i965/gen10: Re-enable push constants.
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 fs_reg dw = offset(vec4_result, bld, (const_offset & 0xf) / 4);
195 switch (type_sz(dst.type)) {
196 case 2:
197 shuffle_32bit_load_result_to_16bit_data(bld, dst, dw, 1);
198 bld.MOV(dst, subscript(dw, dst.type, (const_offset / 2) & 1));
199 break;
200 case 4:
201 bld.MOV(dst, retype(dw, dst.type));
202 break;
203 case 8:
204 shuffle_32bit_load_result_to_64bit_data(bld, dst, dw, 1);
205 break;
206 default:
207 unreachable("Unsupported bit_size");
208 }
209 }
210
211 /**
212 * A helper for MOV generation for fixing up broken hardware SEND dependency
213 * handling.
214 */
215 void
216 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
217 {
218 /* The caller always wants uncompressed to emit the minimal extra
219 * dependencies, and to avoid having to deal with aligning its regs to 2.
220 */
221 const fs_builder ubld = bld.annotate("send dependency resolve")
222 .half(0);
223
224 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
225 }
226
227 bool
228 fs_inst::equals(fs_inst *inst) const
229 {
230 return (opcode == inst->opcode &&
231 dst.equals(inst->dst) &&
232 src[0].equals(inst->src[0]) &&
233 src[1].equals(inst->src[1]) &&
234 src[2].equals(inst->src[2]) &&
235 saturate == inst->saturate &&
236 predicate == inst->predicate &&
237 conditional_mod == inst->conditional_mod &&
238 mlen == inst->mlen &&
239 base_mrf == inst->base_mrf &&
240 target == inst->target &&
241 eot == inst->eot &&
242 header_size == inst->header_size &&
243 shadow_compare == inst->shadow_compare &&
244 exec_size == inst->exec_size &&
245 offset == inst->offset);
246 }
247
248 bool
249 fs_inst::is_send_from_grf() const
250 {
251 switch (opcode) {
252 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
253 case SHADER_OPCODE_SHADER_TIME_ADD:
254 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
255 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
256 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
257 case SHADER_OPCODE_UNTYPED_ATOMIC:
258 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
259 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
260 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
261 case SHADER_OPCODE_BYTE_SCATTERED_READ:
262 case SHADER_OPCODE_TYPED_ATOMIC:
263 case SHADER_OPCODE_TYPED_SURFACE_READ:
264 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
265 case SHADER_OPCODE_URB_WRITE_SIMD8:
266 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
267 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
268 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
269 case SHADER_OPCODE_URB_READ_SIMD8:
270 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
271 return true;
272 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
273 return src[1].file == VGRF;
274 case FS_OPCODE_FB_WRITE:
275 case FS_OPCODE_FB_READ:
276 return src[0].file == VGRF;
277 default:
278 if (is_tex())
279 return src[0].file == VGRF;
280
281 return false;
282 }
283 }
284
285 /**
286 * Returns true if this instruction's sources and destinations cannot
287 * safely be the same register.
288 *
289 * In most cases, a register can be written over safely by the same
290 * instruction that is its last use. For a single instruction, the
291 * sources are dereferenced before writing of the destination starts
292 * (naturally).
293 *
294 * However, there are a few cases where this can be problematic:
295 *
296 * - Virtual opcodes that translate to multiple instructions in the
297 * code generator: if src == dst and one instruction writes the
298 * destination before a later instruction reads the source, then
299 * src will have been clobbered.
300 *
301 * - SIMD16 compressed instructions with certain regioning (see below).
302 *
303 * The register allocator uses this information to set up conflicts between
304 * GRF sources and the destination.
305 */
306 bool
307 fs_inst::has_source_and_destination_hazard() const
308 {
309 switch (opcode) {
310 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
311 /* Multiple partial writes to the destination */
312 return true;
313 default:
314 /* The SIMD16 compressed instruction
315 *
316 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
317 *
318 * is actually decoded in hardware as:
319 *
320 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
321 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
322 *
323 * Which is safe. However, if we have uniform accesses
324 * happening, we get into trouble:
325 *
326 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
327 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
328 *
329 * Now our destination for the first instruction overwrote the
330 * second instruction's src0, and we get garbage for those 8
331 * pixels. There's a similar issue for the pre-gen6
332 * pixel_x/pixel_y, which are registers of 16-bit values and thus
333 * would get stomped by the first decode as well.
334 */
335 if (exec_size == 16) {
336 for (int i = 0; i < sources; i++) {
337 if (src[i].file == VGRF && (src[i].stride == 0 ||
338 src[i].type == BRW_REGISTER_TYPE_UW ||
339 src[i].type == BRW_REGISTER_TYPE_W ||
340 src[i].type == BRW_REGISTER_TYPE_UB ||
341 src[i].type == BRW_REGISTER_TYPE_B)) {
342 return true;
343 }
344 }
345 }
346 return false;
347 }
348 }
349
350 bool
351 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
352 {
353 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
354 return false;
355
356 fs_reg reg = this->src[0];
357 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
358 return false;
359
360 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
361 return false;
362
363 for (int i = 0; i < this->sources; i++) {
364 reg.type = this->src[i].type;
365 if (!this->src[i].equals(reg))
366 return false;
367
368 if (i < this->header_size) {
369 reg.offset += REG_SIZE;
370 } else {
371 reg = horiz_offset(reg, this->exec_size);
372 }
373 }
374
375 return true;
376 }
377
378 bool
379 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
380 {
381 if (devinfo->gen == 6 && is_math())
382 return false;
383
384 if (is_send_from_grf())
385 return false;
386
387 if (!backend_instruction::can_do_source_mods())
388 return false;
389
390 return true;
391 }
392
393 bool
394 fs_inst::can_change_types() const
395 {
396 return dst.type == src[0].type &&
397 !src[0].abs && !src[0].negate && !saturate &&
398 (opcode == BRW_OPCODE_MOV ||
399 (opcode == BRW_OPCODE_SEL &&
400 dst.type == src[1].type &&
401 predicate != BRW_PREDICATE_NONE &&
402 !src[1].abs && !src[1].negate));
403 }
404
405 void
406 fs_reg::init()
407 {
408 memset(this, 0, sizeof(*this));
409 type = BRW_REGISTER_TYPE_UD;
410 stride = 1;
411 }
412
413 /** Generic unset register constructor. */
414 fs_reg::fs_reg()
415 {
416 init();
417 this->file = BAD_FILE;
418 }
419
420 fs_reg::fs_reg(struct ::brw_reg reg) :
421 backend_reg(reg)
422 {
423 this->offset = 0;
424 this->stride = 1;
425 if (this->file == IMM &&
426 (this->type != BRW_REGISTER_TYPE_V &&
427 this->type != BRW_REGISTER_TYPE_UV &&
428 this->type != BRW_REGISTER_TYPE_VF)) {
429 this->stride = 0;
430 }
431 }
432
433 bool
434 fs_reg::equals(const fs_reg &r) const
435 {
436 return (this->backend_reg::equals(r) &&
437 stride == r.stride);
438 }
439
440 bool
441 fs_reg::is_contiguous() const
442 {
443 return stride == 1;
444 }
445
446 unsigned
447 fs_reg::component_size(unsigned width) const
448 {
449 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
450 hstride == 0 ? 0 :
451 1 << (hstride - 1));
452 return MAX2(width * stride, 1) * type_sz(type);
453 }
454
455 extern "C" int
456 type_size_scalar(const struct glsl_type *type)
457 {
458 unsigned int size, i;
459
460 switch (type->base_type) {
461 case GLSL_TYPE_UINT:
462 case GLSL_TYPE_INT:
463 case GLSL_TYPE_FLOAT:
464 case GLSL_TYPE_BOOL:
465 return type->components();
466 case GLSL_TYPE_UINT16:
467 case GLSL_TYPE_INT16:
468 case GLSL_TYPE_FLOAT16:
469 return DIV_ROUND_UP(type->components(), 2);
470 case GLSL_TYPE_DOUBLE:
471 case GLSL_TYPE_UINT64:
472 case GLSL_TYPE_INT64:
473 return type->components() * 2;
474 case GLSL_TYPE_ARRAY:
475 return type_size_scalar(type->fields.array) * type->length;
476 case GLSL_TYPE_STRUCT:
477 size = 0;
478 for (i = 0; i < type->length; i++) {
479 size += type_size_scalar(type->fields.structure[i].type);
480 }
481 return size;
482 case GLSL_TYPE_SAMPLER:
483 /* Samplers take up no register space, since they're baked in at
484 * link time.
485 */
486 return 0;
487 case GLSL_TYPE_ATOMIC_UINT:
488 return 0;
489 case GLSL_TYPE_SUBROUTINE:
490 return 1;
491 case GLSL_TYPE_IMAGE:
492 return BRW_IMAGE_PARAM_SIZE;
493 case GLSL_TYPE_VOID:
494 case GLSL_TYPE_ERROR:
495 case GLSL_TYPE_INTERFACE:
496 case GLSL_TYPE_FUNCTION:
497 unreachable("not reached");
498 }
499
500 return 0;
501 }
502
503 /**
504 * Create a MOV to read the timestamp register.
505 *
506 * The caller is responsible for emitting the MOV. The return value is
507 * the destination of the MOV, with extra parameters set.
508 */
509 fs_reg
510 fs_visitor::get_timestamp(const fs_builder &bld)
511 {
512 assert(devinfo->gen >= 7);
513
514 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
515 BRW_ARF_TIMESTAMP,
516 0),
517 BRW_REGISTER_TYPE_UD));
518
519 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
520
521 /* We want to read the 3 fields we care about even if it's not enabled in
522 * the dispatch.
523 */
524 bld.group(4, 0).exec_all().MOV(dst, ts);
525
526 return dst;
527 }
528
529 void
530 fs_visitor::emit_shader_time_begin()
531 {
532 /* We want only the low 32 bits of the timestamp. Since it's running
533 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
534 * which is plenty of time for our purposes. It is identical across the
535 * EUs, but since it's tracking GPU core speed it will increment at a
536 * varying rate as render P-states change.
537 */
538 shader_start_time = component(
539 get_timestamp(bld.annotate("shader time start")), 0);
540 }
541
542 void
543 fs_visitor::emit_shader_time_end()
544 {
545 /* Insert our code just before the final SEND with EOT. */
546 exec_node *end = this->instructions.get_tail();
547 assert(end && ((fs_inst *) end)->eot);
548 const fs_builder ibld = bld.annotate("shader time end")
549 .exec_all().at(NULL, end);
550 const fs_reg timestamp = get_timestamp(ibld);
551
552 /* We only use the low 32 bits of the timestamp - see
553 * emit_shader_time_begin()).
554 *
555 * We could also check if render P-states have changed (or anything
556 * else that might disrupt timing) by setting smear to 2 and checking if
557 * that field is != 0.
558 */
559 const fs_reg shader_end_time = component(timestamp, 0);
560
561 /* Check that there weren't any timestamp reset events (assuming these
562 * were the only two timestamp reads that happened).
563 */
564 const fs_reg reset = component(timestamp, 2);
565 set_condmod(BRW_CONDITIONAL_Z,
566 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
567 ibld.IF(BRW_PREDICATE_NORMAL);
568
569 fs_reg start = shader_start_time;
570 start.negate = true;
571 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
572 BRW_REGISTER_TYPE_UD),
573 0);
574 const fs_builder cbld = ibld.group(1, 0);
575 cbld.group(1, 0).ADD(diff, start, shader_end_time);
576
577 /* If there were no instructions between the two timestamp gets, the diff
578 * is 2 cycles. Remove that overhead, so I can forget about that when
579 * trying to determine the time taken for single instructions.
580 */
581 cbld.ADD(diff, diff, brw_imm_ud(-2u));
582 SHADER_TIME_ADD(cbld, 0, diff);
583 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
584 ibld.emit(BRW_OPCODE_ELSE);
585 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
586 ibld.emit(BRW_OPCODE_ENDIF);
587 }
588
589 void
590 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
591 int shader_time_subindex,
592 fs_reg value)
593 {
594 int index = shader_time_index * 3 + shader_time_subindex;
595 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
596
597 fs_reg payload;
598 if (dispatch_width == 8)
599 payload = vgrf(glsl_type::uvec2_type);
600 else
601 payload = vgrf(glsl_type::uint_type);
602
603 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
604 }
605
606 void
607 fs_visitor::vfail(const char *format, va_list va)
608 {
609 char *msg;
610
611 if (failed)
612 return;
613
614 failed = true;
615
616 msg = ralloc_vasprintf(mem_ctx, format, va);
617 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
618
619 this->fail_msg = msg;
620
621 if (debug_enabled) {
622 fprintf(stderr, "%s", msg);
623 }
624 }
625
626 void
627 fs_visitor::fail(const char *format, ...)
628 {
629 va_list va;
630
631 va_start(va, format);
632 vfail(format, va);
633 va_end(va);
634 }
635
636 /**
637 * Mark this program as impossible to compile with dispatch width greater
638 * than n.
639 *
640 * During the SIMD8 compile (which happens first), we can detect and flag
641 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
642 * SIMD16+ compile altogether.
643 *
644 * During a compile of dispatch width greater than n (if one happens anyway),
645 * this just calls fail().
646 */
647 void
648 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
649 {
650 if (dispatch_width > n) {
651 fail("%s", msg);
652 } else {
653 max_dispatch_width = n;
654 compiler->shader_perf_log(log_data,
655 "Shader dispatch width limited to SIMD%d: %s",
656 n, msg);
657 }
658 }
659
660 /**
661 * Returns true if the instruction has a flag that means it won't
662 * update an entire destination register.
663 *
664 * For example, dead code elimination and live variable analysis want to know
665 * when a write to a variable screens off any preceding values that were in
666 * it.
667 */
668 bool
669 fs_inst::is_partial_write() const
670 {
671 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
672 (this->exec_size * type_sz(this->dst.type)) < 32 ||
673 !this->dst.is_contiguous() ||
674 this->dst.offset % REG_SIZE != 0);
675 }
676
677 unsigned
678 fs_inst::components_read(unsigned i) const
679 {
680 /* Return zero if the source is not present. */
681 if (src[i].file == BAD_FILE)
682 return 0;
683
684 switch (opcode) {
685 case FS_OPCODE_LINTERP:
686 if (i == 0)
687 return 2;
688 else
689 return 1;
690
691 case FS_OPCODE_PIXEL_X:
692 case FS_OPCODE_PIXEL_Y:
693 assert(i == 0);
694 return 2;
695
696 case FS_OPCODE_FB_WRITE_LOGICAL:
697 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
698 /* First/second FB write color. */
699 if (i < 2)
700 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
701 else
702 return 1;
703
704 case SHADER_OPCODE_TEX_LOGICAL:
705 case SHADER_OPCODE_TXD_LOGICAL:
706 case SHADER_OPCODE_TXF_LOGICAL:
707 case SHADER_OPCODE_TXL_LOGICAL:
708 case SHADER_OPCODE_TXS_LOGICAL:
709 case FS_OPCODE_TXB_LOGICAL:
710 case SHADER_OPCODE_TXF_CMS_LOGICAL:
711 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
712 case SHADER_OPCODE_TXF_UMS_LOGICAL:
713 case SHADER_OPCODE_TXF_MCS_LOGICAL:
714 case SHADER_OPCODE_LOD_LOGICAL:
715 case SHADER_OPCODE_TG4_LOGICAL:
716 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
717 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
718 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
719 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
720 /* Texture coordinates. */
721 if (i == TEX_LOGICAL_SRC_COORDINATE)
722 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
723 /* Texture derivatives. */
724 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
725 opcode == SHADER_OPCODE_TXD_LOGICAL)
726 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
727 /* Texture offset. */
728 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
729 return 2;
730 /* MCS */
731 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
732 return 2;
733 else
734 return 1;
735
736 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
737 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
738 assert(src[3].file == IMM);
739 /* Surface coordinates. */
740 if (i == 0)
741 return src[3].ud;
742 /* Surface operation source (ignored for reads). */
743 else if (i == 1)
744 return 0;
745 else
746 return 1;
747
748 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
749 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
750 assert(src[3].file == IMM &&
751 src[4].file == IMM);
752 /* Surface coordinates. */
753 if (i == 0)
754 return src[3].ud;
755 /* Surface operation source. */
756 else if (i == 1)
757 return src[4].ud;
758 else
759 return 1;
760
761 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
762 /* Scattered logical opcodes use the following params:
763 * src[0] Surface coordinates
764 * src[1] Surface operation source (ignored for reads)
765 * src[2] Surface
766 * src[3] IMM with always 1 dimension.
767 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
768 */
769 assert(src[3].file == IMM &&
770 src[4].file == IMM);
771 return i == 1 ? 0 : 1;
772
773 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
774 assert(src[3].file == IMM &&
775 src[4].file == IMM);
776 return 1;
777
778 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
779 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
780 assert(src[3].file == IMM &&
781 src[4].file == IMM);
782 const unsigned op = src[4].ud;
783 /* Surface coordinates. */
784 if (i == 0)
785 return src[3].ud;
786 /* Surface operation source. */
787 else if (i == 1 && op == BRW_AOP_CMPWR)
788 return 2;
789 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
790 op == BRW_AOP_PREDEC))
791 return 0;
792 else
793 return 1;
794 }
795
796 default:
797 return 1;
798 }
799 }
800
801 unsigned
802 fs_inst::size_read(int arg) const
803 {
804 switch (opcode) {
805 case FS_OPCODE_FB_WRITE:
806 case FS_OPCODE_FB_READ:
807 case SHADER_OPCODE_URB_WRITE_SIMD8:
808 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
809 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
810 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
811 case SHADER_OPCODE_URB_READ_SIMD8:
812 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
813 case SHADER_OPCODE_UNTYPED_ATOMIC:
814 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
815 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
816 case SHADER_OPCODE_TYPED_ATOMIC:
817 case SHADER_OPCODE_TYPED_SURFACE_READ:
818 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
819 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
820 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
821 case SHADER_OPCODE_BYTE_SCATTERED_READ:
822 if (arg == 0)
823 return mlen * REG_SIZE;
824 break;
825
826 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
827 /* The payload is actually stored in src1 */
828 if (arg == 1)
829 return mlen * REG_SIZE;
830 break;
831
832 case FS_OPCODE_LINTERP:
833 if (arg == 1)
834 return 16;
835 break;
836
837 case SHADER_OPCODE_LOAD_PAYLOAD:
838 if (arg < this->header_size)
839 return REG_SIZE;
840 break;
841
842 case CS_OPCODE_CS_TERMINATE:
843 case SHADER_OPCODE_BARRIER:
844 return REG_SIZE;
845
846 case SHADER_OPCODE_MOV_INDIRECT:
847 if (arg == 0) {
848 assert(src[2].file == IMM);
849 return src[2].ud;
850 }
851 break;
852
853 default:
854 if (is_tex() && arg == 0 && src[0].file == VGRF)
855 return mlen * REG_SIZE;
856 break;
857 }
858
859 switch (src[arg].file) {
860 case UNIFORM:
861 case IMM:
862 return components_read(arg) * type_sz(src[arg].type);
863 case BAD_FILE:
864 case ARF:
865 case FIXED_GRF:
866 case VGRF:
867 case ATTR:
868 return components_read(arg) * src[arg].component_size(exec_size);
869 case MRF:
870 unreachable("MRF registers are not allowed as sources");
871 }
872 return 0;
873 }
874
875 namespace {
876 /* Return the subset of flag registers that an instruction could
877 * potentially read or write based on the execution controls and flag
878 * subregister number of the instruction.
879 */
880 unsigned
881 flag_mask(const fs_inst *inst)
882 {
883 const unsigned start = inst->flag_subreg * 16 + inst->group;
884 const unsigned end = start + inst->exec_size;
885 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
886 }
887
888 unsigned
889 bit_mask(unsigned n)
890 {
891 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
892 }
893
894 unsigned
895 flag_mask(const fs_reg &r, unsigned sz)
896 {
897 if (r.file == ARF) {
898 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
899 const unsigned end = start + sz;
900 return bit_mask(end) & ~bit_mask(start);
901 } else {
902 return 0;
903 }
904 }
905 }
906
907 unsigned
908 fs_inst::flags_read(const gen_device_info *devinfo) const
909 {
910 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
911 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
912 /* The vertical predication modes combine corresponding bits from
913 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
914 */
915 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
916 return flag_mask(this) << shift | flag_mask(this);
917 } else if (predicate) {
918 return flag_mask(this);
919 } else {
920 unsigned mask = 0;
921 for (int i = 0; i < sources; i++) {
922 mask |= flag_mask(src[i], size_read(i));
923 }
924 return mask;
925 }
926 }
927
928 unsigned
929 fs_inst::flags_written() const
930 {
931 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
932 opcode != BRW_OPCODE_IF &&
933 opcode != BRW_OPCODE_WHILE)) ||
934 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
935 return flag_mask(this);
936 } else {
937 return flag_mask(dst, size_written);
938 }
939 }
940
941 /**
942 * Returns how many MRFs an FS opcode will write over.
943 *
944 * Note that this is not the 0 or 1 implied writes in an actual gen
945 * instruction -- the FS opcodes often generate MOVs in addition.
946 */
947 int
948 fs_visitor::implied_mrf_writes(fs_inst *inst) const
949 {
950 if (inst->mlen == 0)
951 return 0;
952
953 if (inst->base_mrf == -1)
954 return 0;
955
956 switch (inst->opcode) {
957 case SHADER_OPCODE_RCP:
958 case SHADER_OPCODE_RSQ:
959 case SHADER_OPCODE_SQRT:
960 case SHADER_OPCODE_EXP2:
961 case SHADER_OPCODE_LOG2:
962 case SHADER_OPCODE_SIN:
963 case SHADER_OPCODE_COS:
964 return 1 * dispatch_width / 8;
965 case SHADER_OPCODE_POW:
966 case SHADER_OPCODE_INT_QUOTIENT:
967 case SHADER_OPCODE_INT_REMAINDER:
968 return 2 * dispatch_width / 8;
969 case SHADER_OPCODE_TEX:
970 case FS_OPCODE_TXB:
971 case SHADER_OPCODE_TXD:
972 case SHADER_OPCODE_TXF:
973 case SHADER_OPCODE_TXF_CMS:
974 case SHADER_OPCODE_TXF_MCS:
975 case SHADER_OPCODE_TG4:
976 case SHADER_OPCODE_TG4_OFFSET:
977 case SHADER_OPCODE_TXL:
978 case SHADER_OPCODE_TXS:
979 case SHADER_OPCODE_LOD:
980 case SHADER_OPCODE_SAMPLEINFO:
981 return 1;
982 case FS_OPCODE_FB_WRITE:
983 return 2;
984 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
985 case SHADER_OPCODE_GEN4_SCRATCH_READ:
986 return 1;
987 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
988 return inst->mlen;
989 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
990 return inst->mlen;
991 default:
992 unreachable("not reached");
993 }
994 }
995
996 fs_reg
997 fs_visitor::vgrf(const glsl_type *const type)
998 {
999 int reg_width = dispatch_width / 8;
1000 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
1001 brw_type_for_base_type(type));
1002 }
1003
1004 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1005 {
1006 init();
1007 this->file = file;
1008 this->nr = nr;
1009 this->type = BRW_REGISTER_TYPE_F;
1010 this->stride = (file == UNIFORM ? 0 : 1);
1011 }
1012
1013 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1014 {
1015 init();
1016 this->file = file;
1017 this->nr = nr;
1018 this->type = type;
1019 this->stride = (file == UNIFORM ? 0 : 1);
1020 }
1021
1022 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1023 * This brings in those uniform definitions
1024 */
1025 void
1026 fs_visitor::import_uniforms(fs_visitor *v)
1027 {
1028 this->push_constant_loc = v->push_constant_loc;
1029 this->pull_constant_loc = v->pull_constant_loc;
1030 this->uniforms = v->uniforms;
1031 this->subgroup_id = v->subgroup_id;
1032 }
1033
1034 void
1035 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1036 {
1037 assert(stage == MESA_SHADER_FRAGMENT);
1038
1039 /* gl_FragCoord.x */
1040 bld.MOV(wpos, this->pixel_x);
1041 wpos = offset(wpos, bld, 1);
1042
1043 /* gl_FragCoord.y */
1044 bld.MOV(wpos, this->pixel_y);
1045 wpos = offset(wpos, bld, 1);
1046
1047 /* gl_FragCoord.z */
1048 if (devinfo->gen >= 6) {
1049 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1050 } else {
1051 bld.emit(FS_OPCODE_LINTERP, wpos,
1052 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1053 interp_reg(VARYING_SLOT_POS, 2));
1054 }
1055 wpos = offset(wpos, bld, 1);
1056
1057 /* gl_FragCoord.w: Already set up in emit_interpolation */
1058 bld.MOV(wpos, this->wpos_w);
1059 }
1060
1061 enum brw_barycentric_mode
1062 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1063 {
1064 /* Barycentric modes don't make sense for flat inputs. */
1065 assert(mode != INTERP_MODE_FLAT);
1066
1067 unsigned bary;
1068 switch (op) {
1069 case nir_intrinsic_load_barycentric_pixel:
1070 case nir_intrinsic_load_barycentric_at_offset:
1071 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1072 break;
1073 case nir_intrinsic_load_barycentric_centroid:
1074 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1075 break;
1076 case nir_intrinsic_load_barycentric_sample:
1077 case nir_intrinsic_load_barycentric_at_sample:
1078 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1079 break;
1080 default:
1081 unreachable("invalid intrinsic");
1082 }
1083
1084 if (mode == INTERP_MODE_NOPERSPECTIVE)
1085 bary += 3;
1086
1087 return (enum brw_barycentric_mode) bary;
1088 }
1089
1090 /**
1091 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1092 */
1093 static enum brw_barycentric_mode
1094 centroid_to_pixel(enum brw_barycentric_mode bary)
1095 {
1096 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1097 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1098 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1099 }
1100
1101 fs_reg *
1102 fs_visitor::emit_frontfacing_interpolation()
1103 {
1104 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1105
1106 if (devinfo->gen >= 6) {
1107 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1108 * a boolean result from this (~0/true or 0/false).
1109 *
1110 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1111 * this task in only one instruction:
1112 * - a negation source modifier will flip the bit; and
1113 * - a W -> D type conversion will sign extend the bit into the high
1114 * word of the destination.
1115 *
1116 * An ASR 15 fills the low word of the destination.
1117 */
1118 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1119 g0.negate = true;
1120
1121 bld.ASR(*reg, g0, brw_imm_d(15));
1122 } else {
1123 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1124 * a boolean result from this (1/true or 0/false).
1125 *
1126 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1127 * the negation source modifier to flip it. Unfortunately the SHR
1128 * instruction only operates on UD (or D with an abs source modifier)
1129 * sources without negation.
1130 *
1131 * Instead, use ASR (which will give ~0/true or 0/false).
1132 */
1133 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1134 g1_6.negate = true;
1135
1136 bld.ASR(*reg, g1_6, brw_imm_d(31));
1137 }
1138
1139 return reg;
1140 }
1141
1142 void
1143 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1144 {
1145 assert(stage == MESA_SHADER_FRAGMENT);
1146 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1147 assert(dst.type == BRW_REGISTER_TYPE_F);
1148
1149 if (wm_prog_data->persample_dispatch) {
1150 /* Convert int_sample_pos to floating point */
1151 bld.MOV(dst, int_sample_pos);
1152 /* Scale to the range [0, 1] */
1153 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1154 }
1155 else {
1156 /* From ARB_sample_shading specification:
1157 * "When rendering to a non-multisample buffer, or if multisample
1158 * rasterization is disabled, gl_SamplePosition will always be
1159 * (0.5, 0.5).
1160 */
1161 bld.MOV(dst, brw_imm_f(0.5f));
1162 }
1163 }
1164
1165 fs_reg *
1166 fs_visitor::emit_samplepos_setup()
1167 {
1168 assert(devinfo->gen >= 6);
1169
1170 const fs_builder abld = bld.annotate("compute sample position");
1171 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1172 fs_reg pos = *reg;
1173 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1174 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1175
1176 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1177 * mode will be enabled.
1178 *
1179 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1180 * R31.1:0 Position Offset X/Y for Slot[3:0]
1181 * R31.3:2 Position Offset X/Y for Slot[7:4]
1182 * .....
1183 *
1184 * The X, Y sample positions come in as bytes in thread payload. So, read
1185 * the positions using vstride=16, width=8, hstride=2.
1186 */
1187 struct brw_reg sample_pos_reg =
1188 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1189 BRW_REGISTER_TYPE_B), 16, 8, 2);
1190
1191 if (dispatch_width == 8) {
1192 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1193 } else {
1194 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1195 abld.half(1).MOV(half(int_sample_x, 1),
1196 fs_reg(suboffset(sample_pos_reg, 16)));
1197 }
1198 /* Compute gl_SamplePosition.x */
1199 compute_sample_position(pos, int_sample_x);
1200 pos = offset(pos, abld, 1);
1201 if (dispatch_width == 8) {
1202 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1203 } else {
1204 abld.half(0).MOV(half(int_sample_y, 0),
1205 fs_reg(suboffset(sample_pos_reg, 1)));
1206 abld.half(1).MOV(half(int_sample_y, 1),
1207 fs_reg(suboffset(sample_pos_reg, 17)));
1208 }
1209 /* Compute gl_SamplePosition.y */
1210 compute_sample_position(pos, int_sample_y);
1211 return reg;
1212 }
1213
1214 fs_reg *
1215 fs_visitor::emit_sampleid_setup()
1216 {
1217 assert(stage == MESA_SHADER_FRAGMENT);
1218 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1219 assert(devinfo->gen >= 6);
1220
1221 const fs_builder abld = bld.annotate("compute sample id");
1222 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1223
1224 if (!key->multisample_fbo) {
1225 /* As per GL_ARB_sample_shading specification:
1226 * "When rendering to a non-multisample buffer, or if multisample
1227 * rasterization is disabled, gl_SampleID will always be zero."
1228 */
1229 abld.MOV(*reg, brw_imm_d(0));
1230 } else if (devinfo->gen >= 8) {
1231 /* Sample ID comes in as 4-bit numbers in g1.0:
1232 *
1233 * 15:12 Slot 3 SampleID (only used in SIMD16)
1234 * 11:8 Slot 2 SampleID (only used in SIMD16)
1235 * 7:4 Slot 1 SampleID
1236 * 3:0 Slot 0 SampleID
1237 *
1238 * Each slot corresponds to four channels, so we want to replicate each
1239 * half-byte value to 4 channels in a row:
1240 *
1241 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1242 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1243 *
1244 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1245 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1246 *
1247 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1248 * channels to read the first byte (7:0), and the second group of 8
1249 * channels to read the second byte (15:8). Then, we shift right by
1250 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1251 * values into place. Finally, we AND with 0xf to keep the low nibble.
1252 *
1253 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1254 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1255 *
1256 * TODO: These payload bits exist on Gen7 too, but they appear to always
1257 * be zero, so this code fails to work. We should find out why.
1258 */
1259 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UW);
1260
1261 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1262 BRW_REGISTER_TYPE_UB), 1, 8, 0)),
1263 brw_imm_v(0x44440000));
1264 abld.AND(*reg, tmp, brw_imm_w(0xf));
1265 } else {
1266 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1267 BRW_REGISTER_TYPE_UD), 0);
1268 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UW);
1269
1270 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1271 * 8x multisampling, subspan 0 will represent sample N (where N
1272 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1273 * 7. We can find the value of N by looking at R0.0 bits 7:6
1274 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1275 * (since samples are always delivered in pairs). That is, we
1276 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1277 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1278 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1279 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1280 * populating a temporary variable with the sequence (0, 1, 2, 3),
1281 * and then reading from it using vstride=1, width=4, hstride=0.
1282 * These computations hold good for 4x multisampling as well.
1283 *
1284 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1285 * the first four slots are sample 0 of subspan 0; the next four
1286 * are sample 1 of subspan 0; the third group is sample 0 of
1287 * subspan 1, and finally sample 1 of subspan 1.
1288 */
1289
1290 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1291 * accomodate 16x MSAA.
1292 */
1293 abld.exec_all().group(1, 0)
1294 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1295 brw_imm_ud(0xc0));
1296 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1297
1298 /* This works for both SIMD8 and SIMD16 */
1299 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1300
1301 /* This special instruction takes care of setting vstride=1,
1302 * width=4, hstride=0 of t2 during an ADD instruction.
1303 */
1304 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1305 }
1306
1307 return reg;
1308 }
1309
1310 fs_reg *
1311 fs_visitor::emit_samplemaskin_setup()
1312 {
1313 assert(stage == MESA_SHADER_FRAGMENT);
1314 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1315 assert(devinfo->gen >= 6);
1316
1317 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1318
1319 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1320 BRW_REGISTER_TYPE_D));
1321
1322 if (wm_prog_data->persample_dispatch) {
1323 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1324 * and a mask representing which sample is being processed by the
1325 * current shader invocation.
1326 *
1327 * From the OES_sample_variables specification:
1328 * "When per-sample shading is active due to the use of a fragment input
1329 * qualified by "sample" or due to the use of the gl_SampleID or
1330 * gl_SamplePosition variables, only the bit for the current sample is
1331 * set in gl_SampleMaskIn."
1332 */
1333 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1334
1335 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1336 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1337
1338 fs_reg one = vgrf(glsl_type::int_type);
1339 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1340 abld.MOV(one, brw_imm_d(1));
1341 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1342 abld.AND(*reg, enabled_mask, coverage_mask);
1343 } else {
1344 /* In per-pixel mode, the coverage mask is sufficient. */
1345 *reg = coverage_mask;
1346 }
1347 return reg;
1348 }
1349
1350 fs_reg
1351 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1352 {
1353 if (!src.abs && !src.negate)
1354 return src;
1355
1356 fs_reg temp = bld.vgrf(src.type);
1357 bld.MOV(temp, src);
1358
1359 return temp;
1360 }
1361
1362 void
1363 fs_visitor::emit_discard_jump()
1364 {
1365 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1366
1367 /* For performance, after a discard, jump to the end of the
1368 * shader if all relevant channels have been discarded.
1369 */
1370 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1371 discard_jump->flag_subreg = 1;
1372
1373 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1374 discard_jump->predicate_inverse = true;
1375 }
1376
1377 void
1378 fs_visitor::emit_gs_thread_end()
1379 {
1380 assert(stage == MESA_SHADER_GEOMETRY);
1381
1382 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1383
1384 if (gs_compile->control_data_header_size_bits > 0) {
1385 emit_gs_control_data_bits(this->final_gs_vertex_count);
1386 }
1387
1388 const fs_builder abld = bld.annotate("thread end");
1389 fs_inst *inst;
1390
1391 if (gs_prog_data->static_vertex_count != -1) {
1392 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1393 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1394 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1395 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1396 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1397 prev->eot = true;
1398
1399 /* Delete now dead instructions. */
1400 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1401 if (dead == prev)
1402 break;
1403 dead->remove();
1404 }
1405 return;
1406 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1407 break;
1408 }
1409 }
1410 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1411 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1412 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1413 inst->mlen = 1;
1414 } else {
1415 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1416 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1417 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1418 sources[1] = this->final_gs_vertex_count;
1419 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1420 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1421 inst->mlen = 2;
1422 }
1423 inst->eot = true;
1424 inst->offset = 0;
1425 }
1426
1427 void
1428 fs_visitor::assign_curb_setup()
1429 {
1430 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1431
1432 unsigned ubo_push_length = 0;
1433 unsigned ubo_push_start[4];
1434 for (int i = 0; i < 4; i++) {
1435 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1436 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1437 }
1438
1439 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1440
1441 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1442 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1443 for (unsigned int i = 0; i < inst->sources; i++) {
1444 if (inst->src[i].file == UNIFORM) {
1445 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1446 int constant_nr;
1447 if (inst->src[i].nr >= UBO_START) {
1448 /* constant_nr is in 32-bit units, the rest are in bytes */
1449 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1450 inst->src[i].offset / 4;
1451 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1452 constant_nr = push_constant_loc[uniform_nr];
1453 } else {
1454 /* Section 5.11 of the OpenGL 4.1 spec says:
1455 * "Out-of-bounds reads return undefined values, which include
1456 * values from other variables of the active program or zero."
1457 * Just return the first push constant.
1458 */
1459 constant_nr = 0;
1460 }
1461
1462 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1463 constant_nr / 8,
1464 constant_nr % 8);
1465 brw_reg.abs = inst->src[i].abs;
1466 brw_reg.negate = inst->src[i].negate;
1467
1468 assert(inst->src[i].stride == 0);
1469 inst->src[i] = byte_offset(
1470 retype(brw_reg, inst->src[i].type),
1471 inst->src[i].offset % 4);
1472 }
1473 }
1474 }
1475
1476 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1477 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1478 }
1479
1480 void
1481 fs_visitor::calculate_urb_setup()
1482 {
1483 assert(stage == MESA_SHADER_FRAGMENT);
1484 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1485 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1486
1487 memset(prog_data->urb_setup, -1,
1488 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1489
1490 int urb_next = 0;
1491 /* Figure out where each of the incoming setup attributes lands. */
1492 if (devinfo->gen >= 6) {
1493 if (_mesa_bitcount_64(nir->info.inputs_read &
1494 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1495 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1496 * first 16 varying inputs, so we can put them wherever we want.
1497 * Just put them in order.
1498 *
1499 * This is useful because it means that (a) inputs not used by the
1500 * fragment shader won't take up valuable register space, and (b) we
1501 * won't have to recompile the fragment shader if it gets paired with
1502 * a different vertex (or geometry) shader.
1503 */
1504 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1505 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1506 BITFIELD64_BIT(i)) {
1507 prog_data->urb_setup[i] = urb_next++;
1508 }
1509 }
1510 } else {
1511 /* We have enough input varyings that the SF/SBE pipeline stage can't
1512 * arbitrarily rearrange them to suit our whim; we have to put them
1513 * in an order that matches the output of the previous pipeline stage
1514 * (geometry or vertex shader).
1515 */
1516 struct brw_vue_map prev_stage_vue_map;
1517 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1518 key->input_slots_valid,
1519 nir->info.separate_shader);
1520
1521 int first_slot =
1522 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1523 &prev_stage_vue_map);
1524
1525 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1526 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1527 slot++) {
1528 int varying = prev_stage_vue_map.slot_to_varying[slot];
1529 if (varying != BRW_VARYING_SLOT_PAD &&
1530 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1531 BITFIELD64_BIT(varying))) {
1532 prog_data->urb_setup[varying] = slot - first_slot;
1533 }
1534 }
1535 urb_next = prev_stage_vue_map.num_slots - first_slot;
1536 }
1537 } else {
1538 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1539 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1540 /* Point size is packed into the header, not as a general attribute */
1541 if (i == VARYING_SLOT_PSIZ)
1542 continue;
1543
1544 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1545 /* The back color slot is skipped when the front color is
1546 * also written to. In addition, some slots can be
1547 * written in the vertex shader and not read in the
1548 * fragment shader. So the register number must always be
1549 * incremented, mapped or not.
1550 */
1551 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1552 prog_data->urb_setup[i] = urb_next;
1553 urb_next++;
1554 }
1555 }
1556
1557 /*
1558 * It's a FS only attribute, and we did interpolation for this attribute
1559 * in SF thread. So, count it here, too.
1560 *
1561 * See compile_sf_prog() for more info.
1562 */
1563 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1564 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1565 }
1566
1567 prog_data->num_varying_inputs = urb_next;
1568 }
1569
1570 void
1571 fs_visitor::assign_urb_setup()
1572 {
1573 assert(stage == MESA_SHADER_FRAGMENT);
1574 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1575
1576 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1577
1578 /* Offset all the urb_setup[] index by the actual position of the
1579 * setup regs, now that the location of the constants has been chosen.
1580 */
1581 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1582 if (inst->opcode == FS_OPCODE_LINTERP) {
1583 assert(inst->src[1].file == FIXED_GRF);
1584 inst->src[1].nr += urb_start;
1585 }
1586
1587 if (inst->opcode == FS_OPCODE_CINTERP) {
1588 assert(inst->src[0].file == FIXED_GRF);
1589 inst->src[0].nr += urb_start;
1590 }
1591 }
1592
1593 /* Each attribute is 4 setup channels, each of which is half a reg. */
1594 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1595 }
1596
1597 void
1598 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1599 {
1600 for (int i = 0; i < inst->sources; i++) {
1601 if (inst->src[i].file == ATTR) {
1602 int grf = payload.num_regs +
1603 prog_data->curb_read_length +
1604 inst->src[i].nr +
1605 inst->src[i].offset / REG_SIZE;
1606
1607 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1608 *
1609 * VertStride must be used to cross GRF register boundaries. This
1610 * rule implies that elements within a 'Width' cannot cross GRF
1611 * boundaries.
1612 *
1613 * So, for registers that are large enough, we have to split the exec
1614 * size in two and trust the compression state to sort it out.
1615 */
1616 unsigned total_size = inst->exec_size *
1617 inst->src[i].stride *
1618 type_sz(inst->src[i].type);
1619
1620 assert(total_size <= 2 * REG_SIZE);
1621 const unsigned exec_size =
1622 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1623
1624 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1625 struct brw_reg reg =
1626 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1627 inst->src[i].offset % REG_SIZE),
1628 exec_size * inst->src[i].stride,
1629 width, inst->src[i].stride);
1630 reg.abs = inst->src[i].abs;
1631 reg.negate = inst->src[i].negate;
1632
1633 inst->src[i] = reg;
1634 }
1635 }
1636 }
1637
1638 void
1639 fs_visitor::assign_vs_urb_setup()
1640 {
1641 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1642
1643 assert(stage == MESA_SHADER_VERTEX);
1644
1645 /* Each attribute is 4 regs. */
1646 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1647
1648 assert(vs_prog_data->base.urb_read_length <= 15);
1649
1650 /* Rewrite all ATTR file references to the hw grf that they land in. */
1651 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1652 convert_attr_sources_to_hw_regs(inst);
1653 }
1654 }
1655
1656 void
1657 fs_visitor::assign_tcs_single_patch_urb_setup()
1658 {
1659 assert(stage == MESA_SHADER_TESS_CTRL);
1660
1661 /* Rewrite all ATTR file references to HW_REGs. */
1662 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1663 convert_attr_sources_to_hw_regs(inst);
1664 }
1665 }
1666
1667 void
1668 fs_visitor::assign_tes_urb_setup()
1669 {
1670 assert(stage == MESA_SHADER_TESS_EVAL);
1671
1672 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1673
1674 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1675
1676 /* Rewrite all ATTR file references to HW_REGs. */
1677 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1678 convert_attr_sources_to_hw_regs(inst);
1679 }
1680 }
1681
1682 void
1683 fs_visitor::assign_gs_urb_setup()
1684 {
1685 assert(stage == MESA_SHADER_GEOMETRY);
1686
1687 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1688
1689 first_non_payload_grf +=
1690 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1691
1692 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1693 /* Rewrite all ATTR file references to GRFs. */
1694 convert_attr_sources_to_hw_regs(inst);
1695 }
1696 }
1697
1698
1699 /**
1700 * Split large virtual GRFs into separate components if we can.
1701 *
1702 * This is mostly duplicated with what brw_fs_vector_splitting does,
1703 * but that's really conservative because it's afraid of doing
1704 * splitting that doesn't result in real progress after the rest of
1705 * the optimization phases, which would cause infinite looping in
1706 * optimization. We can do it once here, safely. This also has the
1707 * opportunity to split interpolated values, or maybe even uniforms,
1708 * which we don't have at the IR level.
1709 *
1710 * We want to split, because virtual GRFs are what we register
1711 * allocate and spill (due to contiguousness requirements for some
1712 * instructions), and they're what we naturally generate in the
1713 * codegen process, but most virtual GRFs don't actually need to be
1714 * contiguous sets of GRFs. If we split, we'll end up with reduced
1715 * live intervals and better dead code elimination and coalescing.
1716 */
1717 void
1718 fs_visitor::split_virtual_grfs()
1719 {
1720 /* Compact the register file so we eliminate dead vgrfs. This
1721 * only defines split points for live registers, so if we have
1722 * too large dead registers they will hit assertions later.
1723 */
1724 compact_virtual_grfs();
1725
1726 int num_vars = this->alloc.count;
1727
1728 /* Count the total number of registers */
1729 int reg_count = 0;
1730 int vgrf_to_reg[num_vars];
1731 for (int i = 0; i < num_vars; i++) {
1732 vgrf_to_reg[i] = reg_count;
1733 reg_count += alloc.sizes[i];
1734 }
1735
1736 /* An array of "split points". For each register slot, this indicates
1737 * if this slot can be separated from the previous slot. Every time an
1738 * instruction uses multiple elements of a register (as a source or
1739 * destination), we mark the used slots as inseparable. Then we go
1740 * through and split the registers into the smallest pieces we can.
1741 */
1742 bool split_points[reg_count];
1743 memset(split_points, 0, sizeof(split_points));
1744
1745 /* Mark all used registers as fully splittable */
1746 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1747 if (inst->dst.file == VGRF) {
1748 int reg = vgrf_to_reg[inst->dst.nr];
1749 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1750 split_points[reg + j] = true;
1751 }
1752
1753 for (int i = 0; i < inst->sources; i++) {
1754 if (inst->src[i].file == VGRF) {
1755 int reg = vgrf_to_reg[inst->src[i].nr];
1756 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1757 split_points[reg + j] = true;
1758 }
1759 }
1760 }
1761
1762 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1763 if (inst->dst.file == VGRF) {
1764 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1765 for (unsigned j = 1; j < regs_written(inst); j++)
1766 split_points[reg + j] = false;
1767 }
1768 for (int i = 0; i < inst->sources; i++) {
1769 if (inst->src[i].file == VGRF) {
1770 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1771 for (unsigned j = 1; j < regs_read(inst, i); j++)
1772 split_points[reg + j] = false;
1773 }
1774 }
1775 }
1776
1777 int new_virtual_grf[reg_count];
1778 int new_reg_offset[reg_count];
1779
1780 int reg = 0;
1781 for (int i = 0; i < num_vars; i++) {
1782 /* The first one should always be 0 as a quick sanity check. */
1783 assert(split_points[reg] == false);
1784
1785 /* j = 0 case */
1786 new_reg_offset[reg] = 0;
1787 reg++;
1788 int offset = 1;
1789
1790 /* j > 0 case */
1791 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1792 /* If this is a split point, reset the offset to 0 and allocate a
1793 * new virtual GRF for the previous offset many registers
1794 */
1795 if (split_points[reg]) {
1796 assert(offset <= MAX_VGRF_SIZE);
1797 int grf = alloc.allocate(offset);
1798 for (int k = reg - offset; k < reg; k++)
1799 new_virtual_grf[k] = grf;
1800 offset = 0;
1801 }
1802 new_reg_offset[reg] = offset;
1803 offset++;
1804 reg++;
1805 }
1806
1807 /* The last one gets the original register number */
1808 assert(offset <= MAX_VGRF_SIZE);
1809 alloc.sizes[i] = offset;
1810 for (int k = reg - offset; k < reg; k++)
1811 new_virtual_grf[k] = i;
1812 }
1813 assert(reg == reg_count);
1814
1815 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1816 if (inst->dst.file == VGRF) {
1817 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1818 inst->dst.nr = new_virtual_grf[reg];
1819 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1820 inst->dst.offset % REG_SIZE;
1821 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1822 }
1823 for (int i = 0; i < inst->sources; i++) {
1824 if (inst->src[i].file == VGRF) {
1825 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1826 inst->src[i].nr = new_virtual_grf[reg];
1827 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1828 inst->src[i].offset % REG_SIZE;
1829 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1830 }
1831 }
1832 }
1833 invalidate_live_intervals();
1834 }
1835
1836 /**
1837 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1838 *
1839 * During code generation, we create tons of temporary variables, many of
1840 * which get immediately killed and are never used again. Yet, in later
1841 * optimization and analysis passes, such as compute_live_intervals, we need
1842 * to loop over all the virtual GRFs. Compacting them can save a lot of
1843 * overhead.
1844 */
1845 bool
1846 fs_visitor::compact_virtual_grfs()
1847 {
1848 bool progress = false;
1849 int remap_table[this->alloc.count];
1850 memset(remap_table, -1, sizeof(remap_table));
1851
1852 /* Mark which virtual GRFs are used. */
1853 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1854 if (inst->dst.file == VGRF)
1855 remap_table[inst->dst.nr] = 0;
1856
1857 for (int i = 0; i < inst->sources; i++) {
1858 if (inst->src[i].file == VGRF)
1859 remap_table[inst->src[i].nr] = 0;
1860 }
1861 }
1862
1863 /* Compact the GRF arrays. */
1864 int new_index = 0;
1865 for (unsigned i = 0; i < this->alloc.count; i++) {
1866 if (remap_table[i] == -1) {
1867 /* We just found an unused register. This means that we are
1868 * actually going to compact something.
1869 */
1870 progress = true;
1871 } else {
1872 remap_table[i] = new_index;
1873 alloc.sizes[new_index] = alloc.sizes[i];
1874 invalidate_live_intervals();
1875 ++new_index;
1876 }
1877 }
1878
1879 this->alloc.count = new_index;
1880
1881 /* Patch all the instructions to use the newly renumbered registers */
1882 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1883 if (inst->dst.file == VGRF)
1884 inst->dst.nr = remap_table[inst->dst.nr];
1885
1886 for (int i = 0; i < inst->sources; i++) {
1887 if (inst->src[i].file == VGRF)
1888 inst->src[i].nr = remap_table[inst->src[i].nr];
1889 }
1890 }
1891
1892 /* Patch all the references to delta_xy, since they're used in register
1893 * allocation. If they're unused, switch them to BAD_FILE so we don't
1894 * think some random VGRF is delta_xy.
1895 */
1896 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1897 if (delta_xy[i].file == VGRF) {
1898 if (remap_table[delta_xy[i].nr] != -1) {
1899 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1900 } else {
1901 delta_xy[i].file = BAD_FILE;
1902 }
1903 }
1904 }
1905
1906 return progress;
1907 }
1908
1909 static int
1910 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
1911 {
1912 if (prog_data->nr_params == 0)
1913 return -1;
1914
1915 /* The local thread id is always the last parameter in the list */
1916 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
1917 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
1918 return prog_data->nr_params - 1;
1919
1920 return -1;
1921 }
1922
1923 /**
1924 * Struct for handling complex alignments.
1925 *
1926 * A complex alignment is stored as multiplier and an offset. A value is
1927 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
1928 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
1929 * following:
1930 *
1931 * N | cplx_align_apply({8, 2}, N)
1932 * ----+-----------------------------
1933 * 4 | 6
1934 * 6 | 6
1935 * 8 | 14
1936 * 10 | 14
1937 * 12 | 14
1938 * 14 | 14
1939 * 16 | 22
1940 */
1941 struct cplx_align {
1942 unsigned mul:4;
1943 unsigned offset:4;
1944 };
1945
1946 #define CPLX_ALIGN_MAX_MUL 8
1947
1948 static void
1949 cplx_align_assert_sane(struct cplx_align a)
1950 {
1951 assert(a.mul > 0 && util_is_power_of_two(a.mul));
1952 assert(a.offset < a.mul);
1953 }
1954
1955 /**
1956 * Combines two alignments to produce a least multiple of sorts.
1957 *
1958 * The returned alignment is the smallest (in terms of multiplier) such that
1959 * anything aligned to both a and b will be aligned to the new alignment.
1960 * This function will assert-fail if a and b are not compatible, i.e. if the
1961 * offset parameters are such that no common alignment is possible.
1962 */
1963 static struct cplx_align
1964 cplx_align_combine(struct cplx_align a, struct cplx_align b)
1965 {
1966 cplx_align_assert_sane(a);
1967 cplx_align_assert_sane(b);
1968
1969 /* Assert that the alignments agree. */
1970 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
1971
1972 return a.mul > b.mul ? a : b;
1973 }
1974
1975 /**
1976 * Apply a complex alignment
1977 *
1978 * This function will return the smallest number greater than or equal to
1979 * offset that is aligned to align.
1980 */
1981 static unsigned
1982 cplx_align_apply(struct cplx_align align, unsigned offset)
1983 {
1984 return ALIGN(offset - align.offset, align.mul) + align.offset;
1985 }
1986
1987 #define UNIFORM_SLOT_SIZE 4
1988
1989 struct uniform_slot_info {
1990 /** True if the given uniform slot is live */
1991 unsigned is_live:1;
1992
1993 /** True if this slot and the next slot must remain contiguous */
1994 unsigned contiguous:1;
1995
1996 struct cplx_align align;
1997 };
1998
1999 static void
2000 mark_uniform_slots_read(struct uniform_slot_info *slots,
2001 unsigned num_slots, unsigned alignment)
2002 {
2003 assert(alignment > 0 && util_is_power_of_two(alignment));
2004 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2005
2006 /* We can't align a slot to anything less than the slot size */
2007 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2008
2009 struct cplx_align align = {alignment, 0};
2010 cplx_align_assert_sane(align);
2011
2012 for (unsigned i = 0; i < num_slots; i++) {
2013 slots[i].is_live = true;
2014 if (i < num_slots - 1)
2015 slots[i].contiguous = true;
2016
2017 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2018 if (slots[i].align.mul == 0) {
2019 slots[i].align = align;
2020 } else {
2021 slots[i].align = cplx_align_combine(slots[i].align, align);
2022 }
2023 }
2024 }
2025
2026 /**
2027 * Assign UNIFORM file registers to either push constants or pull constants.
2028 *
2029 * We allow a fragment shader to have more than the specified minimum
2030 * maximum number of fragment shader uniform components (64). If
2031 * there are too many of these, they'd fill up all of register space.
2032 * So, this will push some of them out to the pull constant buffer and
2033 * update the program to load them.
2034 */
2035 void
2036 fs_visitor::assign_constant_locations()
2037 {
2038 /* Only the first compile gets to decide on locations. */
2039 if (push_constant_loc) {
2040 assert(pull_constant_loc);
2041 return;
2042 }
2043
2044 struct uniform_slot_info slots[uniforms];
2045 memset(slots, 0, sizeof(slots));
2046
2047 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2048 for (int i = 0 ; i < inst->sources; i++) {
2049 if (inst->src[i].file != UNIFORM)
2050 continue;
2051
2052 /* NIR tightly packs things so the uniform number might not be
2053 * aligned (if we have a double right after a float, for instance).
2054 * This is fine because the process of re-arranging them will ensure
2055 * that things are properly aligned. The offset into that uniform,
2056 * however, must be aligned.
2057 *
2058 * In Vulkan, we have explicit offsets but everything is crammed
2059 * into a single "variable" so inst->src[i].nr will always be 0.
2060 * Everything will be properly aligned relative to that one base.
2061 */
2062 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2063
2064 unsigned u = inst->src[i].nr +
2065 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2066
2067 if (u >= uniforms)
2068 continue;
2069
2070 unsigned slots_read;
2071 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2072 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2073 } else {
2074 unsigned bytes_read = inst->components_read(i) *
2075 type_sz(inst->src[i].type);
2076 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2077 }
2078
2079 assert(u + slots_read <= uniforms);
2080 mark_uniform_slots_read(&slots[u], slots_read,
2081 type_sz(inst->src[i].type));
2082 }
2083 }
2084
2085 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2086
2087 /* Only allow 16 registers (128 uniform components) as push constants.
2088 *
2089 * Just demote the end of the list. We could probably do better
2090 * here, demoting things that are rarely used in the program first.
2091 *
2092 * If changing this value, note the limitation about total_regs in
2093 * brw_curbe.c.
2094 */
2095 unsigned int max_push_components = 16 * 8;
2096 if (subgroup_id_index >= 0)
2097 max_push_components--; /* Save a slot for the thread ID */
2098
2099 /* We push small arrays, but no bigger than 16 floats. This is big enough
2100 * for a vec4 but hopefully not large enough to push out other stuff. We
2101 * should probably use a better heuristic at some point.
2102 */
2103 const unsigned int max_chunk_size = 16;
2104
2105 unsigned int num_push_constants = 0;
2106 unsigned int num_pull_constants = 0;
2107
2108 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2109 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2110
2111 /* Default to -1 meaning no location */
2112 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2113 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2114
2115 int chunk_start = -1;
2116 struct cplx_align align;
2117 for (unsigned u = 0; u < uniforms; u++) {
2118 if (!slots[u].is_live) {
2119 assert(chunk_start == -1);
2120 continue;
2121 }
2122
2123 /* Skip subgroup_id_index to put it in the last push register. */
2124 if (subgroup_id_index == (int)u)
2125 continue;
2126
2127 if (chunk_start == -1) {
2128 chunk_start = u;
2129 align = slots[u].align;
2130 } else {
2131 /* Offset into the chunk */
2132 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2133
2134 /* Shift the slot alignment down by the chunk offset so it is
2135 * comparable with the base chunk alignment.
2136 */
2137 struct cplx_align slot_align = slots[u].align;
2138 slot_align.offset =
2139 (slot_align.offset - chunk_offset) & (align.mul - 1);
2140
2141 align = cplx_align_combine(align, slot_align);
2142 }
2143
2144 /* Sanity check the alignment */
2145 cplx_align_assert_sane(align);
2146
2147 if (slots[u].contiguous)
2148 continue;
2149
2150 /* Adjust the alignment to be in terms of slots, not bytes */
2151 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2152 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2153 align.mul /= UNIFORM_SLOT_SIZE;
2154 align.offset /= UNIFORM_SLOT_SIZE;
2155
2156 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2157 unsigned chunk_size = u - chunk_start + 1;
2158 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2159 (chunk_size < max_chunk_size &&
2160 push_start_align + chunk_size <= max_push_components)) {
2161 /* Align up the number of push constants */
2162 num_push_constants = push_start_align;
2163 for (unsigned i = 0; i < chunk_size; i++)
2164 push_constant_loc[chunk_start + i] = num_push_constants++;
2165 } else {
2166 /* We need to pull this one */
2167 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2168 for (unsigned i = 0; i < chunk_size; i++)
2169 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2170 }
2171
2172 /* Reset the chunk and start again */
2173 chunk_start = -1;
2174 }
2175
2176 /* Add the CS local thread ID uniform at the end of the push constants */
2177 if (subgroup_id_index >= 0)
2178 push_constant_loc[subgroup_id_index] = num_push_constants++;
2179
2180 /* As the uniforms are going to be reordered, stash the old array and
2181 * create two new arrays for push/pull params.
2182 */
2183 uint32_t *param = stage_prog_data->param;
2184 stage_prog_data->nr_params = num_push_constants;
2185 if (num_push_constants) {
2186 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2187 num_push_constants);
2188 } else {
2189 stage_prog_data->param = NULL;
2190 }
2191 assert(stage_prog_data->nr_pull_params == 0);
2192 assert(stage_prog_data->pull_param == NULL);
2193 if (num_pull_constants > 0) {
2194 stage_prog_data->nr_pull_params = num_pull_constants;
2195 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2196 num_pull_constants);
2197 }
2198
2199 /* Now that we know how many regular uniforms we'll push, reduce the
2200 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2201 */
2202 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2203 for (int i = 0; i < 4; i++) {
2204 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2205
2206 if (push_length + range->length > 64)
2207 range->length = 64 - push_length;
2208
2209 push_length += range->length;
2210 }
2211 assert(push_length <= 64);
2212
2213 /* Up until now, the param[] array has been indexed by reg + offset
2214 * of UNIFORM registers. Move pull constants into pull_param[] and
2215 * condense param[] to only contain the uniforms we chose to push.
2216 *
2217 * NOTE: Because we are condensing the params[] array, we know that
2218 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2219 * having to make a copy.
2220 */
2221 for (unsigned int i = 0; i < uniforms; i++) {
2222 uint32_t value = param[i];
2223 if (pull_constant_loc[i] != -1) {
2224 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2225 } else if (push_constant_loc[i] != -1) {
2226 stage_prog_data->param[push_constant_loc[i]] = value;
2227 }
2228 }
2229 ralloc_free(param);
2230 }
2231
2232 bool
2233 fs_visitor::get_pull_locs(const fs_reg &src,
2234 unsigned *out_surf_index,
2235 unsigned *out_pull_index)
2236 {
2237 assert(src.file == UNIFORM);
2238
2239 if (src.nr >= UBO_START) {
2240 const struct brw_ubo_range *range =
2241 &prog_data->ubo_ranges[src.nr - UBO_START];
2242
2243 /* If this access is in our (reduced) range, use the push data. */
2244 if (src.offset / 32 < range->length)
2245 return false;
2246
2247 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2248 *out_pull_index = (32 * range->start + src.offset) / 4;
2249 return true;
2250 }
2251
2252 const unsigned location = src.nr + src.offset / 4;
2253
2254 if (location < uniforms && pull_constant_loc[location] != -1) {
2255 /* A regular uniform push constant */
2256 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2257 *out_pull_index = pull_constant_loc[location];
2258 return true;
2259 }
2260
2261 return false;
2262 }
2263
2264 /**
2265 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2266 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2267 */
2268 void
2269 fs_visitor::lower_constant_loads()
2270 {
2271 unsigned index, pull_index;
2272
2273 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2274 /* Set up the annotation tracking for new generated instructions. */
2275 const fs_builder ibld(this, block, inst);
2276
2277 for (int i = 0; i < inst->sources; i++) {
2278 if (inst->src[i].file != UNIFORM)
2279 continue;
2280
2281 /* We'll handle this case later */
2282 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2283 continue;
2284
2285 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2286 continue;
2287
2288 assert(inst->src[i].stride == 0);
2289
2290 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2291 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2292 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2293 const unsigned base = pull_index * 4;
2294
2295 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2296 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2297
2298 /* Rewrite the instruction to use the temporary VGRF. */
2299 inst->src[i].file = VGRF;
2300 inst->src[i].nr = dst.nr;
2301 inst->src[i].offset = (base & (block_sz - 1)) +
2302 inst->src[i].offset % 4;
2303
2304 brw_mark_surface_used(prog_data, index);
2305 }
2306
2307 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2308 inst->src[0].file == UNIFORM) {
2309
2310 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2311 continue;
2312
2313 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2314 brw_imm_ud(index),
2315 inst->src[1],
2316 pull_index * 4);
2317 inst->remove(block);
2318
2319 brw_mark_surface_used(prog_data, index);
2320 }
2321 }
2322 invalidate_live_intervals();
2323 }
2324
2325 bool
2326 fs_visitor::opt_algebraic()
2327 {
2328 bool progress = false;
2329
2330 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2331 switch (inst->opcode) {
2332 case BRW_OPCODE_MOV:
2333 if (inst->src[0].file != IMM)
2334 break;
2335
2336 if (inst->saturate) {
2337 if (inst->dst.type != inst->src[0].type)
2338 assert(!"unimplemented: saturate mixed types");
2339
2340 if (brw_saturate_immediate(inst->dst.type,
2341 &inst->src[0].as_brw_reg())) {
2342 inst->saturate = false;
2343 progress = true;
2344 }
2345 }
2346 break;
2347
2348 case BRW_OPCODE_MUL:
2349 if (inst->src[1].file != IMM)
2350 continue;
2351
2352 /* a * 1.0 = a */
2353 if (inst->src[1].is_one()) {
2354 inst->opcode = BRW_OPCODE_MOV;
2355 inst->src[1] = reg_undef;
2356 progress = true;
2357 break;
2358 }
2359
2360 /* a * -1.0 = -a */
2361 if (inst->src[1].is_negative_one()) {
2362 inst->opcode = BRW_OPCODE_MOV;
2363 inst->src[0].negate = !inst->src[0].negate;
2364 inst->src[1] = reg_undef;
2365 progress = true;
2366 break;
2367 }
2368
2369 /* a * 0.0 = 0.0 */
2370 if (inst->src[1].is_zero()) {
2371 inst->opcode = BRW_OPCODE_MOV;
2372 inst->src[0] = inst->src[1];
2373 inst->src[1] = reg_undef;
2374 progress = true;
2375 break;
2376 }
2377
2378 if (inst->src[0].file == IMM) {
2379 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2380 inst->opcode = BRW_OPCODE_MOV;
2381 inst->src[0].f *= inst->src[1].f;
2382 inst->src[1] = reg_undef;
2383 progress = true;
2384 break;
2385 }
2386 break;
2387 case BRW_OPCODE_ADD:
2388 if (inst->src[1].file != IMM)
2389 continue;
2390
2391 /* a + 0.0 = a */
2392 if (inst->src[1].is_zero()) {
2393 inst->opcode = BRW_OPCODE_MOV;
2394 inst->src[1] = reg_undef;
2395 progress = true;
2396 break;
2397 }
2398
2399 if (inst->src[0].file == IMM) {
2400 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2401 inst->opcode = BRW_OPCODE_MOV;
2402 inst->src[0].f += inst->src[1].f;
2403 inst->src[1] = reg_undef;
2404 progress = true;
2405 break;
2406 }
2407 break;
2408 case BRW_OPCODE_OR:
2409 if (inst->src[0].equals(inst->src[1])) {
2410 inst->opcode = BRW_OPCODE_MOV;
2411 inst->src[1] = reg_undef;
2412 progress = true;
2413 break;
2414 }
2415 break;
2416 case BRW_OPCODE_LRP:
2417 if (inst->src[1].equals(inst->src[2])) {
2418 inst->opcode = BRW_OPCODE_MOV;
2419 inst->src[0] = inst->src[1];
2420 inst->src[1] = reg_undef;
2421 inst->src[2] = reg_undef;
2422 progress = true;
2423 break;
2424 }
2425 break;
2426 case BRW_OPCODE_CMP:
2427 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2428 inst->src[0].abs &&
2429 inst->src[0].negate &&
2430 inst->src[1].is_zero()) {
2431 inst->src[0].abs = false;
2432 inst->src[0].negate = false;
2433 inst->conditional_mod = BRW_CONDITIONAL_Z;
2434 progress = true;
2435 break;
2436 }
2437 break;
2438 case BRW_OPCODE_SEL:
2439 if (inst->src[0].equals(inst->src[1])) {
2440 inst->opcode = BRW_OPCODE_MOV;
2441 inst->src[1] = reg_undef;
2442 inst->predicate = BRW_PREDICATE_NONE;
2443 inst->predicate_inverse = false;
2444 progress = true;
2445 } else if (inst->saturate && inst->src[1].file == IMM) {
2446 switch (inst->conditional_mod) {
2447 case BRW_CONDITIONAL_LE:
2448 case BRW_CONDITIONAL_L:
2449 switch (inst->src[1].type) {
2450 case BRW_REGISTER_TYPE_F:
2451 if (inst->src[1].f >= 1.0f) {
2452 inst->opcode = BRW_OPCODE_MOV;
2453 inst->src[1] = reg_undef;
2454 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2455 progress = true;
2456 }
2457 break;
2458 default:
2459 break;
2460 }
2461 break;
2462 case BRW_CONDITIONAL_GE:
2463 case BRW_CONDITIONAL_G:
2464 switch (inst->src[1].type) {
2465 case BRW_REGISTER_TYPE_F:
2466 if (inst->src[1].f <= 0.0f) {
2467 inst->opcode = BRW_OPCODE_MOV;
2468 inst->src[1] = reg_undef;
2469 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2470 progress = true;
2471 }
2472 break;
2473 default:
2474 break;
2475 }
2476 default:
2477 break;
2478 }
2479 }
2480 break;
2481 case BRW_OPCODE_MAD:
2482 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2483 inst->opcode = BRW_OPCODE_MOV;
2484 inst->src[1] = reg_undef;
2485 inst->src[2] = reg_undef;
2486 progress = true;
2487 } else if (inst->src[0].is_zero()) {
2488 inst->opcode = BRW_OPCODE_MUL;
2489 inst->src[0] = inst->src[2];
2490 inst->src[2] = reg_undef;
2491 progress = true;
2492 } else if (inst->src[1].is_one()) {
2493 inst->opcode = BRW_OPCODE_ADD;
2494 inst->src[1] = inst->src[2];
2495 inst->src[2] = reg_undef;
2496 progress = true;
2497 } else if (inst->src[2].is_one()) {
2498 inst->opcode = BRW_OPCODE_ADD;
2499 inst->src[2] = reg_undef;
2500 progress = true;
2501 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2502 inst->opcode = BRW_OPCODE_ADD;
2503 inst->src[1].f *= inst->src[2].f;
2504 inst->src[2] = reg_undef;
2505 progress = true;
2506 }
2507 break;
2508 case SHADER_OPCODE_BROADCAST:
2509 if (is_uniform(inst->src[0])) {
2510 inst->opcode = BRW_OPCODE_MOV;
2511 inst->sources = 1;
2512 inst->force_writemask_all = true;
2513 progress = true;
2514 } else if (inst->src[1].file == IMM) {
2515 inst->opcode = BRW_OPCODE_MOV;
2516 /* It's possible that the selected component will be too large and
2517 * overflow the register. This can happen if someone does a
2518 * readInvocation() from GLSL or SPIR-V and provides an OOB
2519 * invocationIndex. If this happens and we some how manage
2520 * to constant fold it in and get here, then component() may cause
2521 * us to start reading outside of the VGRF which will lead to an
2522 * assert later. Instead, just let it wrap around if it goes over
2523 * exec_size.
2524 */
2525 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2526 inst->src[0] = component(inst->src[0], comp);
2527 inst->sources = 1;
2528 inst->force_writemask_all = true;
2529 progress = true;
2530 }
2531 break;
2532
2533 default:
2534 break;
2535 }
2536
2537 /* Swap if src[0] is immediate. */
2538 if (progress && inst->is_commutative()) {
2539 if (inst->src[0].file == IMM) {
2540 fs_reg tmp = inst->src[1];
2541 inst->src[1] = inst->src[0];
2542 inst->src[0] = tmp;
2543 }
2544 }
2545 }
2546 return progress;
2547 }
2548
2549 /**
2550 * Optimize sample messages that have constant zero values for the trailing
2551 * texture coordinates. We can just reduce the message length for these
2552 * instructions instead of reserving a register for it. Trailing parameters
2553 * that aren't sent default to zero anyway. This will cause the dead code
2554 * eliminator to remove the MOV instruction that would otherwise be emitted to
2555 * set up the zero value.
2556 */
2557 bool
2558 fs_visitor::opt_zero_samples()
2559 {
2560 /* Gen4 infers the texturing opcode based on the message length so we can't
2561 * change it.
2562 */
2563 if (devinfo->gen < 5)
2564 return false;
2565
2566 bool progress = false;
2567
2568 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2569 if (!inst->is_tex())
2570 continue;
2571
2572 fs_inst *load_payload = (fs_inst *) inst->prev;
2573
2574 if (load_payload->is_head_sentinel() ||
2575 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2576 continue;
2577
2578 /* We don't want to remove the message header or the first parameter.
2579 * Removing the first parameter is not allowed, see the Haswell PRM
2580 * volume 7, page 149:
2581 *
2582 * "Parameter 0 is required except for the sampleinfo message, which
2583 * has no parameter 0"
2584 */
2585 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2586 load_payload->src[(inst->mlen - inst->header_size) /
2587 (inst->exec_size / 8) +
2588 inst->header_size - 1].is_zero()) {
2589 inst->mlen -= inst->exec_size / 8;
2590 progress = true;
2591 }
2592 }
2593
2594 if (progress)
2595 invalidate_live_intervals();
2596
2597 return progress;
2598 }
2599
2600 /**
2601 * Optimize sample messages which are followed by the final RT write.
2602 *
2603 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2604 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2605 * final texturing results copied to the framebuffer write payload and modify
2606 * them to write to the framebuffer directly.
2607 */
2608 bool
2609 fs_visitor::opt_sampler_eot()
2610 {
2611 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2612
2613 if (stage != MESA_SHADER_FRAGMENT)
2614 return false;
2615
2616 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2617 return false;
2618
2619 /* FINISHME: It should be possible to implement this optimization when there
2620 * are multiple drawbuffers.
2621 */
2622 if (key->nr_color_regions != 1)
2623 return false;
2624
2625 /* Requires emitting a bunch of saturating MOV instructions during logical
2626 * send lowering to clamp the color payload, which the sampler unit isn't
2627 * going to do for us.
2628 */
2629 if (key->clamp_fragment_color)
2630 return false;
2631
2632 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2633 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2634 fs_inst *fb_write = (fs_inst *)block->end();
2635 assert(fb_write->eot);
2636 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2637
2638 /* There wasn't one; nothing to do. */
2639 if (unlikely(fb_write->prev->is_head_sentinel()))
2640 return false;
2641
2642 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2643
2644 /* 3D Sampler » Messages » Message Format
2645 *
2646 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2647 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2648 */
2649 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2650 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2651 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2652 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2653 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2654 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2655 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2656 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2657 return false;
2658
2659 /* XXX - This shouldn't be necessary. */
2660 if (tex_inst->prev->is_head_sentinel())
2661 return false;
2662
2663 /* Check that the FB write sources are fully initialized by the single
2664 * texturing instruction.
2665 */
2666 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2667 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2668 if (!fb_write->src[i].equals(tex_inst->dst) ||
2669 fb_write->size_read(i) != tex_inst->size_written)
2670 return false;
2671 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2672 if (fb_write->src[i].file != BAD_FILE)
2673 return false;
2674 }
2675 }
2676
2677 assert(!tex_inst->eot); /* We can't get here twice */
2678 assert((tex_inst->offset & (0xff << 24)) == 0);
2679
2680 const fs_builder ibld(this, block, tex_inst);
2681
2682 tex_inst->offset |= fb_write->target << 24;
2683 tex_inst->eot = true;
2684 tex_inst->dst = ibld.null_reg_ud();
2685 tex_inst->size_written = 0;
2686 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2687
2688 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2689 * flag and submit a header together with the sampler message as required
2690 * by the hardware.
2691 */
2692 invalidate_live_intervals();
2693 return true;
2694 }
2695
2696 bool
2697 fs_visitor::opt_register_renaming()
2698 {
2699 bool progress = false;
2700 int depth = 0;
2701
2702 int remap[alloc.count];
2703 memset(remap, -1, sizeof(int) * alloc.count);
2704
2705 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2706 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2707 depth++;
2708 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2709 inst->opcode == BRW_OPCODE_WHILE) {
2710 depth--;
2711 }
2712
2713 /* Rewrite instruction sources. */
2714 for (int i = 0; i < inst->sources; i++) {
2715 if (inst->src[i].file == VGRF &&
2716 remap[inst->src[i].nr] != -1 &&
2717 remap[inst->src[i].nr] != inst->src[i].nr) {
2718 inst->src[i].nr = remap[inst->src[i].nr];
2719 progress = true;
2720 }
2721 }
2722
2723 const int dst = inst->dst.nr;
2724
2725 if (depth == 0 &&
2726 inst->dst.file == VGRF &&
2727 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2728 !inst->is_partial_write()) {
2729 if (remap[dst] == -1) {
2730 remap[dst] = dst;
2731 } else {
2732 remap[dst] = alloc.allocate(regs_written(inst));
2733 inst->dst.nr = remap[dst];
2734 progress = true;
2735 }
2736 } else if (inst->dst.file == VGRF &&
2737 remap[dst] != -1 &&
2738 remap[dst] != dst) {
2739 inst->dst.nr = remap[dst];
2740 progress = true;
2741 }
2742 }
2743
2744 if (progress) {
2745 invalidate_live_intervals();
2746
2747 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2748 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2749 delta_xy[i].nr = remap[delta_xy[i].nr];
2750 }
2751 }
2752 }
2753
2754 return progress;
2755 }
2756
2757 /**
2758 * Remove redundant or useless discard jumps.
2759 *
2760 * For example, we can eliminate jumps in the following sequence:
2761 *
2762 * discard-jump (redundant with the next jump)
2763 * discard-jump (useless; jumps to the next instruction)
2764 * placeholder-halt
2765 */
2766 bool
2767 fs_visitor::opt_redundant_discard_jumps()
2768 {
2769 bool progress = false;
2770
2771 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2772
2773 fs_inst *placeholder_halt = NULL;
2774 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2775 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2776 placeholder_halt = inst;
2777 break;
2778 }
2779 }
2780
2781 if (!placeholder_halt)
2782 return false;
2783
2784 /* Delete any HALTs immediately before the placeholder halt. */
2785 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2786 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2787 prev = (fs_inst *) placeholder_halt->prev) {
2788 prev->remove(last_bblock);
2789 progress = true;
2790 }
2791
2792 if (progress)
2793 invalidate_live_intervals();
2794
2795 return progress;
2796 }
2797
2798 /**
2799 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2800 * from \p r.offset which overlaps the region starting at \p s.offset and
2801 * spanning \p ds bytes.
2802 */
2803 static inline unsigned
2804 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2805 {
2806 const int rel_offset = reg_offset(s) - reg_offset(r);
2807 const int shift = rel_offset / REG_SIZE;
2808 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2809 assert(reg_space(r) == reg_space(s) &&
2810 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2811 return ((1 << n) - 1) << shift;
2812 }
2813
2814 bool
2815 fs_visitor::compute_to_mrf()
2816 {
2817 bool progress = false;
2818 int next_ip = 0;
2819
2820 /* No MRFs on Gen >= 7. */
2821 if (devinfo->gen >= 7)
2822 return false;
2823
2824 calculate_live_intervals();
2825
2826 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2827 int ip = next_ip;
2828 next_ip++;
2829
2830 if (inst->opcode != BRW_OPCODE_MOV ||
2831 inst->is_partial_write() ||
2832 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2833 inst->dst.type != inst->src[0].type ||
2834 inst->src[0].abs || inst->src[0].negate ||
2835 !inst->src[0].is_contiguous() ||
2836 inst->src[0].offset % REG_SIZE != 0)
2837 continue;
2838
2839 /* Can't compute-to-MRF this GRF if someone else was going to
2840 * read it later.
2841 */
2842 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2843 continue;
2844
2845 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2846 * things that computed the value of all GRFs of the source region. The
2847 * regs_left bitset keeps track of the registers we haven't yet found a
2848 * generating instruction for.
2849 */
2850 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2851
2852 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2853 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2854 inst->src[0], inst->size_read(0))) {
2855 /* Found the last thing to write our reg we want to turn
2856 * into a compute-to-MRF.
2857 */
2858
2859 /* If this one instruction didn't populate all the
2860 * channels, bail. We might be able to rewrite everything
2861 * that writes that reg, but it would require smarter
2862 * tracking.
2863 */
2864 if (scan_inst->is_partial_write())
2865 break;
2866
2867 /* Handling things not fully contained in the source of the copy
2868 * would need us to understand coalescing out more than one MOV at
2869 * a time.
2870 */
2871 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2872 inst->src[0], inst->size_read(0)))
2873 break;
2874
2875 /* SEND instructions can't have MRF as a destination. */
2876 if (scan_inst->mlen)
2877 break;
2878
2879 if (devinfo->gen == 6) {
2880 /* gen6 math instructions must have the destination be
2881 * GRF, so no compute-to-MRF for them.
2882 */
2883 if (scan_inst->is_math()) {
2884 break;
2885 }
2886 }
2887
2888 /* Clear the bits for any registers this instruction overwrites. */
2889 regs_left &= ~mask_relative_to(
2890 inst->src[0], scan_inst->dst, scan_inst->size_written);
2891 if (!regs_left)
2892 break;
2893 }
2894
2895 /* We don't handle control flow here. Most computation of
2896 * values that end up in MRFs are shortly before the MRF
2897 * write anyway.
2898 */
2899 if (block->start() == scan_inst)
2900 break;
2901
2902 /* You can't read from an MRF, so if someone else reads our
2903 * MRF's source GRF that we wanted to rewrite, that stops us.
2904 */
2905 bool interfered = false;
2906 for (int i = 0; i < scan_inst->sources; i++) {
2907 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2908 inst->src[0], inst->size_read(0))) {
2909 interfered = true;
2910 }
2911 }
2912 if (interfered)
2913 break;
2914
2915 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2916 inst->dst, inst->size_written)) {
2917 /* If somebody else writes our MRF here, we can't
2918 * compute-to-MRF before that.
2919 */
2920 break;
2921 }
2922
2923 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2924 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2925 inst->dst, inst->size_written)) {
2926 /* Found a SEND instruction, which means that there are
2927 * live values in MRFs from base_mrf to base_mrf +
2928 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2929 * above it.
2930 */
2931 break;
2932 }
2933 }
2934
2935 if (regs_left)
2936 continue;
2937
2938 /* Found all generating instructions of our MRF's source value, so it
2939 * should be safe to rewrite them to point to the MRF directly.
2940 */
2941 regs_left = (1 << regs_read(inst, 0)) - 1;
2942
2943 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2944 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2945 inst->src[0], inst->size_read(0))) {
2946 /* Clear the bits for any registers this instruction overwrites. */
2947 regs_left &= ~mask_relative_to(
2948 inst->src[0], scan_inst->dst, scan_inst->size_written);
2949
2950 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2951 reg_offset(inst->src[0]);
2952
2953 if (inst->dst.nr & BRW_MRF_COMPR4) {
2954 /* Apply the same address transformation done by the hardware
2955 * for COMPR4 MRF writes.
2956 */
2957 assert(rel_offset < 2 * REG_SIZE);
2958 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2959
2960 /* Clear the COMPR4 bit if the generating instruction is not
2961 * compressed.
2962 */
2963 if (scan_inst->size_written < 2 * REG_SIZE)
2964 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2965
2966 } else {
2967 /* Calculate the MRF number the result of this instruction is
2968 * ultimately written to.
2969 */
2970 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2971 }
2972
2973 scan_inst->dst.file = MRF;
2974 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2975 scan_inst->saturate |= inst->saturate;
2976 if (!regs_left)
2977 break;
2978 }
2979 }
2980
2981 assert(!regs_left);
2982 inst->remove(block);
2983 progress = true;
2984 }
2985
2986 if (progress)
2987 invalidate_live_intervals();
2988
2989 return progress;
2990 }
2991
2992 /**
2993 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2994 * flow. We could probably do better here with some form of divergence
2995 * analysis.
2996 */
2997 bool
2998 fs_visitor::eliminate_find_live_channel()
2999 {
3000 bool progress = false;
3001 unsigned depth = 0;
3002
3003 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3004 /* The optimization below assumes that channel zero is live on thread
3005 * dispatch, which may not be the case if the fixed function dispatches
3006 * threads sparsely.
3007 */
3008 return false;
3009 }
3010
3011 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3012 switch (inst->opcode) {
3013 case BRW_OPCODE_IF:
3014 case BRW_OPCODE_DO:
3015 depth++;
3016 break;
3017
3018 case BRW_OPCODE_ENDIF:
3019 case BRW_OPCODE_WHILE:
3020 depth--;
3021 break;
3022
3023 case FS_OPCODE_DISCARD_JUMP:
3024 /* This can potentially make control flow non-uniform until the end
3025 * of the program.
3026 */
3027 return progress;
3028
3029 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3030 if (depth == 0) {
3031 inst->opcode = BRW_OPCODE_MOV;
3032 inst->src[0] = brw_imm_ud(0u);
3033 inst->sources = 1;
3034 inst->force_writemask_all = true;
3035 progress = true;
3036 }
3037 break;
3038
3039 default:
3040 break;
3041 }
3042 }
3043
3044 return progress;
3045 }
3046
3047 /**
3048 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3049 * instructions to FS_OPCODE_REP_FB_WRITE.
3050 */
3051 void
3052 fs_visitor::emit_repclear_shader()
3053 {
3054 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3055 int base_mrf = 0;
3056 int color_mrf = base_mrf + 2;
3057 fs_inst *mov;
3058
3059 if (uniforms > 0) {
3060 mov = bld.exec_all().group(4, 0)
3061 .MOV(brw_message_reg(color_mrf),
3062 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3063 } else {
3064 struct brw_reg reg =
3065 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3066 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3067 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3068
3069 mov = bld.exec_all().group(4, 0)
3070 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3071 }
3072
3073 fs_inst *write;
3074 if (key->nr_color_regions == 1) {
3075 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3076 write->saturate = key->clamp_fragment_color;
3077 write->base_mrf = color_mrf;
3078 write->target = 0;
3079 write->header_size = 0;
3080 write->mlen = 1;
3081 } else {
3082 assume(key->nr_color_regions > 0);
3083 for (int i = 0; i < key->nr_color_regions; ++i) {
3084 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3085 write->saturate = key->clamp_fragment_color;
3086 write->base_mrf = base_mrf;
3087 write->target = i;
3088 write->header_size = 2;
3089 write->mlen = 3;
3090 }
3091 }
3092 write->eot = true;
3093
3094 calculate_cfg();
3095
3096 assign_constant_locations();
3097 assign_curb_setup();
3098
3099 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3100 if (uniforms > 0) {
3101 assert(mov->src[0].file == FIXED_GRF);
3102 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3103 }
3104 }
3105
3106 /**
3107 * Walks through basic blocks, looking for repeated MRF writes and
3108 * removing the later ones.
3109 */
3110 bool
3111 fs_visitor::remove_duplicate_mrf_writes()
3112 {
3113 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3114 bool progress = false;
3115
3116 /* Need to update the MRF tracking for compressed instructions. */
3117 if (dispatch_width >= 16)
3118 return false;
3119
3120 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3121
3122 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3123 if (inst->is_control_flow()) {
3124 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3125 }
3126
3127 if (inst->opcode == BRW_OPCODE_MOV &&
3128 inst->dst.file == MRF) {
3129 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3130 if (prev_inst && inst->equals(prev_inst)) {
3131 inst->remove(block);
3132 progress = true;
3133 continue;
3134 }
3135 }
3136
3137 /* Clear out the last-write records for MRFs that were overwritten. */
3138 if (inst->dst.file == MRF) {
3139 last_mrf_move[inst->dst.nr] = NULL;
3140 }
3141
3142 if (inst->mlen > 0 && inst->base_mrf != -1) {
3143 /* Found a SEND instruction, which will include two or fewer
3144 * implied MRF writes. We could do better here.
3145 */
3146 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3147 last_mrf_move[inst->base_mrf + i] = NULL;
3148 }
3149 }
3150
3151 /* Clear out any MRF move records whose sources got overwritten. */
3152 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3153 if (last_mrf_move[i] &&
3154 regions_overlap(inst->dst, inst->size_written,
3155 last_mrf_move[i]->src[0],
3156 last_mrf_move[i]->size_read(0))) {
3157 last_mrf_move[i] = NULL;
3158 }
3159 }
3160
3161 if (inst->opcode == BRW_OPCODE_MOV &&
3162 inst->dst.file == MRF &&
3163 inst->src[0].file != ARF &&
3164 !inst->is_partial_write()) {
3165 last_mrf_move[inst->dst.nr] = inst;
3166 }
3167 }
3168
3169 if (progress)
3170 invalidate_live_intervals();
3171
3172 return progress;
3173 }
3174
3175 /**
3176 * Rounding modes for conversion instructions are included for each
3177 * conversion, but right now it is a state. So once it is set,
3178 * we don't need to call it again for subsequent calls.
3179 *
3180 * This is useful for vector/matrices conversions, as setting the
3181 * mode once is enough for the full vector/matrix
3182 */
3183 bool
3184 fs_visitor::remove_extra_rounding_modes()
3185 {
3186 bool progress = false;
3187
3188 foreach_block (block, cfg) {
3189 brw_rnd_mode prev_mode = BRW_RND_MODE_UNSPECIFIED;
3190
3191 foreach_inst_in_block_safe (fs_inst, inst, block) {
3192 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3193 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3194 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3195 if (mode == prev_mode) {
3196 inst->remove(block);
3197 progress = true;
3198 } else {
3199 prev_mode = mode;
3200 }
3201 }
3202 }
3203 }
3204
3205 if (progress)
3206 invalidate_live_intervals();
3207
3208 return progress;
3209 }
3210
3211 static void
3212 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3213 {
3214 /* Clear the flag for registers that actually got read (as expected). */
3215 for (int i = 0; i < inst->sources; i++) {
3216 int grf;
3217 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3218 grf = inst->src[i].nr;
3219 } else {
3220 continue;
3221 }
3222
3223 if (grf >= first_grf &&
3224 grf < first_grf + grf_len) {
3225 deps[grf - first_grf] = false;
3226 if (inst->exec_size == 16)
3227 deps[grf - first_grf + 1] = false;
3228 }
3229 }
3230 }
3231
3232 /**
3233 * Implements this workaround for the original 965:
3234 *
3235 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3236 * check for post destination dependencies on this instruction, software
3237 * must ensure that there is no destination hazard for the case of ‘write
3238 * followed by a posted write’ shown in the following example.
3239 *
3240 * 1. mov r3 0
3241 * 2. send r3.xy <rest of send instruction>
3242 * 3. mov r2 r3
3243 *
3244 * Due to no post-destination dependency check on the ‘send’, the above
3245 * code sequence could have two instructions (1 and 2) in flight at the
3246 * same time that both consider ‘r3’ as the target of their final writes.
3247 */
3248 void
3249 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3250 fs_inst *inst)
3251 {
3252 int write_len = regs_written(inst);
3253 int first_write_grf = inst->dst.nr;
3254 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3255 assert(write_len < (int)sizeof(needs_dep) - 1);
3256
3257 memset(needs_dep, false, sizeof(needs_dep));
3258 memset(needs_dep, true, write_len);
3259
3260 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3261
3262 /* Walk backwards looking for writes to registers we're writing which
3263 * aren't read since being written. If we hit the start of the program,
3264 * we assume that there are no outstanding dependencies on entry to the
3265 * program.
3266 */
3267 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3268 /* If we hit control flow, assume that there *are* outstanding
3269 * dependencies, and force their cleanup before our instruction.
3270 */
3271 if (block->start() == scan_inst && block->num != 0) {
3272 for (int i = 0; i < write_len; i++) {
3273 if (needs_dep[i])
3274 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3275 first_write_grf + i);
3276 }
3277 return;
3278 }
3279
3280 /* We insert our reads as late as possible on the assumption that any
3281 * instruction but a MOV that might have left us an outstanding
3282 * dependency has more latency than a MOV.
3283 */
3284 if (scan_inst->dst.file == VGRF) {
3285 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3286 int reg = scan_inst->dst.nr + i;
3287
3288 if (reg >= first_write_grf &&
3289 reg < first_write_grf + write_len &&
3290 needs_dep[reg - first_write_grf]) {
3291 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3292 needs_dep[reg - first_write_grf] = false;
3293 if (scan_inst->exec_size == 16)
3294 needs_dep[reg - first_write_grf + 1] = false;
3295 }
3296 }
3297 }
3298
3299 /* Clear the flag for registers that actually got read (as expected). */
3300 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3301
3302 /* Continue the loop only if we haven't resolved all the dependencies */
3303 int i;
3304 for (i = 0; i < write_len; i++) {
3305 if (needs_dep[i])
3306 break;
3307 }
3308 if (i == write_len)
3309 return;
3310 }
3311 }
3312
3313 /**
3314 * Implements this workaround for the original 965:
3315 *
3316 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3317 * used as a destination register until after it has been sourced by an
3318 * instruction with a different destination register.
3319 */
3320 void
3321 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3322 {
3323 int write_len = regs_written(inst);
3324 int first_write_grf = inst->dst.nr;
3325 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3326 assert(write_len < (int)sizeof(needs_dep) - 1);
3327
3328 memset(needs_dep, false, sizeof(needs_dep));
3329 memset(needs_dep, true, write_len);
3330 /* Walk forwards looking for writes to registers we're writing which aren't
3331 * read before being written.
3332 */
3333 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3334 /* If we hit control flow, force resolve all remaining dependencies. */
3335 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3336 for (int i = 0; i < write_len; i++) {
3337 if (needs_dep[i])
3338 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3339 first_write_grf + i);
3340 }
3341 return;
3342 }
3343
3344 /* Clear the flag for registers that actually got read (as expected). */
3345 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3346
3347 /* We insert our reads as late as possible since they're reading the
3348 * result of a SEND, which has massive latency.
3349 */
3350 if (scan_inst->dst.file == VGRF &&
3351 scan_inst->dst.nr >= first_write_grf &&
3352 scan_inst->dst.nr < first_write_grf + write_len &&
3353 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3354 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3355 scan_inst->dst.nr);
3356 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3357 }
3358
3359 /* Continue the loop only if we haven't resolved all the dependencies */
3360 int i;
3361 for (i = 0; i < write_len; i++) {
3362 if (needs_dep[i])
3363 break;
3364 }
3365 if (i == write_len)
3366 return;
3367 }
3368 }
3369
3370 void
3371 fs_visitor::insert_gen4_send_dependency_workarounds()
3372 {
3373 if (devinfo->gen != 4 || devinfo->is_g4x)
3374 return;
3375
3376 bool progress = false;
3377
3378 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3379 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3380 insert_gen4_pre_send_dependency_workarounds(block, inst);
3381 insert_gen4_post_send_dependency_workarounds(block, inst);
3382 progress = true;
3383 }
3384 }
3385
3386 if (progress)
3387 invalidate_live_intervals();
3388 }
3389
3390 /**
3391 * Turns the generic expression-style uniform pull constant load instruction
3392 * into a hardware-specific series of instructions for loading a pull
3393 * constant.
3394 *
3395 * The expression style allows the CSE pass before this to optimize out
3396 * repeated loads from the same offset, and gives the pre-register-allocation
3397 * scheduling full flexibility, while the conversion to native instructions
3398 * allows the post-register-allocation scheduler the best information
3399 * possible.
3400 *
3401 * Note that execution masking for setting up pull constant loads is special:
3402 * the channels that need to be written are unrelated to the current execution
3403 * mask, since a later instruction will use one of the result channels as a
3404 * source operand for all 8 or 16 of its channels.
3405 */
3406 void
3407 fs_visitor::lower_uniform_pull_constant_loads()
3408 {
3409 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3410 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3411 continue;
3412
3413 if (devinfo->gen >= 7) {
3414 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3415 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3416
3417 ubld.group(8, 0).MOV(payload,
3418 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3419 ubld.group(1, 0).MOV(component(payload, 2),
3420 brw_imm_ud(inst->src[1].ud / 16));
3421
3422 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3423 inst->src[1] = payload;
3424 inst->header_size = 1;
3425 inst->mlen = 1;
3426
3427 invalidate_live_intervals();
3428 } else {
3429 /* Before register allocation, we didn't tell the scheduler about the
3430 * MRF we use. We know it's safe to use this MRF because nothing
3431 * else does except for register spill/unspill, which generates and
3432 * uses its MRF within a single IR instruction.
3433 */
3434 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3435 inst->mlen = 1;
3436 }
3437 }
3438 }
3439
3440 bool
3441 fs_visitor::lower_load_payload()
3442 {
3443 bool progress = false;
3444
3445 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3446 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3447 continue;
3448
3449 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3450 assert(inst->saturate == false);
3451 fs_reg dst = inst->dst;
3452
3453 /* Get rid of COMPR4. We'll add it back in if we need it */
3454 if (dst.file == MRF)
3455 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3456
3457 const fs_builder ibld(this, block, inst);
3458 const fs_builder hbld = ibld.exec_all().group(8, 0);
3459
3460 for (uint8_t i = 0; i < inst->header_size; i++) {
3461 if (inst->src[i].file != BAD_FILE) {
3462 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3463 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3464 hbld.MOV(mov_dst, mov_src);
3465 }
3466 dst = offset(dst, hbld, 1);
3467 }
3468
3469 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3470 inst->exec_size > 8) {
3471 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3472 * a straightforward copy. Instead, the result of the
3473 * LOAD_PAYLOAD is treated as interleaved and the first four
3474 * non-header sources are unpacked as:
3475 *
3476 * m + 0: r0
3477 * m + 1: g0
3478 * m + 2: b0
3479 * m + 3: a0
3480 * m + 4: r1
3481 * m + 5: g1
3482 * m + 6: b1
3483 * m + 7: a1
3484 *
3485 * This is used for gen <= 5 fb writes.
3486 */
3487 assert(inst->exec_size == 16);
3488 assert(inst->header_size + 4 <= inst->sources);
3489 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3490 if (inst->src[i].file != BAD_FILE) {
3491 if (devinfo->has_compr4) {
3492 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3493 compr4_dst.nr |= BRW_MRF_COMPR4;
3494 ibld.MOV(compr4_dst, inst->src[i]);
3495 } else {
3496 /* Platform doesn't have COMPR4. We have to fake it */
3497 fs_reg mov_dst = retype(dst, inst->src[i].type);
3498 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3499 mov_dst.nr += 4;
3500 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3501 }
3502 }
3503
3504 dst.nr++;
3505 }
3506
3507 /* The loop above only ever incremented us through the first set
3508 * of 4 registers. However, thanks to the magic of COMPR4, we
3509 * actually wrote to the first 8 registers, so we need to take
3510 * that into account now.
3511 */
3512 dst.nr += 4;
3513
3514 /* The COMPR4 code took care of the first 4 sources. We'll let
3515 * the regular path handle any remaining sources. Yes, we are
3516 * modifying the instruction but we're about to delete it so
3517 * this really doesn't hurt anything.
3518 */
3519 inst->header_size += 4;
3520 }
3521
3522 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3523 if (inst->src[i].file != BAD_FILE)
3524 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3525 dst = offset(dst, ibld, 1);
3526 }
3527
3528 inst->remove(block);
3529 progress = true;
3530 }
3531
3532 if (progress)
3533 invalidate_live_intervals();
3534
3535 return progress;
3536 }
3537
3538 bool
3539 fs_visitor::lower_integer_multiplication()
3540 {
3541 bool progress = false;
3542
3543 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3544 const fs_builder ibld(this, block, inst);
3545
3546 if (inst->opcode == BRW_OPCODE_MUL) {
3547 if (inst->dst.is_accumulator() ||
3548 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3549 inst->dst.type != BRW_REGISTER_TYPE_UD))
3550 continue;
3551
3552 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3553 * operation directly, but CHV/BXT cannot.
3554 */
3555 if (devinfo->gen >= 8 &&
3556 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo))
3557 continue;
3558
3559 if (inst->src[1].file == IMM &&
3560 inst->src[1].ud < (1 << 16)) {
3561 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3562 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3563 * src1 are used.
3564 *
3565 * If multiplying by an immediate value that fits in 16-bits, do a
3566 * single MUL instruction with that value in the proper location.
3567 */
3568 if (devinfo->gen < 7) {
3569 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3570 inst->dst.type);
3571 ibld.MOV(imm, inst->src[1]);
3572 ibld.MUL(inst->dst, imm, inst->src[0]);
3573 } else {
3574 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3575 ibld.MUL(inst->dst, inst->src[0],
3576 ud ? brw_imm_uw(inst->src[1].ud)
3577 : brw_imm_w(inst->src[1].d));
3578 }
3579 } else {
3580 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3581 * do 32-bit integer multiplication in one instruction, but instead
3582 * must do a sequence (which actually calculates a 64-bit result):
3583 *
3584 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3585 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3586 * mov(8) g2<1>D acc0<8,8,1>D
3587 *
3588 * But on Gen > 6, the ability to use second accumulator register
3589 * (acc1) for non-float data types was removed, preventing a simple
3590 * implementation in SIMD16. A 16-channel result can be calculated by
3591 * executing the three instructions twice in SIMD8, once with quarter
3592 * control of 1Q for the first eight channels and again with 2Q for
3593 * the second eight channels.
3594 *
3595 * Which accumulator register is implicitly accessed (by AccWrEnable
3596 * for instance) is determined by the quarter control. Unfortunately
3597 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3598 * implicit accumulator access by an instruction with 2Q will access
3599 * acc1 regardless of whether the data type is usable in acc1.
3600 *
3601 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3602 * integer data types.
3603 *
3604 * Since we only want the low 32-bits of the result, we can do two
3605 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3606 * adjust the high result and add them (like the mach is doing):
3607 *
3608 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3609 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3610 * shl(8) g9<1>D g8<8,8,1>D 16D
3611 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3612 *
3613 * We avoid the shl instruction by realizing that we only want to add
3614 * the low 16-bits of the "high" result to the high 16-bits of the
3615 * "low" result and using proper regioning on the add:
3616 *
3617 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3618 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3619 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3620 *
3621 * Since it does not use the (single) accumulator register, we can
3622 * schedule multi-component multiplications much better.
3623 */
3624
3625 bool needs_mov = false;
3626 fs_reg orig_dst = inst->dst;
3627 fs_reg low = inst->dst;
3628 if (orig_dst.is_null() || orig_dst.file == MRF ||
3629 regions_overlap(inst->dst, inst->size_written,
3630 inst->src[0], inst->size_read(0)) ||
3631 regions_overlap(inst->dst, inst->size_written,
3632 inst->src[1], inst->size_read(1))) {
3633 needs_mov = true;
3634 /* Get a new VGRF but keep the same stride as inst->dst */
3635 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
3636 inst->dst.type);
3637 low.stride = inst->dst.stride;
3638 low.offset = inst->dst.offset % REG_SIZE;
3639 }
3640
3641 /* Get a new VGRF but keep the same stride as inst->dst */
3642 fs_reg high(VGRF, alloc.allocate(regs_written(inst)),
3643 inst->dst.type);
3644 high.stride = inst->dst.stride;
3645 high.offset = inst->dst.offset % REG_SIZE;
3646
3647 if (devinfo->gen >= 7) {
3648 if (inst->src[1].file == IMM) {
3649 ibld.MUL(low, inst->src[0],
3650 brw_imm_uw(inst->src[1].ud & 0xffff));
3651 ibld.MUL(high, inst->src[0],
3652 brw_imm_uw(inst->src[1].ud >> 16));
3653 } else {
3654 ibld.MUL(low, inst->src[0],
3655 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3656 ibld.MUL(high, inst->src[0],
3657 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3658 }
3659 } else {
3660 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3661 inst->src[1]);
3662 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3663 inst->src[1]);
3664 }
3665
3666 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3667 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3668 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3669
3670 if (needs_mov || inst->conditional_mod) {
3671 set_condmod(inst->conditional_mod,
3672 ibld.MOV(orig_dst, low));
3673 }
3674 }
3675
3676 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3677 /* Should have been lowered to 8-wide. */
3678 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3679 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3680 inst->dst.type);
3681 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3682 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3683
3684 if (devinfo->gen >= 8) {
3685 /* Until Gen8, integer multiplies read 32-bits from one source,
3686 * and 16-bits from the other, and relying on the MACH instruction
3687 * to generate the high bits of the result.
3688 *
3689 * On Gen8, the multiply instruction does a full 32x32-bit
3690 * multiply, but in order to do a 64-bit multiply we can simulate
3691 * the previous behavior and then use a MACH instruction.
3692 *
3693 * FINISHME: Don't use source modifiers on src1.
3694 */
3695 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3696 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3697 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3698 mul->src[1].stride *= 2;
3699
3700 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3701 inst->group > 0) {
3702 /* Among other things the quarter control bits influence which
3703 * accumulator register is used by the hardware for instructions
3704 * that access the accumulator implicitly (e.g. MACH). A
3705 * second-half instruction would normally map to acc1, which
3706 * doesn't exist on Gen7 and up (the hardware does emulate it for
3707 * floating-point instructions *only* by taking advantage of the
3708 * extra precision of acc0 not normally used for floating point
3709 * arithmetic).
3710 *
3711 * HSW and up are careful enough not to try to access an
3712 * accumulator register that doesn't exist, but on earlier Gen7
3713 * hardware we need to make sure that the quarter control bits are
3714 * zero to avoid non-deterministic behaviour and emit an extra MOV
3715 * to get the result masked correctly according to the current
3716 * channel enables.
3717 */
3718 mach->group = 0;
3719 mach->force_writemask_all = true;
3720 mach->dst = ibld.vgrf(inst->dst.type);
3721 ibld.MOV(inst->dst, mach->dst);
3722 }
3723 } else {
3724 continue;
3725 }
3726
3727 inst->remove(block);
3728 progress = true;
3729 }
3730
3731 if (progress)
3732 invalidate_live_intervals();
3733
3734 return progress;
3735 }
3736
3737 bool
3738 fs_visitor::lower_minmax()
3739 {
3740 assert(devinfo->gen < 6);
3741
3742 bool progress = false;
3743
3744 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3745 const fs_builder ibld(this, block, inst);
3746
3747 if (inst->opcode == BRW_OPCODE_SEL &&
3748 inst->predicate == BRW_PREDICATE_NONE) {
3749 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3750 * the original SEL.L/GE instruction
3751 */
3752 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3753 inst->conditional_mod);
3754 inst->predicate = BRW_PREDICATE_NORMAL;
3755 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3756
3757 progress = true;
3758 }
3759 }
3760
3761 if (progress)
3762 invalidate_live_intervals();
3763
3764 return progress;
3765 }
3766
3767 static void
3768 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3769 fs_reg *dst, fs_reg color, unsigned components)
3770 {
3771 if (key->clamp_fragment_color) {
3772 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3773 assert(color.type == BRW_REGISTER_TYPE_F);
3774
3775 for (unsigned i = 0; i < components; i++)
3776 set_saturate(true,
3777 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3778
3779 color = tmp;
3780 }
3781
3782 for (unsigned i = 0; i < components; i++)
3783 dst[i] = offset(color, bld, i);
3784 }
3785
3786 static void
3787 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3788 const struct brw_wm_prog_data *prog_data,
3789 const brw_wm_prog_key *key,
3790 const fs_visitor::thread_payload &payload)
3791 {
3792 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3793 const gen_device_info *devinfo = bld.shader->devinfo;
3794 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3795 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3796 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3797 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3798 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3799 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3800 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3801 const unsigned components =
3802 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3803
3804 /* We can potentially have a message length of up to 15, so we have to set
3805 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3806 */
3807 fs_reg sources[15];
3808 int header_size = 2, payload_header_size;
3809 unsigned length = 0;
3810
3811 /* From the Sandy Bridge PRM, volume 4, page 198:
3812 *
3813 * "Dispatched Pixel Enables. One bit per pixel indicating
3814 * which pixels were originally enabled when the thread was
3815 * dispatched. This field is only required for the end-of-
3816 * thread message and on all dual-source messages."
3817 */
3818 if (devinfo->gen >= 6 &&
3819 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3820 color1.file == BAD_FILE &&
3821 key->nr_color_regions == 1) {
3822 header_size = 0;
3823 }
3824
3825 if (header_size != 0) {
3826 assert(header_size == 2);
3827 /* Allocate 2 registers for a header */
3828 length += 2;
3829 }
3830
3831 if (payload.aa_dest_stencil_reg) {
3832 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3833 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3834 .MOV(sources[length],
3835 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3836 length++;
3837 }
3838
3839 if (sample_mask.file != BAD_FILE) {
3840 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3841 BRW_REGISTER_TYPE_UD);
3842
3843 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3844 * relevant. Since it's unsigned single words one vgrf is always
3845 * 16-wide, but only the lower or higher 8 channels will be used by the
3846 * hardware when doing a SIMD8 write depending on whether we have
3847 * selected the subspans for the first or second half respectively.
3848 */
3849 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3850 sample_mask.type = BRW_REGISTER_TYPE_UW;
3851 sample_mask.stride *= 2;
3852
3853 bld.exec_all().annotate("FB write oMask")
3854 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3855 inst->group),
3856 sample_mask);
3857 length++;
3858 }
3859
3860 payload_header_size = length;
3861
3862 if (src0_alpha.file != BAD_FILE) {
3863 /* FIXME: This is being passed at the wrong location in the payload and
3864 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3865 * It's supposed to be immediately before oMask but there seems to be no
3866 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3867 * requires header sources to form a contiguous segment at the beginning
3868 * of the message and src0_alpha has per-channel semantics.
3869 */
3870 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3871 length++;
3872 } else if (key->replicate_alpha && inst->target != 0) {
3873 /* Handle the case when fragment shader doesn't write to draw buffer
3874 * zero. No need to call setup_color_payload() for src0_alpha because
3875 * alpha value will be undefined.
3876 */
3877 length++;
3878 }
3879
3880 setup_color_payload(bld, key, &sources[length], color0, components);
3881 length += 4;
3882
3883 if (color1.file != BAD_FILE) {
3884 setup_color_payload(bld, key, &sources[length], color1, components);
3885 length += 4;
3886 }
3887
3888 if (src_depth.file != BAD_FILE) {
3889 sources[length] = src_depth;
3890 length++;
3891 }
3892
3893 if (dst_depth.file != BAD_FILE) {
3894 sources[length] = dst_depth;
3895 length++;
3896 }
3897
3898 if (src_stencil.file != BAD_FILE) {
3899 assert(devinfo->gen >= 9);
3900 assert(bld.dispatch_width() != 16);
3901
3902 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3903 * available on gen9+. As such it's impossible to have both enabled at the
3904 * same time and therefore length cannot overrun the array.
3905 */
3906 assert(length < 15);
3907
3908 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3909 bld.exec_all().annotate("FB write OS")
3910 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3911 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3912 length++;
3913 }
3914
3915 fs_inst *load;
3916 if (devinfo->gen >= 7) {
3917 /* Send from the GRF */
3918 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3919 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3920 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3921 load->dst = payload;
3922
3923 inst->src[0] = payload;
3924 inst->resize_sources(1);
3925 } else {
3926 /* Send from the MRF */
3927 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3928 sources, length, payload_header_size);
3929
3930 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3931 * will do this for us if we just give it a COMPR4 destination.
3932 */
3933 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3934 load->dst.nr |= BRW_MRF_COMPR4;
3935
3936 inst->resize_sources(0);
3937 inst->base_mrf = 1;
3938 }
3939
3940 inst->opcode = FS_OPCODE_FB_WRITE;
3941 inst->mlen = regs_written(load);
3942 inst->header_size = header_size;
3943 }
3944
3945 static void
3946 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3947 {
3948 const fs_builder &ubld = bld.exec_all();
3949 const unsigned length = 2;
3950 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3951
3952 ubld.group(16, 0)
3953 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3954
3955 inst->resize_sources(1);
3956 inst->src[0] = header;
3957 inst->opcode = FS_OPCODE_FB_READ;
3958 inst->mlen = length;
3959 inst->header_size = length;
3960 }
3961
3962 static void
3963 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3964 const fs_reg &coordinate,
3965 const fs_reg &shadow_c,
3966 const fs_reg &lod, const fs_reg &lod2,
3967 const fs_reg &surface,
3968 const fs_reg &sampler,
3969 unsigned coord_components,
3970 unsigned grad_components)
3971 {
3972 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3973 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3974 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3975 fs_reg msg_end = msg_begin;
3976
3977 /* g0 header. */
3978 msg_end = offset(msg_end, bld.group(8, 0), 1);
3979
3980 for (unsigned i = 0; i < coord_components; i++)
3981 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3982 offset(coordinate, bld, i));
3983
3984 msg_end = offset(msg_end, bld, coord_components);
3985
3986 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3987 * require all three components to be present and zero if they are unused.
3988 */
3989 if (coord_components > 0 &&
3990 (has_lod || shadow_c.file != BAD_FILE ||
3991 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3992 for (unsigned i = coord_components; i < 3; i++)
3993 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3994
3995 msg_end = offset(msg_end, bld, 3 - coord_components);
3996 }
3997
3998 if (op == SHADER_OPCODE_TXD) {
3999 /* TXD unsupported in SIMD16 mode. */
4000 assert(bld.dispatch_width() == 8);
4001
4002 /* the slots for u and v are always present, but r is optional */
4003 if (coord_components < 2)
4004 msg_end = offset(msg_end, bld, 2 - coord_components);
4005
4006 /* P = u, v, r
4007 * dPdx = dudx, dvdx, drdx
4008 * dPdy = dudy, dvdy, drdy
4009 *
4010 * 1-arg: Does not exist.
4011 *
4012 * 2-arg: dudx dvdx dudy dvdy
4013 * dPdx.x dPdx.y dPdy.x dPdy.y
4014 * m4 m5 m6 m7
4015 *
4016 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4017 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4018 * m5 m6 m7 m8 m9 m10
4019 */
4020 for (unsigned i = 0; i < grad_components; i++)
4021 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4022
4023 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4024
4025 for (unsigned i = 0; i < grad_components; i++)
4026 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4027
4028 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4029 }
4030
4031 if (has_lod) {
4032 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4033 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4034 */
4035 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4036 bld.dispatch_width() == 16);
4037
4038 const brw_reg_type type =
4039 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4040 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4041 bld.MOV(retype(msg_end, type), lod);
4042 msg_end = offset(msg_end, bld, 1);
4043 }
4044
4045 if (shadow_c.file != BAD_FILE) {
4046 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4047 /* There's no plain shadow compare message, so we use shadow
4048 * compare with a bias of 0.0.
4049 */
4050 bld.MOV(msg_end, brw_imm_f(0.0f));
4051 msg_end = offset(msg_end, bld, 1);
4052 }
4053
4054 bld.MOV(msg_end, shadow_c);
4055 msg_end = offset(msg_end, bld, 1);
4056 }
4057
4058 inst->opcode = op;
4059 inst->src[0] = reg_undef;
4060 inst->src[1] = surface;
4061 inst->src[2] = sampler;
4062 inst->resize_sources(3);
4063 inst->base_mrf = msg_begin.nr;
4064 inst->mlen = msg_end.nr - msg_begin.nr;
4065 inst->header_size = 1;
4066 }
4067
4068 static void
4069 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4070 const fs_reg &coordinate,
4071 const fs_reg &shadow_c,
4072 const fs_reg &lod, const fs_reg &lod2,
4073 const fs_reg &sample_index,
4074 const fs_reg &surface,
4075 const fs_reg &sampler,
4076 unsigned coord_components,
4077 unsigned grad_components)
4078 {
4079 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4080 fs_reg msg_coords = message;
4081 unsigned header_size = 0;
4082
4083 if (inst->offset != 0) {
4084 /* The offsets set up by the visitor are in the m1 header, so we can't
4085 * go headerless.
4086 */
4087 header_size = 1;
4088 message.nr--;
4089 }
4090
4091 for (unsigned i = 0; i < coord_components; i++)
4092 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4093 offset(coordinate, bld, i));
4094
4095 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4096 fs_reg msg_lod = offset(msg_coords, bld, 4);
4097
4098 if (shadow_c.file != BAD_FILE) {
4099 fs_reg msg_shadow = msg_lod;
4100 bld.MOV(msg_shadow, shadow_c);
4101 msg_lod = offset(msg_shadow, bld, 1);
4102 msg_end = msg_lod;
4103 }
4104
4105 switch (op) {
4106 case SHADER_OPCODE_TXL:
4107 case FS_OPCODE_TXB:
4108 bld.MOV(msg_lod, lod);
4109 msg_end = offset(msg_lod, bld, 1);
4110 break;
4111 case SHADER_OPCODE_TXD:
4112 /**
4113 * P = u, v, r
4114 * dPdx = dudx, dvdx, drdx
4115 * dPdy = dudy, dvdy, drdy
4116 *
4117 * Load up these values:
4118 * - dudx dudy dvdx dvdy drdx drdy
4119 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4120 */
4121 msg_end = msg_lod;
4122 for (unsigned i = 0; i < grad_components; i++) {
4123 bld.MOV(msg_end, offset(lod, bld, i));
4124 msg_end = offset(msg_end, bld, 1);
4125
4126 bld.MOV(msg_end, offset(lod2, bld, i));
4127 msg_end = offset(msg_end, bld, 1);
4128 }
4129 break;
4130 case SHADER_OPCODE_TXS:
4131 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4132 bld.MOV(msg_lod, lod);
4133 msg_end = offset(msg_lod, bld, 1);
4134 break;
4135 case SHADER_OPCODE_TXF:
4136 msg_lod = offset(msg_coords, bld, 3);
4137 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4138 msg_end = offset(msg_lod, bld, 1);
4139 break;
4140 case SHADER_OPCODE_TXF_CMS:
4141 msg_lod = offset(msg_coords, bld, 3);
4142 /* lod */
4143 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4144 /* sample index */
4145 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4146 msg_end = offset(msg_lod, bld, 2);
4147 break;
4148 default:
4149 break;
4150 }
4151
4152 inst->opcode = op;
4153 inst->src[0] = reg_undef;
4154 inst->src[1] = surface;
4155 inst->src[2] = sampler;
4156 inst->resize_sources(3);
4157 inst->base_mrf = message.nr;
4158 inst->mlen = msg_end.nr - message.nr;
4159 inst->header_size = header_size;
4160
4161 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4162 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4163 }
4164
4165 static bool
4166 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4167 {
4168 if (devinfo->gen < 8 && !devinfo->is_haswell)
4169 return false;
4170
4171 return sampler.file != IMM || sampler.ud >= 16;
4172 }
4173
4174 static void
4175 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4176 const fs_reg &coordinate,
4177 const fs_reg &shadow_c,
4178 fs_reg lod, const fs_reg &lod2,
4179 const fs_reg &sample_index,
4180 const fs_reg &mcs,
4181 const fs_reg &surface,
4182 const fs_reg &sampler,
4183 const fs_reg &tg4_offset,
4184 unsigned coord_components,
4185 unsigned grad_components)
4186 {
4187 const gen_device_info *devinfo = bld.shader->devinfo;
4188 unsigned reg_width = bld.dispatch_width() / 8;
4189 unsigned header_size = 0, length = 0;
4190 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4191 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4192 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4193
4194 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4195 inst->offset != 0 || inst->eot ||
4196 op == SHADER_OPCODE_SAMPLEINFO ||
4197 is_high_sampler(devinfo, sampler)) {
4198 /* For general texture offsets (no txf workaround), we need a header to
4199 * put them in. Note that we're only reserving space for it in the
4200 * message payload as it will be initialized implicitly by the
4201 * generator.
4202 *
4203 * TG4 needs to place its channel select in the header, for interaction
4204 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4205 * larger sampler numbers we need to offset the Sampler State Pointer in
4206 * the header.
4207 */
4208 header_size = 1;
4209 sources[0] = fs_reg();
4210 length++;
4211
4212 /* If we're requesting fewer than four channels worth of response,
4213 * and we have an explicit header, we need to set up the sampler
4214 * writemask. It's reversed from normal: 1 means "don't write".
4215 */
4216 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4217 assert(regs_written(inst) % reg_width == 0);
4218 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4219 inst->offset |= mask << 12;
4220 }
4221 }
4222
4223 if (shadow_c.file != BAD_FILE) {
4224 bld.MOV(sources[length], shadow_c);
4225 length++;
4226 }
4227
4228 bool coordinate_done = false;
4229
4230 /* Set up the LOD info */
4231 switch (op) {
4232 case FS_OPCODE_TXB:
4233 case SHADER_OPCODE_TXL:
4234 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4235 op = SHADER_OPCODE_TXL_LZ;
4236 break;
4237 }
4238 bld.MOV(sources[length], lod);
4239 length++;
4240 break;
4241 case SHADER_OPCODE_TXD:
4242 /* TXD should have been lowered in SIMD16 mode. */
4243 assert(bld.dispatch_width() == 8);
4244
4245 /* Load dPdx and the coordinate together:
4246 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4247 */
4248 for (unsigned i = 0; i < coord_components; i++) {
4249 bld.MOV(sources[length++], offset(coordinate, bld, i));
4250
4251 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4252 * only derivatives for (u, v, r).
4253 */
4254 if (i < grad_components) {
4255 bld.MOV(sources[length++], offset(lod, bld, i));
4256 bld.MOV(sources[length++], offset(lod2, bld, i));
4257 }
4258 }
4259
4260 coordinate_done = true;
4261 break;
4262 case SHADER_OPCODE_TXS:
4263 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4264 length++;
4265 break;
4266 case SHADER_OPCODE_TXF:
4267 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4268 * On Gen9 they are u, v, lod, r
4269 */
4270 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4271
4272 if (devinfo->gen >= 9) {
4273 if (coord_components >= 2) {
4274 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4275 offset(coordinate, bld, 1));
4276 } else {
4277 sources[length] = brw_imm_d(0);
4278 }
4279 length++;
4280 }
4281
4282 if (devinfo->gen >= 9 && lod.is_zero()) {
4283 op = SHADER_OPCODE_TXF_LZ;
4284 } else {
4285 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4286 length++;
4287 }
4288
4289 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4290 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4291 offset(coordinate, bld, i));
4292
4293 coordinate_done = true;
4294 break;
4295
4296 case SHADER_OPCODE_TXF_CMS:
4297 case SHADER_OPCODE_TXF_CMS_W:
4298 case SHADER_OPCODE_TXF_UMS:
4299 case SHADER_OPCODE_TXF_MCS:
4300 if (op == SHADER_OPCODE_TXF_UMS ||
4301 op == SHADER_OPCODE_TXF_CMS ||
4302 op == SHADER_OPCODE_TXF_CMS_W) {
4303 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4304 length++;
4305 }
4306
4307 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4308 /* Data from the multisample control surface. */
4309 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4310 length++;
4311
4312 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4313 * the MCS data.
4314 */
4315 if (op == SHADER_OPCODE_TXF_CMS_W) {
4316 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4317 mcs.file == IMM ?
4318 mcs :
4319 offset(mcs, bld, 1));
4320 length++;
4321 }
4322 }
4323
4324 /* There is no offsetting for this message; just copy in the integer
4325 * texture coordinates.
4326 */
4327 for (unsigned i = 0; i < coord_components; i++)
4328 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4329 offset(coordinate, bld, i));
4330
4331 coordinate_done = true;
4332 break;
4333 case SHADER_OPCODE_TG4_OFFSET:
4334 /* More crazy intermixing */
4335 for (unsigned i = 0; i < 2; i++) /* u, v */
4336 bld.MOV(sources[length++], offset(coordinate, bld, i));
4337
4338 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4339 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4340 offset(tg4_offset, bld, i));
4341
4342 if (coord_components == 3) /* r if present */
4343 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4344
4345 coordinate_done = true;
4346 break;
4347 default:
4348 break;
4349 }
4350
4351 /* Set up the coordinate (except for cases where it was done above) */
4352 if (!coordinate_done) {
4353 for (unsigned i = 0; i < coord_components; i++)
4354 bld.MOV(sources[length++], offset(coordinate, bld, i));
4355 }
4356
4357 int mlen;
4358 if (reg_width == 2)
4359 mlen = length * reg_width - header_size;
4360 else
4361 mlen = length * reg_width;
4362
4363 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4364 BRW_REGISTER_TYPE_F);
4365 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4366
4367 /* Generate the SEND. */
4368 inst->opcode = op;
4369 inst->src[0] = src_payload;
4370 inst->src[1] = surface;
4371 inst->src[2] = sampler;
4372 inst->resize_sources(3);
4373 inst->mlen = mlen;
4374 inst->header_size = header_size;
4375
4376 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4377 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4378 }
4379
4380 static void
4381 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4382 {
4383 const gen_device_info *devinfo = bld.shader->devinfo;
4384 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4385 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4386 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4387 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4388 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4389 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4390 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4391 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4392 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4393 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4394 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4395 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4396 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4397
4398 if (devinfo->gen >= 7) {
4399 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4400 shadow_c, lod, lod2, sample_index,
4401 mcs, surface, sampler, tg4_offset,
4402 coord_components, grad_components);
4403 } else if (devinfo->gen >= 5) {
4404 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4405 shadow_c, lod, lod2, sample_index,
4406 surface, sampler,
4407 coord_components, grad_components);
4408 } else {
4409 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4410 shadow_c, lod, lod2,
4411 surface, sampler,
4412 coord_components, grad_components);
4413 }
4414 }
4415
4416 /**
4417 * Initialize the header present in some typed and untyped surface
4418 * messages.
4419 */
4420 static fs_reg
4421 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4422 {
4423 fs_builder ubld = bld.exec_all().group(8, 0);
4424 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4425 ubld.MOV(dst, brw_imm_d(0));
4426 ubld.group(1, 0).MOV(component(dst, 7), sample_mask);
4427 return dst;
4428 }
4429
4430 static void
4431 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4432 const fs_reg &sample_mask)
4433 {
4434 /* Get the logical send arguments. */
4435 const fs_reg &addr = inst->src[0];
4436 const fs_reg &src = inst->src[1];
4437 const fs_reg &surface = inst->src[2];
4438 const UNUSED fs_reg &dims = inst->src[3];
4439 const fs_reg &arg = inst->src[4];
4440
4441 /* Calculate the total number of components of the payload. */
4442 const unsigned addr_sz = inst->components_read(0);
4443 const unsigned src_sz = inst->components_read(1);
4444 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4445 const unsigned sz = header_sz + addr_sz + src_sz;
4446
4447 /* Allocate space for the payload. */
4448 fs_reg *const components = new fs_reg[sz];
4449 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4450 unsigned n = 0;
4451
4452 /* Construct the payload. */
4453 if (header_sz)
4454 components[n++] = emit_surface_header(bld, sample_mask);
4455
4456 for (unsigned i = 0; i < addr_sz; i++)
4457 components[n++] = offset(addr, bld, i);
4458
4459 for (unsigned i = 0; i < src_sz; i++)
4460 components[n++] = offset(src, bld, i);
4461
4462 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4463
4464 /* Update the original instruction. */
4465 inst->opcode = op;
4466 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4467 inst->header_size = header_sz;
4468
4469 inst->src[0] = payload;
4470 inst->src[1] = surface;
4471 inst->src[2] = arg;
4472 inst->resize_sources(3);
4473
4474 delete[] components;
4475 }
4476
4477 static void
4478 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4479 {
4480 const gen_device_info *devinfo = bld.shader->devinfo;
4481
4482 if (devinfo->gen >= 7) {
4483 /* We are switching the instruction from an ALU-like instruction to a
4484 * send-from-grf instruction. Since sends can't handle strides or
4485 * source modifiers, we have to make a copy of the offset source.
4486 */
4487 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4488 bld.MOV(tmp, inst->src[1]);
4489 inst->src[1] = tmp;
4490
4491 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4492
4493 } else {
4494 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4495 BRW_REGISTER_TYPE_UD);
4496
4497 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4498
4499 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4500 inst->resize_sources(1);
4501 inst->base_mrf = payload.nr;
4502 inst->header_size = 1;
4503 inst->mlen = 1 + inst->exec_size / 8;
4504 }
4505 }
4506
4507 static void
4508 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4509 {
4510 assert(bld.shader->devinfo->gen < 6);
4511
4512 inst->base_mrf = 2;
4513 inst->mlen = inst->sources * inst->exec_size / 8;
4514
4515 if (inst->sources > 1) {
4516 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4517 * "Message Payload":
4518 *
4519 * "Operand0[7]. For the INT DIV functions, this operand is the
4520 * denominator."
4521 * ...
4522 * "Operand1[7]. For the INT DIV functions, this operand is the
4523 * numerator."
4524 */
4525 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4526 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4527 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4528
4529 inst->resize_sources(1);
4530 inst->src[0] = src0;
4531
4532 assert(inst->exec_size == 8);
4533 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4534 }
4535 }
4536
4537 bool
4538 fs_visitor::lower_logical_sends()
4539 {
4540 bool progress = false;
4541
4542 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4543 const fs_builder ibld(this, block, inst);
4544
4545 switch (inst->opcode) {
4546 case FS_OPCODE_FB_WRITE_LOGICAL:
4547 assert(stage == MESA_SHADER_FRAGMENT);
4548 lower_fb_write_logical_send(ibld, inst,
4549 brw_wm_prog_data(prog_data),
4550 (const brw_wm_prog_key *)key,
4551 payload);
4552 break;
4553
4554 case FS_OPCODE_FB_READ_LOGICAL:
4555 lower_fb_read_logical_send(ibld, inst);
4556 break;
4557
4558 case SHADER_OPCODE_TEX_LOGICAL:
4559 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4560 break;
4561
4562 case SHADER_OPCODE_TXD_LOGICAL:
4563 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4564 break;
4565
4566 case SHADER_OPCODE_TXF_LOGICAL:
4567 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4568 break;
4569
4570 case SHADER_OPCODE_TXL_LOGICAL:
4571 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4572 break;
4573
4574 case SHADER_OPCODE_TXS_LOGICAL:
4575 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4576 break;
4577
4578 case FS_OPCODE_TXB_LOGICAL:
4579 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4580 break;
4581
4582 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4583 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4584 break;
4585
4586 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4587 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4588 break;
4589
4590 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4591 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4592 break;
4593
4594 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4595 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4596 break;
4597
4598 case SHADER_OPCODE_LOD_LOGICAL:
4599 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4600 break;
4601
4602 case SHADER_OPCODE_TG4_LOGICAL:
4603 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4604 break;
4605
4606 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4607 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4608 break;
4609
4610 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4611 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4612 break;
4613
4614 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4615 lower_surface_logical_send(ibld, inst,
4616 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4617 fs_reg());
4618 break;
4619
4620 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4621 lower_surface_logical_send(ibld, inst,
4622 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4623 ibld.sample_mask_reg());
4624 break;
4625
4626 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
4627 lower_surface_logical_send(ibld, inst,
4628 SHADER_OPCODE_BYTE_SCATTERED_READ,
4629 fs_reg());
4630 break;
4631
4632 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
4633 lower_surface_logical_send(ibld, inst,
4634 SHADER_OPCODE_BYTE_SCATTERED_WRITE,
4635 ibld.sample_mask_reg());
4636 break;
4637
4638 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4639 lower_surface_logical_send(ibld, inst,
4640 SHADER_OPCODE_UNTYPED_ATOMIC,
4641 ibld.sample_mask_reg());
4642 break;
4643
4644 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4645 lower_surface_logical_send(ibld, inst,
4646 SHADER_OPCODE_TYPED_SURFACE_READ,
4647 brw_imm_d(0xffff));
4648 break;
4649
4650 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4651 lower_surface_logical_send(ibld, inst,
4652 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4653 ibld.sample_mask_reg());
4654 break;
4655
4656 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4657 lower_surface_logical_send(ibld, inst,
4658 SHADER_OPCODE_TYPED_ATOMIC,
4659 ibld.sample_mask_reg());
4660 break;
4661
4662 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4663 lower_varying_pull_constant_logical_send(ibld, inst);
4664 break;
4665
4666 case SHADER_OPCODE_RCP:
4667 case SHADER_OPCODE_RSQ:
4668 case SHADER_OPCODE_SQRT:
4669 case SHADER_OPCODE_EXP2:
4670 case SHADER_OPCODE_LOG2:
4671 case SHADER_OPCODE_SIN:
4672 case SHADER_OPCODE_COS:
4673 case SHADER_OPCODE_POW:
4674 case SHADER_OPCODE_INT_QUOTIENT:
4675 case SHADER_OPCODE_INT_REMAINDER:
4676 /* The math opcodes are overloaded for the send-like and
4677 * expression-like instructions which seems kind of icky. Gen6+ has
4678 * a native (but rather quirky) MATH instruction so we don't need to
4679 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4680 * logical instructions (which we can easily recognize because they
4681 * have mlen = 0) into send-like virtual instructions.
4682 */
4683 if (devinfo->gen < 6 && inst->mlen == 0) {
4684 lower_math_logical_send(ibld, inst);
4685 break;
4686
4687 } else {
4688 continue;
4689 }
4690
4691 default:
4692 continue;
4693 }
4694
4695 progress = true;
4696 }
4697
4698 if (progress)
4699 invalidate_live_intervals();
4700
4701 return progress;
4702 }
4703
4704 /**
4705 * Get the closest allowed SIMD width for instruction \p inst accounting for
4706 * some common regioning and execution control restrictions that apply to FPU
4707 * instructions. These restrictions don't necessarily have any relevance to
4708 * instructions not executed by the FPU pipeline like extended math, control
4709 * flow or send message instructions.
4710 *
4711 * For virtual opcodes it's really up to the instruction -- In some cases
4712 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4713 * instructions) it may simplify virtual instruction lowering if we can
4714 * enforce FPU-like regioning restrictions already on the virtual instruction,
4715 * in other cases (e.g. virtual send-like instructions) this may be
4716 * excessively restrictive.
4717 */
4718 static unsigned
4719 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4720 const fs_inst *inst)
4721 {
4722 /* Maximum execution size representable in the instruction controls. */
4723 unsigned max_width = MIN2(32, inst->exec_size);
4724
4725 /* According to the PRMs:
4726 * "A. In Direct Addressing mode, a source cannot span more than 2
4727 * adjacent GRF registers.
4728 * B. A destination cannot span more than 2 adjacent GRF registers."
4729 *
4730 * Look for the source or destination with the largest register region
4731 * which is the one that is going to limit the overall execution size of
4732 * the instruction due to this rule.
4733 */
4734 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4735
4736 for (unsigned i = 0; i < inst->sources; i++)
4737 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4738
4739 /* Calculate the maximum execution size of the instruction based on the
4740 * factor by which it goes over the hardware limit of 2 GRFs.
4741 */
4742 if (reg_count > 2)
4743 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4744
4745 /* According to the IVB PRMs:
4746 * "When destination spans two registers, the source MUST span two
4747 * registers. The exception to the above rule:
4748 *
4749 * - When source is scalar, the source registers are not incremented.
4750 * - When source is packed integer Word and destination is packed
4751 * integer DWord, the source register is not incremented but the
4752 * source sub register is incremented."
4753 *
4754 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4755 * restrictions. The code below intentionally doesn't check whether the
4756 * destination type is integer because empirically the hardware doesn't
4757 * seem to care what the actual type is as long as it's dword-aligned.
4758 */
4759 if (devinfo->gen < 8) {
4760 for (unsigned i = 0; i < inst->sources; i++) {
4761 /* IVB implements DF scalars as <0;2,1> regions. */
4762 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4763 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4764 const bool is_packed_word_exception =
4765 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4766 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4767
4768 if (inst->size_written > REG_SIZE &&
4769 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4770 !is_scalar_exception && !is_packed_word_exception) {
4771 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4772 max_width = MIN2(max_width, inst->exec_size / reg_count);
4773 }
4774 }
4775 }
4776
4777 /* From the IVB PRMs:
4778 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4779 * are applied for both halves of the SIMD32 instruction. If different
4780 * execution mask channels are required, split the instruction into two
4781 * SIMD16 instructions."
4782 *
4783 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4784 * 32-wide control flow support in hardware and will behave similarly.
4785 */
4786 if (devinfo->gen < 8 && !inst->force_writemask_all)
4787 max_width = MIN2(max_width, 16);
4788
4789 /* From the IVB PRMs (applies to HSW too):
4790 * "Instructions with condition modifiers must not use SIMD32."
4791 *
4792 * From the BDW PRMs (applies to later hardware too):
4793 * "Ternary instruction with condition modifiers must not use SIMD32."
4794 */
4795 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4796 max_width = MIN2(max_width, 16);
4797
4798 /* From the IVB PRMs (applies to other devices that don't have the
4799 * gen_device_info::supports_simd16_3src flag set):
4800 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4801 * SIMD8 is not allowed for DF operations."
4802 */
4803 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4804 max_width = MIN2(max_width, inst->exec_size / reg_count);
4805
4806 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4807 * the 8-bit quarter of the execution mask signals specified in the
4808 * instruction control fields) for the second compressed half of any
4809 * single-precision instruction (for double-precision instructions
4810 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4811 * the EU will apply the wrong execution controls for the second
4812 * sequential GRF write if the number of channels per GRF is not exactly
4813 * eight in single-precision mode (or four in double-float mode).
4814 *
4815 * In this situation we calculate the maximum size of the split
4816 * instructions so they only ever write to a single register.
4817 */
4818 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4819 !inst->force_writemask_all) {
4820 const unsigned channels_per_grf = inst->exec_size /
4821 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4822 const unsigned exec_type_size = get_exec_type_size(inst);
4823 assert(exec_type_size);
4824
4825 /* The hardware shifts exactly 8 channels per compressed half of the
4826 * instruction in single-precision mode and exactly 4 in double-precision.
4827 */
4828 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4829 max_width = MIN2(max_width, channels_per_grf);
4830
4831 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4832 * because HW applies the same channel enable signals to both halves of
4833 * the compressed instruction which will be just wrong under
4834 * non-uniform control flow.
4835 */
4836 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4837 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4838 max_width = MIN2(max_width, 4);
4839 }
4840
4841 /* Only power-of-two execution sizes are representable in the instruction
4842 * control fields.
4843 */
4844 return 1 << _mesa_logbase2(max_width);
4845 }
4846
4847 /**
4848 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4849 * various payload size restrictions that apply to sampler message
4850 * instructions.
4851 *
4852 * This is only intended to provide a maximum theoretical bound for the
4853 * execution size of the message based on the number of argument components
4854 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4855 * variant of the message can be used, though some messages may have
4856 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4857 * the message length to determine the exact SIMD width and argument count,
4858 * which makes a number of sampler message combinations impossible to
4859 * represent).
4860 */
4861 static unsigned
4862 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4863 const fs_inst *inst)
4864 {
4865 /* Calculate the number of coordinate components that have to be present
4866 * assuming that additional arguments follow the texel coordinates in the
4867 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4868 * need to pad to four or three components depending on the message,
4869 * pre-ILK we need to pad to at most three components.
4870 */
4871 const unsigned req_coord_components =
4872 (devinfo->gen >= 7 ||
4873 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4874 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4875 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4876 3;
4877
4878 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4879 * variant of the TXL or TXF message.
4880 */
4881 const bool implicit_lod = devinfo->gen >= 9 &&
4882 (inst->opcode == SHADER_OPCODE_TXL ||
4883 inst->opcode == SHADER_OPCODE_TXF) &&
4884 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4885
4886 /* Calculate the total number of argument components that need to be passed
4887 * to the sampler unit.
4888 */
4889 const unsigned num_payload_components =
4890 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4891 req_coord_components) +
4892 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4893 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4894 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4895 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4896 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4897 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4898 inst->components_read(TEX_LOGICAL_SRC_MCS);
4899
4900 /* SIMD16 messages with more than five arguments exceed the maximum message
4901 * size supported by the sampler, regardless of whether a header is
4902 * provided or not.
4903 */
4904 return MIN2(inst->exec_size,
4905 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4906 }
4907
4908 /**
4909 * Get the closest native SIMD width supported by the hardware for instruction
4910 * \p inst. The instruction will be left untouched by
4911 * fs_visitor::lower_simd_width() if the returned value is equal to the
4912 * original execution size.
4913 */
4914 static unsigned
4915 get_lowered_simd_width(const struct gen_device_info *devinfo,
4916 const fs_inst *inst)
4917 {
4918 switch (inst->opcode) {
4919 case BRW_OPCODE_MOV:
4920 case BRW_OPCODE_SEL:
4921 case BRW_OPCODE_NOT:
4922 case BRW_OPCODE_AND:
4923 case BRW_OPCODE_OR:
4924 case BRW_OPCODE_XOR:
4925 case BRW_OPCODE_SHR:
4926 case BRW_OPCODE_SHL:
4927 case BRW_OPCODE_ASR:
4928 case BRW_OPCODE_CMPN:
4929 case BRW_OPCODE_CSEL:
4930 case BRW_OPCODE_F32TO16:
4931 case BRW_OPCODE_F16TO32:
4932 case BRW_OPCODE_BFREV:
4933 case BRW_OPCODE_BFE:
4934 case BRW_OPCODE_ADD:
4935 case BRW_OPCODE_MUL:
4936 case BRW_OPCODE_AVG:
4937 case BRW_OPCODE_FRC:
4938 case BRW_OPCODE_RNDU:
4939 case BRW_OPCODE_RNDD:
4940 case BRW_OPCODE_RNDE:
4941 case BRW_OPCODE_RNDZ:
4942 case BRW_OPCODE_LZD:
4943 case BRW_OPCODE_FBH:
4944 case BRW_OPCODE_FBL:
4945 case BRW_OPCODE_CBIT:
4946 case BRW_OPCODE_SAD2:
4947 case BRW_OPCODE_MAD:
4948 case BRW_OPCODE_LRP:
4949 case FS_OPCODE_PACK:
4950 return get_fpu_lowered_simd_width(devinfo, inst);
4951
4952 case BRW_OPCODE_CMP: {
4953 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4954 * when the destination is a GRF the dependency-clear bit on the flag
4955 * register is cleared early.
4956 *
4957 * Suggested workarounds are to disable coissuing CMP instructions
4958 * or to split CMP(16) instructions into two CMP(8) instructions.
4959 *
4960 * We choose to split into CMP(8) instructions since disabling
4961 * coissuing would affect CMP instructions not otherwise affected by
4962 * the errata.
4963 */
4964 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4965 !inst->dst.is_null() ? 8 : ~0);
4966 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4967 }
4968 case BRW_OPCODE_BFI1:
4969 case BRW_OPCODE_BFI2:
4970 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4971 * should
4972 * "Force BFI instructions to be executed always in SIMD8."
4973 */
4974 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4975 get_fpu_lowered_simd_width(devinfo, inst));
4976
4977 case BRW_OPCODE_IF:
4978 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4979 return inst->exec_size;
4980
4981 case SHADER_OPCODE_RCP:
4982 case SHADER_OPCODE_RSQ:
4983 case SHADER_OPCODE_SQRT:
4984 case SHADER_OPCODE_EXP2:
4985 case SHADER_OPCODE_LOG2:
4986 case SHADER_OPCODE_SIN:
4987 case SHADER_OPCODE_COS:
4988 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4989 * Gen6.
4990 */
4991 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4992 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4993 MIN2(8, inst->exec_size));
4994
4995 case SHADER_OPCODE_POW:
4996 /* SIMD16 is only allowed on Gen7+. */
4997 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4998 MIN2(8, inst->exec_size));
4999
5000 case SHADER_OPCODE_INT_QUOTIENT:
5001 case SHADER_OPCODE_INT_REMAINDER:
5002 /* Integer division is limited to SIMD8 on all generations. */
5003 return MIN2(8, inst->exec_size);
5004
5005 case FS_OPCODE_LINTERP:
5006 case SHADER_OPCODE_GET_BUFFER_SIZE:
5007 case FS_OPCODE_DDX_COARSE:
5008 case FS_OPCODE_DDX_FINE:
5009 case FS_OPCODE_DDY_COARSE:
5010 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
5011 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
5012 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
5013 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
5014 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
5015 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
5016 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
5017 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
5018 return MIN2(16, inst->exec_size);
5019
5020 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5021 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
5022 * message used to implement varying pull constant loads, so expand it
5023 * to SIMD16. An alternative with longer message payload length but
5024 * shorter return payload would be to use the SIMD8 sampler message that
5025 * takes (header, u, v, r) as parameters instead of (header, u).
5026 */
5027 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
5028
5029 case FS_OPCODE_DDY_FINE:
5030 /* The implementation of this virtual opcode may require emitting
5031 * compressed Align16 instructions, which are severely limited on some
5032 * generations.
5033 *
5034 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
5035 * Region Restrictions):
5036 *
5037 * "In Align16 access mode, SIMD16 is not allowed for DW operations
5038 * and SIMD8 is not allowed for DF operations."
5039 *
5040 * In this context, "DW operations" means "operations acting on 32-bit
5041 * values", so it includes operations on floats.
5042 *
5043 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
5044 * (Instruction Compression -> Rules and Restrictions):
5045 *
5046 * "A compressed instruction must be in Align1 access mode. Align16
5047 * mode instructions cannot be compressed."
5048 *
5049 * Similar text exists in the g45 PRM.
5050 *
5051 * Empirically, compressed align16 instructions using odd register
5052 * numbers don't appear to work on Sandybridge either.
5053 */
5054 return (devinfo->gen == 4 || devinfo->gen == 6 ||
5055 (devinfo->gen == 7 && !devinfo->is_haswell) ?
5056 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
5057
5058 case SHADER_OPCODE_MULH:
5059 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
5060 * is 8-wide on Gen7+.
5061 */
5062 return (devinfo->gen >= 7 ? 8 :
5063 get_fpu_lowered_simd_width(devinfo, inst));
5064
5065 case FS_OPCODE_FB_WRITE_LOGICAL:
5066 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
5067 * here.
5068 */
5069 assert(devinfo->gen != 6 ||
5070 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
5071 inst->exec_size == 8);
5072 /* Dual-source FB writes are unsupported in SIMD16 mode. */
5073 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
5074 8 : MIN2(16, inst->exec_size));
5075
5076 case FS_OPCODE_FB_READ_LOGICAL:
5077 return MIN2(16, inst->exec_size);
5078
5079 case SHADER_OPCODE_TEX_LOGICAL:
5080 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5081 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5082 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5083 case SHADER_OPCODE_LOD_LOGICAL:
5084 case SHADER_OPCODE_TG4_LOGICAL:
5085 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5086 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5087 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5088 return get_sampler_lowered_simd_width(devinfo, inst);
5089
5090 case SHADER_OPCODE_TXD_LOGICAL:
5091 /* TXD is unsupported in SIMD16 mode. */
5092 return 8;
5093
5094 case SHADER_OPCODE_TXL_LOGICAL:
5095 case FS_OPCODE_TXB_LOGICAL:
5096 /* Only one execution size is representable pre-ILK depending on whether
5097 * the shadow reference argument is present.
5098 */
5099 if (devinfo->gen == 4)
5100 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
5101 else
5102 return get_sampler_lowered_simd_width(devinfo, inst);
5103
5104 case SHADER_OPCODE_TXF_LOGICAL:
5105 case SHADER_OPCODE_TXS_LOGICAL:
5106 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
5107 * messages. Use SIMD16 instead.
5108 */
5109 if (devinfo->gen == 4)
5110 return 16;
5111 else
5112 return get_sampler_lowered_simd_width(devinfo, inst);
5113
5114 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5115 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5116 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5117 return 8;
5118
5119 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5120 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5121 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5122 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5123 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5124 return MIN2(16, inst->exec_size);
5125
5126 case SHADER_OPCODE_URB_READ_SIMD8:
5127 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
5128 case SHADER_OPCODE_URB_WRITE_SIMD8:
5129 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
5130 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
5131 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
5132 return MIN2(8, inst->exec_size);
5133
5134 case SHADER_OPCODE_MOV_INDIRECT: {
5135 /* From IVB and HSW PRMs:
5136 *
5137 * "2.When the destination requires two registers and the sources are
5138 * indirect, the sources must use 1x1 regioning mode.
5139 *
5140 * In case of DF instructions in HSW/IVB, the exec_size is limited by
5141 * the EU decompression logic not handling VxH indirect addressing
5142 * correctly.
5143 */
5144 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
5145 /* Prior to Broadwell, we only have 8 address subregisters. */
5146 return MIN3(devinfo->gen >= 8 ? 16 : 8,
5147 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
5148 inst->exec_size);
5149 }
5150
5151 case SHADER_OPCODE_LOAD_PAYLOAD: {
5152 const unsigned reg_count =
5153 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
5154
5155 if (reg_count > 2) {
5156 /* Only LOAD_PAYLOAD instructions with per-channel destination region
5157 * can be easily lowered (which excludes headers and heterogeneous
5158 * types).
5159 */
5160 assert(!inst->header_size);
5161 for (unsigned i = 0; i < inst->sources; i++)
5162 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
5163 inst->src[i].file == BAD_FILE);
5164
5165 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
5166 } else {
5167 return inst->exec_size;
5168 }
5169 }
5170 default:
5171 return inst->exec_size;
5172 }
5173 }
5174
5175 /**
5176 * Return true if splitting out the group of channels of instruction \p inst
5177 * given by lbld.group() requires allocating a temporary for the i-th source
5178 * of the lowered instruction.
5179 */
5180 static inline bool
5181 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5182 {
5183 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5184 (inst->components_read(i) == 1 &&
5185 lbld.dispatch_width() <= inst->exec_size)) ||
5186 (inst->flags_written() &
5187 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
5188 }
5189
5190 /**
5191 * Extract the data that would be consumed by the channel group given by
5192 * lbld.group() from the i-th source region of instruction \p inst and return
5193 * it as result in packed form.
5194 */
5195 static fs_reg
5196 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
5197 {
5198 /* Specified channel group from the source region. */
5199 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5200
5201 if (needs_src_copy(lbld, inst, i)) {
5202 /* Builder of the right width to perform the copy avoiding uninitialized
5203 * data if the lowered execution size is greater than the original
5204 * execution size of the instruction.
5205 */
5206 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5207 inst->exec_size), 0);
5208 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5209
5210 for (unsigned k = 0; k < inst->components_read(i); ++k)
5211 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5212
5213 return tmp;
5214
5215 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5216 /* The source is invariant for all dispatch_width-wide groups of the
5217 * original region.
5218 */
5219 return inst->src[i];
5220
5221 } else {
5222 /* We can just point the lowered instruction at the right channel group
5223 * from the original region.
5224 */
5225 return src;
5226 }
5227 }
5228
5229 /**
5230 * Return true if splitting out the group of channels of instruction \p inst
5231 * given by lbld.group() requires allocating a temporary for the destination
5232 * of the lowered instruction and copying the data back to the original
5233 * destination region.
5234 */
5235 static inline bool
5236 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5237 {
5238 /* If the instruction writes more than one component we'll have to shuffle
5239 * the results of multiple lowered instructions in order to make sure that
5240 * they end up arranged correctly in the original destination region.
5241 */
5242 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5243 return true;
5244
5245 /* If the lowered execution size is larger than the original the result of
5246 * the instruction won't fit in the original destination, so we'll have to
5247 * allocate a temporary in any case.
5248 */
5249 if (lbld.dispatch_width() > inst->exec_size)
5250 return true;
5251
5252 for (unsigned i = 0; i < inst->sources; i++) {
5253 /* If we already made a copy of the source for other reasons there won't
5254 * be any overlap with the destination.
5255 */
5256 if (needs_src_copy(lbld, inst, i))
5257 continue;
5258
5259 /* In order to keep the logic simple we emit a copy whenever the
5260 * destination region doesn't exactly match an overlapping source, which
5261 * may point at the source and destination not being aligned group by
5262 * group which could cause one of the lowered instructions to overwrite
5263 * the data read from the same source by other lowered instructions.
5264 */
5265 if (regions_overlap(inst->dst, inst->size_written,
5266 inst->src[i], inst->size_read(i)) &&
5267 !inst->dst.equals(inst->src[i]))
5268 return true;
5269 }
5270
5271 return false;
5272 }
5273
5274 /**
5275 * Insert data from a packed temporary into the channel group given by
5276 * lbld.group() of the destination region of instruction \p inst and return
5277 * the temporary as result. Any copy instructions that are required for
5278 * unzipping the previous value (in the case of partial writes) will be
5279 * inserted using \p lbld_before and any copy instructions required for
5280 * zipping up the destination of \p inst will be inserted using \p lbld_after.
5281 */
5282 static fs_reg
5283 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
5284 fs_inst *inst)
5285 {
5286 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
5287 assert(lbld_before.group() == lbld_after.group());
5288
5289 /* Specified channel group from the destination region. */
5290 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group());
5291 const unsigned dst_size = inst->size_written /
5292 inst->dst.component_size(inst->exec_size);
5293
5294 if (needs_dst_copy(lbld_after, inst)) {
5295 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
5296
5297 if (inst->predicate) {
5298 /* Handle predication by copying the original contents of
5299 * the destination into the temporary before emitting the
5300 * lowered instruction.
5301 */
5302 const fs_builder gbld_before =
5303 lbld_before.group(MIN2(lbld_before.dispatch_width(),
5304 inst->exec_size), 0);
5305 for (unsigned k = 0; k < dst_size; ++k) {
5306 gbld_before.MOV(offset(tmp, lbld_before, k),
5307 offset(dst, inst->exec_size, k));
5308 }
5309 }
5310
5311 const fs_builder gbld_after =
5312 lbld_after.group(MIN2(lbld_after.dispatch_width(),
5313 inst->exec_size), 0);
5314 for (unsigned k = 0; k < dst_size; ++k) {
5315 /* Use a builder of the right width to perform the copy avoiding
5316 * uninitialized data if the lowered execution size is greater than
5317 * the original execution size of the instruction.
5318 */
5319 gbld_after.MOV(offset(dst, inst->exec_size, k),
5320 offset(tmp, lbld_after, k));
5321 }
5322
5323 return tmp;
5324
5325 } else {
5326 /* No need to allocate a temporary for the lowered instruction, just
5327 * take the right group of channels from the original region.
5328 */
5329 return dst;
5330 }
5331 }
5332
5333 bool
5334 fs_visitor::lower_simd_width()
5335 {
5336 bool progress = false;
5337
5338 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5339 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5340
5341 if (lower_width != inst->exec_size) {
5342 /* Builder matching the original instruction. We may also need to
5343 * emit an instruction of width larger than the original, set the
5344 * execution size of the builder to the highest of both for now so
5345 * we're sure that both cases can be handled.
5346 */
5347 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5348 const fs_builder ibld = bld.at(block, inst)
5349 .exec_all(inst->force_writemask_all)
5350 .group(max_width, inst->group / max_width);
5351
5352 /* Split the copies in chunks of the execution width of either the
5353 * original or the lowered instruction, whichever is lower.
5354 */
5355 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5356 const unsigned dst_size = inst->size_written /
5357 inst->dst.component_size(inst->exec_size);
5358
5359 assert(!inst->writes_accumulator && !inst->mlen);
5360
5361 /* Inserting the zip, unzip, and duplicated instructions in all of
5362 * the right spots is somewhat tricky. All of the unzip and any
5363 * instructions from the zip which unzip the destination prior to
5364 * writing need to happen before all of the per-group instructions
5365 * and the zip instructions need to happen after. In order to sort
5366 * this all out, we insert the unzip instructions before \p inst,
5367 * insert the per-group instructions after \p inst (i.e. before
5368 * inst->next), and insert the zip instructions before the
5369 * instruction after \p inst. Since we are inserting instructions
5370 * after \p inst, inst->next is a moving target and we need to save
5371 * it off here so that we insert the zip instructions in the right
5372 * place.
5373 */
5374 exec_node *const after_inst = inst->next;
5375 for (unsigned i = 0; i < n; i++) {
5376 /* Emit a copy of the original instruction with the lowered width.
5377 * If the EOT flag was set throw it away except for the last
5378 * instruction to avoid killing the thread prematurely.
5379 */
5380 fs_inst split_inst = *inst;
5381 split_inst.exec_size = lower_width;
5382 split_inst.eot = inst->eot && i == 0;
5383
5384 /* Select the correct channel enables for the i-th group, then
5385 * transform the sources and destination and emit the lowered
5386 * instruction.
5387 */
5388 const fs_builder lbld = ibld.group(lower_width, i);
5389
5390 for (unsigned j = 0; j < inst->sources; j++)
5391 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
5392
5393 split_inst.dst = emit_zip(lbld.at(block, inst),
5394 lbld.at(block, after_inst), inst);
5395 split_inst.size_written =
5396 split_inst.dst.component_size(lower_width) * dst_size;
5397
5398 lbld.at(block, inst->next).emit(split_inst);
5399 }
5400
5401 inst->remove(block);
5402 progress = true;
5403 }
5404 }
5405
5406 if (progress)
5407 invalidate_live_intervals();
5408
5409 return progress;
5410 }
5411
5412 void
5413 fs_visitor::dump_instructions()
5414 {
5415 dump_instructions(NULL);
5416 }
5417
5418 void
5419 fs_visitor::dump_instructions(const char *name)
5420 {
5421 FILE *file = stderr;
5422 if (name && geteuid() != 0) {
5423 file = fopen(name, "w");
5424 if (!file)
5425 file = stderr;
5426 }
5427
5428 if (cfg) {
5429 calculate_register_pressure();
5430 int ip = 0, max_pressure = 0;
5431 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5432 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5433 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5434 dump_instruction(inst, file);
5435 ip++;
5436 }
5437 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5438 } else {
5439 int ip = 0;
5440 foreach_in_list(backend_instruction, inst, &instructions) {
5441 fprintf(file, "%4d: ", ip++);
5442 dump_instruction(inst, file);
5443 }
5444 }
5445
5446 if (file != stderr) {
5447 fclose(file);
5448 }
5449 }
5450
5451 void
5452 fs_visitor::dump_instruction(backend_instruction *be_inst)
5453 {
5454 dump_instruction(be_inst, stderr);
5455 }
5456
5457 void
5458 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5459 {
5460 fs_inst *inst = (fs_inst *)be_inst;
5461
5462 if (inst->predicate) {
5463 fprintf(file, "(%cf0.%d) ",
5464 inst->predicate_inverse ? '-' : '+',
5465 inst->flag_subreg);
5466 }
5467
5468 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5469 if (inst->saturate)
5470 fprintf(file, ".sat");
5471 if (inst->conditional_mod) {
5472 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5473 if (!inst->predicate &&
5474 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5475 inst->opcode != BRW_OPCODE_IF &&
5476 inst->opcode != BRW_OPCODE_WHILE))) {
5477 fprintf(file, ".f0.%d", inst->flag_subreg);
5478 }
5479 }
5480 fprintf(file, "(%d) ", inst->exec_size);
5481
5482 if (inst->mlen) {
5483 fprintf(file, "(mlen: %d) ", inst->mlen);
5484 }
5485
5486 if (inst->eot) {
5487 fprintf(file, "(EOT) ");
5488 }
5489
5490 switch (inst->dst.file) {
5491 case VGRF:
5492 fprintf(file, "vgrf%d", inst->dst.nr);
5493 break;
5494 case FIXED_GRF:
5495 fprintf(file, "g%d", inst->dst.nr);
5496 break;
5497 case MRF:
5498 fprintf(file, "m%d", inst->dst.nr);
5499 break;
5500 case BAD_FILE:
5501 fprintf(file, "(null)");
5502 break;
5503 case UNIFORM:
5504 fprintf(file, "***u%d***", inst->dst.nr);
5505 break;
5506 case ATTR:
5507 fprintf(file, "***attr%d***", inst->dst.nr);
5508 break;
5509 case ARF:
5510 switch (inst->dst.nr) {
5511 case BRW_ARF_NULL:
5512 fprintf(file, "null");
5513 break;
5514 case BRW_ARF_ADDRESS:
5515 fprintf(file, "a0.%d", inst->dst.subnr);
5516 break;
5517 case BRW_ARF_ACCUMULATOR:
5518 fprintf(file, "acc%d", inst->dst.subnr);
5519 break;
5520 case BRW_ARF_FLAG:
5521 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5522 break;
5523 default:
5524 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5525 break;
5526 }
5527 break;
5528 case IMM:
5529 unreachable("not reached");
5530 }
5531
5532 if (inst->dst.offset ||
5533 (inst->dst.file == VGRF &&
5534 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5535 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5536 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5537 inst->dst.offset % reg_size);
5538 }
5539
5540 if (inst->dst.stride != 1)
5541 fprintf(file, "<%u>", inst->dst.stride);
5542 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5543
5544 for (int i = 0; i < inst->sources; i++) {
5545 if (inst->src[i].negate)
5546 fprintf(file, "-");
5547 if (inst->src[i].abs)
5548 fprintf(file, "|");
5549 switch (inst->src[i].file) {
5550 case VGRF:
5551 fprintf(file, "vgrf%d", inst->src[i].nr);
5552 break;
5553 case FIXED_GRF:
5554 fprintf(file, "g%d", inst->src[i].nr);
5555 break;
5556 case MRF:
5557 fprintf(file, "***m%d***", inst->src[i].nr);
5558 break;
5559 case ATTR:
5560 fprintf(file, "attr%d", inst->src[i].nr);
5561 break;
5562 case UNIFORM:
5563 fprintf(file, "u%d", inst->src[i].nr);
5564 break;
5565 case BAD_FILE:
5566 fprintf(file, "(null)");
5567 break;
5568 case IMM:
5569 switch (inst->src[i].type) {
5570 case BRW_REGISTER_TYPE_F:
5571 fprintf(file, "%-gf", inst->src[i].f);
5572 break;
5573 case BRW_REGISTER_TYPE_DF:
5574 fprintf(file, "%fdf", inst->src[i].df);
5575 break;
5576 case BRW_REGISTER_TYPE_W:
5577 case BRW_REGISTER_TYPE_D:
5578 fprintf(file, "%dd", inst->src[i].d);
5579 break;
5580 case BRW_REGISTER_TYPE_UW:
5581 case BRW_REGISTER_TYPE_UD:
5582 fprintf(file, "%uu", inst->src[i].ud);
5583 break;
5584 case BRW_REGISTER_TYPE_VF:
5585 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5586 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5587 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5588 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5589 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5590 break;
5591 default:
5592 fprintf(file, "???");
5593 break;
5594 }
5595 break;
5596 case ARF:
5597 switch (inst->src[i].nr) {
5598 case BRW_ARF_NULL:
5599 fprintf(file, "null");
5600 break;
5601 case BRW_ARF_ADDRESS:
5602 fprintf(file, "a0.%d", inst->src[i].subnr);
5603 break;
5604 case BRW_ARF_ACCUMULATOR:
5605 fprintf(file, "acc%d", inst->src[i].subnr);
5606 break;
5607 case BRW_ARF_FLAG:
5608 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5609 break;
5610 default:
5611 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5612 break;
5613 }
5614 break;
5615 }
5616
5617 if (inst->src[i].offset ||
5618 (inst->src[i].file == VGRF &&
5619 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5620 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5621 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5622 inst->src[i].offset % reg_size);
5623 }
5624
5625 if (inst->src[i].abs)
5626 fprintf(file, "|");
5627
5628 if (inst->src[i].file != IMM) {
5629 unsigned stride;
5630 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5631 unsigned hstride = inst->src[i].hstride;
5632 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5633 } else {
5634 stride = inst->src[i].stride;
5635 }
5636 if (stride != 1)
5637 fprintf(file, "<%u>", stride);
5638
5639 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5640 }
5641
5642 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5643 fprintf(file, ", ");
5644 }
5645
5646 fprintf(file, " ");
5647
5648 if (inst->force_writemask_all)
5649 fprintf(file, "NoMask ");
5650
5651 if (inst->exec_size != dispatch_width)
5652 fprintf(file, "group%d ", inst->group);
5653
5654 fprintf(file, "\n");
5655 }
5656
5657 /**
5658 * Possibly returns an instruction that set up @param reg.
5659 *
5660 * Sometimes we want to take the result of some expression/variable
5661 * dereference tree and rewrite the instruction generating the result
5662 * of the tree. When processing the tree, we know that the
5663 * instructions generated are all writing temporaries that are dead
5664 * outside of this tree. So, if we have some instructions that write
5665 * a temporary, we're free to point that temp write somewhere else.
5666 *
5667 * Note that this doesn't guarantee that the instruction generated
5668 * only reg -- it might be the size=4 destination of a texture instruction.
5669 */
5670 fs_inst *
5671 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5672 fs_inst *end,
5673 const fs_reg &reg)
5674 {
5675 if (end == start ||
5676 end->is_partial_write() ||
5677 !reg.equals(end->dst)) {
5678 return NULL;
5679 } else {
5680 return end;
5681 }
5682 }
5683
5684 void
5685 fs_visitor::setup_fs_payload_gen6()
5686 {
5687 assert(stage == MESA_SHADER_FRAGMENT);
5688 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5689
5690 assert(devinfo->gen >= 6);
5691
5692 /* R0-1: masks, pixel X/Y coordinates. */
5693 payload.num_regs = 2;
5694 /* R2: only for 32-pixel dispatch.*/
5695
5696 /* R3-26: barycentric interpolation coordinates. These appear in the
5697 * same order that they appear in the brw_barycentric_mode
5698 * enum. Each set of coordinates occupies 2 registers if dispatch width
5699 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5700 * appear if they were enabled using the "Barycentric Interpolation
5701 * Mode" bits in WM_STATE.
5702 */
5703 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5704 if (prog_data->barycentric_interp_modes & (1 << i)) {
5705 payload.barycentric_coord_reg[i] = payload.num_regs;
5706 payload.num_regs += 2;
5707 if (dispatch_width == 16) {
5708 payload.num_regs += 2;
5709 }
5710 }
5711 }
5712
5713 /* R27: interpolated depth if uses source depth */
5714 prog_data->uses_src_depth =
5715 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5716 if (prog_data->uses_src_depth) {
5717 payload.source_depth_reg = payload.num_regs;
5718 payload.num_regs++;
5719 if (dispatch_width == 16) {
5720 /* R28: interpolated depth if not SIMD8. */
5721 payload.num_regs++;
5722 }
5723 }
5724
5725 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5726 prog_data->uses_src_w =
5727 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5728 if (prog_data->uses_src_w) {
5729 payload.source_w_reg = payload.num_regs;
5730 payload.num_regs++;
5731 if (dispatch_width == 16) {
5732 /* R30: interpolated W if not SIMD8. */
5733 payload.num_regs++;
5734 }
5735 }
5736
5737 /* R31: MSAA position offsets. */
5738 if (prog_data->persample_dispatch &&
5739 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5740 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5741 *
5742 * "MSDISPMODE_PERSAMPLE is required in order to select
5743 * POSOFFSET_SAMPLE"
5744 *
5745 * So we can only really get sample positions if we are doing real
5746 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5747 * persample dispatch, we hard-code it to 0.5.
5748 */
5749 prog_data->uses_pos_offset = true;
5750 payload.sample_pos_reg = payload.num_regs;
5751 payload.num_regs++;
5752 }
5753
5754 /* R32: MSAA input coverage mask */
5755 prog_data->uses_sample_mask =
5756 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5757 if (prog_data->uses_sample_mask) {
5758 assert(devinfo->gen >= 7);
5759 payload.sample_mask_in_reg = payload.num_regs;
5760 payload.num_regs++;
5761 if (dispatch_width == 16) {
5762 /* R33: input coverage mask if not SIMD8. */
5763 payload.num_regs++;
5764 }
5765 }
5766
5767 /* R34-: bary for 32-pixel. */
5768 /* R58-59: interp W for 32-pixel. */
5769
5770 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5771 source_depth_to_render_target = true;
5772 }
5773 }
5774
5775 void
5776 fs_visitor::setup_vs_payload()
5777 {
5778 /* R0: thread header, R1: urb handles */
5779 payload.num_regs = 2;
5780 }
5781
5782 void
5783 fs_visitor::setup_gs_payload()
5784 {
5785 assert(stage == MESA_SHADER_GEOMETRY);
5786
5787 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5788 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5789
5790 /* R0: thread header, R1: output URB handles */
5791 payload.num_regs = 2;
5792
5793 if (gs_prog_data->include_primitive_id) {
5794 /* R2: Primitive ID 0..7 */
5795 payload.num_regs++;
5796 }
5797
5798 /* Always enable VUE handles so we can safely use pull model if needed.
5799 *
5800 * The push model for a GS uses a ton of register space even for trivial
5801 * scenarios with just a few inputs, so just make things easier and a bit
5802 * safer by always having pull model available.
5803 */
5804 gs_prog_data->base.include_vue_handles = true;
5805
5806 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5807 payload.num_regs += nir->info.gs.vertices_in;
5808
5809 /* Use a maximum of 24 registers for push-model inputs. */
5810 const unsigned max_push_components = 24;
5811
5812 /* If pushing our inputs would take too many registers, reduce the URB read
5813 * length (which is in HWords, or 8 registers), and resort to pulling.
5814 *
5815 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5816 * have to multiply by VerticesIn to obtain the total storage requirement.
5817 */
5818 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5819 max_push_components) {
5820 vue_prog_data->urb_read_length =
5821 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5822 }
5823 }
5824
5825 void
5826 fs_visitor::setup_cs_payload()
5827 {
5828 assert(devinfo->gen >= 7);
5829 payload.num_regs = 1;
5830 }
5831
5832 void
5833 fs_visitor::calculate_register_pressure()
5834 {
5835 invalidate_live_intervals();
5836 calculate_live_intervals();
5837
5838 unsigned num_instructions = 0;
5839 foreach_block(block, cfg)
5840 num_instructions += block->instructions.length();
5841
5842 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5843
5844 for (unsigned reg = 0; reg < alloc.count; reg++) {
5845 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5846 regs_live_at_ip[ip] += alloc.sizes[reg];
5847 }
5848 }
5849
5850 /**
5851 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5852 *
5853 * The needs_unlit_centroid_workaround ends up producing one of these per
5854 * channel of centroid input, so it's good to clean them up.
5855 *
5856 * An assumption here is that nothing ever modifies the dispatched pixels
5857 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5858 * dictates that anyway.
5859 */
5860 bool
5861 fs_visitor::opt_drop_redundant_mov_to_flags()
5862 {
5863 bool flag_mov_found[2] = {false};
5864 bool progress = false;
5865
5866 /* Instructions removed by this pass can only be added if this were true */
5867 if (!devinfo->needs_unlit_centroid_workaround)
5868 return false;
5869
5870 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5871 if (inst->is_control_flow()) {
5872 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5873 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5874 if (!flag_mov_found[inst->flag_subreg]) {
5875 flag_mov_found[inst->flag_subreg] = true;
5876 } else {
5877 inst->remove(block);
5878 progress = true;
5879 }
5880 } else if (inst->flags_written()) {
5881 flag_mov_found[inst->flag_subreg] = false;
5882 }
5883 }
5884
5885 return progress;
5886 }
5887
5888 void
5889 fs_visitor::optimize()
5890 {
5891 /* Start by validating the shader we currently have. */
5892 validate();
5893
5894 /* bld is the common builder object pointing at the end of the program we
5895 * used to translate it into i965 IR. For the optimization and lowering
5896 * passes coming next, any code added after the end of the program without
5897 * having explicitly called fs_builder::at() clearly points at a mistake.
5898 * Ideally optimization passes wouldn't be part of the visitor so they
5899 * wouldn't have access to bld at all, but they do, so just in case some
5900 * pass forgets to ask for a location explicitly set it to NULL here to
5901 * make it trip. The dispatch width is initialized to a bogus value to
5902 * make sure that optimizations set the execution controls explicitly to
5903 * match the code they are manipulating instead of relying on the defaults.
5904 */
5905 bld = fs_builder(this, 64);
5906
5907 assign_constant_locations();
5908 lower_constant_loads();
5909
5910 validate();
5911
5912 split_virtual_grfs();
5913 validate();
5914
5915 #define OPT(pass, args...) ({ \
5916 pass_num++; \
5917 bool this_progress = pass(args); \
5918 \
5919 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5920 char filename[64]; \
5921 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5922 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5923 \
5924 backend_shader::dump_instructions(filename); \
5925 } \
5926 \
5927 validate(); \
5928 \
5929 progress = progress || this_progress; \
5930 this_progress; \
5931 })
5932
5933 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5934 char filename[64];
5935 snprintf(filename, 64, "%s%d-%s-00-00-start",
5936 stage_abbrev, dispatch_width, nir->info.name);
5937
5938 backend_shader::dump_instructions(filename);
5939 }
5940
5941 bool progress = false;
5942 int iteration = 0;
5943 int pass_num = 0;
5944
5945 OPT(opt_drop_redundant_mov_to_flags);
5946 OPT(remove_extra_rounding_modes);
5947
5948 do {
5949 progress = false;
5950 pass_num = 0;
5951 iteration++;
5952
5953 OPT(remove_duplicate_mrf_writes);
5954
5955 OPT(opt_algebraic);
5956 OPT(opt_cse);
5957 OPT(opt_copy_propagation);
5958 OPT(opt_predicated_break, this);
5959 OPT(opt_cmod_propagation);
5960 OPT(dead_code_eliminate);
5961 OPT(opt_peephole_sel);
5962 OPT(dead_control_flow_eliminate, this);
5963 OPT(opt_register_renaming);
5964 OPT(opt_saturate_propagation);
5965 OPT(register_coalesce);
5966 OPT(compute_to_mrf);
5967 OPT(eliminate_find_live_channel);
5968
5969 OPT(compact_virtual_grfs);
5970 } while (progress);
5971
5972 progress = false;
5973 pass_num = 0;
5974
5975 if (OPT(lower_pack)) {
5976 OPT(register_coalesce);
5977 OPT(dead_code_eliminate);
5978 }
5979
5980 OPT(lower_simd_width);
5981
5982 /* After SIMD lowering just in case we had to unroll the EOT send. */
5983 OPT(opt_sampler_eot);
5984
5985 OPT(lower_logical_sends);
5986
5987 if (progress) {
5988 OPT(opt_copy_propagation);
5989 /* Only run after logical send lowering because it's easier to implement
5990 * in terms of physical sends.
5991 */
5992 if (OPT(opt_zero_samples))
5993 OPT(opt_copy_propagation);
5994 /* Run after logical send lowering to give it a chance to CSE the
5995 * LOAD_PAYLOAD instructions created to construct the payloads of
5996 * e.g. texturing messages in cases where it wasn't possible to CSE the
5997 * whole logical instruction.
5998 */
5999 OPT(opt_cse);
6000 OPT(register_coalesce);
6001 OPT(compute_to_mrf);
6002 OPT(dead_code_eliminate);
6003 OPT(remove_duplicate_mrf_writes);
6004 OPT(opt_peephole_sel);
6005 }
6006
6007 OPT(opt_redundant_discard_jumps);
6008
6009 if (OPT(lower_load_payload)) {
6010 split_virtual_grfs();
6011 OPT(register_coalesce);
6012 OPT(compute_to_mrf);
6013 OPT(dead_code_eliminate);
6014 }
6015
6016 OPT(opt_combine_constants);
6017 OPT(lower_integer_multiplication);
6018
6019 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
6020 OPT(opt_cmod_propagation);
6021 OPT(opt_cse);
6022 OPT(opt_copy_propagation);
6023 OPT(dead_code_eliminate);
6024 }
6025
6026 if (OPT(lower_conversions)) {
6027 OPT(opt_copy_propagation);
6028 OPT(dead_code_eliminate);
6029 OPT(lower_simd_width);
6030 }
6031
6032 lower_uniform_pull_constant_loads();
6033
6034 validate();
6035 }
6036
6037 /**
6038 * Three source instruction must have a GRF/MRF destination register.
6039 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
6040 */
6041 void
6042 fs_visitor::fixup_3src_null_dest()
6043 {
6044 bool progress = false;
6045
6046 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
6047 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
6048 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
6049 inst->dst.type);
6050 progress = true;
6051 }
6052 }
6053
6054 if (progress)
6055 invalidate_live_intervals();
6056 }
6057
6058 void
6059 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
6060 {
6061 bool allocated_without_spills;
6062
6063 static const enum instruction_scheduler_mode pre_modes[] = {
6064 SCHEDULE_PRE,
6065 SCHEDULE_PRE_NON_LIFO,
6066 SCHEDULE_PRE_LIFO,
6067 };
6068
6069 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
6070
6071 /* Try each scheduling heuristic to see if it can successfully register
6072 * allocate without spilling. They should be ordered by decreasing
6073 * performance but increasing likelihood of allocating.
6074 */
6075 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
6076 schedule_instructions(pre_modes[i]);
6077
6078 if (0) {
6079 assign_regs_trivial();
6080 allocated_without_spills = true;
6081 } else {
6082 allocated_without_spills = assign_regs(false, spill_all);
6083 }
6084 if (allocated_without_spills)
6085 break;
6086 }
6087
6088 if (!allocated_without_spills) {
6089 if (!allow_spilling)
6090 fail("Failure to register allocate and spilling is not allowed.");
6091
6092 /* We assume that any spilling is worse than just dropping back to
6093 * SIMD8. There's probably actually some intermediate point where
6094 * SIMD16 with a couple of spills is still better.
6095 */
6096 if (dispatch_width > min_dispatch_width) {
6097 fail("Failure to register allocate. Reduce number of "
6098 "live scalar values to avoid this.");
6099 } else {
6100 compiler->shader_perf_log(log_data,
6101 "%s shader triggered register spilling. "
6102 "Try reducing the number of live scalar "
6103 "values to improve performance.\n",
6104 stage_name);
6105 }
6106
6107 /* Since we're out of heuristics, just go spill registers until we
6108 * get an allocation.
6109 */
6110 while (!assign_regs(true, spill_all)) {
6111 if (failed)
6112 break;
6113 }
6114 }
6115
6116 /* This must come after all optimization and register allocation, since
6117 * it inserts dead code that happens to have side effects, and it does
6118 * so based on the actual physical registers in use.
6119 */
6120 insert_gen4_send_dependency_workarounds();
6121
6122 if (failed)
6123 return;
6124
6125 opt_bank_conflicts();
6126
6127 schedule_instructions(SCHEDULE_POST);
6128
6129 if (last_scratch > 0) {
6130 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
6131
6132 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
6133
6134 if (stage == MESA_SHADER_COMPUTE) {
6135 if (devinfo->is_haswell) {
6136 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6137 * field documentation, Haswell supports a minimum of 2kB of
6138 * scratch space for compute shaders, unlike every other stage
6139 * and platform.
6140 */
6141 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
6142 } else if (devinfo->gen <= 7) {
6143 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6144 * field documentation, platforms prior to Haswell measure scratch
6145 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
6146 */
6147 prog_data->total_scratch = ALIGN(last_scratch, 1024);
6148 max_scratch_size = 12 * 1024;
6149 }
6150 }
6151
6152 /* We currently only support up to 2MB of scratch space. If we
6153 * need to support more eventually, the documentation suggests
6154 * that we could allocate a larger buffer, and partition it out
6155 * ourselves. We'd just have to undo the hardware's address
6156 * calculation by subtracting (FFTID * Per Thread Scratch Space)
6157 * and then add FFTID * (Larger Per Thread Scratch Space).
6158 *
6159 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
6160 * Thread Group Tracking > Local Memory/Scratch Space.
6161 */
6162 assert(prog_data->total_scratch < max_scratch_size);
6163 }
6164 }
6165
6166 bool
6167 fs_visitor::run_vs()
6168 {
6169 assert(stage == MESA_SHADER_VERTEX);
6170
6171 setup_vs_payload();
6172
6173 if (shader_time_index >= 0)
6174 emit_shader_time_begin();
6175
6176 emit_nir_code();
6177
6178 if (failed)
6179 return false;
6180
6181 compute_clip_distance();
6182
6183 emit_urb_writes();
6184
6185 if (shader_time_index >= 0)
6186 emit_shader_time_end();
6187
6188 calculate_cfg();
6189
6190 optimize();
6191
6192 assign_curb_setup();
6193 assign_vs_urb_setup();
6194
6195 fixup_3src_null_dest();
6196 allocate_registers(8, true);
6197
6198 return !failed;
6199 }
6200
6201 bool
6202 fs_visitor::run_tcs_single_patch()
6203 {
6204 assert(stage == MESA_SHADER_TESS_CTRL);
6205
6206 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6207
6208 /* r1-r4 contain the ICP handles. */
6209 payload.num_regs = 5;
6210
6211 if (shader_time_index >= 0)
6212 emit_shader_time_begin();
6213
6214 /* Initialize gl_InvocationID */
6215 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6216 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6217 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6218 bld.MOV(channels_ud, channels_uw);
6219
6220 if (tcs_prog_data->instances == 1) {
6221 invocation_id = channels_ud;
6222 } else {
6223 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6224
6225 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6226 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6227 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6228 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6229 brw_imm_ud(INTEL_MASK(23, 17)));
6230 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6231
6232 bld.ADD(invocation_id, instance_times_8, channels_ud);
6233 }
6234
6235 /* Fix the disptach mask */
6236 if (nir->info.tess.tcs_vertices_out % 8) {
6237 bld.CMP(bld.null_reg_ud(), invocation_id,
6238 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6239 bld.IF(BRW_PREDICATE_NORMAL);
6240 }
6241
6242 emit_nir_code();
6243
6244 if (nir->info.tess.tcs_vertices_out % 8) {
6245 bld.emit(BRW_OPCODE_ENDIF);
6246 }
6247
6248 /* Emit EOT write; set TR DS Cache bit */
6249 fs_reg srcs[3] = {
6250 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6251 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6252 fs_reg(brw_imm_ud(0)),
6253 };
6254 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6255 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6256
6257 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6258 bld.null_reg_ud(), payload);
6259 inst->mlen = 3;
6260 inst->eot = true;
6261
6262 if (shader_time_index >= 0)
6263 emit_shader_time_end();
6264
6265 if (failed)
6266 return false;
6267
6268 calculate_cfg();
6269
6270 optimize();
6271
6272 assign_curb_setup();
6273 assign_tcs_single_patch_urb_setup();
6274
6275 fixup_3src_null_dest();
6276 allocate_registers(8, true);
6277
6278 return !failed;
6279 }
6280
6281 bool
6282 fs_visitor::run_tes()
6283 {
6284 assert(stage == MESA_SHADER_TESS_EVAL);
6285
6286 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6287 payload.num_regs = 5;
6288
6289 if (shader_time_index >= 0)
6290 emit_shader_time_begin();
6291
6292 emit_nir_code();
6293
6294 if (failed)
6295 return false;
6296
6297 emit_urb_writes();
6298
6299 if (shader_time_index >= 0)
6300 emit_shader_time_end();
6301
6302 calculate_cfg();
6303
6304 optimize();
6305
6306 assign_curb_setup();
6307 assign_tes_urb_setup();
6308
6309 fixup_3src_null_dest();
6310 allocate_registers(8, true);
6311
6312 return !failed;
6313 }
6314
6315 bool
6316 fs_visitor::run_gs()
6317 {
6318 assert(stage == MESA_SHADER_GEOMETRY);
6319
6320 setup_gs_payload();
6321
6322 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6323
6324 if (gs_compile->control_data_header_size_bits > 0) {
6325 /* Create a VGRF to store accumulated control data bits. */
6326 this->control_data_bits = vgrf(glsl_type::uint_type);
6327
6328 /* If we're outputting more than 32 control data bits, then EmitVertex()
6329 * will set control_data_bits to 0 after emitting the first vertex.
6330 * Otherwise, we need to initialize it to 0 here.
6331 */
6332 if (gs_compile->control_data_header_size_bits <= 32) {
6333 const fs_builder abld = bld.annotate("initialize control data bits");
6334 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6335 }
6336 }
6337
6338 if (shader_time_index >= 0)
6339 emit_shader_time_begin();
6340
6341 emit_nir_code();
6342
6343 emit_gs_thread_end();
6344
6345 if (shader_time_index >= 0)
6346 emit_shader_time_end();
6347
6348 if (failed)
6349 return false;
6350
6351 calculate_cfg();
6352
6353 optimize();
6354
6355 assign_curb_setup();
6356 assign_gs_urb_setup();
6357
6358 fixup_3src_null_dest();
6359 allocate_registers(8, true);
6360
6361 return !failed;
6362 }
6363
6364 /* From the SKL PRM, Volume 16, Workarounds:
6365 *
6366 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
6367 * only header phases (R0-R2)
6368 *
6369 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
6370 * have been header only.
6371 *
6372 * Instead of enabling push constants one can alternatively enable one of the
6373 * inputs. Here one simply chooses "layer" which shouldn't impose much
6374 * overhead.
6375 */
6376 static void
6377 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
6378 {
6379 if (wm_prog_data->num_varying_inputs)
6380 return;
6381
6382 if (wm_prog_data->base.curb_read_length)
6383 return;
6384
6385 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
6386 wm_prog_data->num_varying_inputs = 1;
6387 }
6388
6389 bool
6390 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6391 {
6392 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6393 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6394
6395 assert(stage == MESA_SHADER_FRAGMENT);
6396
6397 if (devinfo->gen >= 6)
6398 setup_fs_payload_gen6();
6399 else
6400 setup_fs_payload_gen4();
6401
6402 if (0) {
6403 emit_dummy_fs();
6404 } else if (do_rep_send) {
6405 assert(dispatch_width == 16);
6406 emit_repclear_shader();
6407 } else {
6408 if (shader_time_index >= 0)
6409 emit_shader_time_begin();
6410
6411 calculate_urb_setup();
6412 if (nir->info.inputs_read > 0 ||
6413 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6414 if (devinfo->gen < 6)
6415 emit_interpolation_setup_gen4();
6416 else
6417 emit_interpolation_setup_gen6();
6418 }
6419
6420 /* We handle discards by keeping track of the still-live pixels in f0.1.
6421 * Initialize it with the dispatched pixels.
6422 */
6423 if (wm_prog_data->uses_kill) {
6424 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6425 discard_init->flag_subreg = 1;
6426 }
6427
6428 /* Generate FS IR for main(). (the visitor only descends into
6429 * functions called "main").
6430 */
6431 emit_nir_code();
6432
6433 if (failed)
6434 return false;
6435
6436 if (wm_prog_data->uses_kill)
6437 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6438
6439 if (wm_key->alpha_test_func)
6440 emit_alpha_test();
6441
6442 emit_fb_writes();
6443
6444 if (shader_time_index >= 0)
6445 emit_shader_time_end();
6446
6447 calculate_cfg();
6448
6449 optimize();
6450
6451 assign_curb_setup();
6452
6453 if (devinfo->gen >= 9)
6454 gen9_ps_header_only_workaround(wm_prog_data);
6455
6456 assign_urb_setup();
6457
6458 fixup_3src_null_dest();
6459 allocate_registers(8, allow_spilling);
6460
6461 if (failed)
6462 return false;
6463 }
6464
6465 return !failed;
6466 }
6467
6468 bool
6469 fs_visitor::run_cs(unsigned min_dispatch_width)
6470 {
6471 assert(stage == MESA_SHADER_COMPUTE);
6472 assert(dispatch_width >= min_dispatch_width);
6473
6474 setup_cs_payload();
6475
6476 if (shader_time_index >= 0)
6477 emit_shader_time_begin();
6478
6479 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6480 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6481 const fs_builder abld = bld.exec_all().group(1, 0);
6482 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6483 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6484 }
6485
6486 emit_nir_code();
6487
6488 if (failed)
6489 return false;
6490
6491 emit_cs_terminate();
6492
6493 if (shader_time_index >= 0)
6494 emit_shader_time_end();
6495
6496 calculate_cfg();
6497
6498 optimize();
6499
6500 assign_curb_setup();
6501
6502 fixup_3src_null_dest();
6503 allocate_registers(min_dispatch_width, true);
6504
6505 if (failed)
6506 return false;
6507
6508 return !failed;
6509 }
6510
6511 /**
6512 * Return a bitfield where bit n is set if barycentric interpolation mode n
6513 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6514 *
6515 * We examine the load_barycentric intrinsics rather than looking at input
6516 * variables so that we catch interpolateAtCentroid() messages too, which
6517 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6518 */
6519 static unsigned
6520 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6521 const nir_shader *shader)
6522 {
6523 unsigned barycentric_interp_modes = 0;
6524
6525 nir_foreach_function(f, shader) {
6526 if (!f->impl)
6527 continue;
6528
6529 nir_foreach_block(block, f->impl) {
6530 nir_foreach_instr(instr, block) {
6531 if (instr->type != nir_instr_type_intrinsic)
6532 continue;
6533
6534 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6535 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6536 continue;
6537
6538 /* Ignore WPOS; it doesn't require interpolation. */
6539 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6540 continue;
6541
6542 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6543 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6544 nir_intrinsic_interp_mode(intrin);
6545 nir_intrinsic_op bary_op = intrin->intrinsic;
6546 enum brw_barycentric_mode bary =
6547 brw_barycentric_mode(interp, bary_op);
6548
6549 barycentric_interp_modes |= 1 << bary;
6550
6551 if (devinfo->needs_unlit_centroid_workaround &&
6552 bary_op == nir_intrinsic_load_barycentric_centroid)
6553 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6554 }
6555 }
6556 }
6557
6558 return barycentric_interp_modes;
6559 }
6560
6561 static void
6562 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6563 const nir_shader *shader)
6564 {
6565 prog_data->flat_inputs = 0;
6566
6567 nir_foreach_variable(var, &shader->inputs) {
6568 int input_index = prog_data->urb_setup[var->data.location];
6569
6570 if (input_index < 0)
6571 continue;
6572
6573 /* flat shading */
6574 if (var->data.interpolation == INTERP_MODE_FLAT)
6575 prog_data->flat_inputs |= (1 << input_index);
6576 }
6577 }
6578
6579 static uint8_t
6580 computed_depth_mode(const nir_shader *shader)
6581 {
6582 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6583 switch (shader->info.fs.depth_layout) {
6584 case FRAG_DEPTH_LAYOUT_NONE:
6585 case FRAG_DEPTH_LAYOUT_ANY:
6586 return BRW_PSCDEPTH_ON;
6587 case FRAG_DEPTH_LAYOUT_GREATER:
6588 return BRW_PSCDEPTH_ON_GE;
6589 case FRAG_DEPTH_LAYOUT_LESS:
6590 return BRW_PSCDEPTH_ON_LE;
6591 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6592 return BRW_PSCDEPTH_OFF;
6593 }
6594 }
6595 return BRW_PSCDEPTH_OFF;
6596 }
6597
6598 /**
6599 * Move load_interpolated_input with simple (payload-based) barycentric modes
6600 * to the top of the program so we don't emit multiple PLNs for the same input.
6601 *
6602 * This works around CSE not being able to handle non-dominating cases
6603 * such as:
6604 *
6605 * if (...) {
6606 * interpolate input
6607 * } else {
6608 * interpolate the same exact input
6609 * }
6610 *
6611 * This should be replaced by global value numbering someday.
6612 */
6613 static bool
6614 move_interpolation_to_top(nir_shader *nir)
6615 {
6616 bool progress = false;
6617
6618 nir_foreach_function(f, nir) {
6619 if (!f->impl)
6620 continue;
6621
6622 nir_block *top = nir_start_block(f->impl);
6623 exec_node *cursor_node = NULL;
6624
6625 nir_foreach_block(block, f->impl) {
6626 if (block == top)
6627 continue;
6628
6629 nir_foreach_instr_safe(instr, block) {
6630 if (instr->type != nir_instr_type_intrinsic)
6631 continue;
6632
6633 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6634 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6635 continue;
6636 nir_intrinsic_instr *bary_intrinsic =
6637 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6638 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6639
6640 /* Leave interpolateAtSample/Offset() where they are. */
6641 if (op == nir_intrinsic_load_barycentric_at_sample ||
6642 op == nir_intrinsic_load_barycentric_at_offset)
6643 continue;
6644
6645 nir_instr *move[3] = {
6646 &bary_intrinsic->instr,
6647 intrin->src[1].ssa->parent_instr,
6648 instr
6649 };
6650
6651 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6652 if (move[i]->block != top) {
6653 move[i]->block = top;
6654 exec_node_remove(&move[i]->node);
6655 if (cursor_node) {
6656 exec_node_insert_after(cursor_node, &move[i]->node);
6657 } else {
6658 exec_list_push_head(&top->instr_list, &move[i]->node);
6659 }
6660 cursor_node = &move[i]->node;
6661 progress = true;
6662 }
6663 }
6664 }
6665 }
6666 nir_metadata_preserve(f->impl, (nir_metadata)
6667 ((unsigned) nir_metadata_block_index |
6668 (unsigned) nir_metadata_dominance));
6669 }
6670
6671 return progress;
6672 }
6673
6674 /**
6675 * Demote per-sample barycentric intrinsics to centroid.
6676 *
6677 * Useful when rendering to a non-multisampled buffer.
6678 */
6679 static bool
6680 demote_sample_qualifiers(nir_shader *nir)
6681 {
6682 bool progress = true;
6683
6684 nir_foreach_function(f, nir) {
6685 if (!f->impl)
6686 continue;
6687
6688 nir_builder b;
6689 nir_builder_init(&b, f->impl);
6690
6691 nir_foreach_block(block, f->impl) {
6692 nir_foreach_instr_safe(instr, block) {
6693 if (instr->type != nir_instr_type_intrinsic)
6694 continue;
6695
6696 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6697 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6698 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6699 continue;
6700
6701 b.cursor = nir_before_instr(instr);
6702 nir_ssa_def *centroid =
6703 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6704 nir_intrinsic_interp_mode(intrin));
6705 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6706 nir_src_for_ssa(centroid));
6707 nir_instr_remove(instr);
6708 progress = true;
6709 }
6710 }
6711
6712 nir_metadata_preserve(f->impl, (nir_metadata)
6713 ((unsigned) nir_metadata_block_index |
6714 (unsigned) nir_metadata_dominance));
6715 }
6716
6717 return progress;
6718 }
6719
6720 /**
6721 * Pre-gen6, the register file of the EUs was shared between threads,
6722 * and each thread used some subset allocated on a 16-register block
6723 * granularity. The unit states wanted these block counts.
6724 */
6725 static inline int
6726 brw_register_blocks(int reg_count)
6727 {
6728 return ALIGN(reg_count, 16) / 16 - 1;
6729 }
6730
6731 const unsigned *
6732 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6733 void *mem_ctx,
6734 const struct brw_wm_prog_key *key,
6735 struct brw_wm_prog_data *prog_data,
6736 const nir_shader *src_shader,
6737 struct gl_program *prog,
6738 int shader_time_index8, int shader_time_index16,
6739 bool allow_spilling,
6740 bool use_rep_send, struct brw_vue_map *vue_map,
6741 char **error_str)
6742 {
6743 const struct gen_device_info *devinfo = compiler->devinfo;
6744
6745 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6746 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6747 brw_nir_lower_fs_inputs(shader, devinfo, key);
6748 brw_nir_lower_fs_outputs(shader);
6749
6750 if (devinfo->gen < 6) {
6751 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6752 }
6753
6754 if (!key->multisample_fbo)
6755 NIR_PASS_V(shader, demote_sample_qualifiers);
6756 NIR_PASS_V(shader, move_interpolation_to_top);
6757 shader = brw_postprocess_nir(shader, compiler, true);
6758
6759 /* key->alpha_test_func means simulating alpha testing via discards,
6760 * so the shader definitely kills pixels.
6761 */
6762 prog_data->uses_kill = shader->info.fs.uses_discard ||
6763 key->alpha_test_func;
6764 prog_data->uses_omask = key->multisample_fbo &&
6765 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6766 prog_data->computed_depth_mode = computed_depth_mode(shader);
6767 prog_data->computed_stencil =
6768 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6769
6770 prog_data->persample_dispatch =
6771 key->multisample_fbo &&
6772 (key->persample_interp ||
6773 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6774 SYSTEM_BIT_SAMPLE_POS)) ||
6775 shader->info.fs.uses_sample_qualifier ||
6776 shader->info.outputs_read);
6777
6778 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
6779
6780 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6781 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6782 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6783
6784 prog_data->barycentric_interp_modes =
6785 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6786
6787 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6788 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6789 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6790
6791 fs_visitor v8(compiler, log_data, mem_ctx, key,
6792 &prog_data->base, prog, shader, 8,
6793 shader_time_index8);
6794 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6795 if (error_str)
6796 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6797
6798 return NULL;
6799 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6800 simd8_cfg = v8.cfg;
6801 simd8_grf_start = v8.payload.num_regs;
6802 simd8_grf_used = v8.grf_used;
6803 }
6804
6805 if (v8.max_dispatch_width >= 16 &&
6806 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6807 /* Try a SIMD16 compile */
6808 fs_visitor v16(compiler, log_data, mem_ctx, key,
6809 &prog_data->base, prog, shader, 16,
6810 shader_time_index16);
6811 v16.import_uniforms(&v8);
6812 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6813 compiler->shader_perf_log(log_data,
6814 "SIMD16 shader failed to compile: %s",
6815 v16.fail_msg);
6816 } else {
6817 simd16_cfg = v16.cfg;
6818 simd16_grf_start = v16.payload.num_regs;
6819 simd16_grf_used = v16.grf_used;
6820 }
6821 }
6822
6823 /* When the caller requests a repclear shader, they want SIMD16-only */
6824 if (use_rep_send)
6825 simd8_cfg = NULL;
6826
6827 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6828 * at the top to select the shader. We've never implemented that.
6829 * Instead, we just give them exactly one shader and we pick the widest one
6830 * available.
6831 */
6832 if (compiler->devinfo->gen < 5 && simd16_cfg)
6833 simd8_cfg = NULL;
6834
6835 if (prog_data->persample_dispatch) {
6836 /* Starting with SandyBridge (where we first get MSAA), the different
6837 * pixel dispatch combinations are grouped into classifications A
6838 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6839 * generations, the only configurations supporting persample dispatch
6840 * are are this in which only one dispatch width is enabled.
6841 *
6842 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6843 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6844 */
6845 if (compiler->devinfo->gen == 6 &&
6846 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6847 simd16_cfg = NULL;
6848 } else if (simd16_cfg) {
6849 simd8_cfg = NULL;
6850 }
6851 }
6852
6853 /* We have to compute the flat inputs after the visitor is finished running
6854 * because it relies on prog_data->urb_setup which is computed in
6855 * fs_visitor::calculate_urb_setup().
6856 */
6857 brw_compute_flat_inputs(prog_data, shader);
6858
6859 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6860 v8.promoted_constants, v8.runtime_check_aads_emit,
6861 MESA_SHADER_FRAGMENT);
6862
6863 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6864 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6865 shader->info.label ?
6866 shader->info.label : "unnamed",
6867 shader->info.name));
6868 }
6869
6870 if (simd8_cfg) {
6871 prog_data->dispatch_8 = true;
6872 g.generate_code(simd8_cfg, 8);
6873 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6874 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6875
6876 if (simd16_cfg) {
6877 prog_data->dispatch_16 = true;
6878 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6879 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6880 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6881 }
6882 } else if (simd16_cfg) {
6883 prog_data->dispatch_16 = true;
6884 g.generate_code(simd16_cfg, 16);
6885 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6886 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6887 }
6888
6889 return g.get_assembly(&prog_data->base.program_size);
6890 }
6891
6892 fs_reg *
6893 fs_visitor::emit_cs_work_group_id_setup()
6894 {
6895 assert(stage == MESA_SHADER_COMPUTE);
6896
6897 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6898
6899 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6900 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6901 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6902
6903 bld.MOV(*reg, r0_1);
6904 bld.MOV(offset(*reg, bld, 1), r0_6);
6905 bld.MOV(offset(*reg, bld, 2), r0_7);
6906
6907 return reg;
6908 }
6909
6910 static void
6911 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6912 {
6913 block->dwords = dwords;
6914 block->regs = DIV_ROUND_UP(dwords, 8);
6915 block->size = block->regs * 32;
6916 }
6917
6918 static void
6919 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6920 struct brw_cs_prog_data *cs_prog_data)
6921 {
6922 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6923 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
6924 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6925
6926 /* The thread ID should be stored in the last param dword */
6927 assert(subgroup_id_index == -1 ||
6928 subgroup_id_index == (int)prog_data->nr_params - 1);
6929
6930 unsigned cross_thread_dwords, per_thread_dwords;
6931 if (!cross_thread_supported) {
6932 cross_thread_dwords = 0u;
6933 per_thread_dwords = prog_data->nr_params;
6934 } else if (subgroup_id_index >= 0) {
6935 /* Fill all but the last register with cross-thread payload */
6936 cross_thread_dwords = 8 * (subgroup_id_index / 8);
6937 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6938 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6939 } else {
6940 /* Fill all data using cross-thread payload */
6941 cross_thread_dwords = prog_data->nr_params;
6942 per_thread_dwords = 0u;
6943 }
6944
6945 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6946 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6947
6948 unsigned total_dwords =
6949 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6950 cs_prog_data->push.cross_thread.size) / 4;
6951 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6952
6953 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6954 cs_prog_data->push.per_thread.size == 0);
6955 assert(cs_prog_data->push.cross_thread.dwords +
6956 cs_prog_data->push.per_thread.dwords ==
6957 prog_data->nr_params);
6958 }
6959
6960 static void
6961 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6962 {
6963 cs_prog_data->simd_size = size;
6964 unsigned group_size = cs_prog_data->local_size[0] *
6965 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6966 cs_prog_data->threads = (group_size + size - 1) / size;
6967 }
6968
6969 static nir_shader *
6970 compile_cs_to_nir(const struct brw_compiler *compiler,
6971 void *mem_ctx,
6972 const struct brw_cs_prog_key *key,
6973 struct brw_cs_prog_data *prog_data,
6974 const nir_shader *src_shader,
6975 unsigned dispatch_width)
6976 {
6977 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6978 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6979 brw_nir_lower_cs_intrinsics(shader, dispatch_width);
6980 return brw_postprocess_nir(shader, compiler, true);
6981 }
6982
6983 const unsigned *
6984 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6985 void *mem_ctx,
6986 const struct brw_cs_prog_key *key,
6987 struct brw_cs_prog_data *prog_data,
6988 const nir_shader *src_shader,
6989 int shader_time_index,
6990 char **error_str)
6991 {
6992 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
6993 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
6994 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
6995 unsigned local_workgroup_size =
6996 src_shader->info.cs.local_size[0] * src_shader->info.cs.local_size[1] *
6997 src_shader->info.cs.local_size[2];
6998
6999 unsigned min_dispatch_width =
7000 DIV_ROUND_UP(local_workgroup_size, compiler->devinfo->max_cs_threads);
7001 min_dispatch_width = MAX2(8, min_dispatch_width);
7002 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
7003 assert(min_dispatch_width <= 32);
7004
7005 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
7006 cfg_t *cfg = NULL;
7007 const char *fail_msg = NULL;
7008 unsigned promoted_constants;
7009
7010 /* Now the main event: Visit the shader IR and generate our CS IR for it.
7011 */
7012 if (min_dispatch_width <= 8) {
7013 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
7014 prog_data, src_shader, 8);
7015 v8 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7016 NULL, /* Never used in core profile */
7017 nir8, 8, shader_time_index);
7018 if (!v8->run_cs(min_dispatch_width)) {
7019 fail_msg = v8->fail_msg;
7020 } else {
7021 /* We should always be able to do SIMD32 for compute shaders */
7022 assert(v8->max_dispatch_width >= 32);
7023
7024 cfg = v8->cfg;
7025 cs_set_simd_size(prog_data, 8);
7026 cs_fill_push_const_info(compiler->devinfo, prog_data);
7027 promoted_constants = v8->promoted_constants;
7028 }
7029 }
7030
7031 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
7032 !fail_msg && min_dispatch_width <= 16) {
7033 /* Try a SIMD16 compile */
7034 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
7035 prog_data, src_shader, 16);
7036 v16 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7037 NULL, /* Never used in core profile */
7038 nir16, 16, shader_time_index);
7039 if (v8)
7040 v16->import_uniforms(v8);
7041
7042 if (!v16->run_cs(min_dispatch_width)) {
7043 compiler->shader_perf_log(log_data,
7044 "SIMD16 shader failed to compile: %s",
7045 v16->fail_msg);
7046 if (!cfg) {
7047 fail_msg =
7048 "Couldn't generate SIMD16 program and not "
7049 "enough threads for SIMD8";
7050 }
7051 } else {
7052 /* We should always be able to do SIMD32 for compute shaders */
7053 assert(v16->max_dispatch_width >= 32);
7054
7055 cfg = v16->cfg;
7056 cs_set_simd_size(prog_data, 16);
7057 cs_fill_push_const_info(compiler->devinfo, prog_data);
7058 promoted_constants = v16->promoted_constants;
7059 }
7060 }
7061
7062 /* We should always be able to do SIMD32 for compute shaders */
7063 assert(!v16 || v16->max_dispatch_width >= 32);
7064
7065 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
7066 /* Try a SIMD32 compile */
7067 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
7068 prog_data, src_shader, 32);
7069 v32 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7070 NULL, /* Never used in core profile */
7071 nir32, 32, shader_time_index);
7072 if (v8)
7073 v32->import_uniforms(v8);
7074 else if (v16)
7075 v32->import_uniforms(v16);
7076
7077 if (!v32->run_cs(min_dispatch_width)) {
7078 compiler->shader_perf_log(log_data,
7079 "SIMD32 shader failed to compile: %s",
7080 v16->fail_msg);
7081 if (!cfg) {
7082 fail_msg =
7083 "Couldn't generate SIMD32 program and not "
7084 "enough threads for SIMD16";
7085 }
7086 } else {
7087 cfg = v32->cfg;
7088 cs_set_simd_size(prog_data, 32);
7089 cs_fill_push_const_info(compiler->devinfo, prog_data);
7090 promoted_constants = v32->promoted_constants;
7091 }
7092 }
7093
7094 const unsigned *ret = NULL;
7095 if (unlikely(cfg == NULL)) {
7096 assert(fail_msg);
7097 if (error_str)
7098 *error_str = ralloc_strdup(mem_ctx, fail_msg);
7099 } else {
7100 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
7101 promoted_constants, false, MESA_SHADER_COMPUTE);
7102 if (INTEL_DEBUG & DEBUG_CS) {
7103 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
7104 src_shader->info.label ?
7105 src_shader->info.label : "unnamed",
7106 src_shader->info.name);
7107 g.enable_debug(name);
7108 }
7109
7110 g.generate_code(cfg, prog_data->simd_size);
7111
7112 ret = g.get_assembly(&prog_data->base.program_size);
7113 }
7114
7115 delete v8;
7116 delete v16;
7117 delete v32;
7118
7119 return ret;
7120 }
7121
7122 /**
7123 * Test the dispatch mask packing assumptions of
7124 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
7125 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
7126 * executed with an unexpected dispatch mask.
7127 */
7128 static UNUSED void
7129 brw_fs_test_dispatch_packing(const fs_builder &bld)
7130 {
7131 const gl_shader_stage stage = bld.shader->stage;
7132
7133 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
7134 bld.shader->stage_prog_data)) {
7135 const fs_builder ubld = bld.exec_all().group(1, 0);
7136 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
7137 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
7138 brw_dmask_reg());
7139
7140 ubld.ADD(tmp, mask, brw_imm_ud(1));
7141 ubld.AND(tmp, mask, tmp);
7142
7143 /* This will loop forever if the dispatch mask doesn't have the expected
7144 * form '2^n-1', in which case tmp will be non-zero.
7145 */
7146 bld.emit(BRW_OPCODE_DO);
7147 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
7148 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
7149 }
7150 }