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1970 assert(inst->src[2].ud % 4 == 0);
1971 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1972 assert(last < uniforms);
1973
1974 for (unsigned j = constant_nr; j < last; j++) {
1975 is_live[j] = true;
1976 contiguous[j] = true;
1977 bitsize_access[j] = MAX2(bitsize_access[j], type_sz(inst->src[i].type));
1978 }
1979 is_live[last] = true;
1980 bitsize_access[last] = MAX2(bitsize_access[last], type_sz(inst->src[i].type));
1981 } else {
1982 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1983 int regs_read = inst->components_read(i) *
1984 type_sz(inst->src[i].type) / 4;
1985 for (int j = 0; j < regs_read; j++) {
1986 is_live[constant_nr + j] = true;
1987 bitsize_access[constant_nr + j] =
1988 MAX2(bitsize_access[constant_nr + j], type_sz(inst->src[i].type));
1989 }
1990 }
1991 }
1992 }
1993 }
1994
1995 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
1996 thread_local_id_index = -1;
1997
1998 /* Only allow 16 registers (128 uniform components) as push constants.
1999 *
2000 * Just demote the end of the list. We could probably do better
2001 * here, demoting things that are rarely used in the program first.
2002 *
2003 * If changing this value, note the limitation about total_regs in
2004 * brw_curbe.c.
2005 */
2006 unsigned int max_push_components = 16 * 8;
2007 if (thread_local_id_index >= 0)
2008 max_push_components--; /* Save a slot for the thread ID */
2009
2010 /* We push small arrays, but no bigger than 16 floats. This is big enough
2011 * for a vec4 but hopefully not large enough to push out other stuff. We
2012 * should probably use a better heuristic at some point.
2013 */
2014 const unsigned int max_chunk_size = 16;
2015
2016 unsigned int num_push_constants = 0;
2017 unsigned int num_pull_constants = 0;
2018
2019 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2020 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2021
2022 /* Default to -1 meaning no location */
2023 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2024 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2025
2026 int chunk_start = -1;
2027 unsigned max_chunk_bitsize = 0;
2028
2029 /* First push 64-bit uniforms to ensure they are properly aligned */
2030 const unsigned uniform_64_bit_size = type_sz(BRW_REGISTER_TYPE_DF);
2031 for (unsigned u = 0; u < uniforms; u++) {
2032 if (!is_live[u])
2033 continue;
2034
2035 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2036 contiguous[u], bitsize_access[u],
2037 uniform_64_bit_size,
2038 push_constant_loc, pull_constant_loc,
2039 &num_push_constants, &num_pull_constants,
2040 max_push_components, max_chunk_size,
2041 stage_prog_data);
2042
2043 }
2044
2045 /* Then push the rest of uniforms */
2046 const unsigned uniform_32_bit_size = type_sz(BRW_REGISTER_TYPE_F);
2047 for (unsigned u = 0; u < uniforms; u++) {
2048 if (!is_live[u])
2049 continue;
2050
2051 /* Skip thread_local_id_index to put it in the last push register. */
2052 if (thread_local_id_index == (int)u)
2053 continue;
2054
2055 set_push_pull_constant_loc(u, &chunk_start, &max_chunk_bitsize,
2056 contiguous[u], bitsize_access[u],
2057 uniform_32_bit_size,
2058 push_constant_loc, pull_constant_loc,
2059 &num_push_constants, &num_pull_constants,
2060 max_push_components, max_chunk_size,
2061 stage_prog_data);
2062 }
2063
2064 /* Add the CS local thread ID uniform at the end of the push constants */
2065 if (thread_local_id_index >= 0)
2066 push_constant_loc[thread_local_id_index] = num_push_constants++;
2067
2068 /* As the uniforms are going to be reordered, take the data from a temporary
2069 * copy of the original param[].
2070 */
2071 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2072 stage_prog_data->nr_params);
2073 memcpy(param, stage_prog_data->param,
2074 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2075 stage_prog_data->nr_params = num_push_constants;
2076 stage_prog_data->nr_pull_params = num_pull_constants;
2077
2078 /* Now that we know how many regular uniforms we'll push, reduce the
2079 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2080 */
2081 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2082 for (int i = 0; i < 4; i++) {
2083 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2084
2085 if (push_length + range->length > 64)
2086 range->length = 64 - push_length;
2087
2088 push_length += range->length;
2089 }
2090 assert(push_length <= 64);
2091
2092 /* Up until now, the param[] array has been indexed by reg + offset
2093 * of UNIFORM registers. Move pull constants into pull_param[] and
2094 * condense param[] to only contain the uniforms we chose to push.
2095 *
2096 * NOTE: Because we are condensing the params[] array, we know that
2097 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2098 * having to make a copy.
2099 */
2100 int new_thread_local_id_index = -1;
2101 for (unsigned int i = 0; i < uniforms; i++) {
2102 const gl_constant_value *value = param[i];
2103
2104 if (pull_constant_loc[i] != -1) {
2105 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2106 } else if (push_constant_loc[i] != -1) {
2107 stage_prog_data->param[push_constant_loc[i]] = value;
2108 if (thread_local_id_index == (int)i)
2109 new_thread_local_id_index = push_constant_loc[i];
2110 }
2111 }
2112 ralloc_free(param);
2113
2114 if (stage == MESA_SHADER_COMPUTE)
2115 brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2116 new_thread_local_id_index;
2117 }
2118
2119 bool
2120 fs_visitor::get_pull_locs(const fs_reg &src,
2121 unsigned *out_surf_index,
2122 unsigned *out_pull_index)
2123 {
2124 assert(src.file == UNIFORM);
2125
2126 if (src.nr >= UBO_START) {
2127 const struct brw_ubo_range *range =
2128 &prog_data->ubo_ranges[src.nr - UBO_START];
2129
2130 /* If this access is in our (reduced) range, use the push data. */
2131 if (src.offset / 32 < range->length)
2132 return false;
2133
2134 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2135 *out_pull_index = (32 * range->start + src.offset) / 4;
2136 return true;
2137 }
2138
2139 const unsigned location = src.nr + src.offset / 4;
2140
2141 if (location < uniforms && pull_constant_loc[location] != -1) {
2142 /* A regular uniform push constant */
2143 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2144 *out_pull_index = pull_constant_loc[location];
2145 return true;
2146 }
2147
2148 return false;
2149 }
2150
2151 /**
2152 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2153 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2154 */
2155 void
2156 fs_visitor::lower_constant_loads()
2157 {
2158 unsigned index, pull_index;
2159
2160 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2161 /* Set up the annotation tracking for new generated instructions. */
2162 const fs_builder ibld(this, block, inst);
2163
2164 for (int i = 0; i < inst->sources; i++) {
2165 if (inst->src[i].file != UNIFORM)
2166 continue;
2167
2168 /* We'll handle this case later */
2169 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2170 continue;
2171
2172 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2173 continue;
2174
2175 assert(inst->src[i].stride == 0);
2176
2177 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2178 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2179 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2180 const unsigned base = pull_index * 4;
2181
2182 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2183 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2184
2185 /* Rewrite the instruction to use the temporary VGRF. */
2186 inst->src[i].file = VGRF;
2187 inst->src[i].nr = dst.nr;
2188 inst->src[i].offset = (base & (block_sz - 1)) +
2189 inst->src[i].offset % 4;
2190
2191 brw_mark_surface_used(prog_data, index);
2192 }
2193
2194 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2195 inst->src[0].file == UNIFORM) {
2196
2197 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2198 continue;
2199
2200 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2201 brw_imm_ud(index),
2202 inst->src[1],
2203 pull_index * 4);
2204 inst->remove(block);
2205
2206 brw_mark_surface_used(prog_data, index);
2207 }
2208 }
2209 invalidate_live_intervals();
2210 }
2211
2212 bool
2213 fs_visitor::opt_algebraic()
2214 {
2215 bool progress = false;
2216
2217 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2218 switch (inst->opcode) {
2219 case BRW_OPCODE_MOV:
2220 if (inst->src[0].file != IMM)
2221 break;
2222
2223 if (inst->saturate) {
2224 if (inst->dst.type != inst->src[0].type)
2225 assert(!"unimplemented: saturate mixed types");
2226
2227 if (brw_saturate_immediate(inst->dst.type,
2228 &inst->src[0].as_brw_reg())) {
2229 inst->saturate = false;
2230 progress = true;
2231 }
2232 }
2233 break;
2234
2235 case BRW_OPCODE_MUL:
2236 if (inst->src[1].file != IMM)
2237 continue;
2238
2239 /* a * 1.0 = a */
2240 if (inst->src[1].is_one()) {
2241 inst->opcode = BRW_OPCODE_MOV;
2242 inst->src[1] = reg_undef;
2243 progress = true;
2244 break;
2245 }
2246
2247 /* a * -1.0 = -a */
2248 if (inst->src[1].is_negative_one()) {
2249 inst->opcode = BRW_OPCODE_MOV;
2250 inst->src[0].negate = !inst->src[0].negate;
2251 inst->src[1] = reg_undef;
2252 progress = true;
2253 break;
2254 }
2255
2256 /* a * 0.0 = 0.0 */
2257 if (inst->src[1].is_zero()) {
2258 inst->opcode = BRW_OPCODE_MOV;
2259 inst->src[0] = inst->src[1];
2260 inst->src[1] = reg_undef;
2261 progress = true;
2262 break;
2263 }
2264
2265 if (inst->src[0].file == IMM) {
2266 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2267 inst->opcode = BRW_OPCODE_MOV;
2268 inst->src[0].f *= inst->src[1].f;
2269 inst->src[1] = reg_undef;
2270 progress = true;
2271 break;
2272 }
2273 break;
2274 case BRW_OPCODE_ADD:
2275 if (inst->src[1].file != IMM)
2276 continue;
2277
2278 /* a + 0.0 = a */
2279 if (inst->src[1].is_zero()) {
2280 inst->opcode = BRW_OPCODE_MOV;
2281 inst->src[1] = reg_undef;
2282 progress = true;
2283 break;
2284 }
2285
2286 if (inst->src[0].file == IMM) {
2287 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2288 inst->opcode = BRW_OPCODE_MOV;
2289 inst->src[0].f += inst->src[1].f;
2290 inst->src[1] = reg_undef;
2291 progress = true;
2292 break;
2293 }
2294 break;
2295 case BRW_OPCODE_OR:
2296 if (inst->src[0].equals(inst->src[1])) {
2297 inst->opcode = BRW_OPCODE_MOV;
2298 inst->src[1] = reg_undef;
2299 progress = true;
2300 break;
2301 }
2302 break;
2303 case BRW_OPCODE_LRP:
2304 if (inst->src[1].equals(inst->src[2])) {
2305 inst->opcode = BRW_OPCODE_MOV;
2306 inst->src[0] = inst->src[1];
2307 inst->src[1] = reg_undef;
2308 inst->src[2] = reg_undef;
2309 progress = true;
2310 break;
2311 }
2312 break;
2313 case BRW_OPCODE_CMP:
2314 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2315 inst->src[0].abs &&
2316 inst->src[0].negate &&
2317 inst->src[1].is_zero()) {
2318 inst->src[0].abs = false;
2319 inst->src[0].negate = false;
2320 inst->conditional_mod = BRW_CONDITIONAL_Z;
2321 progress = true;
2322 break;
2323 }
2324 break;
2325 case BRW_OPCODE_SEL:
2326 if (inst->src[0].equals(inst->src[1])) {
2327 inst->opcode = BRW_OPCODE_MOV;
2328 inst->src[1] = reg_undef;
2329 inst->predicate = BRW_PREDICATE_NONE;
2330 inst->predicate_inverse = false;
2331 progress = true;
2332 } else if (inst->saturate && inst->src[1].file == IMM) {
2333 switch (inst->conditional_mod) {
2334 case BRW_CONDITIONAL_LE:
2335 case BRW_CONDITIONAL_L:
2336 switch (inst->src[1].type) {
2337 case BRW_REGISTER_TYPE_F:
2338 if (inst->src[1].f >= 1.0f) {
2339 inst->opcode = BRW_OPCODE_MOV;
2340 inst->src[1] = reg_undef;
2341 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2342 progress = true;
2343 }
2344 break;
2345 default:
2346 break;
2347 }
2348 break;
2349 case BRW_CONDITIONAL_GE:
2350 case BRW_CONDITIONAL_G:
2351 switch (inst->src[1].type) {
2352 case BRW_REGISTER_TYPE_F:
2353 if (inst->src[1].f <= 0.0f) {
2354 inst->opcode = BRW_OPCODE_MOV;
2355 inst->src[1] = reg_undef;
2356 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2357 progress = true;
2358 }
2359 break;
2360 default:
2361 break;
2362 }
2363 default:
2364 break;
2365 }
2366 }
2367 break;
2368 case BRW_OPCODE_MAD:
2369 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2370 inst->opcode = BRW_OPCODE_MOV;
2371 inst->src[1] = reg_undef;
2372 inst->src[2] = reg_undef;
2373 progress = true;
2374 } else if (inst->src[0].is_zero()) {
2375 inst->opcode = BRW_OPCODE_MUL;
2376 inst->src[0] = inst->src[2];
2377 inst->src[2] = reg_undef;
2378 progress = true;
2379 } else if (inst->src[1].is_one()) {
2380 inst->opcode = BRW_OPCODE_ADD;
2381 inst->src[1] = inst->src[2];
2382 inst->src[2] = reg_undef;
2383 progress = true;
2384 } else if (inst->src[2].is_one()) {
2385 inst->opcode = BRW_OPCODE_ADD;
2386 inst->src[2] = reg_undef;
2387 progress = true;
2388 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2389 inst->opcode = BRW_OPCODE_ADD;
2390 inst->src[1].f *= inst->src[2].f;
2391 inst->src[2] = reg_undef;
2392 progress = true;
2393 }
2394 break;
2395 case SHADER_OPCODE_BROADCAST:
2396 if (is_uniform(inst->src[0])) {
2397 inst->opcode = BRW_OPCODE_MOV;
2398 inst->sources = 1;
2399 inst->force_writemask_all = true;
2400 progress = true;
2401 } else if (inst->src[1].file == IMM) {
2402 inst->opcode = BRW_OPCODE_MOV;
2403 inst->src[0] = component(inst->src[0],
2404 inst->src[1].ud);
2405 inst->sources = 1;
2406 inst->force_writemask_all = true;
2407 progress = true;
2408 }
2409 break;
2410
2411 default:
2412 break;
2413 }
2414
2415 /* Swap if src[0] is immediate. */
2416 if (progress && inst->is_commutative()) {
2417 if (inst->src[0].file == IMM) {
2418 fs_reg tmp = inst->src[1];
2419 inst->src[1] = inst->src[0];
2420 inst->src[0] = tmp;
2421 }
2422 }
2423 }
2424 return progress;
2425 }
2426
2427 /**
2428 * Optimize sample messages that have constant zero values for the trailing
2429 * texture coordinates. We can just reduce the message length for these
2430 * instructions instead of reserving a register for it. Trailing parameters
2431 * that aren't sent default to zero anyway. This will cause the dead code
2432 * eliminator to remove the MOV instruction that would otherwise be emitted to
2433 * set up the zero value.
2434 */
2435 bool
2436 fs_visitor::opt_zero_samples()
2437 {
2438 /* Gen4 infers the texturing opcode based on the message length so we can't
2439 * change it.
2440 */
2441 if (devinfo->gen < 5)
2442 return false;
2443
2444 bool progress = false;
2445
2446 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2447 if (!inst->is_tex())
2448 continue;
2449
2450 fs_inst *load_payload = (fs_inst *) inst->prev;
2451
2452 if (load_payload->is_head_sentinel() ||
2453 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2454 continue;
2455
2456 /* We don't want to remove the message header or the first parameter.
2457 * Removing the first parameter is not allowed, see the Haswell PRM
2458 * volume 7, page 149:
2459 *
2460 * "Parameter 0 is required except for the sampleinfo message, which
2461 * has no parameter 0"
2462 */
2463 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2464 load_payload->src[(inst->mlen - inst->header_size) /
2465 (inst->exec_size / 8) +
2466 inst->header_size - 1].is_zero()) {
2467 inst->mlen -= inst->exec_size / 8;
2468 progress = true;
2469 }
2470 }
2471
2472 if (progress)
2473 invalidate_live_intervals();
2474
2475 return progress;
2476 }
2477
2478 /**
2479 * Optimize sample messages which are followed by the final RT write.
2480 *
2481 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2482 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2483 * final texturing results copied to the framebuffer write payload and modify
2484 * them to write to the framebuffer directly.
2485 */
2486 bool
2487 fs_visitor::opt_sampler_eot()
2488 {
2489 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2490
2491 if (stage != MESA_SHADER_FRAGMENT)
2492 return false;
2493
2494 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2495 return false;
2496
2497 /* FINISHME: It should be possible to implement this optimization when there
2498 * are multiple drawbuffers.
2499 */
2500 if (key->nr_color_regions != 1)
2501 return false;
2502
2503 /* Requires emitting a bunch of saturating MOV instructions during logical
2504 * send lowering to clamp the color payload, which the sampler unit isn't
2505 * going to do for us.
2506 */
2507 if (key->clamp_fragment_color)
2508 return false;
2509
2510 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2511 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2512 fs_inst *fb_write = (fs_inst *)block->end();
2513 assert(fb_write->eot);
2514 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2515
2516 /* There wasn't one; nothing to do. */
2517 if (unlikely(fb_write->prev->is_head_sentinel()))
2518 return false;
2519
2520 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2521
2522 /* 3D Sampler » Messages » Message Format
2523 *
2524 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2525 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2526 */
2527 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2528 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2529 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2530 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2531 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2532 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2533 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2534 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2535 return false;
2536
2537 /* XXX - This shouldn't be necessary. */
2538 if (tex_inst->prev->is_head_sentinel())
2539 return false;
2540
2541 /* Check that the FB write sources are fully initialized by the single
2542 * texturing instruction.
2543 */
2544 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2545 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2546 if (!fb_write->src[i].equals(tex_inst->dst) ||
2547 fb_write->size_read(i) != tex_inst->size_written)
2548 return false;
2549 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2550 if (fb_write->src[i].file != BAD_FILE)
2551 return false;
2552 }
2553 }
2554
2555 assert(!tex_inst->eot); /* We can't get here twice */
2556 assert((tex_inst->offset & (0xff << 24)) == 0);
2557
2558 const fs_builder ibld(this, block, tex_inst);
2559
2560 tex_inst->offset |= fb_write->target << 24;
2561 tex_inst->eot = true;
2562 tex_inst->dst = ibld.null_reg_ud();
2563 tex_inst->size_written = 0;
2564 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2565
2566 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2567 * flag and submit a header together with the sampler message as required
2568 * by the hardware.
2569 */
2570 invalidate_live_intervals();
2571 return true;
2572 }
2573
2574 bool
2575 fs_visitor::opt_register_renaming()
2576 {
2577 bool progress = false;
2578 int depth = 0;
2579
2580 int remap[alloc.count];
2581 memset(remap, -1, sizeof(int) * alloc.count);
2582
2583 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2584 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2585 depth++;
2586 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2587 inst->opcode == BRW_OPCODE_WHILE) {
2588 depth--;
2589 }
2590
2591 /* Rewrite instruction sources. */
2592 for (int i = 0; i < inst->sources; i++) {
2593 if (inst->src[i].file == VGRF &&
2594 remap[inst->src[i].nr] != -1 &&
2595 remap[inst->src[i].nr] != inst->src[i].nr) {
2596 inst->src[i].nr = remap[inst->src[i].nr];
2597 progress = true;
2598 }
2599 }
2600
2601 const int dst = inst->dst.nr;
2602
2603 if (depth == 0 &&
2604 inst->dst.file == VGRF &&
2605 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2606 !inst->is_partial_write()) {
2607 if (remap[dst] == -1) {
2608 remap[dst] = dst;
2609 } else {
2610 remap[dst] = alloc.allocate(regs_written(inst));
2611 inst->dst.nr = remap[dst];
2612 progress = true;
2613 }
2614 } else if (inst->dst.file == VGRF &&
2615 remap[dst] != -1 &&
2616 remap[dst] != dst) {
2617 inst->dst.nr = remap[dst];
2618 progress = true;
2619 }
2620 }
2621
2622 if (progress) {
2623 invalidate_live_intervals();
2624
2625 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2626 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2627 delta_xy[i].nr = remap[delta_xy[i].nr];
2628 }
2629 }
2630 }
2631
2632 return progress;
2633 }
2634
2635 /**
2636 * Remove redundant or useless discard jumps.
2637 *
2638 * For example, we can eliminate jumps in the following sequence:
2639 *
2640 * discard-jump (redundant with the next jump)
2641 * discard-jump (useless; jumps to the next instruction)
2642 * placeholder-halt
2643 */
2644 bool
2645 fs_visitor::opt_redundant_discard_jumps()
2646 {
2647 bool progress = false;
2648
2649 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2650
2651 fs_inst *placeholder_halt = NULL;
2652 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2653 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2654 placeholder_halt = inst;
2655 break;
2656 }
2657 }
2658
2659 if (!placeholder_halt)
2660 return false;
2661
2662 /* Delete any HALTs immediately before the placeholder halt. */
2663 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2664 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2665 prev = (fs_inst *) placeholder_halt->prev) {
2666 prev->remove(last_bblock);
2667 progress = true;
2668 }
2669
2670 if (progress)
2671 invalidate_live_intervals();
2672
2673 return progress;
2674 }
2675
2676 /**
2677 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2678 * from \p r.offset which overlaps the region starting at \p s.offset and
2679 * spanning \p ds bytes.
2680 */
2681 static inline unsigned
2682 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2683 {
2684 const int rel_offset = reg_offset(s) - reg_offset(r);
2685 const int shift = rel_offset / REG_SIZE;
2686 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2687 assert(reg_space(r) == reg_space(s) &&
2688 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2689 return ((1 << n) - 1) << shift;
2690 }
2691
2692 bool
2693 fs_visitor::compute_to_mrf()
2694 {
2695 bool progress = false;
2696 int next_ip = 0;
2697
2698 /* No MRFs on Gen >= 7. */
2699 if (devinfo->gen >= 7)
2700 return false;
2701
2702 calculate_live_intervals();
2703
2704 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2705 int ip = next_ip;
2706 next_ip++;
2707
2708 if (inst->opcode != BRW_OPCODE_MOV ||
2709 inst->is_partial_write() ||
2710 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2711 inst->dst.type != inst->src[0].type ||
2712 inst->src[0].abs || inst->src[0].negate ||
2713 !inst->src[0].is_contiguous() ||
2714 inst->src[0].offset % REG_SIZE != 0)
2715 continue;
2716
2717 /* Can't compute-to-MRF this GRF if someone else was going to
2718 * read it later.
2719 */
2720 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2721 continue;
2722
2723 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2724 * things that computed the value of all GRFs of the source region. The
2725 * regs_left bitset keeps track of the registers we haven't yet found a
2726 * generating instruction for.
2727 */
2728 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2729
2730 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2731 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2732 inst->src[0], inst->size_read(0))) {
2733 /* Found the last thing to write our reg we want to turn
2734 * into a compute-to-MRF.
2735 */
2736
2737 /* If this one instruction didn't populate all the
2738 * channels, bail. We might be able to rewrite everything
2739 * that writes that reg, but it would require smarter
2740 * tracking.
2741 */
2742 if (scan_inst->is_partial_write())
2743 break;
2744
2745 /* Handling things not fully contained in the source of the copy
2746 * would need us to understand coalescing out more than one MOV at
2747 * a time.
2748 */
2749 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2750 inst->src[0], inst->size_read(0)))
2751 break;
2752
2753 /* SEND instructions can't have MRF as a destination. */
2754 if (scan_inst->mlen)
2755 break;
2756
2757 if (devinfo->gen == 6) {
2758 /* gen6 math instructions must have the destination be
2759 * GRF, so no compute-to-MRF for them.
2760 */
2761 if (scan_inst->is_math()) {
2762 break;
2763 }
2764 }
2765
2766 /* Clear the bits for any registers this instruction overwrites. */
2767 regs_left &= ~mask_relative_to(
2768 inst->src[0], scan_inst->dst, scan_inst->size_written);
2769 if (!regs_left)
2770 break;
2771 }
2772
2773 /* We don't handle control flow here. Most computation of
2774 * values that end up in MRFs are shortly before the MRF
2775 * write anyway.
2776 */
2777 if (block->start() == scan_inst)
2778 break;
2779
2780 /* You can't read from an MRF, so if someone else reads our
2781 * MRF's source GRF that we wanted to rewrite, that stops us.
2782 */
2783 bool interfered = false;
2784 for (int i = 0; i < scan_inst->sources; i++) {
2785 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2786 inst->src[0], inst->size_read(0))) {
2787 interfered = true;
2788 }
2789 }
2790 if (interfered)
2791 break;
2792
2793 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2794 inst->dst, inst->size_written)) {
2795 /* If somebody else writes our MRF here, we can't
2796 * compute-to-MRF before that.
2797 */
2798 break;
2799 }
2800
2801 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2802 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2803 inst->dst, inst->size_written)) {
2804 /* Found a SEND instruction, which means that there are
2805 * live values in MRFs from base_mrf to base_mrf +
2806 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2807 * above it.
2808 */
2809 break;
2810 }
2811 }
2812
2813 if (regs_left)
2814 continue;
2815
2816 /* Found all generating instructions of our MRF's source value, so it
2817 * should be safe to rewrite them to point to the MRF directly.
2818 */
2819 regs_left = (1 << regs_read(inst, 0)) - 1;
2820
2821 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2822 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2823 inst->src[0], inst->size_read(0))) {
2824 /* Clear the bits for any registers this instruction overwrites. */
2825 regs_left &= ~mask_relative_to(
2826 inst->src[0], scan_inst->dst, scan_inst->size_written);
2827
2828 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2829 reg_offset(inst->src[0]);
2830
2831 if (inst->dst.nr & BRW_MRF_COMPR4) {
2832 /* Apply the same address transformation done by the hardware
2833 * for COMPR4 MRF writes.
2834 */
2835 assert(rel_offset < 2 * REG_SIZE);
2836 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2837
2838 /* Clear the COMPR4 bit if the generating instruction is not
2839 * compressed.
2840 */
2841 if (scan_inst->size_written < 2 * REG_SIZE)
2842 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2843
2844 } else {
2845 /* Calculate the MRF number the result of this instruction is
2846 * ultimately written to.
2847 */
2848 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2849 }
2850
2851 scan_inst->dst.file = MRF;
2852 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2853 scan_inst->saturate |= inst->saturate;
2854 if (!regs_left)
2855 break;
2856 }
2857 }
2858
2859 assert(!regs_left);
2860 inst->remove(block);
2861 progress = true;
2862 }
2863
2864 if (progress)
2865 invalidate_live_intervals();
2866
2867 return progress;
2868 }
2869
2870 /**
2871 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2872 * flow. We could probably do better here with some form of divergence
2873 * analysis.
2874 */
2875 bool
2876 fs_visitor::eliminate_find_live_channel()
2877 {
2878 bool progress = false;
2879 unsigned depth = 0;
2880
2881 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2882 /* The optimization below assumes that channel zero is live on thread
2883 * dispatch, which may not be the case if the fixed function dispatches
2884 * threads sparsely.
2885 */
2886 return false;
2887 }
2888
2889 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2890 switch (inst->opcode) {
2891 case BRW_OPCODE_IF:
2892 case BRW_OPCODE_DO:
2893 depth++;
2894 break;
2895
2896 case BRW_OPCODE_ENDIF:
2897 case BRW_OPCODE_WHILE:
2898 depth--;
2899 break;
2900
2901 case FS_OPCODE_DISCARD_JUMP:
2902 /* This can potentially make control flow non-uniform until the end
2903 * of the program.
2904 */
2905 return progress;
2906
2907 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2908 if (depth == 0) {
2909 inst->opcode = BRW_OPCODE_MOV;
2910 inst->src[0] = brw_imm_ud(0u);
2911 inst->sources = 1;
2912 inst->force_writemask_all = true;
2913 progress = true;
2914 }
2915 break;
2916
2917 default:
2918 break;
2919 }
2920 }
2921
2922 return progress;
2923 }
2924
2925 /**
2926 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2927 * instructions to FS_OPCODE_REP_FB_WRITE.
2928 */
2929 void
2930 fs_visitor::emit_repclear_shader()
2931 {
2932 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2933 int base_mrf = 0;
2934 int color_mrf = base_mrf + 2;
2935 fs_inst *mov;
2936
2937 if (uniforms > 0) {
2938 mov = bld.exec_all().group(4, 0)
2939 .MOV(brw_message_reg(color_mrf),
2940 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2941 } else {
2942 struct brw_reg reg =
2943 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2944 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2945 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2946
2947 mov = bld.exec_all().group(4, 0)
2948 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2949 }
2950
2951 fs_inst *write;
2952 if (key->nr_color_regions == 1) {
2953 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2954 write->saturate = key->clamp_fragment_color;
2955 write->base_mrf = color_mrf;
2956 write->target = 0;
2957 write->header_size = 0;
2958 write->mlen = 1;
2959 } else {
2960 assume(key->nr_color_regions > 0);
2961 for (int i = 0; i < key->nr_color_regions; ++i) {
2962 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2963 write->saturate = key->clamp_fragment_color;
2964 write->base_mrf = base_mrf;
2965 write->target = i;
2966 write->header_size = 2;
2967 write->mlen = 3;
2968 }
2969 }
2970 write->eot = true;
2971
2972 calculate_cfg();
2973
2974 assign_constant_locations();
2975 assign_curb_setup();
2976
2977 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2978 if (uniforms > 0) {
2979 assert(mov->src[0].file == FIXED_GRF);
2980 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2981 }
2982 }
2983
2984 /**
2985 * Walks through basic blocks, looking for repeated MRF writes and
2986 * removing the later ones.
2987 */
2988 bool
2989 fs_visitor::remove_duplicate_mrf_writes()
2990 {
2991 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2992 bool progress = false;
2993
2994 /* Need to update the MRF tracking for compressed instructions. */
2995 if (dispatch_width >= 16)
2996 return false;
2997
2998 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2999
3000 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3001 if (inst->is_control_flow()) {
3002 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3003 }
3004
3005 if (inst->opcode == BRW_OPCODE_MOV &&
3006 inst->dst.file == MRF) {
3007 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3008 if (prev_inst && inst->equals(prev_inst)) {
3009 inst->remove(block);
3010 progress = true;
3011 continue;
3012 }
3013 }
3014
3015 /* Clear out the last-write records for MRFs that were overwritten. */
3016 if (inst->dst.file == MRF) {
3017 last_mrf_move[inst->dst.nr] = NULL;
3018 }
3019
3020 if (inst->mlen > 0 && inst->base_mrf != -1) {
3021 /* Found a SEND instruction, which will include two or fewer
3022 * implied MRF writes. We could do better here.
3023 */
3024 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3025 last_mrf_move[inst->base_mrf + i] = NULL;
3026 }
3027 }
3028
3029 /* Clear out any MRF move records whose sources got overwritten. */
3030 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3031 if (last_mrf_move[i] &&
3032 regions_overlap(inst->dst, inst->size_written,
3033 last_mrf_move[i]->src[0],
3034 last_mrf_move[i]->size_read(0))) {
3035 last_mrf_move[i] = NULL;
3036 }
3037 }
3038
3039 if (inst->opcode == BRW_OPCODE_MOV &&
3040 inst->dst.file == MRF &&
3041 inst->src[0].file != ARF &&
3042 !inst->is_partial_write()) {
3043 last_mrf_move[inst->dst.nr] = inst;
3044 }
3045 }
3046
3047 if (progress)
3048 invalidate_live_intervals();
3049
3050 return progress;
3051 }
3052
3053 static void
3054 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3055 {
3056 /* Clear the flag for registers that actually got read (as expected). */
3057 for (int i = 0; i < inst->sources; i++) {
3058 int grf;
3059 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3060 grf = inst->src[i].nr;
3061 } else {
3062 continue;
3063 }
3064
3065 if (grf >= first_grf &&
3066 grf < first_grf + grf_len) {
3067 deps[grf - first_grf] = false;
3068 if (inst->exec_size == 16)
3069 deps[grf - first_grf + 1] = false;
3070 }
3071 }
3072 }
3073
3074 /**
3075 * Implements this workaround for the original 965:
3076 *
3077 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3078 * check for post destination dependencies on this instruction, software
3079 * must ensure that there is no destination hazard for the case of ‘write
3080 * followed by a posted write’ shown in the following example.
3081 *
3082 * 1. mov r3 0
3083 * 2. send r3.xy <rest of send instruction>
3084 * 3. mov r2 r3
3085 *
3086 * Due to no post-destination dependency check on the ‘send’, the above
3087 * code sequence could have two instructions (1 and 2) in flight at the
3088 * same time that both consider ‘r3’ as the target of their final writes.
3089 */
3090 void
3091 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3092 fs_inst *inst)
3093 {
3094 int write_len = regs_written(inst);
3095 int first_write_grf = inst->dst.nr;
3096 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3097 assert(write_len < (int)sizeof(needs_dep) - 1);
3098
3099 memset(needs_dep, false, sizeof(needs_dep));
3100 memset(needs_dep, true, write_len);
3101
3102 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3103
3104 /* Walk backwards looking for writes to registers we're writing which
3105 * aren't read since being written. If we hit the start of the program,
3106 * we assume that there are no outstanding dependencies on entry to the
3107 * program.
3108 */
3109 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3110 /* If we hit control flow, assume that there *are* outstanding
3111 * dependencies, and force their cleanup before our instruction.
3112 */
3113 if (block->start() == scan_inst && block->num != 0) {
3114 for (int i = 0; i < write_len; i++) {
3115 if (needs_dep[i])
3116 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3117 first_write_grf + i);
3118 }
3119 return;
3120 }
3121
3122 /* We insert our reads as late as possible on the assumption that any
3123 * instruction but a MOV that might have left us an outstanding
3124 * dependency has more latency than a MOV.
3125 */
3126 if (scan_inst->dst.file == VGRF) {
3127 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3128 int reg = scan_inst->dst.nr + i;
3129
3130 if (reg >= first_write_grf &&
3131 reg < first_write_grf + write_len &&
3132 needs_dep[reg - first_write_grf]) {
3133 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3134 needs_dep[reg - first_write_grf] = false;
3135 if (scan_inst->exec_size == 16)
3136 needs_dep[reg - first_write_grf + 1] = false;
3137 }
3138 }
3139 }
3140
3141 /* Clear the flag for registers that actually got read (as expected). */
3142 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3143
3144 /* Continue the loop only if we haven't resolved all the dependencies */
3145 int i;
3146 for (i = 0; i < write_len; i++) {
3147 if (needs_dep[i])
3148 break;
3149 }
3150 if (i == write_len)
3151 return;
3152 }
3153 }
3154
3155 /**
3156 * Implements this workaround for the original 965:
3157 *
3158 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3159 * used as a destination register until after it has been sourced by an
3160 * instruction with a different destination register.
3161 */
3162 void
3163 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3164 {
3165 int write_len = regs_written(inst);
3166 int first_write_grf = inst->dst.nr;
3167 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3168 assert(write_len < (int)sizeof(needs_dep) - 1);
3169
3170 memset(needs_dep, false, sizeof(needs_dep));
3171 memset(needs_dep, true, write_len);
3172 /* Walk forwards looking for writes to registers we're writing which aren't
3173 * read before being written.
3174 */
3175 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3176 /* If we hit control flow, force resolve all remaining dependencies. */
3177 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3178 for (int i = 0; i < write_len; i++) {
3179 if (needs_dep[i])
3180 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3181 first_write_grf + i);
3182 }
3183 return;
3184 }
3185
3186 /* Clear the flag for registers that actually got read (as expected). */
3187 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3188
3189 /* We insert our reads as late as possible since they're reading the
3190 * result of a SEND, which has massive latency.
3191 */
3192 if (scan_inst->dst.file == VGRF &&
3193 scan_inst->dst.nr >= first_write_grf &&
3194 scan_inst->dst.nr < first_write_grf + write_len &&
3195 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3196 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3197 scan_inst->dst.nr);
3198 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3199 }
3200
3201 /* Continue the loop only if we haven't resolved all the dependencies */
3202 int i;
3203 for (i = 0; i < write_len; i++) {
3204 if (needs_dep[i])
3205 break;
3206 }
3207 if (i == write_len)
3208 return;
3209 }
3210 }
3211
3212 void
3213 fs_visitor::insert_gen4_send_dependency_workarounds()
3214 {
3215 if (devinfo->gen != 4 || devinfo->is_g4x)
3216 return;
3217
3218 bool progress = false;
3219
3220 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3221 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3222 insert_gen4_pre_send_dependency_workarounds(block, inst);
3223 insert_gen4_post_send_dependency_workarounds(block, inst);
3224 progress = true;
3225 }
3226 }
3227
3228 if (progress)
3229 invalidate_live_intervals();
3230 }
3231
3232 /**
3233 * Turns the generic expression-style uniform pull constant load instruction
3234 * into a hardware-specific series of instructions for loading a pull
3235 * constant.
3236 *
3237 * The expression style allows the CSE pass before this to optimize out
3238 * repeated loads from the same offset, and gives the pre-register-allocation
3239 * scheduling full flexibility, while the conversion to native instructions
3240 * allows the post-register-allocation scheduler the best information
3241 * possible.
3242 *
3243 * Note that execution masking for setting up pull constant loads is special:
3244 * the channels that need to be written are unrelated to the current execution
3245 * mask, since a later instruction will use one of the result channels as a
3246 * source operand for all 8 or 16 of its channels.
3247 */
3248 void
3249 fs_visitor::lower_uniform_pull_constant_loads()
3250 {
3251 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3252 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3253 continue;
3254
3255 if (devinfo->gen >= 7) {
3256 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3257 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3258
3259 ubld.group(8, 0).MOV(payload,
3260 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3261 ubld.group(1, 0).MOV(component(payload, 2),
3262 brw_imm_ud(inst->src[1].ud / 16));
3263
3264 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3265 inst->src[1] = payload;
3266 inst->header_size = 1;
3267 inst->mlen = 1;
3268
3269 invalidate_live_intervals();
3270 } else {
3271 /* Before register allocation, we didn't tell the scheduler about the
3272 * MRF we use. We know it's safe to use this MRF because nothing
3273 * else does except for register spill/unspill, which generates and
3274 * uses its MRF within a single IR instruction.
3275 */
3276 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3277 inst->mlen = 1;
3278 }
3279 }
3280 }
3281
3282 bool
3283 fs_visitor::lower_load_payload()
3284 {
3285 bool progress = false;
3286
3287 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3288 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3289 continue;
3290
3291 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3292 assert(inst->saturate == false);
3293 fs_reg dst = inst->dst;
3294
3295 /* Get rid of COMPR4. We'll add it back in if we need it */
3296 if (dst.file == MRF)
3297 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3298
3299 const fs_builder ibld(this, block, inst);
3300 const fs_builder hbld = ibld.exec_all().group(8, 0);
3301
3302 for (uint8_t i = 0; i < inst->header_size; i++) {
3303 if (inst->src[i].file != BAD_FILE) {
3304 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3305 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3306 hbld.MOV(mov_dst, mov_src);
3307 }
3308 dst = offset(dst, hbld, 1);
3309 }
3310
3311 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3312 inst->exec_size > 8) {
3313 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3314 * a straightforward copy. Instead, the result of the
3315 * LOAD_PAYLOAD is treated as interleaved and the first four
3316 * non-header sources are unpacked as:
3317 *
3318 * m + 0: r0
3319 * m + 1: g0
3320 * m + 2: b0
3321 * m + 3: a0
3322 * m + 4: r1
3323 * m + 5: g1
3324 * m + 6: b1
3325 * m + 7: a1
3326 *
3327 * This is used for gen <= 5 fb writes.
3328 */
3329 assert(inst->exec_size == 16);
3330 assert(inst->header_size + 4 <= inst->sources);
3331 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3332 if (inst->src[i].file != BAD_FILE) {
3333 if (devinfo->has_compr4) {
3334 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3335 compr4_dst.nr |= BRW_MRF_COMPR4;
3336 ibld.MOV(compr4_dst, inst->src[i]);
3337 } else {
3338 /* Platform doesn't have COMPR4. We have to fake it */
3339 fs_reg mov_dst = retype(dst, inst->src[i].type);
3340 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3341 mov_dst.nr += 4;
3342 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3343 }
3344 }
3345
3346 dst.nr++;
3347 }
3348
3349 /* The loop above only ever incremented us through the first set
3350 * of 4 registers. However, thanks to the magic of COMPR4, we
3351 * actually wrote to the first 8 registers, so we need to take
3352 * that into account now.
3353 */
3354 dst.nr += 4;
3355
3356 /* The COMPR4 code took care of the first 4 sources. We'll let
3357 * the regular path handle any remaining sources. Yes, we are
3358 * modifying the instruction but we're about to delete it so
3359 * this really doesn't hurt anything.
3360 */
3361 inst->header_size += 4;
3362 }
3363
3364 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3365 if (inst->src[i].file != BAD_FILE)
3366 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3367 dst = offset(dst, ibld, 1);
3368 }
3369
3370 inst->remove(block);
3371 progress = true;
3372 }
3373
3374 if (progress)
3375 invalidate_live_intervals();
3376
3377 return progress;
3378 }
3379
3380 bool
3381 fs_visitor::lower_integer_multiplication()
3382 {
3383 bool progress = false;
3384
3385 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3386 const fs_builder ibld(this, block, inst);
3387
3388 if (inst->opcode == BRW_OPCODE_MUL) {
3389 if (inst->dst.is_accumulator() ||
3390 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3391 inst->dst.type != BRW_REGISTER_TYPE_UD))
3392 continue;
3393
3394 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3395 * operation directly, but CHV/BXT cannot.
3396 */
3397 if (devinfo->gen >= 8 &&
3398 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3399 continue;
3400
3401 if (inst->src[1].file == IMM &&
3402 inst->src[1].ud < (1 << 16)) {
3403 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3404 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3405 * src1 are used.
3406 *
3407 * If multiplying by an immediate value that fits in 16-bits, do a
3408 * single MUL instruction with that value in the proper location.
3409 */
3410 if (devinfo->gen < 7) {
3411 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3412 inst->dst.type);
3413 ibld.MOV(imm, inst->src[1]);
3414 ibld.MUL(inst->dst, imm, inst->src[0]);
3415 } else {
3416 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3417 ibld.MUL(inst->dst, inst->src[0],
3418 ud ? brw_imm_uw(inst->src[1].ud)
3419 : brw_imm_w(inst->src[1].d));
3420 }
3421 } else {
3422 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3423 * do 32-bit integer multiplication in one instruction, but instead
3424 * must do a sequence (which actually calculates a 64-bit result):
3425 *
3426 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3427 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3428 * mov(8) g2<1>D acc0<8,8,1>D
3429 *
3430 * But on Gen > 6, the ability to use second accumulator register
3431 * (acc1) for non-float data types was removed, preventing a simple
3432 * implementation in SIMD16. A 16-channel result can be calculated by
3433 * executing the three instructions twice in SIMD8, once with quarter
3434 * control of 1Q for the first eight channels and again with 2Q for
3435 * the second eight channels.
3436 *
3437 * Which accumulator register is implicitly accessed (by AccWrEnable
3438 * for instance) is determined by the quarter control. Unfortunately
3439 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3440 * implicit accumulator access by an instruction with 2Q will access
3441 * acc1 regardless of whether the data type is usable in acc1.
3442 *
3443 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3444 * integer data types.
3445 *
3446 * Since we only want the low 32-bits of the result, we can do two
3447 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3448 * adjust the high result and add them (like the mach is doing):
3449 *
3450 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3451 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3452 * shl(8) g9<1>D g8<8,8,1>D 16D
3453 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3454 *
3455 * We avoid the shl instruction by realizing that we only want to add
3456 * the low 16-bits of the "high" result to the high 16-bits of the
3457 * "low" result and using proper regioning on the add:
3458 *
3459 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3460 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3461 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3462 *
3463 * Since it does not use the (single) accumulator register, we can
3464 * schedule multi-component multiplications much better.
3465 */
3466
3467 fs_reg orig_dst = inst->dst;
3468 if (orig_dst.is_null() || orig_dst.file == MRF) {
3469 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3470 inst->dst.type);
3471 }
3472 fs_reg low = inst->dst;
3473 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3474 inst->dst.type);
3475
3476 if (devinfo->gen >= 7) {
3477 if (inst->src[1].file == IMM) {
3478 ibld.MUL(low, inst->src[0],
3479 brw_imm_uw(inst->src[1].ud & 0xffff));
3480 ibld.MUL(high, inst->src[0],
3481 brw_imm_uw(inst->src[1].ud >> 16));
3482 } else {
3483 ibld.MUL(low, inst->src[0],
3484 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3485 ibld.MUL(high, inst->src[0],
3486 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3487 }
3488 } else {
3489 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3490 inst->src[1]);
3491 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3492 inst->src[1]);
3493 }
3494
3495 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3496 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3497 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3498
3499 if (inst->conditional_mod || orig_dst.file == MRF) {
3500 set_condmod(inst->conditional_mod,
3501 ibld.MOV(orig_dst, inst->dst));
3502 }
3503 }
3504
3505 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3506 /* Should have been lowered to 8-wide. */
3507 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3508 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3509 inst->dst.type);
3510 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3511 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3512
3513 if (devinfo->gen >= 8) {
3514 /* Until Gen8, integer multiplies read 32-bits from one source,
3515 * and 16-bits from the other, and relying on the MACH instruction
3516 * to generate the high bits of the result.
3517 *
3518 * On Gen8, the multiply instruction does a full 32x32-bit
3519 * multiply, but in order to do a 64-bit multiply we can simulate
3520 * the previous behavior and then use a MACH instruction.
3521 *
3522 * FINISHME: Don't use source modifiers on src1.
3523 */
3524 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3525 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3526 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3527 mul->src[1].stride *= 2;
3528
3529 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3530 inst->group > 0) {
3531 /* Among other things the quarter control bits influence which
3532 * accumulator register is used by the hardware for instructions
3533 * that access the accumulator implicitly (e.g. MACH). A
3534 * second-half instruction would normally map to acc1, which
3535 * doesn't exist on Gen7 and up (the hardware does emulate it for
3536 * floating-point instructions *only* by taking advantage of the
3537 * extra precision of acc0 not normally used for floating point
3538 * arithmetic).
3539 *
3540 * HSW and up are careful enough not to try to access an
3541 * accumulator register that doesn't exist, but on earlier Gen7
3542 * hardware we need to make sure that the quarter control bits are
3543 * zero to avoid non-deterministic behaviour and emit an extra MOV
3544 * to get the result masked correctly according to the current
3545 * channel enables.
3546 */
3547 mach->group = 0;
3548 mach->force_writemask_all = true;
3549 mach->dst = ibld.vgrf(inst->dst.type);
3550 ibld.MOV(inst->dst, mach->dst);
3551 }
3552 } else {
3553 continue;
3554 }
3555
3556 inst->remove(block);
3557 progress = true;
3558 }
3559
3560 if (progress)
3561 invalidate_live_intervals();
3562
3563 return progress;
3564 }
3565
3566 bool
3567 fs_visitor::lower_minmax()
3568 {
3569 assert(devinfo->gen < 6);
3570
3571 bool progress = false;
3572
3573 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3574 const fs_builder ibld(this, block, inst);
3575
3576 if (inst->opcode == BRW_OPCODE_SEL &&
3577 inst->predicate == BRW_PREDICATE_NONE) {
3578 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3579 * the original SEL.L/GE instruction
3580 */
3581 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3582 inst->conditional_mod);
3583 inst->predicate = BRW_PREDICATE_NORMAL;
3584 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3585
3586 progress = true;
3587 }
3588 }
3589
3590 if (progress)
3591 invalidate_live_intervals();
3592
3593 return progress;
3594 }
3595
3596 static void
3597 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3598 fs_reg *dst, fs_reg color, unsigned components)
3599 {
3600 if (key->clamp_fragment_color) {
3601 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3602 assert(color.type == BRW_REGISTER_TYPE_F);
3603
3604 for (unsigned i = 0; i < components; i++)
3605 set_saturate(true,
3606 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3607
3608 color = tmp;
3609 }
3610
3611 for (unsigned i = 0; i < components; i++)
3612 dst[i] = offset(color, bld, i);
3613 }
3614
3615 static void
3616 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3617 const struct brw_wm_prog_data *prog_data,
3618 const brw_wm_prog_key *key,
3619 const fs_visitor::thread_payload &payload)
3620 {
3621 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3622 const gen_device_info *devinfo = bld.shader->devinfo;
3623 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3624 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3625 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3626 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3627 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3628 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3629 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3630 const unsigned components =
3631 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3632
3633 /* We can potentially have a message length of up to 15, so we have to set
3634 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3635 */
3636 fs_reg sources[15];
3637 int header_size = 2, payload_header_size;
3638 unsigned length = 0;
3639
3640 /* From the Sandy Bridge PRM, volume 4, page 198:
3641 *
3642 * "Dispatched Pixel Enables. One bit per pixel indicating
3643 * which pixels were originally enabled when the thread was
3644 * dispatched. This field is only required for the end-of-
3645 * thread message and on all dual-source messages."
3646 */
3647 if (devinfo->gen >= 6 &&
3648 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3649 color1.file == BAD_FILE &&
3650 key->nr_color_regions == 1) {
3651 header_size = 0;
3652 }
3653
3654 if (header_size != 0) {
3655 assert(header_size == 2);
3656 /* Allocate 2 registers for a header */
3657 length += 2;
3658 }
3659
3660 if (payload.aa_dest_stencil_reg) {
3661 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3662 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3663 .MOV(sources[length],
3664 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3665 length++;
3666 }
3667
3668 if (sample_mask.file != BAD_FILE) {
3669 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3670 BRW_REGISTER_TYPE_UD);
3671
3672 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3673 * relevant. Since it's unsigned single words one vgrf is always
3674 * 16-wide, but only the lower or higher 8 channels will be used by the
3675 * hardware when doing a SIMD8 write depending on whether we have
3676 * selected the subspans for the first or second half respectively.
3677 */
3678 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3679 sample_mask.type = BRW_REGISTER_TYPE_UW;
3680 sample_mask.stride *= 2;
3681
3682 bld.exec_all().annotate("FB write oMask")
3683 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3684 inst->group),
3685 sample_mask);
3686 length++;
3687 }
3688
3689 payload_header_size = length;
3690
3691 if (src0_alpha.file != BAD_FILE) {
3692 /* FIXME: This is being passed at the wrong location in the payload and
3693 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3694 * It's supposed to be immediately before oMask but there seems to be no
3695 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3696 * requires header sources to form a contiguous segment at the beginning
3697 * of the message and src0_alpha has per-channel semantics.
3698 */
3699 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3700 length++;
3701 } else if (key->replicate_alpha && inst->target != 0) {
3702 /* Handle the case when fragment shader doesn't write to draw buffer
3703 * zero. No need to call setup_color_payload() for src0_alpha because
3704 * alpha value will be undefined.
3705 */
3706 length++;
3707 }
3708
3709 setup_color_payload(bld, key, &sources[length], color0, components);
3710 length += 4;
3711
3712 if (color1.file != BAD_FILE) {
3713 setup_color_payload(bld, key, &sources[length], color1, components);
3714 length += 4;
3715 }
3716
3717 if (src_depth.file != BAD_FILE) {
3718 sources[length] = src_depth;
3719 length++;
3720 }
3721
3722 if (dst_depth.file != BAD_FILE) {
3723 sources[length] = dst_depth;
3724 length++;
3725 }
3726
3727 if (src_stencil.file != BAD_FILE) {
3728 assert(devinfo->gen >= 9);
3729 assert(bld.dispatch_width() != 16);
3730
3731 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3732 * available on gen9+. As such it's impossible to have both enabled at the
3733 * same time and therefore length cannot overrun the array.
3734 */
3735 assert(length < 15);
3736
3737 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3738 bld.exec_all().annotate("FB write OS")
3739 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3740 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3741 length++;
3742 }
3743
3744 fs_inst *load;
3745 if (devinfo->gen >= 7) {
3746 /* Send from the GRF */
3747 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3748 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3749 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3750 load->dst = payload;
3751
3752 inst->src[0] = payload;
3753 inst->resize_sources(1);
3754 } else {
3755 /* Send from the MRF */
3756 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3757 sources, length, payload_header_size);
3758
3759 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3760 * will do this for us if we just give it a COMPR4 destination.
3761 */
3762 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3763 load->dst.nr |= BRW_MRF_COMPR4;
3764
3765 inst->resize_sources(0);
3766 inst->base_mrf = 1;
3767 }
3768
3769 inst->opcode = FS_OPCODE_FB_WRITE;
3770 inst->mlen = regs_written(load);
3771 inst->header_size = header_size;
3772 }
3773
3774 static void
3775 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3776 {
3777 const fs_builder &ubld = bld.exec_all();
3778 const unsigned length = 2;
3779 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3780
3781 ubld.group(16, 0)
3782 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3783
3784 inst->resize_sources(1);
3785 inst->src[0] = header;
3786 inst->opcode = FS_OPCODE_FB_READ;
3787 inst->mlen = length;
3788 inst->header_size = length;
3789 }
3790
3791 static void
3792 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3793 const fs_reg &coordinate,
3794 const fs_reg &shadow_c,
3795 const fs_reg &lod, const fs_reg &lod2,
3796 const fs_reg &surface,
3797 const fs_reg &sampler,
3798 unsigned coord_components,
3799 unsigned grad_components)
3800 {
3801 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3802 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3803 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3804 fs_reg msg_end = msg_begin;
3805
3806 /* g0 header. */
3807 msg_end = offset(msg_end, bld.group(8, 0), 1);
3808
3809 for (unsigned i = 0; i < coord_components; i++)
3810 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3811 offset(coordinate, bld, i));
3812
3813 msg_end = offset(msg_end, bld, coord_components);
3814
3815 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3816 * require all three components to be present and zero if they are unused.
3817 */
3818 if (coord_components > 0 &&
3819 (has_lod || shadow_c.file != BAD_FILE ||
3820 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3821 for (unsigned i = coord_components; i < 3; i++)
3822 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3823
3824 msg_end = offset(msg_end, bld, 3 - coord_components);
3825 }
3826
3827 if (op == SHADER_OPCODE_TXD) {
3828 /* TXD unsupported in SIMD16 mode. */
3829 assert(bld.dispatch_width() == 8);
3830
3831 /* the slots for u and v are always present, but r is optional */
3832 if (coord_components < 2)
3833 msg_end = offset(msg_end, bld, 2 - coord_components);
3834
3835 /* P = u, v, r
3836 * dPdx = dudx, dvdx, drdx
3837 * dPdy = dudy, dvdy, drdy
3838 *
3839 * 1-arg: Does not exist.
3840 *
3841 * 2-arg: dudx dvdx dudy dvdy
3842 * dPdx.x dPdx.y dPdy.x dPdy.y
3843 * m4 m5 m6 m7
3844 *
3845 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3846 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3847 * m5 m6 m7 m8 m9 m10
3848 */
3849 for (unsigned i = 0; i < grad_components; i++)
3850 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3851
3852 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3853
3854 for (unsigned i = 0; i < grad_components; i++)
3855 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3856
3857 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3858 }
3859
3860 if (has_lod) {
3861 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3862 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3863 */
3864 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3865 bld.dispatch_width() == 16);
3866
3867 const brw_reg_type type =
3868 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3869 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3870 bld.MOV(retype(msg_end, type), lod);
3871 msg_end = offset(msg_end, bld, 1);
3872 }
3873
3874 if (shadow_c.file != BAD_FILE) {
3875 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3876 /* There's no plain shadow compare message, so we use shadow
3877 * compare with a bias of 0.0.
3878 */
3879 bld.MOV(msg_end, brw_imm_f(0.0f));
3880 msg_end = offset(msg_end, bld, 1);
3881 }
3882
3883 bld.MOV(msg_end, shadow_c);
3884 msg_end = offset(msg_end, bld, 1);
3885 }
3886
3887 inst->opcode = op;
3888 inst->src[0] = reg_undef;
3889 inst->src[1] = surface;
3890 inst->src[2] = sampler;
3891 inst->resize_sources(3);
3892 inst->base_mrf = msg_begin.nr;
3893 inst->mlen = msg_end.nr - msg_begin.nr;
3894 inst->header_size = 1;
3895 }
3896
3897 static void
3898 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3899 const fs_reg &coordinate,
3900 const fs_reg &shadow_c,
3901 const fs_reg &lod, const fs_reg &lod2,
3902 const fs_reg &sample_index,
3903 const fs_reg &surface,
3904 const fs_reg &sampler,
3905 unsigned coord_components,
3906 unsigned grad_components)
3907 {
3908 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3909 fs_reg msg_coords = message;
3910 unsigned header_size = 0;
3911
3912 if (inst->offset != 0) {
3913 /* The offsets set up by the visitor are in the m1 header, so we can't
3914 * go headerless.
3915 */
3916 header_size = 1;
3917 message.nr--;
3918 }
3919
3920 for (unsigned i = 0; i < coord_components; i++)
3921 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3922 offset(coordinate, bld, i));
3923
3924 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3925 fs_reg msg_lod = offset(msg_coords, bld, 4);
3926
3927 if (shadow_c.file != BAD_FILE) {
3928 fs_reg msg_shadow = msg_lod;
3929 bld.MOV(msg_shadow, shadow_c);
3930 msg_lod = offset(msg_shadow, bld, 1);
3931 msg_end = msg_lod;
3932 }
3933
3934 switch (op) {
3935 case SHADER_OPCODE_TXL:
3936 case FS_OPCODE_TXB:
3937 bld.MOV(msg_lod, lod);
3938 msg_end = offset(msg_lod, bld, 1);
3939 break;
3940 case SHADER_OPCODE_TXD:
3941 /**
3942 * P = u, v, r
3943 * dPdx = dudx, dvdx, drdx
3944 * dPdy = dudy, dvdy, drdy
3945 *
3946 * Load up these values:
3947 * - dudx dudy dvdx dvdy drdx drdy
3948 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3949 */
3950 msg_end = msg_lod;
3951 for (unsigned i = 0; i < grad_components; i++) {
3952 bld.MOV(msg_end, offset(lod, bld, i));
3953 msg_end = offset(msg_end, bld, 1);
3954
3955 bld.MOV(msg_end, offset(lod2, bld, i));
3956 msg_end = offset(msg_end, bld, 1);
3957 }
3958 break;
3959 case SHADER_OPCODE_TXS:
3960 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3961 bld.MOV(msg_lod, lod);
3962 msg_end = offset(msg_lod, bld, 1);
3963 break;
3964 case SHADER_OPCODE_TXF:
3965 msg_lod = offset(msg_coords, bld, 3);
3966 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3967 msg_end = offset(msg_lod, bld, 1);
3968 break;
3969 case SHADER_OPCODE_TXF_CMS:
3970 msg_lod = offset(msg_coords, bld, 3);
3971 /* lod */
3972 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3973 /* sample index */
3974 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3975 msg_end = offset(msg_lod, bld, 2);
3976 break;
3977 default:
3978 break;
3979 }
3980
3981 inst->opcode = op;
3982 inst->src[0] = reg_undef;
3983 inst->src[1] = surface;
3984 inst->src[2] = sampler;
3985 inst->resize_sources(3);
3986 inst->base_mrf = message.nr;
3987 inst->mlen = msg_end.nr - message.nr;
3988 inst->header_size = header_size;
3989
3990 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3991 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3992 }
3993
3994 static bool
3995 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
3996 {
3997 if (devinfo->gen < 8 && !devinfo->is_haswell)
3998 return false;
3999
4000 return sampler.file != IMM || sampler.ud >= 16;
4001 }
4002
4003 static void
4004 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4005 const fs_reg &coordinate,
4006 const fs_reg &shadow_c,
4007 fs_reg lod, const fs_reg &lod2,
4008 const fs_reg &sample_index,
4009 const fs_reg &mcs,
4010 const fs_reg &surface,
4011 const fs_reg &sampler,
4012 const fs_reg &tg4_offset,
4013 unsigned coord_components,
4014 unsigned grad_components)
4015 {
4016 const gen_device_info *devinfo = bld.shader->devinfo;
4017 unsigned reg_width = bld.dispatch_width() / 8;
4018 unsigned header_size = 0, length = 0;
4019 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4020 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4021 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4022
4023 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4024 inst->offset != 0 || inst->eot ||
4025 op == SHADER_OPCODE_SAMPLEINFO ||
4026 is_high_sampler(devinfo, sampler)) {
4027 /* For general texture offsets (no txf workaround), we need a header to
4028 * put them in. Note that we're only reserving space for it in the
4029 * message payload as it will be initialized implicitly by the
4030 * generator.
4031 *
4032 * TG4 needs to place its channel select in the header, for interaction
4033 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4034 * larger sampler numbers we need to offset the Sampler State Pointer in
4035 * the header.
4036 */
4037 header_size = 1;
4038 sources[0] = fs_reg();
4039 length++;
4040
4041 /* If we're requesting fewer than four channels worth of response,
4042 * and we have an explicit header, we need to set up the sampler
4043 * writemask. It's reversed from normal: 1 means "don't write".
4044 */
4045 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4046 assert(regs_written(inst) % reg_width == 0);
4047 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4048 inst->offset |= mask << 12;
4049 }
4050 }
4051
4052 if (shadow_c.file != BAD_FILE) {
4053 bld.MOV(sources[length], shadow_c);
4054 length++;
4055 }
4056
4057 bool coordinate_done = false;
4058
4059 /* Set up the LOD info */
4060 switch (op) {
4061 case FS_OPCODE_TXB:
4062 case SHADER_OPCODE_TXL:
4063 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4064 op = SHADER_OPCODE_TXL_LZ;
4065 break;
4066 }
4067 bld.MOV(sources[length], lod);
4068 length++;
4069 break;
4070 case SHADER_OPCODE_TXD:
4071 /* TXD should have been lowered in SIMD16 mode. */
4072 assert(bld.dispatch_width() == 8);
4073
4074 /* Load dPdx and the coordinate together:
4075 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4076 */
4077 for (unsigned i = 0; i < coord_components; i++) {
4078 bld.MOV(sources[length++], offset(coordinate, bld, i));
4079
4080 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4081 * only derivatives for (u, v, r).
4082 */
4083 if (i < grad_components) {
4084 bld.MOV(sources[length++], offset(lod, bld, i));
4085 bld.MOV(sources[length++], offset(lod2, bld, i));
4086 }
4087 }
4088
4089 coordinate_done = true;
4090 break;
4091 case SHADER_OPCODE_TXS:
4092 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4093 length++;
4094 break;
4095 case SHADER_OPCODE_TXF:
4096 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4097 * On Gen9 they are u, v, lod, r
4098 */
4099 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4100
4101 if (devinfo->gen >= 9) {
4102 if (coord_components >= 2) {
4103 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4104 offset(coordinate, bld, 1));
4105 } else {
4106 sources[length] = brw_imm_d(0);
4107 }
4108 length++;
4109 }
4110
4111 if (devinfo->gen >= 9 && lod.is_zero()) {
4112 op = SHADER_OPCODE_TXF_LZ;
4113 } else {
4114 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4115 length++;
4116 }
4117
4118 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4119 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4120 offset(coordinate, bld, i));
4121
4122 coordinate_done = true;
4123 break;
4124
4125 case SHADER_OPCODE_TXF_CMS:
4126 case SHADER_OPCODE_TXF_CMS_W:
4127 case SHADER_OPCODE_TXF_UMS:
4128 case SHADER_OPCODE_TXF_MCS:
4129 if (op == SHADER_OPCODE_TXF_UMS ||
4130 op == SHADER_OPCODE_TXF_CMS ||
4131 op == SHADER_OPCODE_TXF_CMS_W) {
4132 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4133 length++;
4134 }
4135
4136 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4137 /* Data from the multisample control surface. */
4138 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4139 length++;
4140
4141 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4142 * the MCS data.
4143 */
4144 if (op == SHADER_OPCODE_TXF_CMS_W) {
4145 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4146 mcs.file == IMM ?
4147 mcs :
4148 offset(mcs, bld, 1));
4149 length++;
4150 }
4151 }
4152
4153 /* There is no offsetting for this message; just copy in the integer
4154 * texture coordinates.
4155 */
4156 for (unsigned i = 0; i < coord_components; i++)
4157 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4158 offset(coordinate, bld, i));
4159
4160 coordinate_done = true;
4161 break;
4162 case SHADER_OPCODE_TG4_OFFSET:
4163 /* More crazy intermixing */
4164 for (unsigned i = 0; i < 2; i++) /* u, v */
4165 bld.MOV(sources[length++], offset(coordinate, bld, i));
4166
4167 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4168 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4169 offset(tg4_offset, bld, i));
4170
4171 if (coord_components == 3) /* r if present */
4172 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4173
4174 coordinate_done = true;
4175 break;
4176 default:
4177 break;
4178 }
4179
4180 /* Set up the coordinate (except for cases where it was done above) */
4181 if (!coordinate_done) {
4182 for (unsigned i = 0; i < coord_components; i++)
4183 bld.MOV(sources[length++], offset(coordinate, bld, i));
4184 }
4185
4186 int mlen;
4187 if (reg_width == 2)
4188 mlen = length * reg_width - header_size;
4189 else
4190 mlen = length * reg_width;
4191
4192 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4193 BRW_REGISTER_TYPE_F);
4194 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4195
4196 /* Generate the SEND. */
4197 inst->opcode = op;
4198 inst->src[0] = src_payload;
4199 inst->src[1] = surface;
4200 inst->src[2] = sampler;
4201 inst->resize_sources(3);
4202 inst->mlen = mlen;
4203 inst->header_size = header_size;
4204
4205 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4206 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4207 }
4208
4209 static void
4210 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4211 {
4212 const gen_device_info *devinfo = bld.shader->devinfo;
4213 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4214 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4215 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4216 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4217 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4218 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4219 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4220 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4221 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4222 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4223 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4224 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4225 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4226
4227 if (devinfo->gen >= 7) {
4228 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4229 shadow_c, lod, lod2, sample_index,
4230 mcs, surface, sampler, tg4_offset,
4231 coord_components, grad_components);
4232 } else if (devinfo->gen >= 5) {
4233 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4234 shadow_c, lod, lod2, sample_index,
4235 surface, sampler,
4236 coord_components, grad_components);
4237 } else {
4238 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4239 shadow_c, lod, lod2,
4240 surface, sampler,
4241 coord_components, grad_components);
4242 }
4243 }
4244
4245 /**
4246 * Initialize the header present in some typed and untyped surface
4247 * messages.
4248 */
4249 static fs_reg
4250 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4251 {
4252 fs_builder ubld = bld.exec_all().group(8, 0);
4253 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4254 ubld.MOV(dst, brw_imm_d(0));
4255 ubld.MOV(component(dst, 7), sample_mask);
4256 return dst;
4257 }
4258
4259 static void
4260 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4261 const fs_reg &sample_mask)
4262 {
4263 /* Get the logical send arguments. */
4264 const fs_reg &addr = inst->src[0];
4265 const fs_reg &src = inst->src[1];
4266 const fs_reg &surface = inst->src[2];
4267 const UNUSED fs_reg &dims = inst->src[3];
4268 const fs_reg &arg = inst->src[4];
4269
4270 /* Calculate the total number of components of the payload. */
4271 const unsigned addr_sz = inst->components_read(0);
4272 const unsigned src_sz = inst->components_read(1);
4273 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4274 const unsigned sz = header_sz + addr_sz + src_sz;
4275
4276 /* Allocate space for the payload. */
4277 fs_reg *const components = new fs_reg[sz];
4278 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4279 unsigned n = 0;
4280
4281 /* Construct the payload. */
4282 if (header_sz)
4283 components[n++] = emit_surface_header(bld, sample_mask);
4284
4285 for (unsigned i = 0; i < addr_sz; i++)
4286 components[n++] = offset(addr, bld, i);
4287
4288 for (unsigned i = 0; i < src_sz; i++)
4289 components[n++] = offset(src, bld, i);
4290
4291 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4292
4293 /* Update the original instruction. */
4294 inst->opcode = op;
4295 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4296 inst->header_size = header_sz;
4297
4298 inst->src[0] = payload;
4299 inst->src[1] = surface;
4300 inst->src[2] = arg;
4301 inst->resize_sources(3);
4302
4303 delete[] components;
4304 }
4305
4306 static void
4307 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4308 {
4309 const gen_device_info *devinfo = bld.shader->devinfo;
4310
4311 if (devinfo->gen >= 7) {
4312 /* We are switching the instruction from an ALU-like instruction to a
4313 * send-from-grf instruction. Since sends can't handle strides or
4314 * source modifiers, we have to make a copy of the offset source.
4315 */
4316 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4317 bld.MOV(tmp, inst->src[1]);
4318 inst->src[1] = tmp;
4319
4320 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4321
4322 } else {
4323 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4324 BRW_REGISTER_TYPE_UD);
4325
4326 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4327
4328 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4329 inst->resize_sources(1);
4330 inst->base_mrf = payload.nr;
4331 inst->header_size = 1;
4332 inst->mlen = 1 + inst->exec_size / 8;
4333 }
4334 }
4335
4336 static void
4337 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4338 {
4339 assert(bld.shader->devinfo->gen < 6);
4340
4341 inst->base_mrf = 2;
4342 inst->mlen = inst->sources * inst->exec_size / 8;
4343
4344 if (inst->sources > 1) {
4345 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4346 * "Message Payload":
4347 *
4348 * "Operand0[7]. For the INT DIV functions, this operand is the
4349 * denominator."
4350 * ...
4351 * "Operand1[7]. For the INT DIV functions, this operand is the
4352 * numerator."
4353 */
4354 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4355 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4356 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4357
4358 inst->resize_sources(1);
4359 inst->src[0] = src0;
4360
4361 assert(inst->exec_size == 8);
4362 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4363 }
4364 }
4365
4366 bool
4367 fs_visitor::lower_logical_sends()
4368 {
4369 bool progress = false;
4370
4371 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4372 const fs_builder ibld(this, block, inst);
4373
4374 switch (inst->opcode) {
4375 case FS_OPCODE_FB_WRITE_LOGICAL:
4376 assert(stage == MESA_SHADER_FRAGMENT);
4377 lower_fb_write_logical_send(ibld, inst,
4378 brw_wm_prog_data(prog_data),
4379 (const brw_wm_prog_key *)key,
4380 payload);
4381 break;
4382
4383 case FS_OPCODE_FB_READ_LOGICAL:
4384 lower_fb_read_logical_send(ibld, inst);
4385 break;
4386
4387 case SHADER_OPCODE_TEX_LOGICAL:
4388 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4389 break;
4390
4391 case SHADER_OPCODE_TXD_LOGICAL:
4392 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4393 break;
4394
4395 case SHADER_OPCODE_TXF_LOGICAL:
4396 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4397 break;
4398
4399 case SHADER_OPCODE_TXL_LOGICAL:
4400 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4401 break;
4402
4403 case SHADER_OPCODE_TXS_LOGICAL:
4404 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4405 break;
4406
4407 case FS_OPCODE_TXB_LOGICAL:
4408 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4409 break;
4410
4411 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4412 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4413 break;
4414
4415 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4416 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4417 break;
4418
4419 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4420 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4421 break;
4422
4423 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4424 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4425 break;
4426
4427 case SHADER_OPCODE_LOD_LOGICAL:
4428 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4429 break;
4430
4431 case SHADER_OPCODE_TG4_LOGICAL:
4432 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4433 break;
4434
4435 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4436 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4437 break;
4438
4439 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4440 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4441 break;
4442
4443 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4444 lower_surface_logical_send(ibld, inst,
4445 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4446 fs_reg());
4447 break;
4448
4449 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4450 lower_surface_logical_send(ibld, inst,
4451 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4452 ibld.sample_mask_reg());
4453 break;
4454
4455 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4456 lower_surface_logical_send(ibld, inst,
4457 SHADER_OPCODE_UNTYPED_ATOMIC,
4458 ibld.sample_mask_reg());
4459 break;
4460
4461 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4462 lower_surface_logical_send(ibld, inst,
4463 SHADER_OPCODE_TYPED_SURFACE_READ,
4464 brw_imm_d(0xffff));
4465 break;
4466
4467 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4468 lower_surface_logical_send(ibld, inst,
4469 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4470 ibld.sample_mask_reg());
4471 break;
4472
4473 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4474 lower_surface_logical_send(ibld, inst,
4475 SHADER_OPCODE_TYPED_ATOMIC,
4476 ibld.sample_mask_reg());
4477 break;
4478
4479 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4480 lower_varying_pull_constant_logical_send(ibld, inst);
4481 break;
4482
4483 case SHADER_OPCODE_RCP:
4484 case SHADER_OPCODE_RSQ:
4485 case SHADER_OPCODE_SQRT:
4486 case SHADER_OPCODE_EXP2:
4487 case SHADER_OPCODE_LOG2:
4488 case SHADER_OPCODE_SIN:
4489 case SHADER_OPCODE_COS:
4490 case SHADER_OPCODE_POW:
4491 case SHADER_OPCODE_INT_QUOTIENT:
4492 case SHADER_OPCODE_INT_REMAINDER:
4493 /* The math opcodes are overloaded for the send-like and
4494 * expression-like instructions which seems kind of icky. Gen6+ has
4495 * a native (but rather quirky) MATH instruction so we don't need to
4496 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4497 * logical instructions (which we can easily recognize because they
4498 * have mlen = 0) into send-like virtual instructions.
4499 */
4500 if (devinfo->gen < 6 && inst->mlen == 0) {
4501 lower_math_logical_send(ibld, inst);
4502 break;
4503
4504 } else {
4505 continue;
4506 }
4507
4508 default:
4509 continue;
4510 }
4511
4512 progress = true;
4513 }
4514
4515 if (progress)
4516 invalidate_live_intervals();
4517
4518 return progress;
4519 }
4520
4521 /**
4522 * Get the closest allowed SIMD width for instruction \p inst accounting for
4523 * some common regioning and execution control restrictions that apply to FPU
4524 * instructions. These restrictions don't necessarily have any relevance to
4525 * instructions not executed by the FPU pipeline like extended math, control
4526 * flow or send message instructions.
4527 *
4528 * For virtual opcodes it's really up to the instruction -- In some cases
4529 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4530 * instructions) it may simplify virtual instruction lowering if we can
4531 * enforce FPU-like regioning restrictions already on the virtual instruction,
4532 * in other cases (e.g. virtual send-like instructions) this may be
4533 * excessively restrictive.
4534 */
4535 static unsigned
4536 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4537 const fs_inst *inst)
4538 {
4539 /* Maximum execution size representable in the instruction controls. */
4540 unsigned max_width = MIN2(32, inst->exec_size);
4541
4542 /* According to the PRMs:
4543 * "A. In Direct Addressing mode, a source cannot span more than 2
4544 * adjacent GRF registers.
4545 * B. A destination cannot span more than 2 adjacent GRF registers."
4546 *
4547 * Look for the source or destination with the largest register region
4548 * which is the one that is going to limit the overall execution size of
4549 * the instruction due to this rule.
4550 */
4551 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4552
4553 for (unsigned i = 0; i < inst->sources; i++)
4554 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4555
4556 /* Calculate the maximum execution size of the instruction based on the
4557 * factor by which it goes over the hardware limit of 2 GRFs.
4558 */
4559 if (reg_count > 2)
4560 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4561
4562 /* According to the IVB PRMs:
4563 * "When destination spans two registers, the source MUST span two
4564 * registers. The exception to the above rule:
4565 *
4566 * - When source is scalar, the source registers are not incremented.
4567 * - When source is packed integer Word and destination is packed
4568 * integer DWord, the source register is not incremented but the
4569 * source sub register is incremented."
4570 *
4571 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4572 * restrictions. The code below intentionally doesn't check whether the
4573 * destination type is integer because empirically the hardware doesn't
4574 * seem to care what the actual type is as long as it's dword-aligned.
4575 */
4576 if (devinfo->gen < 8) {
4577 for (unsigned i = 0; i < inst->sources; i++) {
4578 /* IVB implements DF scalars as <0;2,1> regions. */
4579 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4580 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4581 const bool is_packed_word_exception =
4582 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4583 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4584
4585 if (inst->size_written > REG_SIZE &&
4586 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4587 !is_scalar_exception && !is_packed_word_exception) {
4588 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4589 max_width = MIN2(max_width, inst->exec_size / reg_count);
4590 }
4591 }
4592 }
4593
4594 /* From the IVB PRMs:
4595 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4596 * are applied for both halves of the SIMD32 instruction. If different
4597 * execution mask channels are required, split the instruction into two
4598 * SIMD16 instructions."
4599 *
4600 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4601 * 32-wide control flow support in hardware and will behave similarly.
4602 */
4603 if (devinfo->gen < 8 && !inst->force_writemask_all)
4604 max_width = MIN2(max_width, 16);
4605
4606 /* From the IVB PRMs (applies to HSW too):
4607 * "Instructions with condition modifiers must not use SIMD32."
4608 *
4609 * From the BDW PRMs (applies to later hardware too):
4610 * "Ternary instruction with condition modifiers must not use SIMD32."
4611 */
4612 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4613 max_width = MIN2(max_width, 16);
4614
4615 /* From the IVB PRMs (applies to other devices that don't have the
4616 * gen_device_info::supports_simd16_3src flag set):
4617 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4618 * SIMD8 is not allowed for DF operations."
4619 */
4620 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4621 max_width = MIN2(max_width, inst->exec_size / reg_count);
4622
4623 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4624 * the 8-bit quarter of the execution mask signals specified in the
4625 * instruction control fields) for the second compressed half of any
4626 * single-precision instruction (for double-precision instructions
4627 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4628 * the EU will apply the wrong execution controls for the second
4629 * sequential GRF write if the number of channels per GRF is not exactly
4630 * eight in single-precision mode (or four in double-float mode).
4631 *
4632 * In this situation we calculate the maximum size of the split
4633 * instructions so they only ever write to a single register.
4634 */
4635 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4636 !inst->force_writemask_all) {
4637 const unsigned channels_per_grf = inst->exec_size /
4638 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4639 const unsigned exec_type_size = get_exec_type_size(inst);
4640 assert(exec_type_size);
4641
4642 /* The hardware shifts exactly 8 channels per compressed half of the
4643 * instruction in single-precision mode and exactly 4 in double-precision.
4644 */
4645 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4646 max_width = MIN2(max_width, channels_per_grf);
4647
4648 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4649 * because HW applies the same channel enable signals to both halves of
4650 * the compressed instruction which will be just wrong under
4651 * non-uniform control flow.
4652 */
4653 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4654 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4655 max_width = MIN2(max_width, 4);
4656 }
4657
4658 /* Only power-of-two execution sizes are representable in the instruction
4659 * control fields.
4660 */
4661 return 1 << _mesa_logbase2(max_width);
4662 }
4663
4664 /**
4665 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4666 * various payload size restrictions that apply to sampler message
4667 * instructions.
4668 *
4669 * This is only intended to provide a maximum theoretical bound for the
4670 * execution size of the message based on the number of argument components
4671 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4672 * variant of the message can be used, though some messages may have
4673 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4674 * the message length to determine the exact SIMD width and argument count,
4675 * which makes a number of sampler message combinations impossible to
4676 * represent).
4677 */
4678 static unsigned
4679 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4680 const fs_inst *inst)
4681 {
4682 /* Calculate the number of coordinate components that have to be present
4683 * assuming that additional arguments follow the texel coordinates in the
4684 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4685 * need to pad to four or three components depending on the message,
4686 * pre-ILK we need to pad to at most three components.
4687 */
4688 const unsigned req_coord_components =
4689 (devinfo->gen >= 7 ||
4690 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4691 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4692 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4693 3;
4694
4695 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4696 * variant of the TXL or TXF message.
4697 */
4698 const bool implicit_lod = devinfo->gen >= 9 &&
4699 (inst->opcode == SHADER_OPCODE_TXL ||
4700 inst->opcode == SHADER_OPCODE_TXF) &&
4701 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4702
4703 /* Calculate the total number of argument components that need to be passed
4704 * to the sampler unit.
4705 */
4706 const unsigned num_payload_components =
4707 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4708 req_coord_components) +
4709 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4710 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4711 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4712 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4713 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4714 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4715 inst->components_read(TEX_LOGICAL_SRC_MCS);
4716
4717 /* SIMD16 messages with more than five arguments exceed the maximum message
4718 * size supported by the sampler, regardless of whether a header is
4719 * provided or not.
4720 */
4721 return MIN2(inst->exec_size,
4722 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4723 }
4724
4725 /**
4726 * Get the closest native SIMD width supported by the hardware for instruction
4727 * \p inst. The instruction will be left untouched by
4728 * fs_visitor::lower_simd_width() if the returned value is equal to the
4729 * original execution size.
4730 */
4731 static unsigned
4732 get_lowered_simd_width(const struct gen_device_info *devinfo,
4733 const fs_inst *inst)
4734 {
4735 switch (inst->opcode) {
4736 case BRW_OPCODE_MOV:
4737 case BRW_OPCODE_SEL:
4738 case BRW_OPCODE_NOT:
4739 case BRW_OPCODE_AND:
4740 case BRW_OPCODE_OR:
4741 case BRW_OPCODE_XOR:
4742 case BRW_OPCODE_SHR:
4743 case BRW_OPCODE_SHL:
4744 case BRW_OPCODE_ASR:
4745 case BRW_OPCODE_CMPN:
4746 case BRW_OPCODE_CSEL:
4747 case BRW_OPCODE_F32TO16:
4748 case BRW_OPCODE_F16TO32:
4749 case BRW_OPCODE_BFREV:
4750 case BRW_OPCODE_BFE:
4751 case BRW_OPCODE_ADD:
4752 case BRW_OPCODE_MUL:
4753 case BRW_OPCODE_AVG:
4754 case BRW_OPCODE_FRC:
4755 case BRW_OPCODE_RNDU:
4756 case BRW_OPCODE_RNDD:
4757 case BRW_OPCODE_RNDE:
4758 case BRW_OPCODE_RNDZ:
4759 case BRW_OPCODE_LZD:
4760 case BRW_OPCODE_FBH:
4761 case BRW_OPCODE_FBL:
4762 case BRW_OPCODE_CBIT:
4763 case BRW_OPCODE_SAD2:
4764 case BRW_OPCODE_MAD:
4765 case BRW_OPCODE_LRP:
4766 case FS_OPCODE_PACK:
4767 return get_fpu_lowered_simd_width(devinfo, inst);
4768
4769 case BRW_OPCODE_CMP: {
4770 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4771 * when the destination is a GRF the dependency-clear bit on the flag
4772 * register is cleared early.
4773 *
4774 * Suggested workarounds are to disable coissuing CMP instructions
4775 * or to split CMP(16) instructions into two CMP(8) instructions.
4776 *
4777 * We choose to split into CMP(8) instructions since disabling
4778 * coissuing would affect CMP instructions not otherwise affected by
4779 * the errata.
4780 */
4781 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4782 !inst->dst.is_null() ? 8 : ~0);
4783 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4784 }
4785 case BRW_OPCODE_BFI1:
4786 case BRW_OPCODE_BFI2:
4787 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4788 * should
4789 * "Force BFI instructions to be executed always in SIMD8."
4790 */
4791 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4792 get_fpu_lowered_simd_width(devinfo, inst));
4793
4794 case BRW_OPCODE_IF:
4795 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4796 return inst->exec_size;
4797
4798 case SHADER_OPCODE_RCP:
4799 case SHADER_OPCODE_RSQ:
4800 case SHADER_OPCODE_SQRT:
4801 case SHADER_OPCODE_EXP2:
4802 case SHADER_OPCODE_LOG2:
4803 case SHADER_OPCODE_SIN:
4804 case SHADER_OPCODE_COS:
4805 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4806 * Gen6.
4807 */
4808 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4809 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4810 MIN2(8, inst->exec_size));
4811
4812 case SHADER_OPCODE_POW:
4813 /* SIMD16 is only allowed on Gen7+. */
4814 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4815 MIN2(8, inst->exec_size));
4816
4817 case SHADER_OPCODE_INT_QUOTIENT:
4818 case SHADER_OPCODE_INT_REMAINDER:
4819 /* Integer division is limited to SIMD8 on all generations. */
4820 return MIN2(8, inst->exec_size);
4821
4822 case FS_OPCODE_LINTERP:
4823 case FS_OPCODE_GET_BUFFER_SIZE:
4824 case FS_OPCODE_DDX_COARSE:
4825 case FS_OPCODE_DDX_FINE:
4826 case FS_OPCODE_DDY_COARSE:
4827 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4828 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4829 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4830 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4831 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4832 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4833 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4834 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4835 return MIN2(16, inst->exec_size);
4836
4837 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4838 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4839 * message used to implement varying pull constant loads, so expand it
4840 * to SIMD16. An alternative with longer message payload length but
4841 * shorter return payload would be to use the SIMD8 sampler message that
4842 * takes (header, u, v, r) as parameters instead of (header, u).
4843 */
4844 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4845
4846 case FS_OPCODE_DDY_FINE:
4847 /* The implementation of this virtual opcode may require emitting
4848 * compressed Align16 instructions, which are severely limited on some
4849 * generations.
4850 *
4851 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4852 * Region Restrictions):
4853 *
4854 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4855 * and SIMD8 is not allowed for DF operations."
4856 *
4857 * In this context, "DW operations" means "operations acting on 32-bit
4858 * values", so it includes operations on floats.
4859 *
4860 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4861 * (Instruction Compression -> Rules and Restrictions):
4862 *
4863 * "A compressed instruction must be in Align1 access mode. Align16
4864 * mode instructions cannot be compressed."
4865 *
4866 * Similar text exists in the g45 PRM.
4867 *
4868 * Empirically, compressed align16 instructions using odd register
4869 * numbers don't appear to work on Sandybridge either.
4870 */
4871 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4872 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4873 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4874
4875 case SHADER_OPCODE_MULH:
4876 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4877 * is 8-wide on Gen7+.
4878 */
4879 return (devinfo->gen >= 7 ? 8 :
4880 get_fpu_lowered_simd_width(devinfo, inst));
4881
4882 case FS_OPCODE_FB_WRITE_LOGICAL:
4883 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4884 * here.
4885 */
4886 assert(devinfo->gen != 6 ||
4887 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4888 inst->exec_size == 8);
4889 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4890 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4891 8 : MIN2(16, inst->exec_size));
4892
4893 case FS_OPCODE_FB_READ_LOGICAL:
4894 return MIN2(16, inst->exec_size);
4895
4896 case SHADER_OPCODE_TEX_LOGICAL:
4897 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4898 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4899 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4900 case SHADER_OPCODE_LOD_LOGICAL:
4901 case SHADER_OPCODE_TG4_LOGICAL:
4902 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4903 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4904 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4905 return get_sampler_lowered_simd_width(devinfo, inst);
4906
4907 case SHADER_OPCODE_TXD_LOGICAL:
4908 /* TXD is unsupported in SIMD16 mode. */
4909 return 8;
4910
4911 case SHADER_OPCODE_TXL_LOGICAL:
4912 case FS_OPCODE_TXB_LOGICAL:
4913 /* Only one execution size is representable pre-ILK depending on whether
4914 * the shadow reference argument is present.
4915 */
4916 if (devinfo->gen == 4)
4917 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4918 else
4919 return get_sampler_lowered_simd_width(devinfo, inst);
4920
4921 case SHADER_OPCODE_TXF_LOGICAL:
4922 case SHADER_OPCODE_TXS_LOGICAL:
4923 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4924 * messages. Use SIMD16 instead.
4925 */
4926 if (devinfo->gen == 4)
4927 return 16;
4928 else
4929 return get_sampler_lowered_simd_width(devinfo, inst);
4930
4931 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4932 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4933 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4934 return 8;
4935
4936 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4937 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4938 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4939 return MIN2(16, inst->exec_size);
4940
4941 case SHADER_OPCODE_URB_READ_SIMD8:
4942 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4943 case SHADER_OPCODE_URB_WRITE_SIMD8:
4944 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4945 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4946 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4947 return MIN2(8, inst->exec_size);
4948
4949 case SHADER_OPCODE_MOV_INDIRECT: {
4950 /* From IVB and HSW PRMs:
4951 *
4952 * "2.When the destination requires two registers and the sources are
4953 * indirect, the sources must use 1x1 regioning mode.
4954 *
4955 * In case of DF instructions in HSW/IVB, the exec_size is limited by
4956 * the EU decompression logic not handling VxH indirect addressing
4957 * correctly.
4958 */
4959 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
4960 /* Prior to Broadwell, we only have 8 address subregisters. */
4961 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4962 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
4963 inst->exec_size);
4964 }
4965
4966 case SHADER_OPCODE_LOAD_PAYLOAD: {
4967 const unsigned reg_count =
4968 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4969
4970 if (reg_count > 2) {
4971 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4972 * can be easily lowered (which excludes headers and heterogeneous
4973 * types).
4974 */
4975 assert(!inst->header_size);
4976 for (unsigned i = 0; i < inst->sources; i++)
4977 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4978 inst->src[i].file == BAD_FILE);
4979
4980 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4981 } else {
4982 return inst->exec_size;
4983 }
4984 }
4985 default:
4986 return inst->exec_size;
4987 }
4988 }
4989
4990 /**
4991 * Return true if splitting out the group of channels of instruction \p inst
4992 * given by lbld.group() requires allocating a temporary for the i-th source
4993 * of the lowered instruction.
4994 */
4995 static inline bool
4996 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4997 {
4998 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4999 (inst->components_read(i) == 1 &&
5000 lbld.dispatch_width() <= inst->exec_size));
5001 }
5002
5003 /**
5004 * Extract the data that would be consumed by the channel group given by
5005 * lbld.group() from the i-th source region of instruction \p inst and return
5006 * it as result in packed form. If any copy instructions are required they
5007 * will be emitted before the given \p inst in \p block.
5008 */
5009 static fs_reg
5010 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
5011 unsigned i)
5012 {
5013 /* Specified channel group from the source region. */
5014 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5015
5016 if (needs_src_copy(lbld, inst, i)) {
5017 /* Builder of the right width to perform the copy avoiding uninitialized
5018 * data if the lowered execution size is greater than the original
5019 * execution size of the instruction.
5020 */
5021 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5022 inst->exec_size), 0);
5023 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5024
5025 for (unsigned k = 0; k < inst->components_read(i); ++k)
5026 cbld.at(block, inst)
5027 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5028
5029 return tmp;
5030
5031 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5032 /* The source is invariant for all dispatch_width-wide groups of the
5033 * original region.
5034 */
5035 return inst->src[i];
5036
5037 } else {
5038 /* We can just point the lowered instruction at the right channel group
5039 * from the original region.
5040 */
5041 return src;
5042 }
5043 }
5044
5045 /**
5046 * Return true if splitting out the group of channels of instruction \p inst
5047 * given by lbld.group() requires allocating a temporary for the destination
5048 * of the lowered instruction and copying the data back to the original
5049 * destination region.
5050 */
5051 static inline bool
5052 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5053 {
5054 /* If the instruction writes more than one component we'll have to shuffle
5055 * the results of multiple lowered instructions in order to make sure that
5056 * they end up arranged correctly in the original destination region.
5057 */
5058 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5059 return true;
5060
5061 /* If the lowered execution size is larger than the original the result of
5062 * the instruction won't fit in the original destination, so we'll have to
5063 * allocate a temporary in any case.
5064 */
5065 if (lbld.dispatch_width() > inst->exec_size)
5066 return true;
5067
5068 for (unsigned i = 0; i < inst->sources; i++) {
5069 /* If we already made a copy of the source for other reasons there won't
5070 * be any overlap with the destination.
5071 */
5072 if (needs_src_copy(lbld, inst, i))
5073 continue;
5074
5075 /* In order to keep the logic simple we emit a copy whenever the
5076 * destination region doesn't exactly match an overlapping source, which
5077 * may point at the source and destination not being aligned group by
5078 * group which could cause one of the lowered instructions to overwrite
5079 * the data read from the same source by other lowered instructions.
5080 */
5081 if (regions_overlap(inst->dst, inst->size_written,
5082 inst->src[i], inst->size_read(i)) &&
5083 !inst->dst.equals(inst->src[i]))
5084 return true;
5085 }
5086
5087 return false;
5088 }
5089
5090 /**
5091 * Insert data from a packed temporary into the channel group given by
5092 * lbld.group() of the destination region of instruction \p inst and return
5093 * the temporary as result. If any copy instructions are required they will
5094 * be emitted around the given \p inst in \p block.
5095 */
5096 static fs_reg
5097 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5098 {
5099 /* Builder of the right width to perform the copy avoiding uninitialized
5100 * data if the lowered execution size is greater than the original
5101 * execution size of the instruction.
5102 */
5103 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5104 inst->exec_size), 0);
5105
5106 /* Specified channel group from the destination region. */
5107 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5108 const unsigned dst_size = inst->size_written /
5109 inst->dst.component_size(inst->exec_size);
5110
5111 if (needs_dst_copy(lbld, inst)) {
5112 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5113
5114 if (inst->predicate) {
5115 /* Handle predication by copying the original contents of
5116 * the destination into the temporary before emitting the
5117 * lowered instruction.
5118 */
5119 for (unsigned k = 0; k < dst_size; ++k)
5120 cbld.at(block, inst)
5121 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5122 }
5123
5124 for (unsigned k = 0; k < dst_size; ++k)
5125 cbld.at(block, inst->next)
5126 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5127
5128 return tmp;
5129
5130 } else {
5131 /* No need to allocate a temporary for the lowered instruction, just
5132 * take the right group of channels from the original region.
5133 */
5134 return dst;
5135 }
5136 }
5137
5138 bool
5139 fs_visitor::lower_simd_width()
5140 {
5141 bool progress = false;
5142
5143 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5144 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5145
5146 if (lower_width != inst->exec_size) {
5147 /* Builder matching the original instruction. We may also need to
5148 * emit an instruction of width larger than the original, set the
5149 * execution size of the builder to the highest of both for now so
5150 * we're sure that both cases can be handled.
5151 */
5152 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5153 const fs_builder ibld = bld.at(block, inst)
5154 .exec_all(inst->force_writemask_all)
5155 .group(max_width, inst->group / max_width);
5156
5157 /* Split the copies in chunks of the execution width of either the
5158 * original or the lowered instruction, whichever is lower.
5159 */
5160 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5161 const unsigned dst_size = inst->size_written /
5162 inst->dst.component_size(inst->exec_size);
5163
5164 assert(!inst->writes_accumulator && !inst->mlen);
5165
5166 for (unsigned i = 0; i < n; i++) {
5167 /* Emit a copy of the original instruction with the lowered width.
5168 * If the EOT flag was set throw it away except for the last
5169 * instruction to avoid killing the thread prematurely.
5170 */
5171 fs_inst split_inst = *inst;
5172 split_inst.exec_size = lower_width;
5173 split_inst.eot = inst->eot && i == n - 1;
5174
5175 /* Select the correct channel enables for the i-th group, then
5176 * transform the sources and destination and emit the lowered
5177 * instruction.
5178 */
5179 const fs_builder lbld = ibld.group(lower_width, i);
5180
5181 for (unsigned j = 0; j < inst->sources; j++)
5182 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5183
5184 split_inst.dst = emit_zip(lbld, block, inst);
5185 split_inst.size_written =
5186 split_inst.dst.component_size(lower_width) * dst_size;
5187
5188 lbld.emit(split_inst);
5189 }
5190
5191 inst->remove(block);
5192 progress = true;
5193 }
5194 }
5195
5196 if (progress)
5197 invalidate_live_intervals();
5198
5199 return progress;
5200 }
5201
5202 void
5203 fs_visitor::dump_instructions()
5204 {
5205 dump_instructions(NULL);
5206 }
5207
5208 void
5209 fs_visitor::dump_instructions(const char *name)
5210 {
5211 FILE *file = stderr;
5212 if (name && geteuid() != 0) {
5213 file = fopen(name, "w");
5214 if (!file)
5215 file = stderr;
5216 }
5217
5218 if (cfg) {
5219 calculate_register_pressure();
5220 int ip = 0, max_pressure = 0;
5221 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5222 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5223 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5224 dump_instruction(inst, file);
5225 ip++;
5226 }
5227 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5228 } else {
5229 int ip = 0;
5230 foreach_in_list(backend_instruction, inst, &instructions) {
5231 fprintf(file, "%4d: ", ip++);
5232 dump_instruction(inst, file);
5233 }
5234 }
5235
5236 if (file != stderr) {
5237 fclose(file);
5238 }
5239 }
5240
5241 void
5242 fs_visitor::dump_instruction(backend_instruction *be_inst)
5243 {
5244 dump_instruction(be_inst, stderr);
5245 }
5246
5247 void
5248 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5249 {
5250 fs_inst *inst = (fs_inst *)be_inst;
5251
5252 if (inst->predicate) {
5253 fprintf(file, "(%cf0.%d) ",
5254 inst->predicate_inverse ? '-' : '+',
5255 inst->flag_subreg);
5256 }
5257
5258 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5259 if (inst->saturate)
5260 fprintf(file, ".sat");
5261 if (inst->conditional_mod) {
5262 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5263 if (!inst->predicate &&
5264 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5265 inst->opcode != BRW_OPCODE_IF &&
5266 inst->opcode != BRW_OPCODE_WHILE))) {
5267 fprintf(file, ".f0.%d", inst->flag_subreg);
5268 }
5269 }
5270 fprintf(file, "(%d) ", inst->exec_size);
5271
5272 if (inst->mlen) {
5273 fprintf(file, "(mlen: %d) ", inst->mlen);
5274 }
5275
5276 if (inst->eot) {
5277 fprintf(file, "(EOT) ");
5278 }
5279
5280 switch (inst->dst.file) {
5281 case VGRF:
5282 fprintf(file, "vgrf%d", inst->dst.nr);
5283 break;
5284 case FIXED_GRF:
5285 fprintf(file, "g%d", inst->dst.nr);
5286 break;
5287 case MRF:
5288 fprintf(file, "m%d", inst->dst.nr);
5289 break;
5290 case BAD_FILE:
5291 fprintf(file, "(null)");
5292 break;
5293 case UNIFORM:
5294 fprintf(file, "***u%d***", inst->dst.nr);
5295 break;
5296 case ATTR:
5297 fprintf(file, "***attr%d***", inst->dst.nr);
5298 break;
5299 case ARF:
5300 switch (inst->dst.nr) {
5301 case BRW_ARF_NULL:
5302 fprintf(file, "null");
5303 break;
5304 case BRW_ARF_ADDRESS:
5305 fprintf(file, "a0.%d", inst->dst.subnr);
5306 break;
5307 case BRW_ARF_ACCUMULATOR:
5308 fprintf(file, "acc%d", inst->dst.subnr);
5309 break;
5310 case BRW_ARF_FLAG:
5311 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5312 break;
5313 default:
5314 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5315 break;
5316 }
5317 break;
5318 case IMM:
5319 unreachable("not reached");
5320 }
5321
5322 if (inst->dst.offset ||
5323 (inst->dst.file == VGRF &&
5324 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5325 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5326 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5327 inst->dst.offset % reg_size);
5328 }
5329
5330 if (inst->dst.stride != 1)
5331 fprintf(file, "<%u>", inst->dst.stride);
5332 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5333
5334 for (int i = 0; i < inst->sources; i++) {
5335 if (inst->src[i].negate)
5336 fprintf(file, "-");
5337 if (inst->src[i].abs)
5338 fprintf(file, "|");
5339 switch (inst->src[i].file) {
5340 case VGRF:
5341 fprintf(file, "vgrf%d", inst->src[i].nr);
5342 break;
5343 case FIXED_GRF:
5344 fprintf(file, "g%d", inst->src[i].nr);
5345 break;
5346 case MRF:
5347 fprintf(file, "***m%d***", inst->src[i].nr);
5348 break;
5349 case ATTR:
5350 fprintf(file, "attr%d", inst->src[i].nr);
5351 break;
5352 case UNIFORM:
5353 fprintf(file, "u%d", inst->src[i].nr);
5354 break;
5355 case BAD_FILE:
5356 fprintf(file, "(null)");
5357 break;
5358 case IMM:
5359 switch (inst->src[i].type) {
5360 case BRW_REGISTER_TYPE_F:
5361 fprintf(file, "%-gf", inst->src[i].f);
5362 break;
5363 case BRW_REGISTER_TYPE_DF:
5364 fprintf(file, "%fdf", inst->src[i].df);
5365 break;
5366 case BRW_REGISTER_TYPE_W:
5367 case BRW_REGISTER_TYPE_D:
5368 fprintf(file, "%dd", inst->src[i].d);
5369 break;
5370 case BRW_REGISTER_TYPE_UW:
5371 case BRW_REGISTER_TYPE_UD:
5372 fprintf(file, "%uu", inst->src[i].ud);
5373 break;
5374 case BRW_REGISTER_TYPE_VF:
5375 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5376 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5377 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5378 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5379 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5380 break;
5381 default:
5382 fprintf(file, "???");
5383 break;
5384 }
5385 break;
5386 case ARF:
5387 switch (inst->src[i].nr) {
5388 case BRW_ARF_NULL:
5389 fprintf(file, "null");
5390 break;
5391 case BRW_ARF_ADDRESS:
5392 fprintf(file, "a0.%d", inst->src[i].subnr);
5393 break;
5394 case BRW_ARF_ACCUMULATOR:
5395 fprintf(file, "acc%d", inst->src[i].subnr);
5396 break;
5397 case BRW_ARF_FLAG:
5398 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5399 break;
5400 default:
5401 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5402 break;
5403 }
5404 break;
5405 }
5406
5407 if (inst->src[i].offset ||
5408 (inst->src[i].file == VGRF &&
5409 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5410 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5411 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5412 inst->src[i].offset % reg_size);
5413 }
5414
5415 if (inst->src[i].abs)
5416 fprintf(file, "|");
5417
5418 if (inst->src[i].file != IMM) {
5419 unsigned stride;
5420 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5421 unsigned hstride = inst->src[i].hstride;
5422 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5423 } else {
5424 stride = inst->src[i].stride;
5425 }
5426 if (stride != 1)
5427 fprintf(file, "<%u>", stride);
5428
5429 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5430 }
5431
5432 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5433 fprintf(file, ", ");
5434 }
5435
5436 fprintf(file, " ");
5437
5438 if (inst->force_writemask_all)
5439 fprintf(file, "NoMask ");
5440
5441 if (inst->exec_size != dispatch_width)
5442 fprintf(file, "group%d ", inst->group);
5443
5444 fprintf(file, "\n");
5445 }
5446
5447 /**
5448 * Possibly returns an instruction that set up @param reg.
5449 *
5450 * Sometimes we want to take the result of some expression/variable
5451 * dereference tree and rewrite the instruction generating the result
5452 * of the tree. When processing the tree, we know that the
5453 * instructions generated are all writing temporaries that are dead
5454 * outside of this tree. So, if we have some instructions that write
5455 * a temporary, we're free to point that temp write somewhere else.
5456 *
5457 * Note that this doesn't guarantee that the instruction generated
5458 * only reg -- it might be the size=4 destination of a texture instruction.
5459 */
5460 fs_inst *
5461 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5462 fs_inst *end,
5463 const fs_reg &reg)
5464 {
5465 if (end == start ||
5466 end->is_partial_write() ||
5467 !reg.equals(end->dst)) {
5468 return NULL;
5469 } else {
5470 return end;
5471 }
5472 }
5473
5474 void
5475 fs_visitor::setup_fs_payload_gen6()
5476 {
5477 assert(stage == MESA_SHADER_FRAGMENT);
5478 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5479
5480 assert(devinfo->gen >= 6);
5481
5482 /* R0-1: masks, pixel X/Y coordinates. */
5483 payload.num_regs = 2;
5484 /* R2: only for 32-pixel dispatch.*/
5485
5486 /* R3-26: barycentric interpolation coordinates. These appear in the
5487 * same order that they appear in the brw_barycentric_mode
5488 * enum. Each set of coordinates occupies 2 registers if dispatch width
5489 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5490 * appear if they were enabled using the "Barycentric Interpolation
5491 * Mode" bits in WM_STATE.
5492 */
5493 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5494 if (prog_data->barycentric_interp_modes & (1 << i)) {
5495 payload.barycentric_coord_reg[i] = payload.num_regs;
5496 payload.num_regs += 2;
5497 if (dispatch_width == 16) {
5498 payload.num_regs += 2;
5499 }
5500 }
5501 }
5502
5503 /* R27: interpolated depth if uses source depth */
5504 prog_data->uses_src_depth =
5505 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5506 if (prog_data->uses_src_depth) {
5507 payload.source_depth_reg = payload.num_regs;
5508 payload.num_regs++;
5509 if (dispatch_width == 16) {
5510 /* R28: interpolated depth if not SIMD8. */
5511 payload.num_regs++;
5512 }
5513 }
5514
5515 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5516 prog_data->uses_src_w =
5517 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5518 if (prog_data->uses_src_w) {
5519 payload.source_w_reg = payload.num_regs;
5520 payload.num_regs++;
5521 if (dispatch_width == 16) {
5522 /* R30: interpolated W if not SIMD8. */
5523 payload.num_regs++;
5524 }
5525 }
5526
5527 /* R31: MSAA position offsets. */
5528 if (prog_data->persample_dispatch &&
5529 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5530 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5531 *
5532 * "MSDISPMODE_PERSAMPLE is required in order to select
5533 * POSOFFSET_SAMPLE"
5534 *
5535 * So we can only really get sample positions if we are doing real
5536 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5537 * persample dispatch, we hard-code it to 0.5.
5538 */
5539 prog_data->uses_pos_offset = true;
5540 payload.sample_pos_reg = payload.num_regs;
5541 payload.num_regs++;
5542 }
5543
5544 /* R32: MSAA input coverage mask */
5545 prog_data->uses_sample_mask =
5546 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5547 if (prog_data->uses_sample_mask) {
5548 assert(devinfo->gen >= 7);
5549 payload.sample_mask_in_reg = payload.num_regs;
5550 payload.num_regs++;
5551 if (dispatch_width == 16) {
5552 /* R33: input coverage mask if not SIMD8. */
5553 payload.num_regs++;
5554 }
5555 }
5556
5557 /* R34-: bary for 32-pixel. */
5558 /* R58-59: interp W for 32-pixel. */
5559
5560 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5561 source_depth_to_render_target = true;
5562 }
5563 }
5564
5565 void
5566 fs_visitor::setup_vs_payload()
5567 {
5568 /* R0: thread header, R1: urb handles */
5569 payload.num_regs = 2;
5570 }
5571
5572 void
5573 fs_visitor::setup_gs_payload()
5574 {
5575 assert(stage == MESA_SHADER_GEOMETRY);
5576
5577 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5578 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5579
5580 /* R0: thread header, R1: output URB handles */
5581 payload.num_regs = 2;
5582
5583 if (gs_prog_data->include_primitive_id) {
5584 /* R2: Primitive ID 0..7 */
5585 payload.num_regs++;
5586 }
5587
5588 /* Use a maximum of 24 registers for push-model inputs. */
5589 const unsigned max_push_components = 24;
5590
5591 /* If pushing our inputs would take too many registers, reduce the URB read
5592 * length (which is in HWords, or 8 registers), and resort to pulling.
5593 *
5594 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5595 * have to multiply by VerticesIn to obtain the total storage requirement.
5596 */
5597 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5598 max_push_components || gs_prog_data->invocations > 1) {
5599 gs_prog_data->base.include_vue_handles = true;
5600
5601 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5602 payload.num_regs += nir->info.gs.vertices_in;
5603
5604 vue_prog_data->urb_read_length =
5605 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5606 }
5607 }
5608
5609 void
5610 fs_visitor::setup_cs_payload()
5611 {
5612 assert(devinfo->gen >= 7);
5613 payload.num_regs = 1;
5614 }
5615
5616 void
5617 fs_visitor::calculate_register_pressure()
5618 {
5619 invalidate_live_intervals();
5620 calculate_live_intervals();
5621
5622 unsigned num_instructions = 0;
5623 foreach_block(block, cfg)
5624 num_instructions += block->instructions.length();
5625
5626 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5627
5628 for (unsigned reg = 0; reg < alloc.count; reg++) {
5629 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5630 regs_live_at_ip[ip] += alloc.sizes[reg];
5631 }
5632 }
5633
5634 /**
5635 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5636 *
5637 * The needs_unlit_centroid_workaround ends up producing one of these per
5638 * channel of centroid input, so it's good to clean them up.
5639 *
5640 * An assumption here is that nothing ever modifies the dispatched pixels
5641 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5642 * dictates that anyway.
5643 */
5644 bool
5645 fs_visitor::opt_drop_redundant_mov_to_flags()
5646 {
5647 bool flag_mov_found[2] = {false};
5648 bool progress = false;
5649
5650 /* Instructions removed by this pass can only be added if this were true */
5651 if (!devinfo->needs_unlit_centroid_workaround)
5652 return false;
5653
5654 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5655 if (inst->is_control_flow()) {
5656 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5657 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5658 if (!flag_mov_found[inst->flag_subreg]) {
5659 flag_mov_found[inst->flag_subreg] = true;
5660 } else {
5661 inst->remove(block);
5662 progress = true;
5663 }
5664 } else if (inst->flags_written()) {
5665 flag_mov_found[inst->flag_subreg] = false;
5666 }
5667 }
5668
5669 return progress;
5670 }
5671
5672 void
5673 fs_visitor::optimize()
5674 {
5675 /* Start by validating the shader we currently have. */
5676 validate();
5677
5678 /* bld is the common builder object pointing at the end of the program we
5679 * used to translate it into i965 IR. For the optimization and lowering
5680 * passes coming next, any code added after the end of the program without
5681 * having explicitly called fs_builder::at() clearly points at a mistake.
5682 * Ideally optimization passes wouldn't be part of the visitor so they
5683 * wouldn't have access to bld at all, but they do, so just in case some
5684 * pass forgets to ask for a location explicitly set it to NULL here to
5685 * make it trip. The dispatch width is initialized to a bogus value to
5686 * make sure that optimizations set the execution controls explicitly to
5687 * match the code they are manipulating instead of relying on the defaults.
5688 */
5689 bld = fs_builder(this, 64);
5690
5691 assign_constant_locations();
5692 lower_constant_loads();
5693
5694 validate();
5695
5696 split_virtual_grfs();
5697 validate();
5698
5699 #define OPT(pass, args...) ({ \
5700 pass_num++; \
5701 bool this_progress = pass(args); \
5702 \
5703 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5704 char filename[64]; \
5705 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5706 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5707 \
5708 backend_shader::dump_instructions(filename); \
5709 } \
5710 \
5711 validate(); \
5712 \
5713 progress = progress || this_progress; \
5714 this_progress; \
5715 })
5716
5717 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5718 char filename[64];
5719 snprintf(filename, 64, "%s%d-%s-00-00-start",
5720 stage_abbrev, dispatch_width, nir->info.name);
5721
5722 backend_shader::dump_instructions(filename);
5723 }
5724
5725 bool progress = false;
5726 int iteration = 0;
5727 int pass_num = 0;
5728
5729 OPT(opt_drop_redundant_mov_to_flags);
5730
5731 do {
5732 progress = false;
5733 pass_num = 0;
5734 iteration++;
5735
5736 OPT(remove_duplicate_mrf_writes);
5737
5738 OPT(opt_algebraic);
5739 OPT(opt_cse);
5740 OPT(opt_copy_propagation);
5741 OPT(opt_predicated_break, this);
5742 OPT(opt_cmod_propagation);
5743 OPT(dead_code_eliminate);
5744 OPT(opt_peephole_sel);
5745 OPT(dead_control_flow_eliminate, this);
5746 OPT(opt_register_renaming);
5747 OPT(opt_saturate_propagation);
5748 OPT(register_coalesce);
5749 OPT(compute_to_mrf);
5750 OPT(eliminate_find_live_channel);
5751
5752 OPT(compact_virtual_grfs);
5753 } while (progress);
5754
5755 progress = false;
5756 pass_num = 0;
5757
5758 if (OPT(lower_pack)) {
5759 OPT(register_coalesce);
5760 OPT(dead_code_eliminate);
5761 }
5762
5763 OPT(lower_simd_width);
5764
5765 /* After SIMD lowering just in case we had to unroll the EOT send. */
5766 OPT(opt_sampler_eot);
5767
5768 OPT(lower_logical_sends);
5769
5770 if (progress) {
5771 OPT(opt_copy_propagation);
5772 /* Only run after logical send lowering because it's easier to implement
5773 * in terms of physical sends.
5774 */
5775 if (OPT(opt_zero_samples))
5776 OPT(opt_copy_propagation);
5777 /* Run after logical send lowering to give it a chance to CSE the
5778 * LOAD_PAYLOAD instructions created to construct the payloads of
5779 * e.g. texturing messages in cases where it wasn't possible to CSE the
5780 * whole logical instruction.
5781 */
5782 OPT(opt_cse);
5783 OPT(register_coalesce);
5784 OPT(compute_to_mrf);
5785 OPT(dead_code_eliminate);
5786 OPT(remove_duplicate_mrf_writes);
5787 OPT(opt_peephole_sel);
5788 }
5789
5790 OPT(opt_redundant_discard_jumps);
5791
5792 if (OPT(lower_load_payload)) {
5793 split_virtual_grfs();
5794 OPT(register_coalesce);
5795 OPT(compute_to_mrf);
5796 OPT(dead_code_eliminate);
5797 }
5798
5799 OPT(opt_combine_constants);
5800 OPT(lower_integer_multiplication);
5801
5802 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5803 OPT(opt_cmod_propagation);
5804 OPT(opt_cse);
5805 OPT(opt_copy_propagation);
5806 OPT(dead_code_eliminate);
5807 }
5808
5809 if (OPT(lower_conversions)) {
5810 OPT(opt_copy_propagation);
5811 OPT(dead_code_eliminate);
5812 OPT(lower_simd_width);
5813 }
5814
5815 lower_uniform_pull_constant_loads();
5816
5817 validate();
5818 }
5819
5820 /**
5821 * Three source instruction must have a GRF/MRF destination register.
5822 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5823 */
5824 void
5825 fs_visitor::fixup_3src_null_dest()
5826 {
5827 bool progress = false;
5828
5829 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5830 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5831 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5832 inst->dst.type);
5833 progress = true;
5834 }
5835 }
5836
5837 if (progress)
5838 invalidate_live_intervals();
5839 }
5840
5841 void
5842 fs_visitor::allocate_registers(bool allow_spilling)
5843 {
5844 bool allocated_without_spills;
5845
5846 static const enum instruction_scheduler_mode pre_modes[] = {
5847 SCHEDULE_PRE,
5848 SCHEDULE_PRE_NON_LIFO,
5849 SCHEDULE_PRE_LIFO,
5850 };
5851
5852 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5853
5854 /* Try each scheduling heuristic to see if it can successfully register
5855 * allocate without spilling. They should be ordered by decreasing
5856 * performance but increasing likelihood of allocating.
5857 */
5858 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5859 schedule_instructions(pre_modes[i]);
5860
5861 if (0) {
5862 assign_regs_trivial();
5863 allocated_without_spills = true;
5864 } else {
5865 allocated_without_spills = assign_regs(false, spill_all);
5866 }
5867 if (allocated_without_spills)
5868 break;
5869 }
5870
5871 if (!allocated_without_spills) {
5872 if (!allow_spilling)
5873 fail("Failure to register allocate and spilling is not allowed.");
5874
5875 /* We assume that any spilling is worse than just dropping back to
5876 * SIMD8. There's probably actually some intermediate point where
5877 * SIMD16 with a couple of spills is still better.
5878 */
5879 if (dispatch_width > min_dispatch_width) {
5880 fail("Failure to register allocate. Reduce number of "
5881 "live scalar values to avoid this.");
5882 } else {
5883 compiler->shader_perf_log(log_data,
5884 "%s shader triggered register spilling. "
5885 "Try reducing the number of live scalar "
5886 "values to improve performance.\n",
5887 stage_name);
5888 }
5889
5890 /* Since we're out of heuristics, just go spill registers until we
5891 * get an allocation.
5892 */
5893 while (!assign_regs(true, spill_all)) {
5894 if (failed)
5895 break;
5896 }
5897 }
5898
5899 /* This must come after all optimization and register allocation, since
5900 * it inserts dead code that happens to have side effects, and it does
5901 * so based on the actual physical registers in use.
5902 */
5903 insert_gen4_send_dependency_workarounds();
5904
5905 if (failed)
5906 return;
5907
5908 schedule_instructions(SCHEDULE_POST);
5909
5910 if (last_scratch > 0) {
5911 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5912
5913 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5914
5915 if (stage == MESA_SHADER_COMPUTE) {
5916 if (devinfo->is_haswell) {
5917 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5918 * field documentation, Haswell supports a minimum of 2kB of
5919 * scratch space for compute shaders, unlike every other stage
5920 * and platform.
5921 */
5922 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5923 } else if (devinfo->gen <= 7) {
5924 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5925 * field documentation, platforms prior to Haswell measure scratch
5926 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5927 */
5928 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5929 max_scratch_size = 12 * 1024;
5930 }
5931 }
5932
5933 /* We currently only support up to 2MB of scratch space. If we
5934 * need to support more eventually, the documentation suggests
5935 * that we could allocate a larger buffer, and partition it out
5936 * ourselves. We'd just have to undo the hardware's address
5937 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5938 * and then add FFTID * (Larger Per Thread Scratch Space).
5939 *
5940 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5941 * Thread Group Tracking > Local Memory/Scratch Space.
5942 */
5943 assert(prog_data->total_scratch < max_scratch_size);
5944 }
5945 }
5946
5947 bool
5948 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5949 {
5950 assert(stage == MESA_SHADER_VERTEX);
5951
5952 setup_vs_payload();
5953
5954 if (shader_time_index >= 0)
5955 emit_shader_time_begin();
5956
5957 emit_nir_code();
5958
5959 if (failed)
5960 return false;
5961
5962 compute_clip_distance(clip_planes);
5963
5964 emit_urb_writes();
5965
5966 if (shader_time_index >= 0)
5967 emit_shader_time_end();
5968
5969 calculate_cfg();
5970
5971 optimize();
5972
5973 assign_curb_setup();
5974 assign_vs_urb_setup();
5975
5976 fixup_3src_null_dest();
5977 allocate_registers(true);
5978
5979 return !failed;
5980 }
5981
5982 bool
5983 fs_visitor::run_tcs_single_patch()
5984 {
5985 assert(stage == MESA_SHADER_TESS_CTRL);
5986
5987 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
5988
5989 /* r1-r4 contain the ICP handles. */
5990 payload.num_regs = 5;
5991
5992 if (shader_time_index >= 0)
5993 emit_shader_time_begin();
5994
5995 /* Initialize gl_InvocationID */
5996 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5997 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5998 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5999 bld.MOV(channels_ud, channels_uw);
6000
6001 if (tcs_prog_data->instances == 1) {
6002 invocation_id = channels_ud;
6003 } else {
6004 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6005
6006 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6007 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6008 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6009 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6010 brw_imm_ud(INTEL_MASK(23, 17)));
6011 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6012
6013 bld.ADD(invocation_id, instance_times_8, channels_ud);
6014 }
6015
6016 /* Fix the disptach mask */
6017 if (nir->info.tess.tcs_vertices_out % 8) {
6018 bld.CMP(bld.null_reg_ud(), invocation_id,
6019 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6020 bld.IF(BRW_PREDICATE_NORMAL);
6021 }
6022
6023 emit_nir_code();
6024
6025 if (nir->info.tess.tcs_vertices_out % 8) {
6026 bld.emit(BRW_OPCODE_ENDIF);
6027 }
6028
6029 /* Emit EOT write; set TR DS Cache bit */
6030 fs_reg srcs[3] = {
6031 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6032 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6033 fs_reg(brw_imm_ud(0)),
6034 };
6035 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6036 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6037
6038 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6039 bld.null_reg_ud(), payload);
6040 inst->mlen = 3;
6041 inst->eot = true;
6042
6043 if (shader_time_index >= 0)
6044 emit_shader_time_end();
6045
6046 if (failed)
6047 return false;
6048
6049 calculate_cfg();
6050
6051 optimize();
6052
6053 assign_curb_setup();
6054 assign_tcs_single_patch_urb_setup();
6055
6056 fixup_3src_null_dest();
6057 allocate_registers(true);
6058
6059 return !failed;
6060 }
6061
6062 bool
6063 fs_visitor::run_tes()
6064 {
6065 assert(stage == MESA_SHADER_TESS_EVAL);
6066
6067 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6068 payload.num_regs = 5;
6069
6070 if (shader_time_index >= 0)
6071 emit_shader_time_begin();
6072
6073 emit_nir_code();
6074
6075 if (failed)
6076 return false;
6077
6078 emit_urb_writes();
6079
6080 if (shader_time_index >= 0)
6081 emit_shader_time_end();
6082
6083 calculate_cfg();
6084
6085 optimize();
6086
6087 assign_curb_setup();
6088 assign_tes_urb_setup();
6089
6090 fixup_3src_null_dest();
6091 allocate_registers(true);
6092
6093 return !failed;
6094 }
6095
6096 bool
6097 fs_visitor::run_gs()
6098 {
6099 assert(stage == MESA_SHADER_GEOMETRY);
6100
6101 setup_gs_payload();
6102
6103 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6104
6105 if (gs_compile->control_data_header_size_bits > 0) {
6106 /* Create a VGRF to store accumulated control data bits. */
6107 this->control_data_bits = vgrf(glsl_type::uint_type);
6108
6109 /* If we're outputting more than 32 control data bits, then EmitVertex()
6110 * will set control_data_bits to 0 after emitting the first vertex.
6111 * Otherwise, we need to initialize it to 0 here.
6112 */
6113 if (gs_compile->control_data_header_size_bits <= 32) {
6114 const fs_builder abld = bld.annotate("initialize control data bits");
6115 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6116 }
6117 }
6118
6119 if (shader_time_index >= 0)
6120 emit_shader_time_begin();
6121
6122 emit_nir_code();
6123
6124 emit_gs_thread_end();
6125
6126 if (shader_time_index >= 0)
6127 emit_shader_time_end();
6128
6129 if (failed)
6130 return false;
6131
6132 calculate_cfg();
6133
6134 optimize();
6135
6136 assign_curb_setup();
6137 assign_gs_urb_setup();
6138
6139 fixup_3src_null_dest();
6140 allocate_registers(true);
6141
6142 return !failed;
6143 }
6144
6145 bool
6146 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6147 {
6148 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6149 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6150
6151 assert(stage == MESA_SHADER_FRAGMENT);
6152
6153 if (devinfo->gen >= 6)
6154 setup_fs_payload_gen6();
6155 else
6156 setup_fs_payload_gen4();
6157
6158 if (0) {
6159 emit_dummy_fs();
6160 } else if (do_rep_send) {
6161 assert(dispatch_width == 16);
6162 emit_repclear_shader();
6163 } else {
6164 if (shader_time_index >= 0)
6165 emit_shader_time_begin();
6166
6167 calculate_urb_setup();
6168 if (nir->info.inputs_read > 0 ||
6169 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6170 if (devinfo->gen < 6)
6171 emit_interpolation_setup_gen4();
6172 else
6173 emit_interpolation_setup_gen6();
6174 }
6175
6176 /* We handle discards by keeping track of the still-live pixels in f0.1.
6177 * Initialize it with the dispatched pixels.
6178 */
6179 if (wm_prog_data->uses_kill) {
6180 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6181 discard_init->flag_subreg = 1;
6182 }
6183
6184 /* Generate FS IR for main(). (the visitor only descends into
6185 * functions called "main").
6186 */
6187 emit_nir_code();
6188
6189 if (failed)
6190 return false;
6191
6192 if (wm_prog_data->uses_kill)
6193 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6194
6195 if (wm_key->alpha_test_func)
6196 emit_alpha_test();
6197
6198 emit_fb_writes();
6199
6200 if (shader_time_index >= 0)
6201 emit_shader_time_end();
6202
6203 calculate_cfg();
6204
6205 optimize();
6206
6207 assign_curb_setup();
6208 assign_urb_setup();
6209
6210 fixup_3src_null_dest();
6211 allocate_registers(allow_spilling);
6212
6213 if (failed)
6214 return false;
6215 }
6216
6217 return !failed;
6218 }
6219
6220 bool
6221 fs_visitor::run_cs()
6222 {
6223 assert(stage == MESA_SHADER_COMPUTE);
6224
6225 setup_cs_payload();
6226
6227 if (shader_time_index >= 0)
6228 emit_shader_time_begin();
6229
6230 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6231 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6232 const fs_builder abld = bld.exec_all().group(1, 0);
6233 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6234 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6235 }
6236
6237 emit_nir_code();
6238
6239 if (failed)
6240 return false;
6241
6242 emit_cs_terminate();
6243
6244 if (shader_time_index >= 0)
6245 emit_shader_time_end();
6246
6247 calculate_cfg();
6248
6249 optimize();
6250
6251 assign_curb_setup();
6252
6253 fixup_3src_null_dest();
6254 allocate_registers(true);
6255
6256 if (failed)
6257 return false;
6258
6259 return !failed;
6260 }
6261
6262 /**
6263 * Return a bitfield where bit n is set if barycentric interpolation mode n
6264 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6265 *
6266 * We examine the load_barycentric intrinsics rather than looking at input
6267 * variables so that we catch interpolateAtCentroid() messages too, which
6268 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6269 */
6270 static unsigned
6271 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6272 const nir_shader *shader)
6273 {
6274 unsigned barycentric_interp_modes = 0;
6275
6276 nir_foreach_function(f, shader) {
6277 if (!f->impl)
6278 continue;
6279
6280 nir_foreach_block(block, f->impl) {
6281 nir_foreach_instr(instr, block) {
6282 if (instr->type != nir_instr_type_intrinsic)
6283 continue;
6284
6285 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6286 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6287 continue;
6288
6289 /* Ignore WPOS; it doesn't require interpolation. */
6290 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6291 continue;
6292
6293 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6294 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6295 nir_intrinsic_interp_mode(intrin);
6296 nir_intrinsic_op bary_op = intrin->intrinsic;
6297 enum brw_barycentric_mode bary =
6298 brw_barycentric_mode(interp, bary_op);
6299
6300 barycentric_interp_modes |= 1 << bary;
6301
6302 if (devinfo->needs_unlit_centroid_workaround &&
6303 bary_op == nir_intrinsic_load_barycentric_centroid)
6304 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6305 }
6306 }
6307 }
6308
6309 return barycentric_interp_modes;
6310 }
6311
6312 static void
6313 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6314 const nir_shader *shader)
6315 {
6316 prog_data->flat_inputs = 0;
6317
6318 nir_foreach_variable(var, &shader->inputs) {
6319 int input_index = prog_data->urb_setup[var->data.location];
6320
6321 if (input_index < 0)
6322 continue;
6323
6324 /* flat shading */
6325 if (var->data.interpolation == INTERP_MODE_FLAT)
6326 prog_data->flat_inputs |= (1 << input_index);
6327 }
6328 }
6329
6330 static uint8_t
6331 computed_depth_mode(const nir_shader *shader)
6332 {
6333 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6334 switch (shader->info.fs.depth_layout) {
6335 case FRAG_DEPTH_LAYOUT_NONE:
6336 case FRAG_DEPTH_LAYOUT_ANY:
6337 return BRW_PSCDEPTH_ON;
6338 case FRAG_DEPTH_LAYOUT_GREATER:
6339 return BRW_PSCDEPTH_ON_GE;
6340 case FRAG_DEPTH_LAYOUT_LESS:
6341 return BRW_PSCDEPTH_ON_LE;
6342 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6343 return BRW_PSCDEPTH_OFF;
6344 }
6345 }
6346 return BRW_PSCDEPTH_OFF;
6347 }
6348
6349 /**
6350 * Move load_interpolated_input with simple (payload-based) barycentric modes
6351 * to the top of the program so we don't emit multiple PLNs for the same input.
6352 *
6353 * This works around CSE not being able to handle non-dominating cases
6354 * such as:
6355 *
6356 * if (...) {
6357 * interpolate input
6358 * } else {
6359 * interpolate the same exact input
6360 * }
6361 *
6362 * This should be replaced by global value numbering someday.
6363 */
6364 static bool
6365 move_interpolation_to_top(nir_shader *nir)
6366 {
6367 bool progress = false;
6368
6369 nir_foreach_function(f, nir) {
6370 if (!f->impl)
6371 continue;
6372
6373 nir_block *top = nir_start_block(f->impl);
6374 exec_node *cursor_node = NULL;
6375
6376 nir_foreach_block(block, f->impl) {
6377 if (block == top)
6378 continue;
6379
6380 nir_foreach_instr_safe(instr, block) {
6381 if (instr->type != nir_instr_type_intrinsic)
6382 continue;
6383
6384 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6385 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6386 continue;
6387 nir_intrinsic_instr *bary_intrinsic =
6388 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6389 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6390
6391 /* Leave interpolateAtSample/Offset() where they are. */
6392 if (op == nir_intrinsic_load_barycentric_at_sample ||
6393 op == nir_intrinsic_load_barycentric_at_offset)
6394 continue;
6395
6396 nir_instr *move[3] = {
6397 &bary_intrinsic->instr,
6398 intrin->src[1].ssa->parent_instr,
6399 instr
6400 };
6401
6402 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6403 if (move[i]->block != top) {
6404 move[i]->block = top;
6405 exec_node_remove(&move[i]->node);
6406 if (cursor_node) {
6407 exec_node_insert_after(cursor_node, &move[i]->node);
6408 } else {
6409 exec_list_push_head(&top->instr_list, &move[i]->node);
6410 }
6411 cursor_node = &move[i]->node;
6412 progress = true;
6413 }
6414 }
6415 }
6416 }
6417 nir_metadata_preserve(f->impl, (nir_metadata)
6418 ((unsigned) nir_metadata_block_index |
6419 (unsigned) nir_metadata_dominance));
6420 }
6421
6422 return progress;
6423 }
6424
6425 /**
6426 * Demote per-sample barycentric intrinsics to centroid.
6427 *
6428 * Useful when rendering to a non-multisampled buffer.
6429 */
6430 static bool
6431 demote_sample_qualifiers(nir_shader *nir)
6432 {
6433 bool progress = true;
6434
6435 nir_foreach_function(f, nir) {
6436 if (!f->impl)
6437 continue;
6438
6439 nir_builder b;
6440 nir_builder_init(&b, f->impl);
6441
6442 nir_foreach_block(block, f->impl) {
6443 nir_foreach_instr_safe(instr, block) {
6444 if (instr->type != nir_instr_type_intrinsic)
6445 continue;
6446
6447 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6448 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6449 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6450 continue;
6451
6452 b.cursor = nir_before_instr(instr);
6453 nir_ssa_def *centroid =
6454 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6455 nir_intrinsic_interp_mode(intrin));
6456 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6457 nir_src_for_ssa(centroid));
6458 nir_instr_remove(instr);
6459 progress = true;
6460 }
6461 }
6462
6463 nir_metadata_preserve(f->impl, (nir_metadata)
6464 ((unsigned) nir_metadata_block_index |
6465 (unsigned) nir_metadata_dominance));
6466 }
6467
6468 return progress;
6469 }
6470
6471 /**
6472 * Pre-gen6, the register file of the EUs was shared between threads,
6473 * and each thread used some subset allocated on a 16-register block
6474 * granularity. The unit states wanted these block counts.
6475 */
6476 static inline int
6477 brw_register_blocks(int reg_count)
6478 {
6479 return ALIGN(reg_count, 16) / 16 - 1;
6480 }
6481
6482 const unsigned *
6483 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6484 void *mem_ctx,
6485 const struct brw_wm_prog_key *key,
6486 struct brw_wm_prog_data *prog_data,
6487 const nir_shader *src_shader,
6488 struct gl_program *prog,
6489 int shader_time_index8, int shader_time_index16,
6490 bool allow_spilling,
6491 bool use_rep_send, struct brw_vue_map *vue_map,
6492 unsigned *final_assembly_size,
6493 char **error_str)
6494 {
6495 const struct gen_device_info *devinfo = compiler->devinfo;
6496
6497 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6498 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6499 brw_nir_lower_fs_inputs(shader, devinfo, key);
6500 brw_nir_lower_fs_outputs(shader);
6501
6502 if (devinfo->gen < 6) {
6503 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6504 }
6505
6506 if (!key->multisample_fbo)
6507 NIR_PASS_V(shader, demote_sample_qualifiers);
6508 NIR_PASS_V(shader, move_interpolation_to_top);
6509 shader = brw_postprocess_nir(shader, compiler, true);
6510
6511 /* key->alpha_test_func means simulating alpha testing via discards,
6512 * so the shader definitely kills pixels.
6513 */
6514 prog_data->uses_kill = shader->info.fs.uses_discard ||
6515 key->alpha_test_func;
6516 prog_data->uses_omask = key->multisample_fbo &&
6517 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6518 prog_data->computed_depth_mode = computed_depth_mode(shader);
6519 prog_data->computed_stencil =
6520 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6521
6522 prog_data->persample_dispatch =
6523 key->multisample_fbo &&
6524 (key->persample_interp ||
6525 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6526 SYSTEM_BIT_SAMPLE_POS)) ||
6527 shader->info.fs.uses_sample_qualifier ||
6528 shader->info.outputs_read);
6529
6530 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6531 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6532 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6533
6534 prog_data->barycentric_interp_modes =
6535 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6536
6537 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6538 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6539 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6540
6541 fs_visitor v8(compiler, log_data, mem_ctx, key,
6542 &prog_data->base, prog, shader, 8,
6543 shader_time_index8);
6544 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6545 if (error_str)
6546 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6547
6548 return NULL;
6549 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6550 simd8_cfg = v8.cfg;
6551 simd8_grf_start = v8.payload.num_regs;
6552 simd8_grf_used = v8.grf_used;
6553 }
6554
6555 if (v8.max_dispatch_width >= 16 &&
6556 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6557 /* Try a SIMD16 compile */
6558 fs_visitor v16(compiler, log_data, mem_ctx, key,
6559 &prog_data->base, prog, shader, 16,
6560 shader_time_index16);
6561 v16.import_uniforms(&v8);
6562 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6563 compiler->shader_perf_log(log_data,
6564 "SIMD16 shader failed to compile: %s",
6565 v16.fail_msg);
6566 } else {
6567 simd16_cfg = v16.cfg;
6568 simd16_grf_start = v16.payload.num_regs;
6569 simd16_grf_used = v16.grf_used;
6570 }
6571 }
6572
6573 /* When the caller requests a repclear shader, they want SIMD16-only */
6574 if (use_rep_send)
6575 simd8_cfg = NULL;
6576
6577 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6578 * at the top to select the shader. We've never implemented that.
6579 * Instead, we just give them exactly one shader and we pick the widest one
6580 * available.
6581 */
6582 if (compiler->devinfo->gen < 5 && simd16_cfg)
6583 simd8_cfg = NULL;
6584
6585 if (prog_data->persample_dispatch) {
6586 /* Starting with SandyBridge (where we first get MSAA), the different
6587 * pixel dispatch combinations are grouped into classifications A
6588 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6589 * generations, the only configurations supporting persample dispatch
6590 * are are this in which only one dispatch width is enabled.
6591 *
6592 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6593 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6594 */
6595 if (compiler->devinfo->gen == 6 &&
6596 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6597 simd16_cfg = NULL;
6598 } else if (simd16_cfg) {
6599 simd8_cfg = NULL;
6600 }
6601 }
6602
6603 /* We have to compute the flat inputs after the visitor is finished running
6604 * because it relies on prog_data->urb_setup which is computed in
6605 * fs_visitor::calculate_urb_setup().
6606 */
6607 brw_compute_flat_inputs(prog_data, shader);
6608
6609 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6610 v8.promoted_constants, v8.runtime_check_aads_emit,
6611 MESA_SHADER_FRAGMENT);
6612
6613 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6614 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6615 shader->info.label ?
6616 shader->info.label : "unnamed",
6617 shader->info.name));
6618 }
6619
6620 if (simd8_cfg) {
6621 prog_data->dispatch_8 = true;
6622 g.generate_code(simd8_cfg, 8);
6623 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6624 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6625
6626 if (simd16_cfg) {
6627 prog_data->dispatch_16 = true;
6628 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6629 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6630 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6631 }
6632 } else if (simd16_cfg) {
6633 prog_data->dispatch_16 = true;
6634 g.generate_code(simd16_cfg, 16);
6635 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6636 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6637 }
6638
6639 return g.get_assembly(final_assembly_size);
6640 }
6641
6642 fs_reg *
6643 fs_visitor::emit_cs_work_group_id_setup()
6644 {
6645 assert(stage == MESA_SHADER_COMPUTE);
6646
6647 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6648
6649 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6650 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6651 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6652
6653 bld.MOV(*reg, r0_1);
6654 bld.MOV(offset(*reg, bld, 1), r0_6);
6655 bld.MOV(offset(*reg, bld, 2), r0_7);
6656
6657 return reg;
6658 }
6659
6660 static void
6661 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6662 {
6663 block->dwords = dwords;
6664 block->regs = DIV_ROUND_UP(dwords, 8);
6665 block->size = block->regs * 32;
6666 }
6667
6668 static void
6669 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6670 struct brw_cs_prog_data *cs_prog_data)
6671 {
6672 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6673 bool fill_thread_id =
6674 cs_prog_data->thread_local_id_index >= 0 &&
6675 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6676 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6677
6678 /* The thread ID should be stored in the last param dword */
6679 assert(prog_data->nr_params > 0 || !fill_thread_id);
6680 assert(!fill_thread_id ||
6681 cs_prog_data->thread_local_id_index ==
6682 (int)prog_data->nr_params - 1);
6683
6684 unsigned cross_thread_dwords, per_thread_dwords;
6685 if (!cross_thread_supported) {
6686 cross_thread_dwords = 0u;
6687 per_thread_dwords = prog_data->nr_params;
6688 } else if (fill_thread_id) {
6689 /* Fill all but the last register with cross-thread payload */
6690 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6691 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6692 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6693 } else {
6694 /* Fill all data using cross-thread payload */
6695 cross_thread_dwords = prog_data->nr_params;
6696 per_thread_dwords = 0u;
6697 }
6698
6699 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6700 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6701
6702 unsigned total_dwords =
6703 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6704 cs_prog_data->push.cross_thread.size) / 4;
6705 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6706
6707 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6708 cs_prog_data->push.per_thread.size == 0);
6709 assert(cs_prog_data->push.cross_thread.dwords +
6710 cs_prog_data->push.per_thread.dwords ==
6711 prog_data->nr_params);
6712 }
6713
6714 static void
6715 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6716 {
6717 cs_prog_data->simd_size = size;
6718 unsigned group_size = cs_prog_data->local_size[0] *
6719 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6720 cs_prog_data->threads = (group_size + size - 1) / size;
6721 }
6722
6723 const unsigned *
6724 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6725 void *mem_ctx,
6726 const struct brw_cs_prog_key *key,
6727 struct brw_cs_prog_data *prog_data,
6728 const nir_shader *src_shader,
6729 int shader_time_index,
6730 unsigned *final_assembly_size,
6731 char **error_str)
6732 {
6733 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6734 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6735 brw_nir_lower_cs_shared(shader);
6736 prog_data->base.total_shared += shader->num_shared;
6737
6738 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6739 * the thread_local_id_index.
6740 */
6741 assert(prog_data->thread_local_id_index >= 0);
6742 shader->num_uniforms =
6743 MAX2(shader->num_uniforms,
6744 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6745
6746 brw_nir_lower_intrinsics(shader, &prog_data->base);
6747 shader = brw_postprocess_nir(shader, compiler, true);
6748
6749 prog_data->local_size[0] = shader->info.cs.local_size[0];
6750 prog_data->local_size[1] = shader->info.cs.local_size[1];
6751 prog_data->local_size[2] = shader->info.cs.local_size[2];
6752 unsigned local_workgroup_size =
6753 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6754 shader->info.cs.local_size[2];
6755
6756 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6757 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6758
6759 cfg_t *cfg = NULL;
6760 const char *fail_msg = NULL;
6761
6762 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6763 */
6764 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6765 NULL, /* Never used in core profile */
6766 shader, 8, shader_time_index);
6767 if (simd_required <= 8) {
6768 if (!v8.run_cs()) {
6769 fail_msg = v8.fail_msg;
6770 } else {
6771 cfg = v8.cfg;
6772 cs_set_simd_size(prog_data, 8);
6773 cs_fill_push_const_info(compiler->devinfo, prog_data);
6774 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6775 }
6776 }
6777
6778 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6779 NULL, /* Never used in core profile */
6780 shader, 16, shader_time_index);
6781 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6782 !fail_msg && v8.max_dispatch_width >= 16 &&
6783 simd_required <= 16) {
6784 /* Try a SIMD16 compile */
6785 if (simd_required <= 8)
6786 v16.import_uniforms(&v8);
6787 if (!v16.run_cs()) {
6788 compiler->shader_perf_log(log_data,
6789 "SIMD16 shader failed to compile: %s",
6790 v16.fail_msg);
6791 if (!cfg) {
6792 fail_msg =
6793 "Couldn't generate SIMD16 program and not "
6794 "enough threads for SIMD8";
6795 }
6796 } else {
6797 cfg = v16.cfg;
6798 cs_set_simd_size(prog_data, 16);
6799 cs_fill_push_const_info(compiler->devinfo, prog_data);
6800 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6801 }
6802 }
6803
6804 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6805 NULL, /* Never used in core profile */
6806 shader, 32, shader_time_index);
6807 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6808 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6809 /* Try a SIMD32 compile */
6810 if (simd_required <= 8)
6811 v32.import_uniforms(&v8);
6812 else if (simd_required <= 16)
6813 v32.import_uniforms(&v16);
6814
6815 if (!v32.run_cs()) {
6816 compiler->shader_perf_log(log_data,
6817 "SIMD32 shader failed to compile: %s",
6818 v16.fail_msg);
6819 if (!cfg) {
6820 fail_msg =
6821 "Couldn't generate SIMD32 program and not "
6822 "enough threads for SIMD16";
6823 }
6824 } else {
6825 cfg = v32.cfg;
6826 cs_set_simd_size(prog_data, 32);
6827 cs_fill_push_const_info(compiler->devinfo, prog_data);
6828 }
6829 }
6830
6831 if (unlikely(cfg == NULL)) {
6832 assert(fail_msg);
6833 if (error_str)
6834 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6835
6836 return NULL;
6837 }
6838
6839 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6840 v8.promoted_constants, v8.runtime_check_aads_emit,
6841 MESA_SHADER_COMPUTE);
6842 if (INTEL_DEBUG & DEBUG_CS) {
6843 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6844 shader->info.label ? shader->info.label :
6845 "unnamed",
6846 shader->info.name);
6847 g.enable_debug(name);
6848 }
6849
6850 g.generate_code(cfg, prog_data->simd_size);
6851
6852 return g.get_assembly(final_assembly_size);
6853 }
6854
6855 /**
6856 * Test the dispatch mask packing assumptions of
6857 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6858 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6859 * executed with an unexpected dispatch mask.
6860 */
6861 static UNUSED void
6862 brw_fs_test_dispatch_packing(const fs_builder &bld)
6863 {
6864 const gl_shader_stage stage = bld.shader->stage;
6865
6866 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6867 bld.shader->stage_prog_data)) {
6868 const fs_builder ubld = bld.exec_all().group(1, 0);
6869 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6870 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6871 brw_dmask_reg());
6872
6873 ubld.ADD(tmp, mask, brw_imm_ud(1));
6874 ubld.AND(tmp, mask, tmp);
6875
6876 /* This will loop forever if the dispatch mask doesn't have the expected
6877 * form '2^n-1', in which case tmp will be non-zero.
6878 */
6879 bld.emit(BRW_OPCODE_DO);
6880 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6881 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6882 }
6883 }