intel/fs: Handle surface opcode sample masks via predication.
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "common/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42
43 using namespace brw;
44
45 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
46 const fs_inst *inst);
47
48 void
49 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
50 const fs_reg *src, unsigned sources)
51 {
52 memset(this, 0, sizeof(*this));
53
54 this->src = new fs_reg[MAX2(sources, 3)];
55 for (unsigned i = 0; i < sources; i++)
56 this->src[i] = src[i];
57
58 this->opcode = opcode;
59 this->dst = dst;
60 this->sources = sources;
61 this->exec_size = exec_size;
62 this->base_mrf = -1;
63
64 assert(dst.file != IMM && dst.file != UNIFORM);
65
66 assert(this->exec_size != 0);
67
68 this->conditional_mod = BRW_CONDITIONAL_NONE;
69
70 /* This will be the case for almost all instructions. */
71 switch (dst.file) {
72 case VGRF:
73 case ARF:
74 case FIXED_GRF:
75 case MRF:
76 case ATTR:
77 this->size_written = dst.component_size(exec_size);
78 break;
79 case BAD_FILE:
80 this->size_written = 0;
81 break;
82 case IMM:
83 case UNIFORM:
84 unreachable("Invalid destination register file");
85 }
86
87 this->writes_accumulator = false;
88 }
89
90 fs_inst::fs_inst()
91 {
92 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
93 }
94
95 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
96 {
97 init(opcode, exec_size, reg_undef, NULL, 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
101 {
102 init(opcode, exec_size, dst, NULL, 0);
103 }
104
105 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
106 const fs_reg &src0)
107 {
108 const fs_reg src[1] = { src0 };
109 init(opcode, exec_size, dst, src, 1);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0, const fs_reg &src1)
114 {
115 const fs_reg src[2] = { src0, src1 };
116 init(opcode, exec_size, dst, src, 2);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
121 {
122 const fs_reg src[3] = { src0, src1, src2 };
123 init(opcode, exec_size, dst, src, 3);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
127 const fs_reg src[], unsigned sources)
128 {
129 init(opcode, exec_width, dst, src, sources);
130 }
131
132 fs_inst::fs_inst(const fs_inst &that)
133 {
134 memcpy(this, &that, sizeof(that));
135
136 this->src = new fs_reg[MAX2(that.sources, 3)];
137
138 for (unsigned i = 0; i < that.sources; i++)
139 this->src[i] = that.src[i];
140 }
141
142 fs_inst::~fs_inst()
143 {
144 delete[] this->src;
145 }
146
147 void
148 fs_inst::resize_sources(uint8_t num_sources)
149 {
150 if (this->sources != num_sources) {
151 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
152
153 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
154 src[i] = this->src[i];
155
156 delete[] this->src;
157 this->src = src;
158 this->sources = num_sources;
159 }
160 }
161
162 void
163 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
164 const fs_reg &dst,
165 const fs_reg &surf_index,
166 const fs_reg &varying_offset,
167 uint32_t const_offset)
168 {
169 /* We have our constant surface use a pitch of 4 bytes, so our index can
170 * be any component of a vector, and then we load 4 contiguous
171 * components starting from that.
172 *
173 * We break down the const_offset to a portion added to the variable offset
174 * and a portion done using fs_reg::offset, which means that if you have
175 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
176 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
177 * later notice that those loads are all the same and eliminate the
178 * redundant ones.
179 */
180 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
181 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
182
183 /* The pull load message will load a vec4 (16 bytes). If we are loading
184 * a double this means we are only loading 2 elements worth of data.
185 * We also want to use a 32-bit data type for the dst of the load operation
186 * so other parts of the driver don't get confused about the size of the
187 * result.
188 */
189 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
190 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
191 vec4_result, surf_index, vec4_offset);
192 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
193
194 fs_reg dw = offset(vec4_result, bld, (const_offset & 0xf) / 4);
195 switch (type_sz(dst.type)) {
196 case 2:
197 shuffle_32bit_load_result_to_16bit_data(bld, dst, dw, 0, 1);
198 bld.MOV(dst, subscript(dw, dst.type, (const_offset / 2) & 1));
199 break;
200 case 4:
201 bld.MOV(dst, retype(dw, dst.type));
202 break;
203 case 8:
204 shuffle_32bit_load_result_to_64bit_data(bld, dst, dw, 1);
205 break;
206 default:
207 unreachable("Unsupported bit_size");
208 }
209 }
210
211 /**
212 * A helper for MOV generation for fixing up broken hardware SEND dependency
213 * handling.
214 */
215 void
216 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
217 {
218 /* The caller always wants uncompressed to emit the minimal extra
219 * dependencies, and to avoid having to deal with aligning its regs to 2.
220 */
221 const fs_builder ubld = bld.annotate("send dependency resolve")
222 .half(0);
223
224 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
225 }
226
227 bool
228 fs_inst::equals(fs_inst *inst) const
229 {
230 return (opcode == inst->opcode &&
231 dst.equals(inst->dst) &&
232 src[0].equals(inst->src[0]) &&
233 src[1].equals(inst->src[1]) &&
234 src[2].equals(inst->src[2]) &&
235 saturate == inst->saturate &&
236 predicate == inst->predicate &&
237 conditional_mod == inst->conditional_mod &&
238 mlen == inst->mlen &&
239 base_mrf == inst->base_mrf &&
240 target == inst->target &&
241 eot == inst->eot &&
242 header_size == inst->header_size &&
243 shadow_compare == inst->shadow_compare &&
244 exec_size == inst->exec_size &&
245 offset == inst->offset);
246 }
247
248 bool
249 fs_inst::is_send_from_grf() const
250 {
251 switch (opcode) {
252 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
253 case SHADER_OPCODE_SHADER_TIME_ADD:
254 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
255 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
256 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
257 case SHADER_OPCODE_UNTYPED_ATOMIC:
258 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
259 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
260 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
261 case SHADER_OPCODE_BYTE_SCATTERED_READ:
262 case SHADER_OPCODE_TYPED_ATOMIC:
263 case SHADER_OPCODE_TYPED_SURFACE_READ:
264 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
265 case SHADER_OPCODE_URB_WRITE_SIMD8:
266 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
267 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
268 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
269 case SHADER_OPCODE_URB_READ_SIMD8:
270 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
271 return true;
272 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
273 return src[1].file == VGRF;
274 case FS_OPCODE_FB_WRITE:
275 case FS_OPCODE_FB_READ:
276 return src[0].file == VGRF;
277 default:
278 if (is_tex())
279 return src[0].file == VGRF;
280
281 return false;
282 }
283 }
284
285 /**
286 * Returns true if this instruction's sources and destinations cannot
287 * safely be the same register.
288 *
289 * In most cases, a register can be written over safely by the same
290 * instruction that is its last use. For a single instruction, the
291 * sources are dereferenced before writing of the destination starts
292 * (naturally).
293 *
294 * However, there are a few cases where this can be problematic:
295 *
296 * - Virtual opcodes that translate to multiple instructions in the
297 * code generator: if src == dst and one instruction writes the
298 * destination before a later instruction reads the source, then
299 * src will have been clobbered.
300 *
301 * - SIMD16 compressed instructions with certain regioning (see below).
302 *
303 * The register allocator uses this information to set up conflicts between
304 * GRF sources and the destination.
305 */
306 bool
307 fs_inst::has_source_and_destination_hazard() const
308 {
309 switch (opcode) {
310 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
311 /* Multiple partial writes to the destination */
312 return true;
313 default:
314 /* The SIMD16 compressed instruction
315 *
316 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
317 *
318 * is actually decoded in hardware as:
319 *
320 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
321 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
322 *
323 * Which is safe. However, if we have uniform accesses
324 * happening, we get into trouble:
325 *
326 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
327 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
328 *
329 * Now our destination for the first instruction overwrote the
330 * second instruction's src0, and we get garbage for those 8
331 * pixels. There's a similar issue for the pre-gen6
332 * pixel_x/pixel_y, which are registers of 16-bit values and thus
333 * would get stomped by the first decode as well.
334 */
335 if (exec_size == 16) {
336 for (int i = 0; i < sources; i++) {
337 if (src[i].file == VGRF && (src[i].stride == 0 ||
338 src[i].type == BRW_REGISTER_TYPE_UW ||
339 src[i].type == BRW_REGISTER_TYPE_W ||
340 src[i].type == BRW_REGISTER_TYPE_UB ||
341 src[i].type == BRW_REGISTER_TYPE_B)) {
342 return true;
343 }
344 }
345 }
346 return false;
347 }
348 }
349
350 bool
351 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
352 {
353 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
354 return false;
355
356 fs_reg reg = this->src[0];
357 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
358 return false;
359
360 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
361 return false;
362
363 for (int i = 0; i < this->sources; i++) {
364 reg.type = this->src[i].type;
365 if (!this->src[i].equals(reg))
366 return false;
367
368 if (i < this->header_size) {
369 reg.offset += REG_SIZE;
370 } else {
371 reg = horiz_offset(reg, this->exec_size);
372 }
373 }
374
375 return true;
376 }
377
378 bool
379 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
380 {
381 if (devinfo->gen == 6 && is_math())
382 return false;
383
384 if (is_send_from_grf())
385 return false;
386
387 if (!backend_instruction::can_do_source_mods())
388 return false;
389
390 return true;
391 }
392
393 bool
394 fs_inst::can_change_types() const
395 {
396 return dst.type == src[0].type &&
397 !src[0].abs && !src[0].negate && !saturate &&
398 (opcode == BRW_OPCODE_MOV ||
399 (opcode == BRW_OPCODE_SEL &&
400 dst.type == src[1].type &&
401 predicate != BRW_PREDICATE_NONE &&
402 !src[1].abs && !src[1].negate));
403 }
404
405 void
406 fs_reg::init()
407 {
408 memset(this, 0, sizeof(*this));
409 type = BRW_REGISTER_TYPE_UD;
410 stride = 1;
411 }
412
413 /** Generic unset register constructor. */
414 fs_reg::fs_reg()
415 {
416 init();
417 this->file = BAD_FILE;
418 }
419
420 fs_reg::fs_reg(struct ::brw_reg reg) :
421 backend_reg(reg)
422 {
423 this->offset = 0;
424 this->stride = 1;
425 if (this->file == IMM &&
426 (this->type != BRW_REGISTER_TYPE_V &&
427 this->type != BRW_REGISTER_TYPE_UV &&
428 this->type != BRW_REGISTER_TYPE_VF)) {
429 this->stride = 0;
430 }
431 }
432
433 bool
434 fs_reg::equals(const fs_reg &r) const
435 {
436 return (this->backend_reg::equals(r) &&
437 stride == r.stride);
438 }
439
440 bool
441 fs_reg::is_contiguous() const
442 {
443 return stride == 1;
444 }
445
446 unsigned
447 fs_reg::component_size(unsigned width) const
448 {
449 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
450 hstride == 0 ? 0 :
451 1 << (hstride - 1));
452 return MAX2(width * stride, 1) * type_sz(type);
453 }
454
455 extern "C" int
456 type_size_scalar(const struct glsl_type *type)
457 {
458 unsigned int size, i;
459
460 switch (type->base_type) {
461 case GLSL_TYPE_UINT:
462 case GLSL_TYPE_INT:
463 case GLSL_TYPE_FLOAT:
464 case GLSL_TYPE_BOOL:
465 return type->components();
466 case GLSL_TYPE_UINT16:
467 case GLSL_TYPE_INT16:
468 case GLSL_TYPE_FLOAT16:
469 return DIV_ROUND_UP(type->components(), 2);
470 case GLSL_TYPE_DOUBLE:
471 case GLSL_TYPE_UINT64:
472 case GLSL_TYPE_INT64:
473 return type->components() * 2;
474 case GLSL_TYPE_ARRAY:
475 return type_size_scalar(type->fields.array) * type->length;
476 case GLSL_TYPE_STRUCT:
477 size = 0;
478 for (i = 0; i < type->length; i++) {
479 size += type_size_scalar(type->fields.structure[i].type);
480 }
481 return size;
482 case GLSL_TYPE_SAMPLER:
483 /* Samplers take up no register space, since they're baked in at
484 * link time.
485 */
486 return 0;
487 case GLSL_TYPE_ATOMIC_UINT:
488 return 0;
489 case GLSL_TYPE_SUBROUTINE:
490 return 1;
491 case GLSL_TYPE_IMAGE:
492 return BRW_IMAGE_PARAM_SIZE;
493 case GLSL_TYPE_VOID:
494 case GLSL_TYPE_ERROR:
495 case GLSL_TYPE_INTERFACE:
496 case GLSL_TYPE_FUNCTION:
497 unreachable("not reached");
498 }
499
500 return 0;
501 }
502
503 /**
504 * Create a MOV to read the timestamp register.
505 *
506 * The caller is responsible for emitting the MOV. The return value is
507 * the destination of the MOV, with extra parameters set.
508 */
509 fs_reg
510 fs_visitor::get_timestamp(const fs_builder &bld)
511 {
512 assert(devinfo->gen >= 7);
513
514 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
515 BRW_ARF_TIMESTAMP,
516 0),
517 BRW_REGISTER_TYPE_UD));
518
519 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
520
521 /* We want to read the 3 fields we care about even if it's not enabled in
522 * the dispatch.
523 */
524 bld.group(4, 0).exec_all().MOV(dst, ts);
525
526 return dst;
527 }
528
529 void
530 fs_visitor::emit_shader_time_begin()
531 {
532 /* We want only the low 32 bits of the timestamp. Since it's running
533 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
534 * which is plenty of time for our purposes. It is identical across the
535 * EUs, but since it's tracking GPU core speed it will increment at a
536 * varying rate as render P-states change.
537 */
538 shader_start_time = component(
539 get_timestamp(bld.annotate("shader time start")), 0);
540 }
541
542 void
543 fs_visitor::emit_shader_time_end()
544 {
545 /* Insert our code just before the final SEND with EOT. */
546 exec_node *end = this->instructions.get_tail();
547 assert(end && ((fs_inst *) end)->eot);
548 const fs_builder ibld = bld.annotate("shader time end")
549 .exec_all().at(NULL, end);
550 const fs_reg timestamp = get_timestamp(ibld);
551
552 /* We only use the low 32 bits of the timestamp - see
553 * emit_shader_time_begin()).
554 *
555 * We could also check if render P-states have changed (or anything
556 * else that might disrupt timing) by setting smear to 2 and checking if
557 * that field is != 0.
558 */
559 const fs_reg shader_end_time = component(timestamp, 0);
560
561 /* Check that there weren't any timestamp reset events (assuming these
562 * were the only two timestamp reads that happened).
563 */
564 const fs_reg reset = component(timestamp, 2);
565 set_condmod(BRW_CONDITIONAL_Z,
566 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
567 ibld.IF(BRW_PREDICATE_NORMAL);
568
569 fs_reg start = shader_start_time;
570 start.negate = true;
571 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
572 BRW_REGISTER_TYPE_UD),
573 0);
574 const fs_builder cbld = ibld.group(1, 0);
575 cbld.group(1, 0).ADD(diff, start, shader_end_time);
576
577 /* If there were no instructions between the two timestamp gets, the diff
578 * is 2 cycles. Remove that overhead, so I can forget about that when
579 * trying to determine the time taken for single instructions.
580 */
581 cbld.ADD(diff, diff, brw_imm_ud(-2u));
582 SHADER_TIME_ADD(cbld, 0, diff);
583 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
584 ibld.emit(BRW_OPCODE_ELSE);
585 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
586 ibld.emit(BRW_OPCODE_ENDIF);
587 }
588
589 void
590 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
591 int shader_time_subindex,
592 fs_reg value)
593 {
594 int index = shader_time_index * 3 + shader_time_subindex;
595 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
596
597 fs_reg payload;
598 if (dispatch_width == 8)
599 payload = vgrf(glsl_type::uvec2_type);
600 else
601 payload = vgrf(glsl_type::uint_type);
602
603 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
604 }
605
606 void
607 fs_visitor::vfail(const char *format, va_list va)
608 {
609 char *msg;
610
611 if (failed)
612 return;
613
614 failed = true;
615
616 msg = ralloc_vasprintf(mem_ctx, format, va);
617 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
618
619 this->fail_msg = msg;
620
621 if (debug_enabled) {
622 fprintf(stderr, "%s", msg);
623 }
624 }
625
626 void
627 fs_visitor::fail(const char *format, ...)
628 {
629 va_list va;
630
631 va_start(va, format);
632 vfail(format, va);
633 va_end(va);
634 }
635
636 /**
637 * Mark this program as impossible to compile with dispatch width greater
638 * than n.
639 *
640 * During the SIMD8 compile (which happens first), we can detect and flag
641 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
642 * SIMD16+ compile altogether.
643 *
644 * During a compile of dispatch width greater than n (if one happens anyway),
645 * this just calls fail().
646 */
647 void
648 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
649 {
650 if (dispatch_width > n) {
651 fail("%s", msg);
652 } else {
653 max_dispatch_width = n;
654 compiler->shader_perf_log(log_data,
655 "Shader dispatch width limited to SIMD%d: %s",
656 n, msg);
657 }
658 }
659
660 /**
661 * Returns true if the instruction has a flag that means it won't
662 * update an entire destination register.
663 *
664 * For example, dead code elimination and live variable analysis want to know
665 * when a write to a variable screens off any preceding values that were in
666 * it.
667 */
668 bool
669 fs_inst::is_partial_write() const
670 {
671 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
672 (this->exec_size * type_sz(this->dst.type)) < 32 ||
673 !this->dst.is_contiguous() ||
674 this->dst.offset % REG_SIZE != 0);
675 }
676
677 unsigned
678 fs_inst::components_read(unsigned i) const
679 {
680 /* Return zero if the source is not present. */
681 if (src[i].file == BAD_FILE)
682 return 0;
683
684 switch (opcode) {
685 case FS_OPCODE_LINTERP:
686 if (i == 0)
687 return 2;
688 else
689 return 1;
690
691 case FS_OPCODE_PIXEL_X:
692 case FS_OPCODE_PIXEL_Y:
693 assert(i == 0);
694 return 2;
695
696 case FS_OPCODE_FB_WRITE_LOGICAL:
697 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
698 /* First/second FB write color. */
699 if (i < 2)
700 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
701 else
702 return 1;
703
704 case SHADER_OPCODE_TEX_LOGICAL:
705 case SHADER_OPCODE_TXD_LOGICAL:
706 case SHADER_OPCODE_TXF_LOGICAL:
707 case SHADER_OPCODE_TXL_LOGICAL:
708 case SHADER_OPCODE_TXS_LOGICAL:
709 case FS_OPCODE_TXB_LOGICAL:
710 case SHADER_OPCODE_TXF_CMS_LOGICAL:
711 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
712 case SHADER_OPCODE_TXF_UMS_LOGICAL:
713 case SHADER_OPCODE_TXF_MCS_LOGICAL:
714 case SHADER_OPCODE_LOD_LOGICAL:
715 case SHADER_OPCODE_TG4_LOGICAL:
716 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
717 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
718 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
719 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
720 /* Texture coordinates. */
721 if (i == TEX_LOGICAL_SRC_COORDINATE)
722 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
723 /* Texture derivatives. */
724 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
725 opcode == SHADER_OPCODE_TXD_LOGICAL)
726 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
727 /* Texture offset. */
728 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
729 return 2;
730 /* MCS */
731 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
732 return 2;
733 else
734 return 1;
735
736 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
737 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
738 assert(src[3].file == IMM);
739 /* Surface coordinates. */
740 if (i == 0)
741 return src[3].ud;
742 /* Surface operation source (ignored for reads). */
743 else if (i == 1)
744 return 0;
745 else
746 return 1;
747
748 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
749 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
750 assert(src[3].file == IMM &&
751 src[4].file == IMM);
752 /* Surface coordinates. */
753 if (i == 0)
754 return src[3].ud;
755 /* Surface operation source. */
756 else if (i == 1)
757 return src[4].ud;
758 else
759 return 1;
760
761 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
762 /* Scattered logical opcodes use the following params:
763 * src[0] Surface coordinates
764 * src[1] Surface operation source (ignored for reads)
765 * src[2] Surface
766 * src[3] IMM with always 1 dimension.
767 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
768 */
769 assert(src[3].file == IMM &&
770 src[4].file == IMM);
771 return i == 1 ? 0 : 1;
772
773 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
774 assert(src[3].file == IMM &&
775 src[4].file == IMM);
776 return 1;
777
778 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
779 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
780 assert(src[3].file == IMM &&
781 src[4].file == IMM);
782 const unsigned op = src[4].ud;
783 /* Surface coordinates. */
784 if (i == 0)
785 return src[3].ud;
786 /* Surface operation source. */
787 else if (i == 1 && op == BRW_AOP_CMPWR)
788 return 2;
789 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
790 op == BRW_AOP_PREDEC))
791 return 0;
792 else
793 return 1;
794 }
795
796 default:
797 return 1;
798 }
799 }
800
801 unsigned
802 fs_inst::size_read(int arg) const
803 {
804 switch (opcode) {
805 case FS_OPCODE_FB_WRITE:
806 case FS_OPCODE_FB_READ:
807 case SHADER_OPCODE_URB_WRITE_SIMD8:
808 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
809 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
810 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
811 case SHADER_OPCODE_URB_READ_SIMD8:
812 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
813 case SHADER_OPCODE_UNTYPED_ATOMIC:
814 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
815 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
816 case SHADER_OPCODE_TYPED_ATOMIC:
817 case SHADER_OPCODE_TYPED_SURFACE_READ:
818 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
819 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
820 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
821 case SHADER_OPCODE_BYTE_SCATTERED_READ:
822 if (arg == 0)
823 return mlen * REG_SIZE;
824 break;
825
826 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
827 /* The payload is actually stored in src1 */
828 if (arg == 1)
829 return mlen * REG_SIZE;
830 break;
831
832 case FS_OPCODE_LINTERP:
833 if (arg == 1)
834 return 16;
835 break;
836
837 case SHADER_OPCODE_LOAD_PAYLOAD:
838 if (arg < this->header_size)
839 return REG_SIZE;
840 break;
841
842 case CS_OPCODE_CS_TERMINATE:
843 case SHADER_OPCODE_BARRIER:
844 return REG_SIZE;
845
846 case SHADER_OPCODE_MOV_INDIRECT:
847 if (arg == 0) {
848 assert(src[2].file == IMM);
849 return src[2].ud;
850 }
851 break;
852
853 default:
854 if (is_tex() && arg == 0 && src[0].file == VGRF)
855 return mlen * REG_SIZE;
856 break;
857 }
858
859 switch (src[arg].file) {
860 case UNIFORM:
861 case IMM:
862 return components_read(arg) * type_sz(src[arg].type);
863 case BAD_FILE:
864 case ARF:
865 case FIXED_GRF:
866 case VGRF:
867 case ATTR:
868 return components_read(arg) * src[arg].component_size(exec_size);
869 case MRF:
870 unreachable("MRF registers are not allowed as sources");
871 }
872 return 0;
873 }
874
875 namespace {
876 /* Return the subset of flag registers that an instruction could
877 * potentially read or write based on the execution controls and flag
878 * subregister number of the instruction.
879 */
880 unsigned
881 flag_mask(const fs_inst *inst)
882 {
883 const unsigned start = inst->flag_subreg * 16 + inst->group;
884 const unsigned end = start + inst->exec_size;
885 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
886 }
887
888 unsigned
889 bit_mask(unsigned n)
890 {
891 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
892 }
893
894 unsigned
895 flag_mask(const fs_reg &r, unsigned sz)
896 {
897 if (r.file == ARF) {
898 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
899 const unsigned end = start + sz;
900 return bit_mask(end) & ~bit_mask(start);
901 } else {
902 return 0;
903 }
904 }
905 }
906
907 unsigned
908 fs_inst::flags_read(const gen_device_info *devinfo) const
909 {
910 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
911 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
912 /* The vertical predication modes combine corresponding bits from
913 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
914 */
915 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
916 return flag_mask(this) << shift | flag_mask(this);
917 } else if (predicate) {
918 return flag_mask(this);
919 } else {
920 unsigned mask = 0;
921 for (int i = 0; i < sources; i++) {
922 mask |= flag_mask(src[i], size_read(i));
923 }
924 return mask;
925 }
926 }
927
928 unsigned
929 fs_inst::flags_written() const
930 {
931 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
932 opcode != BRW_OPCODE_IF &&
933 opcode != BRW_OPCODE_WHILE)) ||
934 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS ||
935 opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL) {
936 return flag_mask(this);
937 } else {
938 return flag_mask(dst, size_written);
939 }
940 }
941
942 /**
943 * Returns how many MRFs an FS opcode will write over.
944 *
945 * Note that this is not the 0 or 1 implied writes in an actual gen
946 * instruction -- the FS opcodes often generate MOVs in addition.
947 */
948 int
949 fs_visitor::implied_mrf_writes(fs_inst *inst) const
950 {
951 if (inst->mlen == 0)
952 return 0;
953
954 if (inst->base_mrf == -1)
955 return 0;
956
957 switch (inst->opcode) {
958 case SHADER_OPCODE_RCP:
959 case SHADER_OPCODE_RSQ:
960 case SHADER_OPCODE_SQRT:
961 case SHADER_OPCODE_EXP2:
962 case SHADER_OPCODE_LOG2:
963 case SHADER_OPCODE_SIN:
964 case SHADER_OPCODE_COS:
965 return 1 * dispatch_width / 8;
966 case SHADER_OPCODE_POW:
967 case SHADER_OPCODE_INT_QUOTIENT:
968 case SHADER_OPCODE_INT_REMAINDER:
969 return 2 * dispatch_width / 8;
970 case SHADER_OPCODE_TEX:
971 case FS_OPCODE_TXB:
972 case SHADER_OPCODE_TXD:
973 case SHADER_OPCODE_TXF:
974 case SHADER_OPCODE_TXF_CMS:
975 case SHADER_OPCODE_TXF_MCS:
976 case SHADER_OPCODE_TG4:
977 case SHADER_OPCODE_TG4_OFFSET:
978 case SHADER_OPCODE_TXL:
979 case SHADER_OPCODE_TXS:
980 case SHADER_OPCODE_LOD:
981 case SHADER_OPCODE_SAMPLEINFO:
982 return 1;
983 case FS_OPCODE_FB_WRITE:
984 return 2;
985 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
986 case SHADER_OPCODE_GEN4_SCRATCH_READ:
987 return 1;
988 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
989 return inst->mlen;
990 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
991 return inst->mlen;
992 default:
993 unreachable("not reached");
994 }
995 }
996
997 fs_reg
998 fs_visitor::vgrf(const glsl_type *const type)
999 {
1000 int reg_width = dispatch_width / 8;
1001 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
1002 brw_type_for_base_type(type));
1003 }
1004
1005 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1006 {
1007 init();
1008 this->file = file;
1009 this->nr = nr;
1010 this->type = BRW_REGISTER_TYPE_F;
1011 this->stride = (file == UNIFORM ? 0 : 1);
1012 }
1013
1014 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1015 {
1016 init();
1017 this->file = file;
1018 this->nr = nr;
1019 this->type = type;
1020 this->stride = (file == UNIFORM ? 0 : 1);
1021 }
1022
1023 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1024 * This brings in those uniform definitions
1025 */
1026 void
1027 fs_visitor::import_uniforms(fs_visitor *v)
1028 {
1029 this->push_constant_loc = v->push_constant_loc;
1030 this->pull_constant_loc = v->pull_constant_loc;
1031 this->uniforms = v->uniforms;
1032 this->subgroup_id = v->subgroup_id;
1033 }
1034
1035 void
1036 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1037 {
1038 assert(stage == MESA_SHADER_FRAGMENT);
1039
1040 /* gl_FragCoord.x */
1041 bld.MOV(wpos, this->pixel_x);
1042 wpos = offset(wpos, bld, 1);
1043
1044 /* gl_FragCoord.y */
1045 bld.MOV(wpos, this->pixel_y);
1046 wpos = offset(wpos, bld, 1);
1047
1048 /* gl_FragCoord.z */
1049 if (devinfo->gen >= 6) {
1050 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1051 } else {
1052 bld.emit(FS_OPCODE_LINTERP, wpos,
1053 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1054 interp_reg(VARYING_SLOT_POS, 2));
1055 }
1056 wpos = offset(wpos, bld, 1);
1057
1058 /* gl_FragCoord.w: Already set up in emit_interpolation */
1059 bld.MOV(wpos, this->wpos_w);
1060 }
1061
1062 enum brw_barycentric_mode
1063 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1064 {
1065 /* Barycentric modes don't make sense for flat inputs. */
1066 assert(mode != INTERP_MODE_FLAT);
1067
1068 unsigned bary;
1069 switch (op) {
1070 case nir_intrinsic_load_barycentric_pixel:
1071 case nir_intrinsic_load_barycentric_at_offset:
1072 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1073 break;
1074 case nir_intrinsic_load_barycentric_centroid:
1075 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1076 break;
1077 case nir_intrinsic_load_barycentric_sample:
1078 case nir_intrinsic_load_barycentric_at_sample:
1079 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1080 break;
1081 default:
1082 unreachable("invalid intrinsic");
1083 }
1084
1085 if (mode == INTERP_MODE_NOPERSPECTIVE)
1086 bary += 3;
1087
1088 return (enum brw_barycentric_mode) bary;
1089 }
1090
1091 /**
1092 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1093 */
1094 static enum brw_barycentric_mode
1095 centroid_to_pixel(enum brw_barycentric_mode bary)
1096 {
1097 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1098 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1099 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1100 }
1101
1102 fs_reg *
1103 fs_visitor::emit_frontfacing_interpolation()
1104 {
1105 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1106
1107 if (devinfo->gen >= 6) {
1108 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1109 * a boolean result from this (~0/true or 0/false).
1110 *
1111 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1112 * this task in only one instruction:
1113 * - a negation source modifier will flip the bit; and
1114 * - a W -> D type conversion will sign extend the bit into the high
1115 * word of the destination.
1116 *
1117 * An ASR 15 fills the low word of the destination.
1118 */
1119 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1120 g0.negate = true;
1121
1122 bld.ASR(*reg, g0, brw_imm_d(15));
1123 } else {
1124 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1125 * a boolean result from this (1/true or 0/false).
1126 *
1127 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1128 * the negation source modifier to flip it. Unfortunately the SHR
1129 * instruction only operates on UD (or D with an abs source modifier)
1130 * sources without negation.
1131 *
1132 * Instead, use ASR (which will give ~0/true or 0/false).
1133 */
1134 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1135 g1_6.negate = true;
1136
1137 bld.ASR(*reg, g1_6, brw_imm_d(31));
1138 }
1139
1140 return reg;
1141 }
1142
1143 void
1144 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1145 {
1146 assert(stage == MESA_SHADER_FRAGMENT);
1147 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1148 assert(dst.type == BRW_REGISTER_TYPE_F);
1149
1150 if (wm_prog_data->persample_dispatch) {
1151 /* Convert int_sample_pos to floating point */
1152 bld.MOV(dst, int_sample_pos);
1153 /* Scale to the range [0, 1] */
1154 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1155 }
1156 else {
1157 /* From ARB_sample_shading specification:
1158 * "When rendering to a non-multisample buffer, or if multisample
1159 * rasterization is disabled, gl_SamplePosition will always be
1160 * (0.5, 0.5).
1161 */
1162 bld.MOV(dst, brw_imm_f(0.5f));
1163 }
1164 }
1165
1166 fs_reg *
1167 fs_visitor::emit_samplepos_setup()
1168 {
1169 assert(devinfo->gen >= 6);
1170
1171 const fs_builder abld = bld.annotate("compute sample position");
1172 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1173 fs_reg pos = *reg;
1174 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1175 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1176
1177 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1178 * mode will be enabled.
1179 *
1180 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1181 * R31.1:0 Position Offset X/Y for Slot[3:0]
1182 * R31.3:2 Position Offset X/Y for Slot[7:4]
1183 * .....
1184 *
1185 * The X, Y sample positions come in as bytes in thread payload. So, read
1186 * the positions using vstride=16, width=8, hstride=2.
1187 */
1188 struct brw_reg sample_pos_reg =
1189 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1190 BRW_REGISTER_TYPE_B), 16, 8, 2);
1191
1192 if (dispatch_width == 8) {
1193 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1194 } else {
1195 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1196 abld.half(1).MOV(half(int_sample_x, 1),
1197 fs_reg(suboffset(sample_pos_reg, 16)));
1198 }
1199 /* Compute gl_SamplePosition.x */
1200 compute_sample_position(pos, int_sample_x);
1201 pos = offset(pos, abld, 1);
1202 if (dispatch_width == 8) {
1203 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1204 } else {
1205 abld.half(0).MOV(half(int_sample_y, 0),
1206 fs_reg(suboffset(sample_pos_reg, 1)));
1207 abld.half(1).MOV(half(int_sample_y, 1),
1208 fs_reg(suboffset(sample_pos_reg, 17)));
1209 }
1210 /* Compute gl_SamplePosition.y */
1211 compute_sample_position(pos, int_sample_y);
1212 return reg;
1213 }
1214
1215 fs_reg *
1216 fs_visitor::emit_sampleid_setup()
1217 {
1218 assert(stage == MESA_SHADER_FRAGMENT);
1219 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1220 assert(devinfo->gen >= 6);
1221
1222 const fs_builder abld = bld.annotate("compute sample id");
1223 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1224
1225 if (!key->multisample_fbo) {
1226 /* As per GL_ARB_sample_shading specification:
1227 * "When rendering to a non-multisample buffer, or if multisample
1228 * rasterization is disabled, gl_SampleID will always be zero."
1229 */
1230 abld.MOV(*reg, brw_imm_d(0));
1231 } else if (devinfo->gen >= 8) {
1232 /* Sample ID comes in as 4-bit numbers in g1.0:
1233 *
1234 * 15:12 Slot 3 SampleID (only used in SIMD16)
1235 * 11:8 Slot 2 SampleID (only used in SIMD16)
1236 * 7:4 Slot 1 SampleID
1237 * 3:0 Slot 0 SampleID
1238 *
1239 * Each slot corresponds to four channels, so we want to replicate each
1240 * half-byte value to 4 channels in a row:
1241 *
1242 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1243 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1244 *
1245 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1246 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1247 *
1248 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1249 * channels to read the first byte (7:0), and the second group of 8
1250 * channels to read the second byte (15:8). Then, we shift right by
1251 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1252 * values into place. Finally, we AND with 0xf to keep the low nibble.
1253 *
1254 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1255 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1256 *
1257 * TODO: These payload bits exist on Gen7 too, but they appear to always
1258 * be zero, so this code fails to work. We should find out why.
1259 */
1260 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UW);
1261
1262 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1263 BRW_REGISTER_TYPE_UB), 1, 8, 0)),
1264 brw_imm_v(0x44440000));
1265 abld.AND(*reg, tmp, brw_imm_w(0xf));
1266 } else {
1267 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1268 BRW_REGISTER_TYPE_UD), 0);
1269 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UW);
1270
1271 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1272 * 8x multisampling, subspan 0 will represent sample N (where N
1273 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1274 * 7. We can find the value of N by looking at R0.0 bits 7:6
1275 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1276 * (since samples are always delivered in pairs). That is, we
1277 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1278 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1279 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1280 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1281 * populating a temporary variable with the sequence (0, 1, 2, 3),
1282 * and then reading from it using vstride=1, width=4, hstride=0.
1283 * These computations hold good for 4x multisampling as well.
1284 *
1285 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1286 * the first four slots are sample 0 of subspan 0; the next four
1287 * are sample 1 of subspan 0; the third group is sample 0 of
1288 * subspan 1, and finally sample 1 of subspan 1.
1289 */
1290
1291 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1292 * accomodate 16x MSAA.
1293 */
1294 abld.exec_all().group(1, 0)
1295 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1296 brw_imm_ud(0xc0));
1297 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1298
1299 /* This works for both SIMD8 and SIMD16 */
1300 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1301
1302 /* This special instruction takes care of setting vstride=1,
1303 * width=4, hstride=0 of t2 during an ADD instruction.
1304 */
1305 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1306 }
1307
1308 return reg;
1309 }
1310
1311 fs_reg *
1312 fs_visitor::emit_samplemaskin_setup()
1313 {
1314 assert(stage == MESA_SHADER_FRAGMENT);
1315 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1316 assert(devinfo->gen >= 6);
1317
1318 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1319
1320 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1321 BRW_REGISTER_TYPE_D));
1322
1323 if (wm_prog_data->persample_dispatch) {
1324 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1325 * and a mask representing which sample is being processed by the
1326 * current shader invocation.
1327 *
1328 * From the OES_sample_variables specification:
1329 * "When per-sample shading is active due to the use of a fragment input
1330 * qualified by "sample" or due to the use of the gl_SampleID or
1331 * gl_SamplePosition variables, only the bit for the current sample is
1332 * set in gl_SampleMaskIn."
1333 */
1334 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1335
1336 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1337 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1338
1339 fs_reg one = vgrf(glsl_type::int_type);
1340 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1341 abld.MOV(one, brw_imm_d(1));
1342 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1343 abld.AND(*reg, enabled_mask, coverage_mask);
1344 } else {
1345 /* In per-pixel mode, the coverage mask is sufficient. */
1346 *reg = coverage_mask;
1347 }
1348 return reg;
1349 }
1350
1351 fs_reg
1352 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1353 {
1354 if (!src.abs && !src.negate)
1355 return src;
1356
1357 fs_reg temp = bld.vgrf(src.type);
1358 bld.MOV(temp, src);
1359
1360 return temp;
1361 }
1362
1363 void
1364 fs_visitor::emit_discard_jump()
1365 {
1366 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1367
1368 /* For performance, after a discard, jump to the end of the
1369 * shader if all relevant channels have been discarded.
1370 */
1371 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1372 discard_jump->flag_subreg = 1;
1373
1374 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1375 discard_jump->predicate_inverse = true;
1376 }
1377
1378 void
1379 fs_visitor::emit_gs_thread_end()
1380 {
1381 assert(stage == MESA_SHADER_GEOMETRY);
1382
1383 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1384
1385 if (gs_compile->control_data_header_size_bits > 0) {
1386 emit_gs_control_data_bits(this->final_gs_vertex_count);
1387 }
1388
1389 const fs_builder abld = bld.annotate("thread end");
1390 fs_inst *inst;
1391
1392 if (gs_prog_data->static_vertex_count != -1) {
1393 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1394 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1395 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1396 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1397 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1398 prev->eot = true;
1399
1400 /* Delete now dead instructions. */
1401 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1402 if (dead == prev)
1403 break;
1404 dead->remove();
1405 }
1406 return;
1407 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1408 break;
1409 }
1410 }
1411 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1412 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1413 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1414 inst->mlen = 1;
1415 } else {
1416 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1417 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1418 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1419 sources[1] = this->final_gs_vertex_count;
1420 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1421 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1422 inst->mlen = 2;
1423 }
1424 inst->eot = true;
1425 inst->offset = 0;
1426 }
1427
1428 void
1429 fs_visitor::assign_curb_setup()
1430 {
1431 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1432
1433 unsigned ubo_push_length = 0;
1434 unsigned ubo_push_start[4];
1435 for (int i = 0; i < 4; i++) {
1436 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1437 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1438 }
1439
1440 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1441
1442 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1443 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1444 for (unsigned int i = 0; i < inst->sources; i++) {
1445 if (inst->src[i].file == UNIFORM) {
1446 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1447 int constant_nr;
1448 if (inst->src[i].nr >= UBO_START) {
1449 /* constant_nr is in 32-bit units, the rest are in bytes */
1450 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1451 inst->src[i].offset / 4;
1452 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1453 constant_nr = push_constant_loc[uniform_nr];
1454 } else {
1455 /* Section 5.11 of the OpenGL 4.1 spec says:
1456 * "Out-of-bounds reads return undefined values, which include
1457 * values from other variables of the active program or zero."
1458 * Just return the first push constant.
1459 */
1460 constant_nr = 0;
1461 }
1462
1463 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1464 constant_nr / 8,
1465 constant_nr % 8);
1466 brw_reg.abs = inst->src[i].abs;
1467 brw_reg.negate = inst->src[i].negate;
1468
1469 assert(inst->src[i].stride == 0);
1470 inst->src[i] = byte_offset(
1471 retype(brw_reg, inst->src[i].type),
1472 inst->src[i].offset % 4);
1473 }
1474 }
1475 }
1476
1477 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1478 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1479 }
1480
1481 void
1482 fs_visitor::calculate_urb_setup()
1483 {
1484 assert(stage == MESA_SHADER_FRAGMENT);
1485 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1486 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1487
1488 memset(prog_data->urb_setup, -1,
1489 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1490
1491 int urb_next = 0;
1492 /* Figure out where each of the incoming setup attributes lands. */
1493 if (devinfo->gen >= 6) {
1494 if (_mesa_bitcount_64(nir->info.inputs_read &
1495 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1496 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1497 * first 16 varying inputs, so we can put them wherever we want.
1498 * Just put them in order.
1499 *
1500 * This is useful because it means that (a) inputs not used by the
1501 * fragment shader won't take up valuable register space, and (b) we
1502 * won't have to recompile the fragment shader if it gets paired with
1503 * a different vertex (or geometry) shader.
1504 */
1505 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1506 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1507 BITFIELD64_BIT(i)) {
1508 prog_data->urb_setup[i] = urb_next++;
1509 }
1510 }
1511 } else {
1512 /* We have enough input varyings that the SF/SBE pipeline stage can't
1513 * arbitrarily rearrange them to suit our whim; we have to put them
1514 * in an order that matches the output of the previous pipeline stage
1515 * (geometry or vertex shader).
1516 */
1517 struct brw_vue_map prev_stage_vue_map;
1518 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1519 key->input_slots_valid,
1520 nir->info.separate_shader);
1521
1522 int first_slot =
1523 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1524 &prev_stage_vue_map);
1525
1526 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1527 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1528 slot++) {
1529 int varying = prev_stage_vue_map.slot_to_varying[slot];
1530 if (varying != BRW_VARYING_SLOT_PAD &&
1531 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1532 BITFIELD64_BIT(varying))) {
1533 prog_data->urb_setup[varying] = slot - first_slot;
1534 }
1535 }
1536 urb_next = prev_stage_vue_map.num_slots - first_slot;
1537 }
1538 } else {
1539 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1540 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1541 /* Point size is packed into the header, not as a general attribute */
1542 if (i == VARYING_SLOT_PSIZ)
1543 continue;
1544
1545 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1546 /* The back color slot is skipped when the front color is
1547 * also written to. In addition, some slots can be
1548 * written in the vertex shader and not read in the
1549 * fragment shader. So the register number must always be
1550 * incremented, mapped or not.
1551 */
1552 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1553 prog_data->urb_setup[i] = urb_next;
1554 urb_next++;
1555 }
1556 }
1557
1558 /*
1559 * It's a FS only attribute, and we did interpolation for this attribute
1560 * in SF thread. So, count it here, too.
1561 *
1562 * See compile_sf_prog() for more info.
1563 */
1564 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1565 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1566 }
1567
1568 prog_data->num_varying_inputs = urb_next;
1569 }
1570
1571 void
1572 fs_visitor::assign_urb_setup()
1573 {
1574 assert(stage == MESA_SHADER_FRAGMENT);
1575 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1576
1577 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1578
1579 /* Offset all the urb_setup[] index by the actual position of the
1580 * setup regs, now that the location of the constants has been chosen.
1581 */
1582 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1583 if (inst->opcode == FS_OPCODE_LINTERP) {
1584 assert(inst->src[1].file == FIXED_GRF);
1585 inst->src[1].nr += urb_start;
1586 }
1587
1588 if (inst->opcode == FS_OPCODE_CINTERP) {
1589 assert(inst->src[0].file == FIXED_GRF);
1590 inst->src[0].nr += urb_start;
1591 }
1592 }
1593
1594 /* Each attribute is 4 setup channels, each of which is half a reg. */
1595 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1596 }
1597
1598 void
1599 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1600 {
1601 for (int i = 0; i < inst->sources; i++) {
1602 if (inst->src[i].file == ATTR) {
1603 int grf = payload.num_regs +
1604 prog_data->curb_read_length +
1605 inst->src[i].nr +
1606 inst->src[i].offset / REG_SIZE;
1607
1608 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1609 *
1610 * VertStride must be used to cross GRF register boundaries. This
1611 * rule implies that elements within a 'Width' cannot cross GRF
1612 * boundaries.
1613 *
1614 * So, for registers that are large enough, we have to split the exec
1615 * size in two and trust the compression state to sort it out.
1616 */
1617 unsigned total_size = inst->exec_size *
1618 inst->src[i].stride *
1619 type_sz(inst->src[i].type);
1620
1621 assert(total_size <= 2 * REG_SIZE);
1622 const unsigned exec_size =
1623 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1624
1625 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1626 struct brw_reg reg =
1627 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1628 inst->src[i].offset % REG_SIZE),
1629 exec_size * inst->src[i].stride,
1630 width, inst->src[i].stride);
1631 reg.abs = inst->src[i].abs;
1632 reg.negate = inst->src[i].negate;
1633
1634 inst->src[i] = reg;
1635 }
1636 }
1637 }
1638
1639 void
1640 fs_visitor::assign_vs_urb_setup()
1641 {
1642 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1643
1644 assert(stage == MESA_SHADER_VERTEX);
1645
1646 /* Each attribute is 4 regs. */
1647 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1648
1649 assert(vs_prog_data->base.urb_read_length <= 15);
1650
1651 /* Rewrite all ATTR file references to the hw grf that they land in. */
1652 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1653 convert_attr_sources_to_hw_regs(inst);
1654 }
1655 }
1656
1657 void
1658 fs_visitor::assign_tcs_single_patch_urb_setup()
1659 {
1660 assert(stage == MESA_SHADER_TESS_CTRL);
1661
1662 /* Rewrite all ATTR file references to HW_REGs. */
1663 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1664 convert_attr_sources_to_hw_regs(inst);
1665 }
1666 }
1667
1668 void
1669 fs_visitor::assign_tes_urb_setup()
1670 {
1671 assert(stage == MESA_SHADER_TESS_EVAL);
1672
1673 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1674
1675 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1676
1677 /* Rewrite all ATTR file references to HW_REGs. */
1678 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1679 convert_attr_sources_to_hw_regs(inst);
1680 }
1681 }
1682
1683 void
1684 fs_visitor::assign_gs_urb_setup()
1685 {
1686 assert(stage == MESA_SHADER_GEOMETRY);
1687
1688 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1689
1690 first_non_payload_grf +=
1691 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1692
1693 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1694 /* Rewrite all ATTR file references to GRFs. */
1695 convert_attr_sources_to_hw_regs(inst);
1696 }
1697 }
1698
1699
1700 /**
1701 * Split large virtual GRFs into separate components if we can.
1702 *
1703 * This is mostly duplicated with what brw_fs_vector_splitting does,
1704 * but that's really conservative because it's afraid of doing
1705 * splitting that doesn't result in real progress after the rest of
1706 * the optimization phases, which would cause infinite looping in
1707 * optimization. We can do it once here, safely. This also has the
1708 * opportunity to split interpolated values, or maybe even uniforms,
1709 * which we don't have at the IR level.
1710 *
1711 * We want to split, because virtual GRFs are what we register
1712 * allocate and spill (due to contiguousness requirements for some
1713 * instructions), and they're what we naturally generate in the
1714 * codegen process, but most virtual GRFs don't actually need to be
1715 * contiguous sets of GRFs. If we split, we'll end up with reduced
1716 * live intervals and better dead code elimination and coalescing.
1717 */
1718 void
1719 fs_visitor::split_virtual_grfs()
1720 {
1721 /* Compact the register file so we eliminate dead vgrfs. This
1722 * only defines split points for live registers, so if we have
1723 * too large dead registers they will hit assertions later.
1724 */
1725 compact_virtual_grfs();
1726
1727 int num_vars = this->alloc.count;
1728
1729 /* Count the total number of registers */
1730 int reg_count = 0;
1731 int vgrf_to_reg[num_vars];
1732 for (int i = 0; i < num_vars; i++) {
1733 vgrf_to_reg[i] = reg_count;
1734 reg_count += alloc.sizes[i];
1735 }
1736
1737 /* An array of "split points". For each register slot, this indicates
1738 * if this slot can be separated from the previous slot. Every time an
1739 * instruction uses multiple elements of a register (as a source or
1740 * destination), we mark the used slots as inseparable. Then we go
1741 * through and split the registers into the smallest pieces we can.
1742 */
1743 bool split_points[reg_count];
1744 memset(split_points, 0, sizeof(split_points));
1745
1746 /* Mark all used registers as fully splittable */
1747 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1748 if (inst->dst.file == VGRF) {
1749 int reg = vgrf_to_reg[inst->dst.nr];
1750 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1751 split_points[reg + j] = true;
1752 }
1753
1754 for (int i = 0; i < inst->sources; i++) {
1755 if (inst->src[i].file == VGRF) {
1756 int reg = vgrf_to_reg[inst->src[i].nr];
1757 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1758 split_points[reg + j] = true;
1759 }
1760 }
1761 }
1762
1763 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1764 if (inst->dst.file == VGRF) {
1765 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1766 for (unsigned j = 1; j < regs_written(inst); j++)
1767 split_points[reg + j] = false;
1768 }
1769 for (int i = 0; i < inst->sources; i++) {
1770 if (inst->src[i].file == VGRF) {
1771 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1772 for (unsigned j = 1; j < regs_read(inst, i); j++)
1773 split_points[reg + j] = false;
1774 }
1775 }
1776 }
1777
1778 int new_virtual_grf[reg_count];
1779 int new_reg_offset[reg_count];
1780
1781 int reg = 0;
1782 for (int i = 0; i < num_vars; i++) {
1783 /* The first one should always be 0 as a quick sanity check. */
1784 assert(split_points[reg] == false);
1785
1786 /* j = 0 case */
1787 new_reg_offset[reg] = 0;
1788 reg++;
1789 int offset = 1;
1790
1791 /* j > 0 case */
1792 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1793 /* If this is a split point, reset the offset to 0 and allocate a
1794 * new virtual GRF for the previous offset many registers
1795 */
1796 if (split_points[reg]) {
1797 assert(offset <= MAX_VGRF_SIZE);
1798 int grf = alloc.allocate(offset);
1799 for (int k = reg - offset; k < reg; k++)
1800 new_virtual_grf[k] = grf;
1801 offset = 0;
1802 }
1803 new_reg_offset[reg] = offset;
1804 offset++;
1805 reg++;
1806 }
1807
1808 /* The last one gets the original register number */
1809 assert(offset <= MAX_VGRF_SIZE);
1810 alloc.sizes[i] = offset;
1811 for (int k = reg - offset; k < reg; k++)
1812 new_virtual_grf[k] = i;
1813 }
1814 assert(reg == reg_count);
1815
1816 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1817 if (inst->dst.file == VGRF) {
1818 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1819 inst->dst.nr = new_virtual_grf[reg];
1820 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1821 inst->dst.offset % REG_SIZE;
1822 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1823 }
1824 for (int i = 0; i < inst->sources; i++) {
1825 if (inst->src[i].file == VGRF) {
1826 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1827 inst->src[i].nr = new_virtual_grf[reg];
1828 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1829 inst->src[i].offset % REG_SIZE;
1830 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1831 }
1832 }
1833 }
1834 invalidate_live_intervals();
1835 }
1836
1837 /**
1838 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1839 *
1840 * During code generation, we create tons of temporary variables, many of
1841 * which get immediately killed and are never used again. Yet, in later
1842 * optimization and analysis passes, such as compute_live_intervals, we need
1843 * to loop over all the virtual GRFs. Compacting them can save a lot of
1844 * overhead.
1845 */
1846 bool
1847 fs_visitor::compact_virtual_grfs()
1848 {
1849 bool progress = false;
1850 int remap_table[this->alloc.count];
1851 memset(remap_table, -1, sizeof(remap_table));
1852
1853 /* Mark which virtual GRFs are used. */
1854 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1855 if (inst->dst.file == VGRF)
1856 remap_table[inst->dst.nr] = 0;
1857
1858 for (int i = 0; i < inst->sources; i++) {
1859 if (inst->src[i].file == VGRF)
1860 remap_table[inst->src[i].nr] = 0;
1861 }
1862 }
1863
1864 /* Compact the GRF arrays. */
1865 int new_index = 0;
1866 for (unsigned i = 0; i < this->alloc.count; i++) {
1867 if (remap_table[i] == -1) {
1868 /* We just found an unused register. This means that we are
1869 * actually going to compact something.
1870 */
1871 progress = true;
1872 } else {
1873 remap_table[i] = new_index;
1874 alloc.sizes[new_index] = alloc.sizes[i];
1875 invalidate_live_intervals();
1876 ++new_index;
1877 }
1878 }
1879
1880 this->alloc.count = new_index;
1881
1882 /* Patch all the instructions to use the newly renumbered registers */
1883 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1884 if (inst->dst.file == VGRF)
1885 inst->dst.nr = remap_table[inst->dst.nr];
1886
1887 for (int i = 0; i < inst->sources; i++) {
1888 if (inst->src[i].file == VGRF)
1889 inst->src[i].nr = remap_table[inst->src[i].nr];
1890 }
1891 }
1892
1893 /* Patch all the references to delta_xy, since they're used in register
1894 * allocation. If they're unused, switch them to BAD_FILE so we don't
1895 * think some random VGRF is delta_xy.
1896 */
1897 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1898 if (delta_xy[i].file == VGRF) {
1899 if (remap_table[delta_xy[i].nr] != -1) {
1900 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1901 } else {
1902 delta_xy[i].file = BAD_FILE;
1903 }
1904 }
1905 }
1906
1907 return progress;
1908 }
1909
1910 static int
1911 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
1912 {
1913 if (prog_data->nr_params == 0)
1914 return -1;
1915
1916 /* The local thread id is always the last parameter in the list */
1917 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
1918 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
1919 return prog_data->nr_params - 1;
1920
1921 return -1;
1922 }
1923
1924 /**
1925 * Struct for handling complex alignments.
1926 *
1927 * A complex alignment is stored as multiplier and an offset. A value is
1928 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
1929 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
1930 * following:
1931 *
1932 * N | cplx_align_apply({8, 2}, N)
1933 * ----+-----------------------------
1934 * 4 | 6
1935 * 6 | 6
1936 * 8 | 14
1937 * 10 | 14
1938 * 12 | 14
1939 * 14 | 14
1940 * 16 | 22
1941 */
1942 struct cplx_align {
1943 unsigned mul:4;
1944 unsigned offset:4;
1945 };
1946
1947 #define CPLX_ALIGN_MAX_MUL 8
1948
1949 static void
1950 cplx_align_assert_sane(struct cplx_align a)
1951 {
1952 assert(a.mul > 0 && util_is_power_of_two(a.mul));
1953 assert(a.offset < a.mul);
1954 }
1955
1956 /**
1957 * Combines two alignments to produce a least multiple of sorts.
1958 *
1959 * The returned alignment is the smallest (in terms of multiplier) such that
1960 * anything aligned to both a and b will be aligned to the new alignment.
1961 * This function will assert-fail if a and b are not compatible, i.e. if the
1962 * offset parameters are such that no common alignment is possible.
1963 */
1964 static struct cplx_align
1965 cplx_align_combine(struct cplx_align a, struct cplx_align b)
1966 {
1967 cplx_align_assert_sane(a);
1968 cplx_align_assert_sane(b);
1969
1970 /* Assert that the alignments agree. */
1971 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
1972
1973 return a.mul > b.mul ? a : b;
1974 }
1975
1976 /**
1977 * Apply a complex alignment
1978 *
1979 * This function will return the smallest number greater than or equal to
1980 * offset that is aligned to align.
1981 */
1982 static unsigned
1983 cplx_align_apply(struct cplx_align align, unsigned offset)
1984 {
1985 return ALIGN(offset - align.offset, align.mul) + align.offset;
1986 }
1987
1988 #define UNIFORM_SLOT_SIZE 4
1989
1990 struct uniform_slot_info {
1991 /** True if the given uniform slot is live */
1992 unsigned is_live:1;
1993
1994 /** True if this slot and the next slot must remain contiguous */
1995 unsigned contiguous:1;
1996
1997 struct cplx_align align;
1998 };
1999
2000 static void
2001 mark_uniform_slots_read(struct uniform_slot_info *slots,
2002 unsigned num_slots, unsigned alignment)
2003 {
2004 assert(alignment > 0 && util_is_power_of_two(alignment));
2005 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2006
2007 /* We can't align a slot to anything less than the slot size */
2008 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2009
2010 struct cplx_align align = {alignment, 0};
2011 cplx_align_assert_sane(align);
2012
2013 for (unsigned i = 0; i < num_slots; i++) {
2014 slots[i].is_live = true;
2015 if (i < num_slots - 1)
2016 slots[i].contiguous = true;
2017
2018 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2019 if (slots[i].align.mul == 0) {
2020 slots[i].align = align;
2021 } else {
2022 slots[i].align = cplx_align_combine(slots[i].align, align);
2023 }
2024 }
2025 }
2026
2027 /**
2028 * Assign UNIFORM file registers to either push constants or pull constants.
2029 *
2030 * We allow a fragment shader to have more than the specified minimum
2031 * maximum number of fragment shader uniform components (64). If
2032 * there are too many of these, they'd fill up all of register space.
2033 * So, this will push some of them out to the pull constant buffer and
2034 * update the program to load them.
2035 */
2036 void
2037 fs_visitor::assign_constant_locations()
2038 {
2039 /* Only the first compile gets to decide on locations. */
2040 if (push_constant_loc) {
2041 assert(pull_constant_loc);
2042 return;
2043 }
2044
2045 struct uniform_slot_info slots[uniforms];
2046 memset(slots, 0, sizeof(slots));
2047
2048 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2049 for (int i = 0 ; i < inst->sources; i++) {
2050 if (inst->src[i].file != UNIFORM)
2051 continue;
2052
2053 /* NIR tightly packs things so the uniform number might not be
2054 * aligned (if we have a double right after a float, for instance).
2055 * This is fine because the process of re-arranging them will ensure
2056 * that things are properly aligned. The offset into that uniform,
2057 * however, must be aligned.
2058 *
2059 * In Vulkan, we have explicit offsets but everything is crammed
2060 * into a single "variable" so inst->src[i].nr will always be 0.
2061 * Everything will be properly aligned relative to that one base.
2062 */
2063 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2064
2065 unsigned u = inst->src[i].nr +
2066 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2067
2068 if (u >= uniforms)
2069 continue;
2070
2071 unsigned slots_read;
2072 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2073 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2074 } else {
2075 unsigned bytes_read = inst->components_read(i) *
2076 type_sz(inst->src[i].type);
2077 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2078 }
2079
2080 assert(u + slots_read <= uniforms);
2081 mark_uniform_slots_read(&slots[u], slots_read,
2082 type_sz(inst->src[i].type));
2083 }
2084 }
2085
2086 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2087
2088 /* Only allow 16 registers (128 uniform components) as push constants.
2089 *
2090 * Just demote the end of the list. We could probably do better
2091 * here, demoting things that are rarely used in the program first.
2092 *
2093 * If changing this value, note the limitation about total_regs in
2094 * brw_curbe.c.
2095 */
2096 unsigned int max_push_components = 16 * 8;
2097 if (subgroup_id_index >= 0)
2098 max_push_components--; /* Save a slot for the thread ID */
2099
2100 /* We push small arrays, but no bigger than 16 floats. This is big enough
2101 * for a vec4 but hopefully not large enough to push out other stuff. We
2102 * should probably use a better heuristic at some point.
2103 */
2104 const unsigned int max_chunk_size = 16;
2105
2106 unsigned int num_push_constants = 0;
2107 unsigned int num_pull_constants = 0;
2108
2109 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2110 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2111
2112 /* Default to -1 meaning no location */
2113 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2114 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2115
2116 int chunk_start = -1;
2117 struct cplx_align align;
2118 for (unsigned u = 0; u < uniforms; u++) {
2119 if (!slots[u].is_live) {
2120 assert(chunk_start == -1);
2121 continue;
2122 }
2123
2124 /* Skip subgroup_id_index to put it in the last push register. */
2125 if (subgroup_id_index == (int)u)
2126 continue;
2127
2128 if (chunk_start == -1) {
2129 chunk_start = u;
2130 align = slots[u].align;
2131 } else {
2132 /* Offset into the chunk */
2133 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2134
2135 /* Shift the slot alignment down by the chunk offset so it is
2136 * comparable with the base chunk alignment.
2137 */
2138 struct cplx_align slot_align = slots[u].align;
2139 slot_align.offset =
2140 (slot_align.offset - chunk_offset) & (align.mul - 1);
2141
2142 align = cplx_align_combine(align, slot_align);
2143 }
2144
2145 /* Sanity check the alignment */
2146 cplx_align_assert_sane(align);
2147
2148 if (slots[u].contiguous)
2149 continue;
2150
2151 /* Adjust the alignment to be in terms of slots, not bytes */
2152 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2153 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2154 align.mul /= UNIFORM_SLOT_SIZE;
2155 align.offset /= UNIFORM_SLOT_SIZE;
2156
2157 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2158 unsigned chunk_size = u - chunk_start + 1;
2159 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2160 (chunk_size < max_chunk_size &&
2161 push_start_align + chunk_size <= max_push_components)) {
2162 /* Align up the number of push constants */
2163 num_push_constants = push_start_align;
2164 for (unsigned i = 0; i < chunk_size; i++)
2165 push_constant_loc[chunk_start + i] = num_push_constants++;
2166 } else {
2167 /* We need to pull this one */
2168 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2169 for (unsigned i = 0; i < chunk_size; i++)
2170 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2171 }
2172
2173 /* Reset the chunk and start again */
2174 chunk_start = -1;
2175 }
2176
2177 /* Add the CS local thread ID uniform at the end of the push constants */
2178 if (subgroup_id_index >= 0)
2179 push_constant_loc[subgroup_id_index] = num_push_constants++;
2180
2181 /* As the uniforms are going to be reordered, stash the old array and
2182 * create two new arrays for push/pull params.
2183 */
2184 uint32_t *param = stage_prog_data->param;
2185 stage_prog_data->nr_params = num_push_constants;
2186 if (num_push_constants) {
2187 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2188 num_push_constants);
2189 } else {
2190 stage_prog_data->param = NULL;
2191 }
2192 assert(stage_prog_data->nr_pull_params == 0);
2193 assert(stage_prog_data->pull_param == NULL);
2194 if (num_pull_constants > 0) {
2195 stage_prog_data->nr_pull_params = num_pull_constants;
2196 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2197 num_pull_constants);
2198 }
2199
2200 /* Now that we know how many regular uniforms we'll push, reduce the
2201 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2202 */
2203 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2204 for (int i = 0; i < 4; i++) {
2205 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2206
2207 if (push_length + range->length > 64)
2208 range->length = 64 - push_length;
2209
2210 push_length += range->length;
2211 }
2212 assert(push_length <= 64);
2213
2214 /* Up until now, the param[] array has been indexed by reg + offset
2215 * of UNIFORM registers. Move pull constants into pull_param[] and
2216 * condense param[] to only contain the uniforms we chose to push.
2217 *
2218 * NOTE: Because we are condensing the params[] array, we know that
2219 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2220 * having to make a copy.
2221 */
2222 for (unsigned int i = 0; i < uniforms; i++) {
2223 uint32_t value = param[i];
2224 if (pull_constant_loc[i] != -1) {
2225 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2226 } else if (push_constant_loc[i] != -1) {
2227 stage_prog_data->param[push_constant_loc[i]] = value;
2228 }
2229 }
2230 ralloc_free(param);
2231 }
2232
2233 bool
2234 fs_visitor::get_pull_locs(const fs_reg &src,
2235 unsigned *out_surf_index,
2236 unsigned *out_pull_index)
2237 {
2238 assert(src.file == UNIFORM);
2239
2240 if (src.nr >= UBO_START) {
2241 const struct brw_ubo_range *range =
2242 &prog_data->ubo_ranges[src.nr - UBO_START];
2243
2244 /* If this access is in our (reduced) range, use the push data. */
2245 if (src.offset / 32 < range->length)
2246 return false;
2247
2248 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2249 *out_pull_index = (32 * range->start + src.offset) / 4;
2250 return true;
2251 }
2252
2253 const unsigned location = src.nr + src.offset / 4;
2254
2255 if (location < uniforms && pull_constant_loc[location] != -1) {
2256 /* A regular uniform push constant */
2257 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2258 *out_pull_index = pull_constant_loc[location];
2259 return true;
2260 }
2261
2262 return false;
2263 }
2264
2265 /**
2266 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2267 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2268 */
2269 void
2270 fs_visitor::lower_constant_loads()
2271 {
2272 unsigned index, pull_index;
2273
2274 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2275 /* Set up the annotation tracking for new generated instructions. */
2276 const fs_builder ibld(this, block, inst);
2277
2278 for (int i = 0; i < inst->sources; i++) {
2279 if (inst->src[i].file != UNIFORM)
2280 continue;
2281
2282 /* We'll handle this case later */
2283 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2284 continue;
2285
2286 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2287 continue;
2288
2289 assert(inst->src[i].stride == 0);
2290
2291 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2292 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2293 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2294 const unsigned base = pull_index * 4;
2295
2296 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2297 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2298
2299 /* Rewrite the instruction to use the temporary VGRF. */
2300 inst->src[i].file = VGRF;
2301 inst->src[i].nr = dst.nr;
2302 inst->src[i].offset = (base & (block_sz - 1)) +
2303 inst->src[i].offset % 4;
2304
2305 brw_mark_surface_used(prog_data, index);
2306 }
2307
2308 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2309 inst->src[0].file == UNIFORM) {
2310
2311 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2312 continue;
2313
2314 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2315 brw_imm_ud(index),
2316 inst->src[1],
2317 pull_index * 4);
2318 inst->remove(block);
2319
2320 brw_mark_surface_used(prog_data, index);
2321 }
2322 }
2323 invalidate_live_intervals();
2324 }
2325
2326 bool
2327 fs_visitor::opt_algebraic()
2328 {
2329 bool progress = false;
2330
2331 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2332 switch (inst->opcode) {
2333 case BRW_OPCODE_MOV:
2334 if (inst->src[0].file != IMM)
2335 break;
2336
2337 if (inst->saturate) {
2338 if (inst->dst.type != inst->src[0].type)
2339 assert(!"unimplemented: saturate mixed types");
2340
2341 if (brw_saturate_immediate(inst->dst.type,
2342 &inst->src[0].as_brw_reg())) {
2343 inst->saturate = false;
2344 progress = true;
2345 }
2346 }
2347 break;
2348
2349 case BRW_OPCODE_MUL:
2350 if (inst->src[1].file != IMM)
2351 continue;
2352
2353 /* a * 1.0 = a */
2354 if (inst->src[1].is_one()) {
2355 inst->opcode = BRW_OPCODE_MOV;
2356 inst->src[1] = reg_undef;
2357 progress = true;
2358 break;
2359 }
2360
2361 /* a * -1.0 = -a */
2362 if (inst->src[1].is_negative_one()) {
2363 inst->opcode = BRW_OPCODE_MOV;
2364 inst->src[0].negate = !inst->src[0].negate;
2365 inst->src[1] = reg_undef;
2366 progress = true;
2367 break;
2368 }
2369
2370 /* a * 0.0 = 0.0 */
2371 if (inst->src[1].is_zero()) {
2372 inst->opcode = BRW_OPCODE_MOV;
2373 inst->src[0] = inst->src[1];
2374 inst->src[1] = reg_undef;
2375 progress = true;
2376 break;
2377 }
2378
2379 if (inst->src[0].file == IMM) {
2380 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2381 inst->opcode = BRW_OPCODE_MOV;
2382 inst->src[0].f *= inst->src[1].f;
2383 inst->src[1] = reg_undef;
2384 progress = true;
2385 break;
2386 }
2387 break;
2388 case BRW_OPCODE_ADD:
2389 if (inst->src[1].file != IMM)
2390 continue;
2391
2392 /* a + 0.0 = a */
2393 if (inst->src[1].is_zero()) {
2394 inst->opcode = BRW_OPCODE_MOV;
2395 inst->src[1] = reg_undef;
2396 progress = true;
2397 break;
2398 }
2399
2400 if (inst->src[0].file == IMM) {
2401 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2402 inst->opcode = BRW_OPCODE_MOV;
2403 inst->src[0].f += inst->src[1].f;
2404 inst->src[1] = reg_undef;
2405 progress = true;
2406 break;
2407 }
2408 break;
2409 case BRW_OPCODE_OR:
2410 if (inst->src[0].equals(inst->src[1])) {
2411 inst->opcode = BRW_OPCODE_MOV;
2412 inst->src[1] = reg_undef;
2413 progress = true;
2414 break;
2415 }
2416 break;
2417 case BRW_OPCODE_LRP:
2418 if (inst->src[1].equals(inst->src[2])) {
2419 inst->opcode = BRW_OPCODE_MOV;
2420 inst->src[0] = inst->src[1];
2421 inst->src[1] = reg_undef;
2422 inst->src[2] = reg_undef;
2423 progress = true;
2424 break;
2425 }
2426 break;
2427 case BRW_OPCODE_CMP:
2428 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2429 inst->src[0].abs &&
2430 inst->src[0].negate &&
2431 inst->src[1].is_zero()) {
2432 inst->src[0].abs = false;
2433 inst->src[0].negate = false;
2434 inst->conditional_mod = BRW_CONDITIONAL_Z;
2435 progress = true;
2436 break;
2437 }
2438 break;
2439 case BRW_OPCODE_SEL:
2440 if (inst->src[0].equals(inst->src[1])) {
2441 inst->opcode = BRW_OPCODE_MOV;
2442 inst->src[1] = reg_undef;
2443 inst->predicate = BRW_PREDICATE_NONE;
2444 inst->predicate_inverse = false;
2445 progress = true;
2446 } else if (inst->saturate && inst->src[1].file == IMM) {
2447 switch (inst->conditional_mod) {
2448 case BRW_CONDITIONAL_LE:
2449 case BRW_CONDITIONAL_L:
2450 switch (inst->src[1].type) {
2451 case BRW_REGISTER_TYPE_F:
2452 if (inst->src[1].f >= 1.0f) {
2453 inst->opcode = BRW_OPCODE_MOV;
2454 inst->src[1] = reg_undef;
2455 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2456 progress = true;
2457 }
2458 break;
2459 default:
2460 break;
2461 }
2462 break;
2463 case BRW_CONDITIONAL_GE:
2464 case BRW_CONDITIONAL_G:
2465 switch (inst->src[1].type) {
2466 case BRW_REGISTER_TYPE_F:
2467 if (inst->src[1].f <= 0.0f) {
2468 inst->opcode = BRW_OPCODE_MOV;
2469 inst->src[1] = reg_undef;
2470 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2471 progress = true;
2472 }
2473 break;
2474 default:
2475 break;
2476 }
2477 default:
2478 break;
2479 }
2480 }
2481 break;
2482 case BRW_OPCODE_MAD:
2483 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2484 inst->opcode = BRW_OPCODE_MOV;
2485 inst->src[1] = reg_undef;
2486 inst->src[2] = reg_undef;
2487 progress = true;
2488 } else if (inst->src[0].is_zero()) {
2489 inst->opcode = BRW_OPCODE_MUL;
2490 inst->src[0] = inst->src[2];
2491 inst->src[2] = reg_undef;
2492 progress = true;
2493 } else if (inst->src[1].is_one()) {
2494 inst->opcode = BRW_OPCODE_ADD;
2495 inst->src[1] = inst->src[2];
2496 inst->src[2] = reg_undef;
2497 progress = true;
2498 } else if (inst->src[2].is_one()) {
2499 inst->opcode = BRW_OPCODE_ADD;
2500 inst->src[2] = reg_undef;
2501 progress = true;
2502 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2503 inst->opcode = BRW_OPCODE_ADD;
2504 inst->src[1].f *= inst->src[2].f;
2505 inst->src[2] = reg_undef;
2506 progress = true;
2507 }
2508 break;
2509 case SHADER_OPCODE_BROADCAST:
2510 if (is_uniform(inst->src[0])) {
2511 inst->opcode = BRW_OPCODE_MOV;
2512 inst->sources = 1;
2513 inst->force_writemask_all = true;
2514 progress = true;
2515 } else if (inst->src[1].file == IMM) {
2516 inst->opcode = BRW_OPCODE_MOV;
2517 /* It's possible that the selected component will be too large and
2518 * overflow the register. This can happen if someone does a
2519 * readInvocation() from GLSL or SPIR-V and provides an OOB
2520 * invocationIndex. If this happens and we some how manage
2521 * to constant fold it in and get here, then component() may cause
2522 * us to start reading outside of the VGRF which will lead to an
2523 * assert later. Instead, just let it wrap around if it goes over
2524 * exec_size.
2525 */
2526 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2527 inst->src[0] = component(inst->src[0], comp);
2528 inst->sources = 1;
2529 inst->force_writemask_all = true;
2530 progress = true;
2531 }
2532 break;
2533
2534 default:
2535 break;
2536 }
2537
2538 /* Swap if src[0] is immediate. */
2539 if (progress && inst->is_commutative()) {
2540 if (inst->src[0].file == IMM) {
2541 fs_reg tmp = inst->src[1];
2542 inst->src[1] = inst->src[0];
2543 inst->src[0] = tmp;
2544 }
2545 }
2546 }
2547 return progress;
2548 }
2549
2550 /**
2551 * Optimize sample messages that have constant zero values for the trailing
2552 * texture coordinates. We can just reduce the message length for these
2553 * instructions instead of reserving a register for it. Trailing parameters
2554 * that aren't sent default to zero anyway. This will cause the dead code
2555 * eliminator to remove the MOV instruction that would otherwise be emitted to
2556 * set up the zero value.
2557 */
2558 bool
2559 fs_visitor::opt_zero_samples()
2560 {
2561 /* Gen4 infers the texturing opcode based on the message length so we can't
2562 * change it.
2563 */
2564 if (devinfo->gen < 5)
2565 return false;
2566
2567 bool progress = false;
2568
2569 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2570 if (!inst->is_tex())
2571 continue;
2572
2573 fs_inst *load_payload = (fs_inst *) inst->prev;
2574
2575 if (load_payload->is_head_sentinel() ||
2576 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2577 continue;
2578
2579 /* We don't want to remove the message header or the first parameter.
2580 * Removing the first parameter is not allowed, see the Haswell PRM
2581 * volume 7, page 149:
2582 *
2583 * "Parameter 0 is required except for the sampleinfo message, which
2584 * has no parameter 0"
2585 */
2586 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2587 load_payload->src[(inst->mlen - inst->header_size) /
2588 (inst->exec_size / 8) +
2589 inst->header_size - 1].is_zero()) {
2590 inst->mlen -= inst->exec_size / 8;
2591 progress = true;
2592 }
2593 }
2594
2595 if (progress)
2596 invalidate_live_intervals();
2597
2598 return progress;
2599 }
2600
2601 /**
2602 * Optimize sample messages which are followed by the final RT write.
2603 *
2604 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2605 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2606 * final texturing results copied to the framebuffer write payload and modify
2607 * them to write to the framebuffer directly.
2608 */
2609 bool
2610 fs_visitor::opt_sampler_eot()
2611 {
2612 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2613
2614 if (stage != MESA_SHADER_FRAGMENT)
2615 return false;
2616
2617 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2618 return false;
2619
2620 /* FINISHME: It should be possible to implement this optimization when there
2621 * are multiple drawbuffers.
2622 */
2623 if (key->nr_color_regions != 1)
2624 return false;
2625
2626 /* Requires emitting a bunch of saturating MOV instructions during logical
2627 * send lowering to clamp the color payload, which the sampler unit isn't
2628 * going to do for us.
2629 */
2630 if (key->clamp_fragment_color)
2631 return false;
2632
2633 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2634 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2635 fs_inst *fb_write = (fs_inst *)block->end();
2636 assert(fb_write->eot);
2637 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2638
2639 /* There wasn't one; nothing to do. */
2640 if (unlikely(fb_write->prev->is_head_sentinel()))
2641 return false;
2642
2643 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2644
2645 /* 3D Sampler » Messages » Message Format
2646 *
2647 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2648 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2649 */
2650 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2651 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2652 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2653 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2654 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2655 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2656 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2657 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2658 return false;
2659
2660 /* XXX - This shouldn't be necessary. */
2661 if (tex_inst->prev->is_head_sentinel())
2662 return false;
2663
2664 /* Check that the FB write sources are fully initialized by the single
2665 * texturing instruction.
2666 */
2667 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2668 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2669 if (!fb_write->src[i].equals(tex_inst->dst) ||
2670 fb_write->size_read(i) != tex_inst->size_written)
2671 return false;
2672 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2673 if (fb_write->src[i].file != BAD_FILE)
2674 return false;
2675 }
2676 }
2677
2678 assert(!tex_inst->eot); /* We can't get here twice */
2679 assert((tex_inst->offset & (0xff << 24)) == 0);
2680
2681 const fs_builder ibld(this, block, tex_inst);
2682
2683 tex_inst->offset |= fb_write->target << 24;
2684 tex_inst->eot = true;
2685 tex_inst->dst = ibld.null_reg_ud();
2686 tex_inst->size_written = 0;
2687 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2688
2689 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2690 * flag and submit a header together with the sampler message as required
2691 * by the hardware.
2692 */
2693 invalidate_live_intervals();
2694 return true;
2695 }
2696
2697 bool
2698 fs_visitor::opt_register_renaming()
2699 {
2700 bool progress = false;
2701 int depth = 0;
2702
2703 int remap[alloc.count];
2704 memset(remap, -1, sizeof(int) * alloc.count);
2705
2706 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2707 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2708 depth++;
2709 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2710 inst->opcode == BRW_OPCODE_WHILE) {
2711 depth--;
2712 }
2713
2714 /* Rewrite instruction sources. */
2715 for (int i = 0; i < inst->sources; i++) {
2716 if (inst->src[i].file == VGRF &&
2717 remap[inst->src[i].nr] != -1 &&
2718 remap[inst->src[i].nr] != inst->src[i].nr) {
2719 inst->src[i].nr = remap[inst->src[i].nr];
2720 progress = true;
2721 }
2722 }
2723
2724 const int dst = inst->dst.nr;
2725
2726 if (depth == 0 &&
2727 inst->dst.file == VGRF &&
2728 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2729 !inst->is_partial_write()) {
2730 if (remap[dst] == -1) {
2731 remap[dst] = dst;
2732 } else {
2733 remap[dst] = alloc.allocate(regs_written(inst));
2734 inst->dst.nr = remap[dst];
2735 progress = true;
2736 }
2737 } else if (inst->dst.file == VGRF &&
2738 remap[dst] != -1 &&
2739 remap[dst] != dst) {
2740 inst->dst.nr = remap[dst];
2741 progress = true;
2742 }
2743 }
2744
2745 if (progress) {
2746 invalidate_live_intervals();
2747
2748 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2749 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2750 delta_xy[i].nr = remap[delta_xy[i].nr];
2751 }
2752 }
2753 }
2754
2755 return progress;
2756 }
2757
2758 /**
2759 * Remove redundant or useless discard jumps.
2760 *
2761 * For example, we can eliminate jumps in the following sequence:
2762 *
2763 * discard-jump (redundant with the next jump)
2764 * discard-jump (useless; jumps to the next instruction)
2765 * placeholder-halt
2766 */
2767 bool
2768 fs_visitor::opt_redundant_discard_jumps()
2769 {
2770 bool progress = false;
2771
2772 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2773
2774 fs_inst *placeholder_halt = NULL;
2775 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2776 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2777 placeholder_halt = inst;
2778 break;
2779 }
2780 }
2781
2782 if (!placeholder_halt)
2783 return false;
2784
2785 /* Delete any HALTs immediately before the placeholder halt. */
2786 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2787 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2788 prev = (fs_inst *) placeholder_halt->prev) {
2789 prev->remove(last_bblock);
2790 progress = true;
2791 }
2792
2793 if (progress)
2794 invalidate_live_intervals();
2795
2796 return progress;
2797 }
2798
2799 /**
2800 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2801 * from \p r.offset which overlaps the region starting at \p s.offset and
2802 * spanning \p ds bytes.
2803 */
2804 static inline unsigned
2805 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2806 {
2807 const int rel_offset = reg_offset(s) - reg_offset(r);
2808 const int shift = rel_offset / REG_SIZE;
2809 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2810 assert(reg_space(r) == reg_space(s) &&
2811 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2812 return ((1 << n) - 1) << shift;
2813 }
2814
2815 bool
2816 fs_visitor::compute_to_mrf()
2817 {
2818 bool progress = false;
2819 int next_ip = 0;
2820
2821 /* No MRFs on Gen >= 7. */
2822 if (devinfo->gen >= 7)
2823 return false;
2824
2825 calculate_live_intervals();
2826
2827 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2828 int ip = next_ip;
2829 next_ip++;
2830
2831 if (inst->opcode != BRW_OPCODE_MOV ||
2832 inst->is_partial_write() ||
2833 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2834 inst->dst.type != inst->src[0].type ||
2835 inst->src[0].abs || inst->src[0].negate ||
2836 !inst->src[0].is_contiguous() ||
2837 inst->src[0].offset % REG_SIZE != 0)
2838 continue;
2839
2840 /* Can't compute-to-MRF this GRF if someone else was going to
2841 * read it later.
2842 */
2843 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2844 continue;
2845
2846 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2847 * things that computed the value of all GRFs of the source region. The
2848 * regs_left bitset keeps track of the registers we haven't yet found a
2849 * generating instruction for.
2850 */
2851 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2852
2853 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2854 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2855 inst->src[0], inst->size_read(0))) {
2856 /* Found the last thing to write our reg we want to turn
2857 * into a compute-to-MRF.
2858 */
2859
2860 /* If this one instruction didn't populate all the
2861 * channels, bail. We might be able to rewrite everything
2862 * that writes that reg, but it would require smarter
2863 * tracking.
2864 */
2865 if (scan_inst->is_partial_write())
2866 break;
2867
2868 /* Handling things not fully contained in the source of the copy
2869 * would need us to understand coalescing out more than one MOV at
2870 * a time.
2871 */
2872 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2873 inst->src[0], inst->size_read(0)))
2874 break;
2875
2876 /* SEND instructions can't have MRF as a destination. */
2877 if (scan_inst->mlen)
2878 break;
2879
2880 if (devinfo->gen == 6) {
2881 /* gen6 math instructions must have the destination be
2882 * GRF, so no compute-to-MRF for them.
2883 */
2884 if (scan_inst->is_math()) {
2885 break;
2886 }
2887 }
2888
2889 /* Clear the bits for any registers this instruction overwrites. */
2890 regs_left &= ~mask_relative_to(
2891 inst->src[0], scan_inst->dst, scan_inst->size_written);
2892 if (!regs_left)
2893 break;
2894 }
2895
2896 /* We don't handle control flow here. Most computation of
2897 * values that end up in MRFs are shortly before the MRF
2898 * write anyway.
2899 */
2900 if (block->start() == scan_inst)
2901 break;
2902
2903 /* You can't read from an MRF, so if someone else reads our
2904 * MRF's source GRF that we wanted to rewrite, that stops us.
2905 */
2906 bool interfered = false;
2907 for (int i = 0; i < scan_inst->sources; i++) {
2908 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2909 inst->src[0], inst->size_read(0))) {
2910 interfered = true;
2911 }
2912 }
2913 if (interfered)
2914 break;
2915
2916 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2917 inst->dst, inst->size_written)) {
2918 /* If somebody else writes our MRF here, we can't
2919 * compute-to-MRF before that.
2920 */
2921 break;
2922 }
2923
2924 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2925 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2926 inst->dst, inst->size_written)) {
2927 /* Found a SEND instruction, which means that there are
2928 * live values in MRFs from base_mrf to base_mrf +
2929 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2930 * above it.
2931 */
2932 break;
2933 }
2934 }
2935
2936 if (regs_left)
2937 continue;
2938
2939 /* Found all generating instructions of our MRF's source value, so it
2940 * should be safe to rewrite them to point to the MRF directly.
2941 */
2942 regs_left = (1 << regs_read(inst, 0)) - 1;
2943
2944 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2945 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2946 inst->src[0], inst->size_read(0))) {
2947 /* Clear the bits for any registers this instruction overwrites. */
2948 regs_left &= ~mask_relative_to(
2949 inst->src[0], scan_inst->dst, scan_inst->size_written);
2950
2951 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2952 reg_offset(inst->src[0]);
2953
2954 if (inst->dst.nr & BRW_MRF_COMPR4) {
2955 /* Apply the same address transformation done by the hardware
2956 * for COMPR4 MRF writes.
2957 */
2958 assert(rel_offset < 2 * REG_SIZE);
2959 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2960
2961 /* Clear the COMPR4 bit if the generating instruction is not
2962 * compressed.
2963 */
2964 if (scan_inst->size_written < 2 * REG_SIZE)
2965 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2966
2967 } else {
2968 /* Calculate the MRF number the result of this instruction is
2969 * ultimately written to.
2970 */
2971 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2972 }
2973
2974 scan_inst->dst.file = MRF;
2975 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2976 scan_inst->saturate |= inst->saturate;
2977 if (!regs_left)
2978 break;
2979 }
2980 }
2981
2982 assert(!regs_left);
2983 inst->remove(block);
2984 progress = true;
2985 }
2986
2987 if (progress)
2988 invalidate_live_intervals();
2989
2990 return progress;
2991 }
2992
2993 /**
2994 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2995 * flow. We could probably do better here with some form of divergence
2996 * analysis.
2997 */
2998 bool
2999 fs_visitor::eliminate_find_live_channel()
3000 {
3001 bool progress = false;
3002 unsigned depth = 0;
3003
3004 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3005 /* The optimization below assumes that channel zero is live on thread
3006 * dispatch, which may not be the case if the fixed function dispatches
3007 * threads sparsely.
3008 */
3009 return false;
3010 }
3011
3012 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3013 switch (inst->opcode) {
3014 case BRW_OPCODE_IF:
3015 case BRW_OPCODE_DO:
3016 depth++;
3017 break;
3018
3019 case BRW_OPCODE_ENDIF:
3020 case BRW_OPCODE_WHILE:
3021 depth--;
3022 break;
3023
3024 case FS_OPCODE_DISCARD_JUMP:
3025 /* This can potentially make control flow non-uniform until the end
3026 * of the program.
3027 */
3028 return progress;
3029
3030 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3031 if (depth == 0) {
3032 inst->opcode = BRW_OPCODE_MOV;
3033 inst->src[0] = brw_imm_ud(0u);
3034 inst->sources = 1;
3035 inst->force_writemask_all = true;
3036 progress = true;
3037 }
3038 break;
3039
3040 default:
3041 break;
3042 }
3043 }
3044
3045 return progress;
3046 }
3047
3048 /**
3049 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3050 * instructions to FS_OPCODE_REP_FB_WRITE.
3051 */
3052 void
3053 fs_visitor::emit_repclear_shader()
3054 {
3055 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3056 int base_mrf = 0;
3057 int color_mrf = base_mrf + 2;
3058 fs_inst *mov;
3059
3060 if (uniforms > 0) {
3061 mov = bld.exec_all().group(4, 0)
3062 .MOV(brw_message_reg(color_mrf),
3063 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3064 } else {
3065 struct brw_reg reg =
3066 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3067 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3068 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3069
3070 mov = bld.exec_all().group(4, 0)
3071 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3072 }
3073
3074 fs_inst *write = NULL;
3075 if (key->nr_color_regions == 1) {
3076 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3077 write->saturate = key->clamp_fragment_color;
3078 write->base_mrf = color_mrf;
3079 write->target = 0;
3080 write->header_size = 0;
3081 write->mlen = 1;
3082 } else {
3083 assume(key->nr_color_regions > 0);
3084 for (int i = 0; i < key->nr_color_regions; ++i) {
3085 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3086 write->saturate = key->clamp_fragment_color;
3087 write->base_mrf = base_mrf;
3088 write->target = i;
3089 write->header_size = 2;
3090 write->mlen = 3;
3091 }
3092 }
3093 write->eot = true;
3094
3095 calculate_cfg();
3096
3097 assign_constant_locations();
3098 assign_curb_setup();
3099
3100 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3101 if (uniforms > 0) {
3102 assert(mov->src[0].file == FIXED_GRF);
3103 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3104 }
3105 }
3106
3107 /**
3108 * Walks through basic blocks, looking for repeated MRF writes and
3109 * removing the later ones.
3110 */
3111 bool
3112 fs_visitor::remove_duplicate_mrf_writes()
3113 {
3114 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3115 bool progress = false;
3116
3117 /* Need to update the MRF tracking for compressed instructions. */
3118 if (dispatch_width >= 16)
3119 return false;
3120
3121 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3122
3123 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3124 if (inst->is_control_flow()) {
3125 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3126 }
3127
3128 if (inst->opcode == BRW_OPCODE_MOV &&
3129 inst->dst.file == MRF) {
3130 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3131 if (prev_inst && inst->equals(prev_inst)) {
3132 inst->remove(block);
3133 progress = true;
3134 continue;
3135 }
3136 }
3137
3138 /* Clear out the last-write records for MRFs that were overwritten. */
3139 if (inst->dst.file == MRF) {
3140 last_mrf_move[inst->dst.nr] = NULL;
3141 }
3142
3143 if (inst->mlen > 0 && inst->base_mrf != -1) {
3144 /* Found a SEND instruction, which will include two or fewer
3145 * implied MRF writes. We could do better here.
3146 */
3147 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3148 last_mrf_move[inst->base_mrf + i] = NULL;
3149 }
3150 }
3151
3152 /* Clear out any MRF move records whose sources got overwritten. */
3153 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3154 if (last_mrf_move[i] &&
3155 regions_overlap(inst->dst, inst->size_written,
3156 last_mrf_move[i]->src[0],
3157 last_mrf_move[i]->size_read(0))) {
3158 last_mrf_move[i] = NULL;
3159 }
3160 }
3161
3162 if (inst->opcode == BRW_OPCODE_MOV &&
3163 inst->dst.file == MRF &&
3164 inst->src[0].file != ARF &&
3165 !inst->is_partial_write()) {
3166 last_mrf_move[inst->dst.nr] = inst;
3167 }
3168 }
3169
3170 if (progress)
3171 invalidate_live_intervals();
3172
3173 return progress;
3174 }
3175
3176 /**
3177 * Rounding modes for conversion instructions are included for each
3178 * conversion, but right now it is a state. So once it is set,
3179 * we don't need to call it again for subsequent calls.
3180 *
3181 * This is useful for vector/matrices conversions, as setting the
3182 * mode once is enough for the full vector/matrix
3183 */
3184 bool
3185 fs_visitor::remove_extra_rounding_modes()
3186 {
3187 bool progress = false;
3188
3189 foreach_block (block, cfg) {
3190 brw_rnd_mode prev_mode = BRW_RND_MODE_UNSPECIFIED;
3191
3192 foreach_inst_in_block_safe (fs_inst, inst, block) {
3193 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3194 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3195 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3196 if (mode == prev_mode) {
3197 inst->remove(block);
3198 progress = true;
3199 } else {
3200 prev_mode = mode;
3201 }
3202 }
3203 }
3204 }
3205
3206 if (progress)
3207 invalidate_live_intervals();
3208
3209 return progress;
3210 }
3211
3212 static void
3213 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3214 {
3215 /* Clear the flag for registers that actually got read (as expected). */
3216 for (int i = 0; i < inst->sources; i++) {
3217 int grf;
3218 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3219 grf = inst->src[i].nr;
3220 } else {
3221 continue;
3222 }
3223
3224 if (grf >= first_grf &&
3225 grf < first_grf + grf_len) {
3226 deps[grf - first_grf] = false;
3227 if (inst->exec_size == 16)
3228 deps[grf - first_grf + 1] = false;
3229 }
3230 }
3231 }
3232
3233 /**
3234 * Implements this workaround for the original 965:
3235 *
3236 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3237 * check for post destination dependencies on this instruction, software
3238 * must ensure that there is no destination hazard for the case of ‘write
3239 * followed by a posted write’ shown in the following example.
3240 *
3241 * 1. mov r3 0
3242 * 2. send r3.xy <rest of send instruction>
3243 * 3. mov r2 r3
3244 *
3245 * Due to no post-destination dependency check on the ‘send’, the above
3246 * code sequence could have two instructions (1 and 2) in flight at the
3247 * same time that both consider ‘r3’ as the target of their final writes.
3248 */
3249 void
3250 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3251 fs_inst *inst)
3252 {
3253 int write_len = regs_written(inst);
3254 int first_write_grf = inst->dst.nr;
3255 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3256 assert(write_len < (int)sizeof(needs_dep) - 1);
3257
3258 memset(needs_dep, false, sizeof(needs_dep));
3259 memset(needs_dep, true, write_len);
3260
3261 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3262
3263 /* Walk backwards looking for writes to registers we're writing which
3264 * aren't read since being written. If we hit the start of the program,
3265 * we assume that there are no outstanding dependencies on entry to the
3266 * program.
3267 */
3268 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3269 /* If we hit control flow, assume that there *are* outstanding
3270 * dependencies, and force their cleanup before our instruction.
3271 */
3272 if (block->start() == scan_inst && block->num != 0) {
3273 for (int i = 0; i < write_len; i++) {
3274 if (needs_dep[i])
3275 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3276 first_write_grf + i);
3277 }
3278 return;
3279 }
3280
3281 /* We insert our reads as late as possible on the assumption that any
3282 * instruction but a MOV that might have left us an outstanding
3283 * dependency has more latency than a MOV.
3284 */
3285 if (scan_inst->dst.file == VGRF) {
3286 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3287 int reg = scan_inst->dst.nr + i;
3288
3289 if (reg >= first_write_grf &&
3290 reg < first_write_grf + write_len &&
3291 needs_dep[reg - first_write_grf]) {
3292 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3293 needs_dep[reg - first_write_grf] = false;
3294 if (scan_inst->exec_size == 16)
3295 needs_dep[reg - first_write_grf + 1] = false;
3296 }
3297 }
3298 }
3299
3300 /* Clear the flag for registers that actually got read (as expected). */
3301 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3302
3303 /* Continue the loop only if we haven't resolved all the dependencies */
3304 int i;
3305 for (i = 0; i < write_len; i++) {
3306 if (needs_dep[i])
3307 break;
3308 }
3309 if (i == write_len)
3310 return;
3311 }
3312 }
3313
3314 /**
3315 * Implements this workaround for the original 965:
3316 *
3317 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3318 * used as a destination register until after it has been sourced by an
3319 * instruction with a different destination register.
3320 */
3321 void
3322 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3323 {
3324 int write_len = regs_written(inst);
3325 int first_write_grf = inst->dst.nr;
3326 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3327 assert(write_len < (int)sizeof(needs_dep) - 1);
3328
3329 memset(needs_dep, false, sizeof(needs_dep));
3330 memset(needs_dep, true, write_len);
3331 /* Walk forwards looking for writes to registers we're writing which aren't
3332 * read before being written.
3333 */
3334 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3335 /* If we hit control flow, force resolve all remaining dependencies. */
3336 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3337 for (int i = 0; i < write_len; i++) {
3338 if (needs_dep[i])
3339 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3340 first_write_grf + i);
3341 }
3342 return;
3343 }
3344
3345 /* Clear the flag for registers that actually got read (as expected). */
3346 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3347
3348 /* We insert our reads as late as possible since they're reading the
3349 * result of a SEND, which has massive latency.
3350 */
3351 if (scan_inst->dst.file == VGRF &&
3352 scan_inst->dst.nr >= first_write_grf &&
3353 scan_inst->dst.nr < first_write_grf + write_len &&
3354 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3355 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3356 scan_inst->dst.nr);
3357 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3358 }
3359
3360 /* Continue the loop only if we haven't resolved all the dependencies */
3361 int i;
3362 for (i = 0; i < write_len; i++) {
3363 if (needs_dep[i])
3364 break;
3365 }
3366 if (i == write_len)
3367 return;
3368 }
3369 }
3370
3371 void
3372 fs_visitor::insert_gen4_send_dependency_workarounds()
3373 {
3374 if (devinfo->gen != 4 || devinfo->is_g4x)
3375 return;
3376
3377 bool progress = false;
3378
3379 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3380 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3381 insert_gen4_pre_send_dependency_workarounds(block, inst);
3382 insert_gen4_post_send_dependency_workarounds(block, inst);
3383 progress = true;
3384 }
3385 }
3386
3387 if (progress)
3388 invalidate_live_intervals();
3389 }
3390
3391 /**
3392 * Turns the generic expression-style uniform pull constant load instruction
3393 * into a hardware-specific series of instructions for loading a pull
3394 * constant.
3395 *
3396 * The expression style allows the CSE pass before this to optimize out
3397 * repeated loads from the same offset, and gives the pre-register-allocation
3398 * scheduling full flexibility, while the conversion to native instructions
3399 * allows the post-register-allocation scheduler the best information
3400 * possible.
3401 *
3402 * Note that execution masking for setting up pull constant loads is special:
3403 * the channels that need to be written are unrelated to the current execution
3404 * mask, since a later instruction will use one of the result channels as a
3405 * source operand for all 8 or 16 of its channels.
3406 */
3407 void
3408 fs_visitor::lower_uniform_pull_constant_loads()
3409 {
3410 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3411 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3412 continue;
3413
3414 if (devinfo->gen >= 7) {
3415 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3416 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3417
3418 ubld.group(8, 0).MOV(payload,
3419 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3420 ubld.group(1, 0).MOV(component(payload, 2),
3421 brw_imm_ud(inst->src[1].ud / 16));
3422
3423 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3424 inst->src[1] = payload;
3425 inst->header_size = 1;
3426 inst->mlen = 1;
3427
3428 invalidate_live_intervals();
3429 } else {
3430 /* Before register allocation, we didn't tell the scheduler about the
3431 * MRF we use. We know it's safe to use this MRF because nothing
3432 * else does except for register spill/unspill, which generates and
3433 * uses its MRF within a single IR instruction.
3434 */
3435 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3436 inst->mlen = 1;
3437 }
3438 }
3439 }
3440
3441 bool
3442 fs_visitor::lower_load_payload()
3443 {
3444 bool progress = false;
3445
3446 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3447 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3448 continue;
3449
3450 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3451 assert(inst->saturate == false);
3452 fs_reg dst = inst->dst;
3453
3454 /* Get rid of COMPR4. We'll add it back in if we need it */
3455 if (dst.file == MRF)
3456 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3457
3458 const fs_builder ibld(this, block, inst);
3459 const fs_builder hbld = ibld.exec_all().group(8, 0);
3460
3461 for (uint8_t i = 0; i < inst->header_size; i++) {
3462 if (inst->src[i].file != BAD_FILE) {
3463 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3464 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3465 hbld.MOV(mov_dst, mov_src);
3466 }
3467 dst = offset(dst, hbld, 1);
3468 }
3469
3470 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3471 inst->exec_size > 8) {
3472 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3473 * a straightforward copy. Instead, the result of the
3474 * LOAD_PAYLOAD is treated as interleaved and the first four
3475 * non-header sources are unpacked as:
3476 *
3477 * m + 0: r0
3478 * m + 1: g0
3479 * m + 2: b0
3480 * m + 3: a0
3481 * m + 4: r1
3482 * m + 5: g1
3483 * m + 6: b1
3484 * m + 7: a1
3485 *
3486 * This is used for gen <= 5 fb writes.
3487 */
3488 assert(inst->exec_size == 16);
3489 assert(inst->header_size + 4 <= inst->sources);
3490 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3491 if (inst->src[i].file != BAD_FILE) {
3492 if (devinfo->has_compr4) {
3493 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3494 compr4_dst.nr |= BRW_MRF_COMPR4;
3495 ibld.MOV(compr4_dst, inst->src[i]);
3496 } else {
3497 /* Platform doesn't have COMPR4. We have to fake it */
3498 fs_reg mov_dst = retype(dst, inst->src[i].type);
3499 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3500 mov_dst.nr += 4;
3501 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3502 }
3503 }
3504
3505 dst.nr++;
3506 }
3507
3508 /* The loop above only ever incremented us through the first set
3509 * of 4 registers. However, thanks to the magic of COMPR4, we
3510 * actually wrote to the first 8 registers, so we need to take
3511 * that into account now.
3512 */
3513 dst.nr += 4;
3514
3515 /* The COMPR4 code took care of the first 4 sources. We'll let
3516 * the regular path handle any remaining sources. Yes, we are
3517 * modifying the instruction but we're about to delete it so
3518 * this really doesn't hurt anything.
3519 */
3520 inst->header_size += 4;
3521 }
3522
3523 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3524 if (inst->src[i].file != BAD_FILE)
3525 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3526 dst = offset(dst, ibld, 1);
3527 }
3528
3529 inst->remove(block);
3530 progress = true;
3531 }
3532
3533 if (progress)
3534 invalidate_live_intervals();
3535
3536 return progress;
3537 }
3538
3539 bool
3540 fs_visitor::lower_integer_multiplication()
3541 {
3542 bool progress = false;
3543
3544 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3545 const fs_builder ibld(this, block, inst);
3546
3547 if (inst->opcode == BRW_OPCODE_MUL) {
3548 if (inst->dst.is_accumulator() ||
3549 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3550 inst->dst.type != BRW_REGISTER_TYPE_UD))
3551 continue;
3552
3553 if (devinfo->has_integer_dword_mul)
3554 continue;
3555
3556 if (inst->src[1].file == IMM &&
3557 inst->src[1].ud < (1 << 16)) {
3558 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3559 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3560 * src1 are used.
3561 *
3562 * If multiplying by an immediate value that fits in 16-bits, do a
3563 * single MUL instruction with that value in the proper location.
3564 */
3565 if (devinfo->gen < 7) {
3566 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3567 inst->dst.type);
3568 ibld.MOV(imm, inst->src[1]);
3569 ibld.MUL(inst->dst, imm, inst->src[0]);
3570 } else {
3571 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3572 ibld.MUL(inst->dst, inst->src[0],
3573 ud ? brw_imm_uw(inst->src[1].ud)
3574 : brw_imm_w(inst->src[1].d));
3575 }
3576 } else {
3577 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3578 * do 32-bit integer multiplication in one instruction, but instead
3579 * must do a sequence (which actually calculates a 64-bit result):
3580 *
3581 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3582 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3583 * mov(8) g2<1>D acc0<8,8,1>D
3584 *
3585 * But on Gen > 6, the ability to use second accumulator register
3586 * (acc1) for non-float data types was removed, preventing a simple
3587 * implementation in SIMD16. A 16-channel result can be calculated by
3588 * executing the three instructions twice in SIMD8, once with quarter
3589 * control of 1Q for the first eight channels and again with 2Q for
3590 * the second eight channels.
3591 *
3592 * Which accumulator register is implicitly accessed (by AccWrEnable
3593 * for instance) is determined by the quarter control. Unfortunately
3594 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3595 * implicit accumulator access by an instruction with 2Q will access
3596 * acc1 regardless of whether the data type is usable in acc1.
3597 *
3598 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3599 * integer data types.
3600 *
3601 * Since we only want the low 32-bits of the result, we can do two
3602 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3603 * adjust the high result and add them (like the mach is doing):
3604 *
3605 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3606 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3607 * shl(8) g9<1>D g8<8,8,1>D 16D
3608 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3609 *
3610 * We avoid the shl instruction by realizing that we only want to add
3611 * the low 16-bits of the "high" result to the high 16-bits of the
3612 * "low" result and using proper regioning on the add:
3613 *
3614 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3615 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3616 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3617 *
3618 * Since it does not use the (single) accumulator register, we can
3619 * schedule multi-component multiplications much better.
3620 */
3621
3622 bool needs_mov = false;
3623 fs_reg orig_dst = inst->dst;
3624 fs_reg low = inst->dst;
3625 if (orig_dst.is_null() || orig_dst.file == MRF ||
3626 regions_overlap(inst->dst, inst->size_written,
3627 inst->src[0], inst->size_read(0)) ||
3628 regions_overlap(inst->dst, inst->size_written,
3629 inst->src[1], inst->size_read(1))) {
3630 needs_mov = true;
3631 /* Get a new VGRF but keep the same stride as inst->dst */
3632 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
3633 inst->dst.type);
3634 low.stride = inst->dst.stride;
3635 low.offset = inst->dst.offset % REG_SIZE;
3636 }
3637
3638 /* Get a new VGRF but keep the same stride as inst->dst */
3639 fs_reg high(VGRF, alloc.allocate(regs_written(inst)),
3640 inst->dst.type);
3641 high.stride = inst->dst.stride;
3642 high.offset = inst->dst.offset % REG_SIZE;
3643
3644 if (devinfo->gen >= 7) {
3645 if (inst->src[1].file == IMM) {
3646 ibld.MUL(low, inst->src[0],
3647 brw_imm_uw(inst->src[1].ud & 0xffff));
3648 ibld.MUL(high, inst->src[0],
3649 brw_imm_uw(inst->src[1].ud >> 16));
3650 } else {
3651 ibld.MUL(low, inst->src[0],
3652 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3653 ibld.MUL(high, inst->src[0],
3654 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3655 }
3656 } else {
3657 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3658 inst->src[1]);
3659 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3660 inst->src[1]);
3661 }
3662
3663 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3664 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3665 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3666
3667 if (needs_mov || inst->conditional_mod) {
3668 set_condmod(inst->conditional_mod,
3669 ibld.MOV(orig_dst, low));
3670 }
3671 }
3672
3673 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3674 /* Should have been lowered to 8-wide. */
3675 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3676 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3677 inst->dst.type);
3678 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3679 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3680
3681 if (devinfo->gen >= 8) {
3682 /* Until Gen8, integer multiplies read 32-bits from one source,
3683 * and 16-bits from the other, and relying on the MACH instruction
3684 * to generate the high bits of the result.
3685 *
3686 * On Gen8, the multiply instruction does a full 32x32-bit
3687 * multiply, but in order to do a 64-bit multiply we can simulate
3688 * the previous behavior and then use a MACH instruction.
3689 *
3690 * FINISHME: Don't use source modifiers on src1.
3691 */
3692 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3693 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3694 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3695 mul->src[1].stride *= 2;
3696
3697 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3698 inst->group > 0) {
3699 /* Among other things the quarter control bits influence which
3700 * accumulator register is used by the hardware for instructions
3701 * that access the accumulator implicitly (e.g. MACH). A
3702 * second-half instruction would normally map to acc1, which
3703 * doesn't exist on Gen7 and up (the hardware does emulate it for
3704 * floating-point instructions *only* by taking advantage of the
3705 * extra precision of acc0 not normally used for floating point
3706 * arithmetic).
3707 *
3708 * HSW and up are careful enough not to try to access an
3709 * accumulator register that doesn't exist, but on earlier Gen7
3710 * hardware we need to make sure that the quarter control bits are
3711 * zero to avoid non-deterministic behaviour and emit an extra MOV
3712 * to get the result masked correctly according to the current
3713 * channel enables.
3714 */
3715 mach->group = 0;
3716 mach->force_writemask_all = true;
3717 mach->dst = ibld.vgrf(inst->dst.type);
3718 ibld.MOV(inst->dst, mach->dst);
3719 }
3720 } else {
3721 continue;
3722 }
3723
3724 inst->remove(block);
3725 progress = true;
3726 }
3727
3728 if (progress)
3729 invalidate_live_intervals();
3730
3731 return progress;
3732 }
3733
3734 bool
3735 fs_visitor::lower_minmax()
3736 {
3737 assert(devinfo->gen < 6);
3738
3739 bool progress = false;
3740
3741 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3742 const fs_builder ibld(this, block, inst);
3743
3744 if (inst->opcode == BRW_OPCODE_SEL &&
3745 inst->predicate == BRW_PREDICATE_NONE) {
3746 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3747 * the original SEL.L/GE instruction
3748 */
3749 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3750 inst->conditional_mod);
3751 inst->predicate = BRW_PREDICATE_NORMAL;
3752 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3753
3754 progress = true;
3755 }
3756 }
3757
3758 if (progress)
3759 invalidate_live_intervals();
3760
3761 return progress;
3762 }
3763
3764 static void
3765 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3766 fs_reg *dst, fs_reg color, unsigned components)
3767 {
3768 if (key->clamp_fragment_color) {
3769 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3770 assert(color.type == BRW_REGISTER_TYPE_F);
3771
3772 for (unsigned i = 0; i < components; i++)
3773 set_saturate(true,
3774 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3775
3776 color = tmp;
3777 }
3778
3779 for (unsigned i = 0; i < components; i++)
3780 dst[i] = offset(color, bld, i);
3781 }
3782
3783 static void
3784 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3785 const struct brw_wm_prog_data *prog_data,
3786 const brw_wm_prog_key *key,
3787 const fs_visitor::thread_payload &payload)
3788 {
3789 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3790 const gen_device_info *devinfo = bld.shader->devinfo;
3791 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3792 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3793 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3794 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3795 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3796 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3797 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3798 const unsigned components =
3799 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3800
3801 /* We can potentially have a message length of up to 15, so we have to set
3802 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3803 */
3804 fs_reg sources[15];
3805 int header_size = 2, payload_header_size;
3806 unsigned length = 0;
3807
3808 /* From the Sandy Bridge PRM, volume 4, page 198:
3809 *
3810 * "Dispatched Pixel Enables. One bit per pixel indicating
3811 * which pixels were originally enabled when the thread was
3812 * dispatched. This field is only required for the end-of-
3813 * thread message and on all dual-source messages."
3814 */
3815 if (devinfo->gen >= 6 &&
3816 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3817 color1.file == BAD_FILE &&
3818 key->nr_color_regions == 1) {
3819 header_size = 0;
3820 }
3821
3822 if (header_size != 0) {
3823 assert(header_size == 2);
3824 /* Allocate 2 registers for a header */
3825 length += 2;
3826 }
3827
3828 if (payload.aa_dest_stencil_reg) {
3829 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3830 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3831 .MOV(sources[length],
3832 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3833 length++;
3834 }
3835
3836 if (sample_mask.file != BAD_FILE) {
3837 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3838 BRW_REGISTER_TYPE_UD);
3839
3840 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3841 * relevant. Since it's unsigned single words one vgrf is always
3842 * 16-wide, but only the lower or higher 8 channels will be used by the
3843 * hardware when doing a SIMD8 write depending on whether we have
3844 * selected the subspans for the first or second half respectively.
3845 */
3846 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3847 sample_mask.type = BRW_REGISTER_TYPE_UW;
3848 sample_mask.stride *= 2;
3849
3850 bld.exec_all().annotate("FB write oMask")
3851 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3852 inst->group),
3853 sample_mask);
3854 length++;
3855 }
3856
3857 payload_header_size = length;
3858
3859 if (src0_alpha.file != BAD_FILE) {
3860 /* FIXME: This is being passed at the wrong location in the payload and
3861 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3862 * It's supposed to be immediately before oMask but there seems to be no
3863 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3864 * requires header sources to form a contiguous segment at the beginning
3865 * of the message and src0_alpha has per-channel semantics.
3866 */
3867 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3868 length++;
3869 } else if (key->replicate_alpha && inst->target != 0) {
3870 /* Handle the case when fragment shader doesn't write to draw buffer
3871 * zero. No need to call setup_color_payload() for src0_alpha because
3872 * alpha value will be undefined.
3873 */
3874 length++;
3875 }
3876
3877 setup_color_payload(bld, key, &sources[length], color0, components);
3878 length += 4;
3879
3880 if (color1.file != BAD_FILE) {
3881 setup_color_payload(bld, key, &sources[length], color1, components);
3882 length += 4;
3883 }
3884
3885 if (src_depth.file != BAD_FILE) {
3886 sources[length] = src_depth;
3887 length++;
3888 }
3889
3890 if (dst_depth.file != BAD_FILE) {
3891 sources[length] = dst_depth;
3892 length++;
3893 }
3894
3895 if (src_stencil.file != BAD_FILE) {
3896 assert(devinfo->gen >= 9);
3897 assert(bld.dispatch_width() != 16);
3898
3899 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3900 * available on gen9+. As such it's impossible to have both enabled at the
3901 * same time and therefore length cannot overrun the array.
3902 */
3903 assert(length < 15);
3904
3905 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3906 bld.exec_all().annotate("FB write OS")
3907 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3908 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3909 length++;
3910 }
3911
3912 fs_inst *load;
3913 if (devinfo->gen >= 7) {
3914 /* Send from the GRF */
3915 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3916 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3917 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3918 load->dst = payload;
3919
3920 inst->src[0] = payload;
3921 inst->resize_sources(1);
3922 } else {
3923 /* Send from the MRF */
3924 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3925 sources, length, payload_header_size);
3926
3927 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3928 * will do this for us if we just give it a COMPR4 destination.
3929 */
3930 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3931 load->dst.nr |= BRW_MRF_COMPR4;
3932
3933 inst->resize_sources(0);
3934 inst->base_mrf = 1;
3935 }
3936
3937 inst->opcode = FS_OPCODE_FB_WRITE;
3938 inst->mlen = regs_written(load);
3939 inst->header_size = header_size;
3940 }
3941
3942 static void
3943 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3944 {
3945 const fs_builder &ubld = bld.exec_all();
3946 const unsigned length = 2;
3947 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3948
3949 ubld.group(16, 0)
3950 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3951
3952 inst->resize_sources(1);
3953 inst->src[0] = header;
3954 inst->opcode = FS_OPCODE_FB_READ;
3955 inst->mlen = length;
3956 inst->header_size = length;
3957 }
3958
3959 static void
3960 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3961 const fs_reg &coordinate,
3962 const fs_reg &shadow_c,
3963 const fs_reg &lod, const fs_reg &lod2,
3964 const fs_reg &surface,
3965 const fs_reg &sampler,
3966 unsigned coord_components,
3967 unsigned grad_components)
3968 {
3969 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3970 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3971 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3972 fs_reg msg_end = msg_begin;
3973
3974 /* g0 header. */
3975 msg_end = offset(msg_end, bld.group(8, 0), 1);
3976
3977 for (unsigned i = 0; i < coord_components; i++)
3978 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3979 offset(coordinate, bld, i));
3980
3981 msg_end = offset(msg_end, bld, coord_components);
3982
3983 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3984 * require all three components to be present and zero if they are unused.
3985 */
3986 if (coord_components > 0 &&
3987 (has_lod || shadow_c.file != BAD_FILE ||
3988 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3989 for (unsigned i = coord_components; i < 3; i++)
3990 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3991
3992 msg_end = offset(msg_end, bld, 3 - coord_components);
3993 }
3994
3995 if (op == SHADER_OPCODE_TXD) {
3996 /* TXD unsupported in SIMD16 mode. */
3997 assert(bld.dispatch_width() == 8);
3998
3999 /* the slots for u and v are always present, but r is optional */
4000 if (coord_components < 2)
4001 msg_end = offset(msg_end, bld, 2 - coord_components);
4002
4003 /* P = u, v, r
4004 * dPdx = dudx, dvdx, drdx
4005 * dPdy = dudy, dvdy, drdy
4006 *
4007 * 1-arg: Does not exist.
4008 *
4009 * 2-arg: dudx dvdx dudy dvdy
4010 * dPdx.x dPdx.y dPdy.x dPdy.y
4011 * m4 m5 m6 m7
4012 *
4013 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4014 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4015 * m5 m6 m7 m8 m9 m10
4016 */
4017 for (unsigned i = 0; i < grad_components; i++)
4018 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4019
4020 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4021
4022 for (unsigned i = 0; i < grad_components; i++)
4023 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4024
4025 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4026 }
4027
4028 if (has_lod) {
4029 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4030 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4031 */
4032 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4033 bld.dispatch_width() == 16);
4034
4035 const brw_reg_type type =
4036 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4037 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4038 bld.MOV(retype(msg_end, type), lod);
4039 msg_end = offset(msg_end, bld, 1);
4040 }
4041
4042 if (shadow_c.file != BAD_FILE) {
4043 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4044 /* There's no plain shadow compare message, so we use shadow
4045 * compare with a bias of 0.0.
4046 */
4047 bld.MOV(msg_end, brw_imm_f(0.0f));
4048 msg_end = offset(msg_end, bld, 1);
4049 }
4050
4051 bld.MOV(msg_end, shadow_c);
4052 msg_end = offset(msg_end, bld, 1);
4053 }
4054
4055 inst->opcode = op;
4056 inst->src[0] = reg_undef;
4057 inst->src[1] = surface;
4058 inst->src[2] = sampler;
4059 inst->resize_sources(3);
4060 inst->base_mrf = msg_begin.nr;
4061 inst->mlen = msg_end.nr - msg_begin.nr;
4062 inst->header_size = 1;
4063 }
4064
4065 static void
4066 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4067 const fs_reg &coordinate,
4068 const fs_reg &shadow_c,
4069 const fs_reg &lod, const fs_reg &lod2,
4070 const fs_reg &sample_index,
4071 const fs_reg &surface,
4072 const fs_reg &sampler,
4073 unsigned coord_components,
4074 unsigned grad_components)
4075 {
4076 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4077 fs_reg msg_coords = message;
4078 unsigned header_size = 0;
4079
4080 if (inst->offset != 0) {
4081 /* The offsets set up by the visitor are in the m1 header, so we can't
4082 * go headerless.
4083 */
4084 header_size = 1;
4085 message.nr--;
4086 }
4087
4088 for (unsigned i = 0; i < coord_components; i++)
4089 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4090 offset(coordinate, bld, i));
4091
4092 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4093 fs_reg msg_lod = offset(msg_coords, bld, 4);
4094
4095 if (shadow_c.file != BAD_FILE) {
4096 fs_reg msg_shadow = msg_lod;
4097 bld.MOV(msg_shadow, shadow_c);
4098 msg_lod = offset(msg_shadow, bld, 1);
4099 msg_end = msg_lod;
4100 }
4101
4102 switch (op) {
4103 case SHADER_OPCODE_TXL:
4104 case FS_OPCODE_TXB:
4105 bld.MOV(msg_lod, lod);
4106 msg_end = offset(msg_lod, bld, 1);
4107 break;
4108 case SHADER_OPCODE_TXD:
4109 /**
4110 * P = u, v, r
4111 * dPdx = dudx, dvdx, drdx
4112 * dPdy = dudy, dvdy, drdy
4113 *
4114 * Load up these values:
4115 * - dudx dudy dvdx dvdy drdx drdy
4116 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4117 */
4118 msg_end = msg_lod;
4119 for (unsigned i = 0; i < grad_components; i++) {
4120 bld.MOV(msg_end, offset(lod, bld, i));
4121 msg_end = offset(msg_end, bld, 1);
4122
4123 bld.MOV(msg_end, offset(lod2, bld, i));
4124 msg_end = offset(msg_end, bld, 1);
4125 }
4126 break;
4127 case SHADER_OPCODE_TXS:
4128 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4129 bld.MOV(msg_lod, lod);
4130 msg_end = offset(msg_lod, bld, 1);
4131 break;
4132 case SHADER_OPCODE_TXF:
4133 msg_lod = offset(msg_coords, bld, 3);
4134 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4135 msg_end = offset(msg_lod, bld, 1);
4136 break;
4137 case SHADER_OPCODE_TXF_CMS:
4138 msg_lod = offset(msg_coords, bld, 3);
4139 /* lod */
4140 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4141 /* sample index */
4142 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4143 msg_end = offset(msg_lod, bld, 2);
4144 break;
4145 default:
4146 break;
4147 }
4148
4149 inst->opcode = op;
4150 inst->src[0] = reg_undef;
4151 inst->src[1] = surface;
4152 inst->src[2] = sampler;
4153 inst->resize_sources(3);
4154 inst->base_mrf = message.nr;
4155 inst->mlen = msg_end.nr - message.nr;
4156 inst->header_size = header_size;
4157
4158 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4159 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4160 }
4161
4162 static bool
4163 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4164 {
4165 if (devinfo->gen < 8 && !devinfo->is_haswell)
4166 return false;
4167
4168 return sampler.file != IMM || sampler.ud >= 16;
4169 }
4170
4171 static void
4172 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4173 const fs_reg &coordinate,
4174 const fs_reg &shadow_c,
4175 fs_reg lod, const fs_reg &lod2,
4176 const fs_reg &sample_index,
4177 const fs_reg &mcs,
4178 const fs_reg &surface,
4179 const fs_reg &sampler,
4180 const fs_reg &tg4_offset,
4181 unsigned coord_components,
4182 unsigned grad_components)
4183 {
4184 const gen_device_info *devinfo = bld.shader->devinfo;
4185 unsigned reg_width = bld.dispatch_width() / 8;
4186 unsigned header_size = 0, length = 0;
4187 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4188 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4189 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4190
4191 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4192 inst->offset != 0 || inst->eot ||
4193 op == SHADER_OPCODE_SAMPLEINFO ||
4194 is_high_sampler(devinfo, sampler)) {
4195 /* For general texture offsets (no txf workaround), we need a header to
4196 * put them in.
4197 *
4198 * TG4 needs to place its channel select in the header, for interaction
4199 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4200 * larger sampler numbers we need to offset the Sampler State Pointer in
4201 * the header.
4202 */
4203 fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD);
4204 header_size = 1;
4205 length++;
4206
4207 /* If we're requesting fewer than four channels worth of response,
4208 * and we have an explicit header, we need to set up the sampler
4209 * writemask. It's reversed from normal: 1 means "don't write".
4210 */
4211 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4212 assert(regs_written(inst) % reg_width == 0);
4213 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4214 inst->offset |= mask << 12;
4215 }
4216
4217 /* Build the actual header */
4218 const fs_builder ubld = bld.exec_all().group(8, 0);
4219 const fs_builder ubld1 = ubld.group(1, 0);
4220 ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
4221 if (inst->offset) {
4222 ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset));
4223 } else if (bld.shader->stage != MESA_SHADER_VERTEX &&
4224 bld.shader->stage != MESA_SHADER_FRAGMENT) {
4225 /* The vertex and fragment stages have g0.2 set to 0, so
4226 * header0.2 is 0 when g0 is copied. Other stages may not, so we
4227 * must set it to 0 to avoid setting undesirable bits in the
4228 * message.
4229 */
4230 ubld1.MOV(component(header, 2), brw_imm_ud(0));
4231 }
4232
4233 if (is_high_sampler(devinfo, sampler)) {
4234 if (sampler.file == BRW_IMMEDIATE_VALUE) {
4235 assert(sampler.ud >= 16);
4236 const int sampler_state_size = 16; /* 16 bytes */
4237
4238 ubld1.ADD(component(header, 3),
4239 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
4240 brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size));
4241 } else {
4242 fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
4243 ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0));
4244 ubld1.SHL(tmp, tmp, brw_imm_ud(4));
4245 ubld1.ADD(component(header, 3),
4246 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
4247 tmp);
4248 }
4249 }
4250 }
4251
4252 if (shadow_c.file != BAD_FILE) {
4253 bld.MOV(sources[length], shadow_c);
4254 length++;
4255 }
4256
4257 bool coordinate_done = false;
4258
4259 /* Set up the LOD info */
4260 switch (op) {
4261 case FS_OPCODE_TXB:
4262 case SHADER_OPCODE_TXL:
4263 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4264 op = SHADER_OPCODE_TXL_LZ;
4265 break;
4266 }
4267 bld.MOV(sources[length], lod);
4268 length++;
4269 break;
4270 case SHADER_OPCODE_TXD:
4271 /* TXD should have been lowered in SIMD16 mode. */
4272 assert(bld.dispatch_width() == 8);
4273
4274 /* Load dPdx and the coordinate together:
4275 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4276 */
4277 for (unsigned i = 0; i < coord_components; i++) {
4278 bld.MOV(sources[length++], offset(coordinate, bld, i));
4279
4280 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4281 * only derivatives for (u, v, r).
4282 */
4283 if (i < grad_components) {
4284 bld.MOV(sources[length++], offset(lod, bld, i));
4285 bld.MOV(sources[length++], offset(lod2, bld, i));
4286 }
4287 }
4288
4289 coordinate_done = true;
4290 break;
4291 case SHADER_OPCODE_TXS:
4292 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4293 length++;
4294 break;
4295 case SHADER_OPCODE_TXF:
4296 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4297 * On Gen9 they are u, v, lod, r
4298 */
4299 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4300
4301 if (devinfo->gen >= 9) {
4302 if (coord_components >= 2) {
4303 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4304 offset(coordinate, bld, 1));
4305 } else {
4306 sources[length] = brw_imm_d(0);
4307 }
4308 length++;
4309 }
4310
4311 if (devinfo->gen >= 9 && lod.is_zero()) {
4312 op = SHADER_OPCODE_TXF_LZ;
4313 } else {
4314 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4315 length++;
4316 }
4317
4318 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4319 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4320 offset(coordinate, bld, i));
4321
4322 coordinate_done = true;
4323 break;
4324
4325 case SHADER_OPCODE_TXF_CMS:
4326 case SHADER_OPCODE_TXF_CMS_W:
4327 case SHADER_OPCODE_TXF_UMS:
4328 case SHADER_OPCODE_TXF_MCS:
4329 if (op == SHADER_OPCODE_TXF_UMS ||
4330 op == SHADER_OPCODE_TXF_CMS ||
4331 op == SHADER_OPCODE_TXF_CMS_W) {
4332 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4333 length++;
4334 }
4335
4336 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4337 /* Data from the multisample control surface. */
4338 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4339 length++;
4340
4341 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4342 * the MCS data.
4343 */
4344 if (op == SHADER_OPCODE_TXF_CMS_W) {
4345 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4346 mcs.file == IMM ?
4347 mcs :
4348 offset(mcs, bld, 1));
4349 length++;
4350 }
4351 }
4352
4353 /* There is no offsetting for this message; just copy in the integer
4354 * texture coordinates.
4355 */
4356 for (unsigned i = 0; i < coord_components; i++)
4357 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4358 offset(coordinate, bld, i));
4359
4360 coordinate_done = true;
4361 break;
4362 case SHADER_OPCODE_TG4_OFFSET:
4363 /* More crazy intermixing */
4364 for (unsigned i = 0; i < 2; i++) /* u, v */
4365 bld.MOV(sources[length++], offset(coordinate, bld, i));
4366
4367 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4368 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4369 offset(tg4_offset, bld, i));
4370
4371 if (coord_components == 3) /* r if present */
4372 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4373
4374 coordinate_done = true;
4375 break;
4376 default:
4377 break;
4378 }
4379
4380 /* Set up the coordinate (except for cases where it was done above) */
4381 if (!coordinate_done) {
4382 for (unsigned i = 0; i < coord_components; i++)
4383 bld.MOV(sources[length++], offset(coordinate, bld, i));
4384 }
4385
4386 int mlen;
4387 if (reg_width == 2)
4388 mlen = length * reg_width - header_size;
4389 else
4390 mlen = length * reg_width;
4391
4392 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4393 BRW_REGISTER_TYPE_F);
4394 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4395
4396 /* Generate the SEND. */
4397 inst->opcode = op;
4398 inst->src[0] = src_payload;
4399 inst->src[1] = surface;
4400 inst->src[2] = sampler;
4401 inst->resize_sources(3);
4402 inst->mlen = mlen;
4403 inst->header_size = header_size;
4404
4405 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4406 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4407 }
4408
4409 static void
4410 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4411 {
4412 const gen_device_info *devinfo = bld.shader->devinfo;
4413 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4414 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4415 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4416 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4417 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4418 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4419 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4420 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4421 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4422 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4423 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4424 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4425 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4426
4427 if (devinfo->gen >= 7) {
4428 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4429 shadow_c, lod, lod2, sample_index,
4430 mcs, surface, sampler, tg4_offset,
4431 coord_components, grad_components);
4432 } else if (devinfo->gen >= 5) {
4433 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4434 shadow_c, lod, lod2, sample_index,
4435 surface, sampler,
4436 coord_components, grad_components);
4437 } else {
4438 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4439 shadow_c, lod, lod2,
4440 surface, sampler,
4441 coord_components, grad_components);
4442 }
4443 }
4444
4445 /**
4446 * Initialize the header present in some typed and untyped surface
4447 * messages.
4448 */
4449 static fs_reg
4450 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4451 {
4452 fs_builder ubld = bld.exec_all().group(8, 0);
4453 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4454 ubld.MOV(dst, brw_imm_d(0));
4455 ubld.group(1, 0).MOV(component(dst, 7), sample_mask);
4456 return dst;
4457 }
4458
4459 static void
4460 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4461 const fs_reg &sample_mask)
4462 {
4463 const gen_device_info *devinfo = bld.shader->devinfo;
4464
4465 /* Get the logical send arguments. */
4466 const fs_reg &addr = inst->src[0];
4467 const fs_reg &src = inst->src[1];
4468 const fs_reg &surface = inst->src[2];
4469 const UNUSED fs_reg &dims = inst->src[3];
4470 const fs_reg &arg = inst->src[4];
4471
4472 /* Calculate the total number of components of the payload. */
4473 const unsigned addr_sz = inst->components_read(0);
4474 const unsigned src_sz = inst->components_read(1);
4475 /* From the BDW PRM Volume 7, page 147:
4476 *
4477 * "For the Data Cache Data Port*, the header must be present for the
4478 * following message types: [...] Typed read/write/atomics"
4479 *
4480 * Earlier generations have a similar wording. Because of this restriction
4481 * we don't attempt to implement sample masks via predication for such
4482 * messages prior to Gen9, since we have to provide a header anyway. On
4483 * Gen11+ the header has been removed so we can only use predication.
4484 */
4485 const unsigned header_sz = devinfo->gen < 9 &&
4486 (op == SHADER_OPCODE_TYPED_SURFACE_READ ||
4487 op == SHADER_OPCODE_TYPED_SURFACE_WRITE ||
4488 op == SHADER_OPCODE_TYPED_ATOMIC) ? 1 : 0;
4489 const unsigned sz = header_sz + addr_sz + src_sz;
4490
4491 /* Allocate space for the payload. */
4492 fs_reg *const components = new fs_reg[sz];
4493 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4494 unsigned n = 0;
4495
4496 /* Construct the payload. */
4497 if (header_sz)
4498 components[n++] = emit_surface_header(bld, sample_mask);
4499
4500 for (unsigned i = 0; i < addr_sz; i++)
4501 components[n++] = offset(addr, bld, i);
4502
4503 for (unsigned i = 0; i < src_sz; i++)
4504 components[n++] = offset(src, bld, i);
4505
4506 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4507
4508 /* Predicate the instruction on the sample mask if no header is
4509 * provided.
4510 */
4511 if (!header_sz && sample_mask.file != BAD_FILE &&
4512 sample_mask.file != IMM) {
4513 const fs_builder ubld = bld.group(1, 0).exec_all();
4514 if (inst->predicate) {
4515 assert(inst->predicate == BRW_PREDICATE_NORMAL);
4516 assert(!inst->predicate_inverse);
4517 assert(inst->flag_subreg < 2);
4518 /* Combine the sample mask with the existing predicate by using a
4519 * vertical predication mode.
4520 */
4521 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
4522 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg + 2),
4523 sample_mask.type),
4524 sample_mask);
4525 } else {
4526 inst->flag_subreg = 2;
4527 inst->predicate = BRW_PREDICATE_NORMAL;
4528 inst->predicate_inverse = false;
4529 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg), sample_mask.type),
4530 sample_mask);
4531 }
4532 }
4533
4534 /* Update the original instruction. */
4535 inst->opcode = op;
4536 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4537 inst->header_size = header_sz;
4538
4539 inst->src[0] = payload;
4540 inst->src[1] = surface;
4541 inst->src[2] = arg;
4542 inst->resize_sources(3);
4543
4544 delete[] components;
4545 }
4546
4547 static void
4548 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4549 {
4550 const gen_device_info *devinfo = bld.shader->devinfo;
4551
4552 if (devinfo->gen >= 7) {
4553 /* We are switching the instruction from an ALU-like instruction to a
4554 * send-from-grf instruction. Since sends can't handle strides or
4555 * source modifiers, we have to make a copy of the offset source.
4556 */
4557 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4558 bld.MOV(tmp, inst->src[1]);
4559 inst->src[1] = tmp;
4560
4561 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4562
4563 } else {
4564 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4565 BRW_REGISTER_TYPE_UD);
4566
4567 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4568
4569 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4570 inst->resize_sources(1);
4571 inst->base_mrf = payload.nr;
4572 inst->header_size = 1;
4573 inst->mlen = 1 + inst->exec_size / 8;
4574 }
4575 }
4576
4577 static void
4578 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4579 {
4580 assert(bld.shader->devinfo->gen < 6);
4581
4582 inst->base_mrf = 2;
4583 inst->mlen = inst->sources * inst->exec_size / 8;
4584
4585 if (inst->sources > 1) {
4586 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4587 * "Message Payload":
4588 *
4589 * "Operand0[7]. For the INT DIV functions, this operand is the
4590 * denominator."
4591 * ...
4592 * "Operand1[7]. For the INT DIV functions, this operand is the
4593 * numerator."
4594 */
4595 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4596 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4597 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4598
4599 inst->resize_sources(1);
4600 inst->src[0] = src0;
4601
4602 assert(inst->exec_size == 8);
4603 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4604 }
4605 }
4606
4607 bool
4608 fs_visitor::lower_logical_sends()
4609 {
4610 bool progress = false;
4611
4612 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4613 const fs_builder ibld(this, block, inst);
4614
4615 switch (inst->opcode) {
4616 case FS_OPCODE_FB_WRITE_LOGICAL:
4617 assert(stage == MESA_SHADER_FRAGMENT);
4618 lower_fb_write_logical_send(ibld, inst,
4619 brw_wm_prog_data(prog_data),
4620 (const brw_wm_prog_key *)key,
4621 payload);
4622 break;
4623
4624 case FS_OPCODE_FB_READ_LOGICAL:
4625 lower_fb_read_logical_send(ibld, inst);
4626 break;
4627
4628 case SHADER_OPCODE_TEX_LOGICAL:
4629 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4630 break;
4631
4632 case SHADER_OPCODE_TXD_LOGICAL:
4633 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4634 break;
4635
4636 case SHADER_OPCODE_TXF_LOGICAL:
4637 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4638 break;
4639
4640 case SHADER_OPCODE_TXL_LOGICAL:
4641 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4642 break;
4643
4644 case SHADER_OPCODE_TXS_LOGICAL:
4645 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4646 break;
4647
4648 case FS_OPCODE_TXB_LOGICAL:
4649 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4650 break;
4651
4652 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4653 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4654 break;
4655
4656 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4657 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4658 break;
4659
4660 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4661 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4662 break;
4663
4664 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4665 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4666 break;
4667
4668 case SHADER_OPCODE_LOD_LOGICAL:
4669 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4670 break;
4671
4672 case SHADER_OPCODE_TG4_LOGICAL:
4673 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4674 break;
4675
4676 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4677 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4678 break;
4679
4680 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4681 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4682 break;
4683
4684 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4685 lower_surface_logical_send(ibld, inst,
4686 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4687 fs_reg());
4688 break;
4689
4690 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4691 lower_surface_logical_send(ibld, inst,
4692 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4693 ibld.sample_mask_reg());
4694 break;
4695
4696 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
4697 lower_surface_logical_send(ibld, inst,
4698 SHADER_OPCODE_BYTE_SCATTERED_READ,
4699 fs_reg());
4700 break;
4701
4702 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
4703 lower_surface_logical_send(ibld, inst,
4704 SHADER_OPCODE_BYTE_SCATTERED_WRITE,
4705 ibld.sample_mask_reg());
4706 break;
4707
4708 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4709 lower_surface_logical_send(ibld, inst,
4710 SHADER_OPCODE_UNTYPED_ATOMIC,
4711 ibld.sample_mask_reg());
4712 break;
4713
4714 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4715 lower_surface_logical_send(ibld, inst,
4716 SHADER_OPCODE_TYPED_SURFACE_READ,
4717 brw_imm_d(0xffff));
4718 break;
4719
4720 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4721 lower_surface_logical_send(ibld, inst,
4722 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4723 ibld.sample_mask_reg());
4724 break;
4725
4726 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4727 lower_surface_logical_send(ibld, inst,
4728 SHADER_OPCODE_TYPED_ATOMIC,
4729 ibld.sample_mask_reg());
4730 break;
4731
4732 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4733 lower_varying_pull_constant_logical_send(ibld, inst);
4734 break;
4735
4736 case SHADER_OPCODE_RCP:
4737 case SHADER_OPCODE_RSQ:
4738 case SHADER_OPCODE_SQRT:
4739 case SHADER_OPCODE_EXP2:
4740 case SHADER_OPCODE_LOG2:
4741 case SHADER_OPCODE_SIN:
4742 case SHADER_OPCODE_COS:
4743 case SHADER_OPCODE_POW:
4744 case SHADER_OPCODE_INT_QUOTIENT:
4745 case SHADER_OPCODE_INT_REMAINDER:
4746 /* The math opcodes are overloaded for the send-like and
4747 * expression-like instructions which seems kind of icky. Gen6+ has
4748 * a native (but rather quirky) MATH instruction so we don't need to
4749 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4750 * logical instructions (which we can easily recognize because they
4751 * have mlen = 0) into send-like virtual instructions.
4752 */
4753 if (devinfo->gen < 6 && inst->mlen == 0) {
4754 lower_math_logical_send(ibld, inst);
4755 break;
4756
4757 } else {
4758 continue;
4759 }
4760
4761 default:
4762 continue;
4763 }
4764
4765 progress = true;
4766 }
4767
4768 if (progress)
4769 invalidate_live_intervals();
4770
4771 return progress;
4772 }
4773
4774 /**
4775 * Get the closest allowed SIMD width for instruction \p inst accounting for
4776 * some common regioning and execution control restrictions that apply to FPU
4777 * instructions. These restrictions don't necessarily have any relevance to
4778 * instructions not executed by the FPU pipeline like extended math, control
4779 * flow or send message instructions.
4780 *
4781 * For virtual opcodes it's really up to the instruction -- In some cases
4782 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4783 * instructions) it may simplify virtual instruction lowering if we can
4784 * enforce FPU-like regioning restrictions already on the virtual instruction,
4785 * in other cases (e.g. virtual send-like instructions) this may be
4786 * excessively restrictive.
4787 */
4788 static unsigned
4789 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4790 const fs_inst *inst)
4791 {
4792 /* Maximum execution size representable in the instruction controls. */
4793 unsigned max_width = MIN2(32, inst->exec_size);
4794
4795 /* According to the PRMs:
4796 * "A. In Direct Addressing mode, a source cannot span more than 2
4797 * adjacent GRF registers.
4798 * B. A destination cannot span more than 2 adjacent GRF registers."
4799 *
4800 * Look for the source or destination with the largest register region
4801 * which is the one that is going to limit the overall execution size of
4802 * the instruction due to this rule.
4803 */
4804 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4805
4806 for (unsigned i = 0; i < inst->sources; i++)
4807 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4808
4809 /* Calculate the maximum execution size of the instruction based on the
4810 * factor by which it goes over the hardware limit of 2 GRFs.
4811 */
4812 if (reg_count > 2)
4813 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4814
4815 /* According to the IVB PRMs:
4816 * "When destination spans two registers, the source MUST span two
4817 * registers. The exception to the above rule:
4818 *
4819 * - When source is scalar, the source registers are not incremented.
4820 * - When source is packed integer Word and destination is packed
4821 * integer DWord, the source register is not incremented but the
4822 * source sub register is incremented."
4823 *
4824 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4825 * restrictions. The code below intentionally doesn't check whether the
4826 * destination type is integer because empirically the hardware doesn't
4827 * seem to care what the actual type is as long as it's dword-aligned.
4828 */
4829 if (devinfo->gen < 8) {
4830 for (unsigned i = 0; i < inst->sources; i++) {
4831 /* IVB implements DF scalars as <0;2,1> regions. */
4832 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4833 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
4834 const bool is_packed_word_exception =
4835 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4836 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4837
4838 if (inst->size_written > REG_SIZE &&
4839 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4840 !is_scalar_exception && !is_packed_word_exception) {
4841 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4842 max_width = MIN2(max_width, inst->exec_size / reg_count);
4843 }
4844 }
4845 }
4846
4847 /* From the IVB PRMs:
4848 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4849 * are applied for both halves of the SIMD32 instruction. If different
4850 * execution mask channels are required, split the instruction into two
4851 * SIMD16 instructions."
4852 *
4853 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4854 * 32-wide control flow support in hardware and will behave similarly.
4855 */
4856 if (devinfo->gen < 8 && !inst->force_writemask_all)
4857 max_width = MIN2(max_width, 16);
4858
4859 /* From the IVB PRMs (applies to HSW too):
4860 * "Instructions with condition modifiers must not use SIMD32."
4861 *
4862 * From the BDW PRMs (applies to later hardware too):
4863 * "Ternary instruction with condition modifiers must not use SIMD32."
4864 */
4865 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4866 max_width = MIN2(max_width, 16);
4867
4868 /* From the IVB PRMs (applies to other devices that don't have the
4869 * gen_device_info::supports_simd16_3src flag set):
4870 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4871 * SIMD8 is not allowed for DF operations."
4872 */
4873 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4874 max_width = MIN2(max_width, inst->exec_size / reg_count);
4875
4876 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4877 * the 8-bit quarter of the execution mask signals specified in the
4878 * instruction control fields) for the second compressed half of any
4879 * single-precision instruction (for double-precision instructions
4880 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4881 * the EU will apply the wrong execution controls for the second
4882 * sequential GRF write if the number of channels per GRF is not exactly
4883 * eight in single-precision mode (or four in double-float mode).
4884 *
4885 * In this situation we calculate the maximum size of the split
4886 * instructions so they only ever write to a single register.
4887 */
4888 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4889 !inst->force_writemask_all) {
4890 const unsigned channels_per_grf = inst->exec_size /
4891 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4892 const unsigned exec_type_size = get_exec_type_size(inst);
4893 assert(exec_type_size);
4894
4895 /* The hardware shifts exactly 8 channels per compressed half of the
4896 * instruction in single-precision mode and exactly 4 in double-precision.
4897 */
4898 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4899 max_width = MIN2(max_width, channels_per_grf);
4900
4901 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4902 * because HW applies the same channel enable signals to both halves of
4903 * the compressed instruction which will be just wrong under
4904 * non-uniform control flow.
4905 */
4906 if (devinfo->gen == 7 && !devinfo->is_haswell &&
4907 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4908 max_width = MIN2(max_width, 4);
4909 }
4910
4911 /* Only power-of-two execution sizes are representable in the instruction
4912 * control fields.
4913 */
4914 return 1 << _mesa_logbase2(max_width);
4915 }
4916
4917 /**
4918 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4919 * various payload size restrictions that apply to sampler message
4920 * instructions.
4921 *
4922 * This is only intended to provide a maximum theoretical bound for the
4923 * execution size of the message based on the number of argument components
4924 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4925 * variant of the message can be used, though some messages may have
4926 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4927 * the message length to determine the exact SIMD width and argument count,
4928 * which makes a number of sampler message combinations impossible to
4929 * represent).
4930 */
4931 static unsigned
4932 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4933 const fs_inst *inst)
4934 {
4935 /* Calculate the number of coordinate components that have to be present
4936 * assuming that additional arguments follow the texel coordinates in the
4937 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4938 * need to pad to four or three components depending on the message,
4939 * pre-ILK we need to pad to at most three components.
4940 */
4941 const unsigned req_coord_components =
4942 (devinfo->gen >= 7 ||
4943 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4944 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4945 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4946 3;
4947
4948 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4949 * variant of the TXL or TXF message.
4950 */
4951 const bool implicit_lod = devinfo->gen >= 9 &&
4952 (inst->opcode == SHADER_OPCODE_TXL ||
4953 inst->opcode == SHADER_OPCODE_TXF) &&
4954 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4955
4956 /* Calculate the total number of argument components that need to be passed
4957 * to the sampler unit.
4958 */
4959 const unsigned num_payload_components =
4960 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4961 req_coord_components) +
4962 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4963 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4964 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4965 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4966 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4967 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4968 inst->components_read(TEX_LOGICAL_SRC_MCS);
4969
4970 /* SIMD16 messages with more than five arguments exceed the maximum message
4971 * size supported by the sampler, regardless of whether a header is
4972 * provided or not.
4973 */
4974 return MIN2(inst->exec_size,
4975 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4976 }
4977
4978 /**
4979 * Get the closest native SIMD width supported by the hardware for instruction
4980 * \p inst. The instruction will be left untouched by
4981 * fs_visitor::lower_simd_width() if the returned value is equal to the
4982 * original execution size.
4983 */
4984 static unsigned
4985 get_lowered_simd_width(const struct gen_device_info *devinfo,
4986 const fs_inst *inst)
4987 {
4988 switch (inst->opcode) {
4989 case BRW_OPCODE_MOV:
4990 case BRW_OPCODE_SEL:
4991 case BRW_OPCODE_NOT:
4992 case BRW_OPCODE_AND:
4993 case BRW_OPCODE_OR:
4994 case BRW_OPCODE_XOR:
4995 case BRW_OPCODE_SHR:
4996 case BRW_OPCODE_SHL:
4997 case BRW_OPCODE_ASR:
4998 case BRW_OPCODE_CMPN:
4999 case BRW_OPCODE_CSEL:
5000 case BRW_OPCODE_F32TO16:
5001 case BRW_OPCODE_F16TO32:
5002 case BRW_OPCODE_BFREV:
5003 case BRW_OPCODE_BFE:
5004 case BRW_OPCODE_ADD:
5005 case BRW_OPCODE_MUL:
5006 case BRW_OPCODE_AVG:
5007 case BRW_OPCODE_FRC:
5008 case BRW_OPCODE_RNDU:
5009 case BRW_OPCODE_RNDD:
5010 case BRW_OPCODE_RNDE:
5011 case BRW_OPCODE_RNDZ:
5012 case BRW_OPCODE_LZD:
5013 case BRW_OPCODE_FBH:
5014 case BRW_OPCODE_FBL:
5015 case BRW_OPCODE_CBIT:
5016 case BRW_OPCODE_SAD2:
5017 case BRW_OPCODE_MAD:
5018 case BRW_OPCODE_LRP:
5019 case FS_OPCODE_PACK:
5020 return get_fpu_lowered_simd_width(devinfo, inst);
5021
5022 case BRW_OPCODE_CMP: {
5023 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
5024 * when the destination is a GRF the dependency-clear bit on the flag
5025 * register is cleared early.
5026 *
5027 * Suggested workarounds are to disable coissuing CMP instructions
5028 * or to split CMP(16) instructions into two CMP(8) instructions.
5029 *
5030 * We choose to split into CMP(8) instructions since disabling
5031 * coissuing would affect CMP instructions not otherwise affected by
5032 * the errata.
5033 */
5034 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
5035 !inst->dst.is_null() ? 8 : ~0);
5036 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
5037 }
5038 case BRW_OPCODE_BFI1:
5039 case BRW_OPCODE_BFI2:
5040 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
5041 * should
5042 * "Force BFI instructions to be executed always in SIMD8."
5043 */
5044 return MIN2(devinfo->is_haswell ? 8 : ~0u,
5045 get_fpu_lowered_simd_width(devinfo, inst));
5046
5047 case BRW_OPCODE_IF:
5048 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
5049 return inst->exec_size;
5050
5051 case SHADER_OPCODE_RCP:
5052 case SHADER_OPCODE_RSQ:
5053 case SHADER_OPCODE_SQRT:
5054 case SHADER_OPCODE_EXP2:
5055 case SHADER_OPCODE_LOG2:
5056 case SHADER_OPCODE_SIN:
5057 case SHADER_OPCODE_COS:
5058 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
5059 * Gen6.
5060 */
5061 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
5062 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
5063 MIN2(8, inst->exec_size));
5064
5065 case SHADER_OPCODE_POW:
5066 /* SIMD16 is only allowed on Gen7+. */
5067 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
5068 MIN2(8, inst->exec_size));
5069
5070 case SHADER_OPCODE_INT_QUOTIENT:
5071 case SHADER_OPCODE_INT_REMAINDER:
5072 /* Integer division is limited to SIMD8 on all generations. */
5073 return MIN2(8, inst->exec_size);
5074
5075 case FS_OPCODE_LINTERP:
5076 case SHADER_OPCODE_GET_BUFFER_SIZE:
5077 case FS_OPCODE_DDX_COARSE:
5078 case FS_OPCODE_DDX_FINE:
5079 case FS_OPCODE_DDY_COARSE:
5080 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
5081 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
5082 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
5083 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
5084 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
5085 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
5086 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
5087 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
5088 return MIN2(16, inst->exec_size);
5089
5090 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5091 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
5092 * message used to implement varying pull constant loads, so expand it
5093 * to SIMD16. An alternative with longer message payload length but
5094 * shorter return payload would be to use the SIMD8 sampler message that
5095 * takes (header, u, v, r) as parameters instead of (header, u).
5096 */
5097 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
5098
5099 case FS_OPCODE_DDY_FINE:
5100 /* The implementation of this virtual opcode may require emitting
5101 * compressed Align16 instructions, which are severely limited on some
5102 * generations.
5103 *
5104 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
5105 * Region Restrictions):
5106 *
5107 * "In Align16 access mode, SIMD16 is not allowed for DW operations
5108 * and SIMD8 is not allowed for DF operations."
5109 *
5110 * In this context, "DW operations" means "operations acting on 32-bit
5111 * values", so it includes operations on floats.
5112 *
5113 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
5114 * (Instruction Compression -> Rules and Restrictions):
5115 *
5116 * "A compressed instruction must be in Align1 access mode. Align16
5117 * mode instructions cannot be compressed."
5118 *
5119 * Similar text exists in the g45 PRM.
5120 *
5121 * Empirically, compressed align16 instructions using odd register
5122 * numbers don't appear to work on Sandybridge either.
5123 */
5124 return (devinfo->gen == 4 || devinfo->gen == 6 ||
5125 (devinfo->gen == 7 && !devinfo->is_haswell) ?
5126 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
5127
5128 case SHADER_OPCODE_MULH:
5129 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
5130 * is 8-wide on Gen7+.
5131 */
5132 return (devinfo->gen >= 7 ? 8 :
5133 get_fpu_lowered_simd_width(devinfo, inst));
5134
5135 case FS_OPCODE_FB_WRITE_LOGICAL:
5136 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
5137 * here.
5138 */
5139 assert(devinfo->gen != 6 ||
5140 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
5141 inst->exec_size == 8);
5142 /* Dual-source FB writes are unsupported in SIMD16 mode. */
5143 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
5144 8 : MIN2(16, inst->exec_size));
5145
5146 case FS_OPCODE_FB_READ_LOGICAL:
5147 return MIN2(16, inst->exec_size);
5148
5149 case SHADER_OPCODE_TEX_LOGICAL:
5150 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5151 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5152 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5153 case SHADER_OPCODE_LOD_LOGICAL:
5154 case SHADER_OPCODE_TG4_LOGICAL:
5155 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5156 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5157 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5158 return get_sampler_lowered_simd_width(devinfo, inst);
5159
5160 case SHADER_OPCODE_TXD_LOGICAL:
5161 /* TXD is unsupported in SIMD16 mode. */
5162 return 8;
5163
5164 case SHADER_OPCODE_TXL_LOGICAL:
5165 case FS_OPCODE_TXB_LOGICAL:
5166 /* Only one execution size is representable pre-ILK depending on whether
5167 * the shadow reference argument is present.
5168 */
5169 if (devinfo->gen == 4)
5170 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
5171 else
5172 return get_sampler_lowered_simd_width(devinfo, inst);
5173
5174 case SHADER_OPCODE_TXF_LOGICAL:
5175 case SHADER_OPCODE_TXS_LOGICAL:
5176 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
5177 * messages. Use SIMD16 instead.
5178 */
5179 if (devinfo->gen == 4)
5180 return 16;
5181 else
5182 return get_sampler_lowered_simd_width(devinfo, inst);
5183
5184 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5185 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5186 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5187 return 8;
5188
5189 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5190 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5191 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5192 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5193 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5194 return MIN2(16, inst->exec_size);
5195
5196 case SHADER_OPCODE_URB_READ_SIMD8:
5197 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
5198 case SHADER_OPCODE_URB_WRITE_SIMD8:
5199 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
5200 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
5201 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
5202 return MIN2(8, inst->exec_size);
5203
5204 case SHADER_OPCODE_MOV_INDIRECT: {
5205 /* From IVB and HSW PRMs:
5206 *
5207 * "2.When the destination requires two registers and the sources are
5208 * indirect, the sources must use 1x1 regioning mode.
5209 *
5210 * In case of DF instructions in HSW/IVB, the exec_size is limited by
5211 * the EU decompression logic not handling VxH indirect addressing
5212 * correctly.
5213 */
5214 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
5215 /* Prior to Broadwell, we only have 8 address subregisters. */
5216 return MIN3(devinfo->gen >= 8 ? 16 : 8,
5217 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
5218 inst->exec_size);
5219 }
5220
5221 case SHADER_OPCODE_LOAD_PAYLOAD: {
5222 const unsigned reg_count =
5223 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
5224
5225 if (reg_count > 2) {
5226 /* Only LOAD_PAYLOAD instructions with per-channel destination region
5227 * can be easily lowered (which excludes headers and heterogeneous
5228 * types).
5229 */
5230 assert(!inst->header_size);
5231 for (unsigned i = 0; i < inst->sources; i++)
5232 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
5233 inst->src[i].file == BAD_FILE);
5234
5235 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
5236 } else {
5237 return inst->exec_size;
5238 }
5239 }
5240 default:
5241 return inst->exec_size;
5242 }
5243 }
5244
5245 /**
5246 * Return true if splitting out the group of channels of instruction \p inst
5247 * given by lbld.group() requires allocating a temporary for the i-th source
5248 * of the lowered instruction.
5249 */
5250 static inline bool
5251 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5252 {
5253 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5254 (inst->components_read(i) == 1 &&
5255 lbld.dispatch_width() <= inst->exec_size)) ||
5256 (inst->flags_written() &
5257 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
5258 }
5259
5260 /**
5261 * Extract the data that would be consumed by the channel group given by
5262 * lbld.group() from the i-th source region of instruction \p inst and return
5263 * it as result in packed form.
5264 */
5265 static fs_reg
5266 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
5267 {
5268 /* Specified channel group from the source region. */
5269 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5270
5271 if (needs_src_copy(lbld, inst, i)) {
5272 /* Builder of the right width to perform the copy avoiding uninitialized
5273 * data if the lowered execution size is greater than the original
5274 * execution size of the instruction.
5275 */
5276 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5277 inst->exec_size), 0);
5278 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5279
5280 for (unsigned k = 0; k < inst->components_read(i); ++k)
5281 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5282
5283 return tmp;
5284
5285 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5286 /* The source is invariant for all dispatch_width-wide groups of the
5287 * original region.
5288 */
5289 return inst->src[i];
5290
5291 } else {
5292 /* We can just point the lowered instruction at the right channel group
5293 * from the original region.
5294 */
5295 return src;
5296 }
5297 }
5298
5299 /**
5300 * Return true if splitting out the group of channels of instruction \p inst
5301 * given by lbld.group() requires allocating a temporary for the destination
5302 * of the lowered instruction and copying the data back to the original
5303 * destination region.
5304 */
5305 static inline bool
5306 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5307 {
5308 /* If the instruction writes more than one component we'll have to shuffle
5309 * the results of multiple lowered instructions in order to make sure that
5310 * they end up arranged correctly in the original destination region.
5311 */
5312 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5313 return true;
5314
5315 /* If the lowered execution size is larger than the original the result of
5316 * the instruction won't fit in the original destination, so we'll have to
5317 * allocate a temporary in any case.
5318 */
5319 if (lbld.dispatch_width() > inst->exec_size)
5320 return true;
5321
5322 for (unsigned i = 0; i < inst->sources; i++) {
5323 /* If we already made a copy of the source for other reasons there won't
5324 * be any overlap with the destination.
5325 */
5326 if (needs_src_copy(lbld, inst, i))
5327 continue;
5328
5329 /* In order to keep the logic simple we emit a copy whenever the
5330 * destination region doesn't exactly match an overlapping source, which
5331 * may point at the source and destination not being aligned group by
5332 * group which could cause one of the lowered instructions to overwrite
5333 * the data read from the same source by other lowered instructions.
5334 */
5335 if (regions_overlap(inst->dst, inst->size_written,
5336 inst->src[i], inst->size_read(i)) &&
5337 !inst->dst.equals(inst->src[i]))
5338 return true;
5339 }
5340
5341 return false;
5342 }
5343
5344 /**
5345 * Insert data from a packed temporary into the channel group given by
5346 * lbld.group() of the destination region of instruction \p inst and return
5347 * the temporary as result. Any copy instructions that are required for
5348 * unzipping the previous value (in the case of partial writes) will be
5349 * inserted using \p lbld_before and any copy instructions required for
5350 * zipping up the destination of \p inst will be inserted using \p lbld_after.
5351 */
5352 static fs_reg
5353 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
5354 fs_inst *inst)
5355 {
5356 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
5357 assert(lbld_before.group() == lbld_after.group());
5358
5359 /* Specified channel group from the destination region. */
5360 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group());
5361 const unsigned dst_size = inst->size_written /
5362 inst->dst.component_size(inst->exec_size);
5363
5364 if (needs_dst_copy(lbld_after, inst)) {
5365 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
5366
5367 if (inst->predicate) {
5368 /* Handle predication by copying the original contents of
5369 * the destination into the temporary before emitting the
5370 * lowered instruction.
5371 */
5372 const fs_builder gbld_before =
5373 lbld_before.group(MIN2(lbld_before.dispatch_width(),
5374 inst->exec_size), 0);
5375 for (unsigned k = 0; k < dst_size; ++k) {
5376 gbld_before.MOV(offset(tmp, lbld_before, k),
5377 offset(dst, inst->exec_size, k));
5378 }
5379 }
5380
5381 const fs_builder gbld_after =
5382 lbld_after.group(MIN2(lbld_after.dispatch_width(),
5383 inst->exec_size), 0);
5384 for (unsigned k = 0; k < dst_size; ++k) {
5385 /* Use a builder of the right width to perform the copy avoiding
5386 * uninitialized data if the lowered execution size is greater than
5387 * the original execution size of the instruction.
5388 */
5389 gbld_after.MOV(offset(dst, inst->exec_size, k),
5390 offset(tmp, lbld_after, k));
5391 }
5392
5393 return tmp;
5394
5395 } else {
5396 /* No need to allocate a temporary for the lowered instruction, just
5397 * take the right group of channels from the original region.
5398 */
5399 return dst;
5400 }
5401 }
5402
5403 bool
5404 fs_visitor::lower_simd_width()
5405 {
5406 bool progress = false;
5407
5408 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5409 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5410
5411 if (lower_width != inst->exec_size) {
5412 /* Builder matching the original instruction. We may also need to
5413 * emit an instruction of width larger than the original, set the
5414 * execution size of the builder to the highest of both for now so
5415 * we're sure that both cases can be handled.
5416 */
5417 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5418 const fs_builder ibld = bld.at(block, inst)
5419 .exec_all(inst->force_writemask_all)
5420 .group(max_width, inst->group / max_width);
5421
5422 /* Split the copies in chunks of the execution width of either the
5423 * original or the lowered instruction, whichever is lower.
5424 */
5425 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5426 const unsigned dst_size = inst->size_written /
5427 inst->dst.component_size(inst->exec_size);
5428
5429 assert(!inst->writes_accumulator && !inst->mlen);
5430
5431 /* Inserting the zip, unzip, and duplicated instructions in all of
5432 * the right spots is somewhat tricky. All of the unzip and any
5433 * instructions from the zip which unzip the destination prior to
5434 * writing need to happen before all of the per-group instructions
5435 * and the zip instructions need to happen after. In order to sort
5436 * this all out, we insert the unzip instructions before \p inst,
5437 * insert the per-group instructions after \p inst (i.e. before
5438 * inst->next), and insert the zip instructions before the
5439 * instruction after \p inst. Since we are inserting instructions
5440 * after \p inst, inst->next is a moving target and we need to save
5441 * it off here so that we insert the zip instructions in the right
5442 * place.
5443 */
5444 exec_node *const after_inst = inst->next;
5445 for (unsigned i = 0; i < n; i++) {
5446 /* Emit a copy of the original instruction with the lowered width.
5447 * If the EOT flag was set throw it away except for the last
5448 * instruction to avoid killing the thread prematurely.
5449 */
5450 fs_inst split_inst = *inst;
5451 split_inst.exec_size = lower_width;
5452 split_inst.eot = inst->eot && i == 0;
5453
5454 /* Select the correct channel enables for the i-th group, then
5455 * transform the sources and destination and emit the lowered
5456 * instruction.
5457 */
5458 const fs_builder lbld = ibld.group(lower_width, i);
5459
5460 for (unsigned j = 0; j < inst->sources; j++)
5461 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
5462
5463 split_inst.dst = emit_zip(lbld.at(block, inst),
5464 lbld.at(block, after_inst), inst);
5465 split_inst.size_written =
5466 split_inst.dst.component_size(lower_width) * dst_size;
5467
5468 lbld.at(block, inst->next).emit(split_inst);
5469 }
5470
5471 inst->remove(block);
5472 progress = true;
5473 }
5474 }
5475
5476 if (progress)
5477 invalidate_live_intervals();
5478
5479 return progress;
5480 }
5481
5482 void
5483 fs_visitor::dump_instructions()
5484 {
5485 dump_instructions(NULL);
5486 }
5487
5488 void
5489 fs_visitor::dump_instructions(const char *name)
5490 {
5491 FILE *file = stderr;
5492 if (name && geteuid() != 0) {
5493 file = fopen(name, "w");
5494 if (!file)
5495 file = stderr;
5496 }
5497
5498 if (cfg) {
5499 calculate_register_pressure();
5500 int ip = 0, max_pressure = 0;
5501 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5502 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5503 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5504 dump_instruction(inst, file);
5505 ip++;
5506 }
5507 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5508 } else {
5509 int ip = 0;
5510 foreach_in_list(backend_instruction, inst, &instructions) {
5511 fprintf(file, "%4d: ", ip++);
5512 dump_instruction(inst, file);
5513 }
5514 }
5515
5516 if (file != stderr) {
5517 fclose(file);
5518 }
5519 }
5520
5521 void
5522 fs_visitor::dump_instruction(backend_instruction *be_inst)
5523 {
5524 dump_instruction(be_inst, stderr);
5525 }
5526
5527 void
5528 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5529 {
5530 fs_inst *inst = (fs_inst *)be_inst;
5531
5532 if (inst->predicate) {
5533 fprintf(file, "(%cf%d.%d) ",
5534 inst->predicate_inverse ? '-' : '+',
5535 inst->flag_subreg / 2,
5536 inst->flag_subreg % 2);
5537 }
5538
5539 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5540 if (inst->saturate)
5541 fprintf(file, ".sat");
5542 if (inst->conditional_mod) {
5543 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5544 if (!inst->predicate &&
5545 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5546 inst->opcode != BRW_OPCODE_IF &&
5547 inst->opcode != BRW_OPCODE_WHILE))) {
5548 fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
5549 inst->flag_subreg % 2);
5550 }
5551 }
5552 fprintf(file, "(%d) ", inst->exec_size);
5553
5554 if (inst->mlen) {
5555 fprintf(file, "(mlen: %d) ", inst->mlen);
5556 }
5557
5558 if (inst->eot) {
5559 fprintf(file, "(EOT) ");
5560 }
5561
5562 switch (inst->dst.file) {
5563 case VGRF:
5564 fprintf(file, "vgrf%d", inst->dst.nr);
5565 break;
5566 case FIXED_GRF:
5567 fprintf(file, "g%d", inst->dst.nr);
5568 break;
5569 case MRF:
5570 fprintf(file, "m%d", inst->dst.nr);
5571 break;
5572 case BAD_FILE:
5573 fprintf(file, "(null)");
5574 break;
5575 case UNIFORM:
5576 fprintf(file, "***u%d***", inst->dst.nr);
5577 break;
5578 case ATTR:
5579 fprintf(file, "***attr%d***", inst->dst.nr);
5580 break;
5581 case ARF:
5582 switch (inst->dst.nr) {
5583 case BRW_ARF_NULL:
5584 fprintf(file, "null");
5585 break;
5586 case BRW_ARF_ADDRESS:
5587 fprintf(file, "a0.%d", inst->dst.subnr);
5588 break;
5589 case BRW_ARF_ACCUMULATOR:
5590 fprintf(file, "acc%d", inst->dst.subnr);
5591 break;
5592 case BRW_ARF_FLAG:
5593 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5594 break;
5595 default:
5596 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5597 break;
5598 }
5599 break;
5600 case IMM:
5601 unreachable("not reached");
5602 }
5603
5604 if (inst->dst.offset ||
5605 (inst->dst.file == VGRF &&
5606 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5607 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5608 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5609 inst->dst.offset % reg_size);
5610 }
5611
5612 if (inst->dst.stride != 1)
5613 fprintf(file, "<%u>", inst->dst.stride);
5614 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5615
5616 for (int i = 0; i < inst->sources; i++) {
5617 if (inst->src[i].negate)
5618 fprintf(file, "-");
5619 if (inst->src[i].abs)
5620 fprintf(file, "|");
5621 switch (inst->src[i].file) {
5622 case VGRF:
5623 fprintf(file, "vgrf%d", inst->src[i].nr);
5624 break;
5625 case FIXED_GRF:
5626 fprintf(file, "g%d", inst->src[i].nr);
5627 break;
5628 case MRF:
5629 fprintf(file, "***m%d***", inst->src[i].nr);
5630 break;
5631 case ATTR:
5632 fprintf(file, "attr%d", inst->src[i].nr);
5633 break;
5634 case UNIFORM:
5635 fprintf(file, "u%d", inst->src[i].nr);
5636 break;
5637 case BAD_FILE:
5638 fprintf(file, "(null)");
5639 break;
5640 case IMM:
5641 switch (inst->src[i].type) {
5642 case BRW_REGISTER_TYPE_F:
5643 fprintf(file, "%-gf", inst->src[i].f);
5644 break;
5645 case BRW_REGISTER_TYPE_DF:
5646 fprintf(file, "%fdf", inst->src[i].df);
5647 break;
5648 case BRW_REGISTER_TYPE_W:
5649 case BRW_REGISTER_TYPE_D:
5650 fprintf(file, "%dd", inst->src[i].d);
5651 break;
5652 case BRW_REGISTER_TYPE_UW:
5653 case BRW_REGISTER_TYPE_UD:
5654 fprintf(file, "%uu", inst->src[i].ud);
5655 break;
5656 case BRW_REGISTER_TYPE_VF:
5657 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5658 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5659 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5660 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5661 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5662 break;
5663 default:
5664 fprintf(file, "???");
5665 break;
5666 }
5667 break;
5668 case ARF:
5669 switch (inst->src[i].nr) {
5670 case BRW_ARF_NULL:
5671 fprintf(file, "null");
5672 break;
5673 case BRW_ARF_ADDRESS:
5674 fprintf(file, "a0.%d", inst->src[i].subnr);
5675 break;
5676 case BRW_ARF_ACCUMULATOR:
5677 fprintf(file, "acc%d", inst->src[i].subnr);
5678 break;
5679 case BRW_ARF_FLAG:
5680 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5681 break;
5682 default:
5683 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5684 break;
5685 }
5686 break;
5687 }
5688
5689 if (inst->src[i].offset ||
5690 (inst->src[i].file == VGRF &&
5691 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5692 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5693 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5694 inst->src[i].offset % reg_size);
5695 }
5696
5697 if (inst->src[i].abs)
5698 fprintf(file, "|");
5699
5700 if (inst->src[i].file != IMM) {
5701 unsigned stride;
5702 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5703 unsigned hstride = inst->src[i].hstride;
5704 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5705 } else {
5706 stride = inst->src[i].stride;
5707 }
5708 if (stride != 1)
5709 fprintf(file, "<%u>", stride);
5710
5711 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5712 }
5713
5714 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5715 fprintf(file, ", ");
5716 }
5717
5718 fprintf(file, " ");
5719
5720 if (inst->force_writemask_all)
5721 fprintf(file, "NoMask ");
5722
5723 if (inst->exec_size != dispatch_width)
5724 fprintf(file, "group%d ", inst->group);
5725
5726 fprintf(file, "\n");
5727 }
5728
5729 /**
5730 * Possibly returns an instruction that set up @param reg.
5731 *
5732 * Sometimes we want to take the result of some expression/variable
5733 * dereference tree and rewrite the instruction generating the result
5734 * of the tree. When processing the tree, we know that the
5735 * instructions generated are all writing temporaries that are dead
5736 * outside of this tree. So, if we have some instructions that write
5737 * a temporary, we're free to point that temp write somewhere else.
5738 *
5739 * Note that this doesn't guarantee that the instruction generated
5740 * only reg -- it might be the size=4 destination of a texture instruction.
5741 */
5742 fs_inst *
5743 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5744 fs_inst *end,
5745 const fs_reg &reg)
5746 {
5747 if (end == start ||
5748 end->is_partial_write() ||
5749 !reg.equals(end->dst)) {
5750 return NULL;
5751 } else {
5752 return end;
5753 }
5754 }
5755
5756 void
5757 fs_visitor::setup_fs_payload_gen6()
5758 {
5759 assert(stage == MESA_SHADER_FRAGMENT);
5760 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5761
5762 assert(devinfo->gen >= 6);
5763
5764 /* R0-1: masks, pixel X/Y coordinates. */
5765 payload.num_regs = 2;
5766 /* R2: only for 32-pixel dispatch.*/
5767
5768 /* R3-26: barycentric interpolation coordinates. These appear in the
5769 * same order that they appear in the brw_barycentric_mode
5770 * enum. Each set of coordinates occupies 2 registers if dispatch width
5771 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5772 * appear if they were enabled using the "Barycentric Interpolation
5773 * Mode" bits in WM_STATE.
5774 */
5775 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5776 if (prog_data->barycentric_interp_modes & (1 << i)) {
5777 payload.barycentric_coord_reg[i] = payload.num_regs;
5778 payload.num_regs += 2;
5779 if (dispatch_width == 16) {
5780 payload.num_regs += 2;
5781 }
5782 }
5783 }
5784
5785 /* R27: interpolated depth if uses source depth */
5786 prog_data->uses_src_depth =
5787 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5788 if (prog_data->uses_src_depth) {
5789 payload.source_depth_reg = payload.num_regs;
5790 payload.num_regs++;
5791 if (dispatch_width == 16) {
5792 /* R28: interpolated depth if not SIMD8. */
5793 payload.num_regs++;
5794 }
5795 }
5796
5797 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5798 prog_data->uses_src_w =
5799 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5800 if (prog_data->uses_src_w) {
5801 payload.source_w_reg = payload.num_regs;
5802 payload.num_regs++;
5803 if (dispatch_width == 16) {
5804 /* R30: interpolated W if not SIMD8. */
5805 payload.num_regs++;
5806 }
5807 }
5808
5809 /* R31: MSAA position offsets. */
5810 if (prog_data->persample_dispatch &&
5811 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5812 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5813 *
5814 * "MSDISPMODE_PERSAMPLE is required in order to select
5815 * POSOFFSET_SAMPLE"
5816 *
5817 * So we can only really get sample positions if we are doing real
5818 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5819 * persample dispatch, we hard-code it to 0.5.
5820 */
5821 prog_data->uses_pos_offset = true;
5822 payload.sample_pos_reg = payload.num_regs;
5823 payload.num_regs++;
5824 }
5825
5826 /* R32: MSAA input coverage mask */
5827 prog_data->uses_sample_mask =
5828 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5829 if (prog_data->uses_sample_mask) {
5830 assert(devinfo->gen >= 7);
5831 payload.sample_mask_in_reg = payload.num_regs;
5832 payload.num_regs++;
5833 if (dispatch_width == 16) {
5834 /* R33: input coverage mask if not SIMD8. */
5835 payload.num_regs++;
5836 }
5837 }
5838
5839 /* R34-: bary for 32-pixel. */
5840 /* R58-59: interp W for 32-pixel. */
5841
5842 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5843 source_depth_to_render_target = true;
5844 }
5845 }
5846
5847 void
5848 fs_visitor::setup_vs_payload()
5849 {
5850 /* R0: thread header, R1: urb handles */
5851 payload.num_regs = 2;
5852 }
5853
5854 void
5855 fs_visitor::setup_gs_payload()
5856 {
5857 assert(stage == MESA_SHADER_GEOMETRY);
5858
5859 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5860 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5861
5862 /* R0: thread header, R1: output URB handles */
5863 payload.num_regs = 2;
5864
5865 if (gs_prog_data->include_primitive_id) {
5866 /* R2: Primitive ID 0..7 */
5867 payload.num_regs++;
5868 }
5869
5870 /* Always enable VUE handles so we can safely use pull model if needed.
5871 *
5872 * The push model for a GS uses a ton of register space even for trivial
5873 * scenarios with just a few inputs, so just make things easier and a bit
5874 * safer by always having pull model available.
5875 */
5876 gs_prog_data->base.include_vue_handles = true;
5877
5878 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5879 payload.num_regs += nir->info.gs.vertices_in;
5880
5881 /* Use a maximum of 24 registers for push-model inputs. */
5882 const unsigned max_push_components = 24;
5883
5884 /* If pushing our inputs would take too many registers, reduce the URB read
5885 * length (which is in HWords, or 8 registers), and resort to pulling.
5886 *
5887 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5888 * have to multiply by VerticesIn to obtain the total storage requirement.
5889 */
5890 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5891 max_push_components) {
5892 vue_prog_data->urb_read_length =
5893 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5894 }
5895 }
5896
5897 void
5898 fs_visitor::setup_cs_payload()
5899 {
5900 assert(devinfo->gen >= 7);
5901 payload.num_regs = 1;
5902 }
5903
5904 void
5905 fs_visitor::calculate_register_pressure()
5906 {
5907 invalidate_live_intervals();
5908 calculate_live_intervals();
5909
5910 unsigned num_instructions = 0;
5911 foreach_block(block, cfg)
5912 num_instructions += block->instructions.length();
5913
5914 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5915
5916 for (unsigned reg = 0; reg < alloc.count; reg++) {
5917 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5918 regs_live_at_ip[ip] += alloc.sizes[reg];
5919 }
5920 }
5921
5922 /**
5923 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5924 *
5925 * The needs_unlit_centroid_workaround ends up producing one of these per
5926 * channel of centroid input, so it's good to clean them up.
5927 *
5928 * An assumption here is that nothing ever modifies the dispatched pixels
5929 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5930 * dictates that anyway.
5931 */
5932 bool
5933 fs_visitor::opt_drop_redundant_mov_to_flags()
5934 {
5935 bool flag_mov_found[4] = {false};
5936 bool progress = false;
5937
5938 /* Instructions removed by this pass can only be added if this were true */
5939 if (!devinfo->needs_unlit_centroid_workaround)
5940 return false;
5941
5942 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5943 if (inst->is_control_flow()) {
5944 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5945 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5946 if (!flag_mov_found[inst->flag_subreg]) {
5947 flag_mov_found[inst->flag_subreg] = true;
5948 } else {
5949 inst->remove(block);
5950 progress = true;
5951 }
5952 } else if (inst->flags_written()) {
5953 flag_mov_found[inst->flag_subreg] = false;
5954 }
5955 }
5956
5957 return progress;
5958 }
5959
5960 void
5961 fs_visitor::optimize()
5962 {
5963 /* Start by validating the shader we currently have. */
5964 validate();
5965
5966 /* bld is the common builder object pointing at the end of the program we
5967 * used to translate it into i965 IR. For the optimization and lowering
5968 * passes coming next, any code added after the end of the program without
5969 * having explicitly called fs_builder::at() clearly points at a mistake.
5970 * Ideally optimization passes wouldn't be part of the visitor so they
5971 * wouldn't have access to bld at all, but they do, so just in case some
5972 * pass forgets to ask for a location explicitly set it to NULL here to
5973 * make it trip. The dispatch width is initialized to a bogus value to
5974 * make sure that optimizations set the execution controls explicitly to
5975 * match the code they are manipulating instead of relying on the defaults.
5976 */
5977 bld = fs_builder(this, 64);
5978
5979 assign_constant_locations();
5980 lower_constant_loads();
5981
5982 validate();
5983
5984 split_virtual_grfs();
5985 validate();
5986
5987 #define OPT(pass, args...) ({ \
5988 pass_num++; \
5989 bool this_progress = pass(args); \
5990 \
5991 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5992 char filename[64]; \
5993 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5994 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5995 \
5996 backend_shader::dump_instructions(filename); \
5997 } \
5998 \
5999 validate(); \
6000 \
6001 progress = progress || this_progress; \
6002 this_progress; \
6003 })
6004
6005 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
6006 char filename[64];
6007 snprintf(filename, 64, "%s%d-%s-00-00-start",
6008 stage_abbrev, dispatch_width, nir->info.name);
6009
6010 backend_shader::dump_instructions(filename);
6011 }
6012
6013 bool progress = false;
6014 int iteration = 0;
6015 int pass_num = 0;
6016
6017 OPT(opt_drop_redundant_mov_to_flags);
6018 OPT(remove_extra_rounding_modes);
6019
6020 do {
6021 progress = false;
6022 pass_num = 0;
6023 iteration++;
6024
6025 OPT(remove_duplicate_mrf_writes);
6026
6027 OPT(opt_algebraic);
6028 OPT(opt_cse);
6029 OPT(opt_copy_propagation);
6030 OPT(opt_predicated_break, this);
6031 OPT(opt_cmod_propagation);
6032 OPT(dead_code_eliminate);
6033 OPT(opt_peephole_sel);
6034 OPT(dead_control_flow_eliminate, this);
6035 OPT(opt_register_renaming);
6036 OPT(opt_saturate_propagation);
6037 OPT(register_coalesce);
6038 OPT(compute_to_mrf);
6039 OPT(eliminate_find_live_channel);
6040
6041 OPT(compact_virtual_grfs);
6042 } while (progress);
6043
6044 progress = false;
6045 pass_num = 0;
6046
6047 if (OPT(lower_pack)) {
6048 OPT(register_coalesce);
6049 OPT(dead_code_eliminate);
6050 }
6051
6052 OPT(lower_simd_width);
6053
6054 /* After SIMD lowering just in case we had to unroll the EOT send. */
6055 OPT(opt_sampler_eot);
6056
6057 OPT(lower_logical_sends);
6058
6059 if (progress) {
6060 OPT(opt_copy_propagation);
6061 /* Only run after logical send lowering because it's easier to implement
6062 * in terms of physical sends.
6063 */
6064 if (OPT(opt_zero_samples))
6065 OPT(opt_copy_propagation);
6066 /* Run after logical send lowering to give it a chance to CSE the
6067 * LOAD_PAYLOAD instructions created to construct the payloads of
6068 * e.g. texturing messages in cases where it wasn't possible to CSE the
6069 * whole logical instruction.
6070 */
6071 OPT(opt_cse);
6072 OPT(register_coalesce);
6073 OPT(compute_to_mrf);
6074 OPT(dead_code_eliminate);
6075 OPT(remove_duplicate_mrf_writes);
6076 OPT(opt_peephole_sel);
6077 }
6078
6079 OPT(opt_redundant_discard_jumps);
6080
6081 if (OPT(lower_load_payload)) {
6082 split_virtual_grfs();
6083 OPT(register_coalesce);
6084 OPT(compute_to_mrf);
6085 OPT(dead_code_eliminate);
6086 }
6087
6088 OPT(opt_combine_constants);
6089 OPT(lower_integer_multiplication);
6090
6091 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
6092 OPT(opt_cmod_propagation);
6093 OPT(opt_cse);
6094 OPT(opt_copy_propagation);
6095 OPT(dead_code_eliminate);
6096 }
6097
6098 if (OPT(lower_conversions)) {
6099 OPT(opt_copy_propagation);
6100 OPT(dead_code_eliminate);
6101 OPT(lower_simd_width);
6102 }
6103
6104 lower_uniform_pull_constant_loads();
6105
6106 validate();
6107 }
6108
6109 /**
6110 * Three source instruction must have a GRF/MRF destination register.
6111 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
6112 */
6113 void
6114 fs_visitor::fixup_3src_null_dest()
6115 {
6116 bool progress = false;
6117
6118 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
6119 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
6120 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
6121 inst->dst.type);
6122 progress = true;
6123 }
6124 }
6125
6126 if (progress)
6127 invalidate_live_intervals();
6128 }
6129
6130 void
6131 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
6132 {
6133 bool allocated_without_spills;
6134
6135 static const enum instruction_scheduler_mode pre_modes[] = {
6136 SCHEDULE_PRE,
6137 SCHEDULE_PRE_NON_LIFO,
6138 SCHEDULE_PRE_LIFO,
6139 };
6140
6141 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
6142
6143 /* Try each scheduling heuristic to see if it can successfully register
6144 * allocate without spilling. They should be ordered by decreasing
6145 * performance but increasing likelihood of allocating.
6146 */
6147 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
6148 schedule_instructions(pre_modes[i]);
6149
6150 if (0) {
6151 assign_regs_trivial();
6152 allocated_without_spills = true;
6153 } else {
6154 allocated_without_spills = assign_regs(false, spill_all);
6155 }
6156 if (allocated_without_spills)
6157 break;
6158 }
6159
6160 if (!allocated_without_spills) {
6161 if (!allow_spilling)
6162 fail("Failure to register allocate and spilling is not allowed.");
6163
6164 /* We assume that any spilling is worse than just dropping back to
6165 * SIMD8. There's probably actually some intermediate point where
6166 * SIMD16 with a couple of spills is still better.
6167 */
6168 if (dispatch_width > min_dispatch_width) {
6169 fail("Failure to register allocate. Reduce number of "
6170 "live scalar values to avoid this.");
6171 } else {
6172 compiler->shader_perf_log(log_data,
6173 "%s shader triggered register spilling. "
6174 "Try reducing the number of live scalar "
6175 "values to improve performance.\n",
6176 stage_name);
6177 }
6178
6179 /* Since we're out of heuristics, just go spill registers until we
6180 * get an allocation.
6181 */
6182 while (!assign_regs(true, spill_all)) {
6183 if (failed)
6184 break;
6185 }
6186 }
6187
6188 /* This must come after all optimization and register allocation, since
6189 * it inserts dead code that happens to have side effects, and it does
6190 * so based on the actual physical registers in use.
6191 */
6192 insert_gen4_send_dependency_workarounds();
6193
6194 if (failed)
6195 return;
6196
6197 opt_bank_conflicts();
6198
6199 schedule_instructions(SCHEDULE_POST);
6200
6201 if (last_scratch > 0) {
6202 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
6203
6204 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
6205
6206 if (stage == MESA_SHADER_COMPUTE) {
6207 if (devinfo->is_haswell) {
6208 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6209 * field documentation, Haswell supports a minimum of 2kB of
6210 * scratch space for compute shaders, unlike every other stage
6211 * and platform.
6212 */
6213 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
6214 } else if (devinfo->gen <= 7) {
6215 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6216 * field documentation, platforms prior to Haswell measure scratch
6217 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
6218 */
6219 prog_data->total_scratch = ALIGN(last_scratch, 1024);
6220 max_scratch_size = 12 * 1024;
6221 }
6222 }
6223
6224 /* We currently only support up to 2MB of scratch space. If we
6225 * need to support more eventually, the documentation suggests
6226 * that we could allocate a larger buffer, and partition it out
6227 * ourselves. We'd just have to undo the hardware's address
6228 * calculation by subtracting (FFTID * Per Thread Scratch Space)
6229 * and then add FFTID * (Larger Per Thread Scratch Space).
6230 *
6231 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
6232 * Thread Group Tracking > Local Memory/Scratch Space.
6233 */
6234 assert(prog_data->total_scratch < max_scratch_size);
6235 }
6236 }
6237
6238 bool
6239 fs_visitor::run_vs()
6240 {
6241 assert(stage == MESA_SHADER_VERTEX);
6242
6243 setup_vs_payload();
6244
6245 if (shader_time_index >= 0)
6246 emit_shader_time_begin();
6247
6248 emit_nir_code();
6249
6250 if (failed)
6251 return false;
6252
6253 compute_clip_distance();
6254
6255 emit_urb_writes();
6256
6257 if (shader_time_index >= 0)
6258 emit_shader_time_end();
6259
6260 calculate_cfg();
6261
6262 optimize();
6263
6264 assign_curb_setup();
6265 assign_vs_urb_setup();
6266
6267 fixup_3src_null_dest();
6268 allocate_registers(8, true);
6269
6270 return !failed;
6271 }
6272
6273 bool
6274 fs_visitor::run_tcs_single_patch()
6275 {
6276 assert(stage == MESA_SHADER_TESS_CTRL);
6277
6278 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6279
6280 /* r1-r4 contain the ICP handles. */
6281 payload.num_regs = 5;
6282
6283 if (shader_time_index >= 0)
6284 emit_shader_time_begin();
6285
6286 /* Initialize gl_InvocationID */
6287 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6288 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6289 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6290 bld.MOV(channels_ud, channels_uw);
6291
6292 if (tcs_prog_data->instances == 1) {
6293 invocation_id = channels_ud;
6294 } else {
6295 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6296
6297 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6298 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6299 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6300 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6301 brw_imm_ud(INTEL_MASK(23, 17)));
6302 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6303
6304 bld.ADD(invocation_id, instance_times_8, channels_ud);
6305 }
6306
6307 /* Fix the disptach mask */
6308 if (nir->info.tess.tcs_vertices_out % 8) {
6309 bld.CMP(bld.null_reg_ud(), invocation_id,
6310 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6311 bld.IF(BRW_PREDICATE_NORMAL);
6312 }
6313
6314 emit_nir_code();
6315
6316 if (nir->info.tess.tcs_vertices_out % 8) {
6317 bld.emit(BRW_OPCODE_ENDIF);
6318 }
6319
6320 /* Emit EOT write; set TR DS Cache bit */
6321 fs_reg srcs[3] = {
6322 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6323 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6324 fs_reg(brw_imm_ud(0)),
6325 };
6326 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6327 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6328
6329 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6330 bld.null_reg_ud(), payload);
6331 inst->mlen = 3;
6332 inst->eot = true;
6333
6334 if (shader_time_index >= 0)
6335 emit_shader_time_end();
6336
6337 if (failed)
6338 return false;
6339
6340 calculate_cfg();
6341
6342 optimize();
6343
6344 assign_curb_setup();
6345 assign_tcs_single_patch_urb_setup();
6346
6347 fixup_3src_null_dest();
6348 allocate_registers(8, true);
6349
6350 return !failed;
6351 }
6352
6353 bool
6354 fs_visitor::run_tes()
6355 {
6356 assert(stage == MESA_SHADER_TESS_EVAL);
6357
6358 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6359 payload.num_regs = 5;
6360
6361 if (shader_time_index >= 0)
6362 emit_shader_time_begin();
6363
6364 emit_nir_code();
6365
6366 if (failed)
6367 return false;
6368
6369 emit_urb_writes();
6370
6371 if (shader_time_index >= 0)
6372 emit_shader_time_end();
6373
6374 calculate_cfg();
6375
6376 optimize();
6377
6378 assign_curb_setup();
6379 assign_tes_urb_setup();
6380
6381 fixup_3src_null_dest();
6382 allocate_registers(8, true);
6383
6384 return !failed;
6385 }
6386
6387 bool
6388 fs_visitor::run_gs()
6389 {
6390 assert(stage == MESA_SHADER_GEOMETRY);
6391
6392 setup_gs_payload();
6393
6394 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6395
6396 if (gs_compile->control_data_header_size_bits > 0) {
6397 /* Create a VGRF to store accumulated control data bits. */
6398 this->control_data_bits = vgrf(glsl_type::uint_type);
6399
6400 /* If we're outputting more than 32 control data bits, then EmitVertex()
6401 * will set control_data_bits to 0 after emitting the first vertex.
6402 * Otherwise, we need to initialize it to 0 here.
6403 */
6404 if (gs_compile->control_data_header_size_bits <= 32) {
6405 const fs_builder abld = bld.annotate("initialize control data bits");
6406 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6407 }
6408 }
6409
6410 if (shader_time_index >= 0)
6411 emit_shader_time_begin();
6412
6413 emit_nir_code();
6414
6415 emit_gs_thread_end();
6416
6417 if (shader_time_index >= 0)
6418 emit_shader_time_end();
6419
6420 if (failed)
6421 return false;
6422
6423 calculate_cfg();
6424
6425 optimize();
6426
6427 assign_curb_setup();
6428 assign_gs_urb_setup();
6429
6430 fixup_3src_null_dest();
6431 allocate_registers(8, true);
6432
6433 return !failed;
6434 }
6435
6436 /* From the SKL PRM, Volume 16, Workarounds:
6437 *
6438 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
6439 * only header phases (R0-R2)
6440 *
6441 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
6442 * have been header only.
6443 *
6444 * Instead of enabling push constants one can alternatively enable one of the
6445 * inputs. Here one simply chooses "layer" which shouldn't impose much
6446 * overhead.
6447 */
6448 static void
6449 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
6450 {
6451 if (wm_prog_data->num_varying_inputs)
6452 return;
6453
6454 if (wm_prog_data->base.curb_read_length)
6455 return;
6456
6457 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
6458 wm_prog_data->num_varying_inputs = 1;
6459 }
6460
6461 bool
6462 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6463 {
6464 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6465 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6466
6467 assert(stage == MESA_SHADER_FRAGMENT);
6468
6469 if (devinfo->gen >= 6)
6470 setup_fs_payload_gen6();
6471 else
6472 setup_fs_payload_gen4();
6473
6474 if (0) {
6475 emit_dummy_fs();
6476 } else if (do_rep_send) {
6477 assert(dispatch_width == 16);
6478 emit_repclear_shader();
6479 } else {
6480 if (shader_time_index >= 0)
6481 emit_shader_time_begin();
6482
6483 calculate_urb_setup();
6484 if (nir->info.inputs_read > 0 ||
6485 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6486 if (devinfo->gen < 6)
6487 emit_interpolation_setup_gen4();
6488 else
6489 emit_interpolation_setup_gen6();
6490 }
6491
6492 /* We handle discards by keeping track of the still-live pixels in f0.1.
6493 * Initialize it with the dispatched pixels.
6494 */
6495 if (wm_prog_data->uses_kill) {
6496 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6497 discard_init->flag_subreg = 1;
6498 }
6499
6500 /* Generate FS IR for main(). (the visitor only descends into
6501 * functions called "main").
6502 */
6503 emit_nir_code();
6504
6505 if (failed)
6506 return false;
6507
6508 if (wm_prog_data->uses_kill)
6509 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6510
6511 if (wm_key->alpha_test_func)
6512 emit_alpha_test();
6513
6514 emit_fb_writes();
6515
6516 if (shader_time_index >= 0)
6517 emit_shader_time_end();
6518
6519 calculate_cfg();
6520
6521 optimize();
6522
6523 assign_curb_setup();
6524
6525 if (devinfo->gen >= 9)
6526 gen9_ps_header_only_workaround(wm_prog_data);
6527
6528 assign_urb_setup();
6529
6530 fixup_3src_null_dest();
6531 allocate_registers(8, allow_spilling);
6532
6533 if (failed)
6534 return false;
6535 }
6536
6537 return !failed;
6538 }
6539
6540 bool
6541 fs_visitor::run_cs(unsigned min_dispatch_width)
6542 {
6543 assert(stage == MESA_SHADER_COMPUTE);
6544 assert(dispatch_width >= min_dispatch_width);
6545
6546 setup_cs_payload();
6547
6548 if (shader_time_index >= 0)
6549 emit_shader_time_begin();
6550
6551 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6552 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6553 const fs_builder abld = bld.exec_all().group(1, 0);
6554 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6555 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6556 }
6557
6558 emit_nir_code();
6559
6560 if (failed)
6561 return false;
6562
6563 emit_cs_terminate();
6564
6565 if (shader_time_index >= 0)
6566 emit_shader_time_end();
6567
6568 calculate_cfg();
6569
6570 optimize();
6571
6572 assign_curb_setup();
6573
6574 fixup_3src_null_dest();
6575 allocate_registers(min_dispatch_width, true);
6576
6577 if (failed)
6578 return false;
6579
6580 return !failed;
6581 }
6582
6583 /**
6584 * Return a bitfield where bit n is set if barycentric interpolation mode n
6585 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6586 *
6587 * We examine the load_barycentric intrinsics rather than looking at input
6588 * variables so that we catch interpolateAtCentroid() messages too, which
6589 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6590 */
6591 static unsigned
6592 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6593 const nir_shader *shader)
6594 {
6595 unsigned barycentric_interp_modes = 0;
6596
6597 nir_foreach_function(f, shader) {
6598 if (!f->impl)
6599 continue;
6600
6601 nir_foreach_block(block, f->impl) {
6602 nir_foreach_instr(instr, block) {
6603 if (instr->type != nir_instr_type_intrinsic)
6604 continue;
6605
6606 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6607 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6608 continue;
6609
6610 /* Ignore WPOS; it doesn't require interpolation. */
6611 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6612 continue;
6613
6614 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6615 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6616 nir_intrinsic_interp_mode(intrin);
6617 nir_intrinsic_op bary_op = intrin->intrinsic;
6618 enum brw_barycentric_mode bary =
6619 brw_barycentric_mode(interp, bary_op);
6620
6621 barycentric_interp_modes |= 1 << bary;
6622
6623 if (devinfo->needs_unlit_centroid_workaround &&
6624 bary_op == nir_intrinsic_load_barycentric_centroid)
6625 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6626 }
6627 }
6628 }
6629
6630 return barycentric_interp_modes;
6631 }
6632
6633 static void
6634 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6635 const nir_shader *shader)
6636 {
6637 prog_data->flat_inputs = 0;
6638
6639 nir_foreach_variable(var, &shader->inputs) {
6640 int input_index = prog_data->urb_setup[var->data.location];
6641
6642 if (input_index < 0)
6643 continue;
6644
6645 /* flat shading */
6646 if (var->data.interpolation == INTERP_MODE_FLAT)
6647 prog_data->flat_inputs |= (1 << input_index);
6648 }
6649 }
6650
6651 static uint8_t
6652 computed_depth_mode(const nir_shader *shader)
6653 {
6654 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6655 switch (shader->info.fs.depth_layout) {
6656 case FRAG_DEPTH_LAYOUT_NONE:
6657 case FRAG_DEPTH_LAYOUT_ANY:
6658 return BRW_PSCDEPTH_ON;
6659 case FRAG_DEPTH_LAYOUT_GREATER:
6660 return BRW_PSCDEPTH_ON_GE;
6661 case FRAG_DEPTH_LAYOUT_LESS:
6662 return BRW_PSCDEPTH_ON_LE;
6663 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6664 return BRW_PSCDEPTH_OFF;
6665 }
6666 }
6667 return BRW_PSCDEPTH_OFF;
6668 }
6669
6670 /**
6671 * Move load_interpolated_input with simple (payload-based) barycentric modes
6672 * to the top of the program so we don't emit multiple PLNs for the same input.
6673 *
6674 * This works around CSE not being able to handle non-dominating cases
6675 * such as:
6676 *
6677 * if (...) {
6678 * interpolate input
6679 * } else {
6680 * interpolate the same exact input
6681 * }
6682 *
6683 * This should be replaced by global value numbering someday.
6684 */
6685 static bool
6686 move_interpolation_to_top(nir_shader *nir)
6687 {
6688 bool progress = false;
6689
6690 nir_foreach_function(f, nir) {
6691 if (!f->impl)
6692 continue;
6693
6694 nir_block *top = nir_start_block(f->impl);
6695 exec_node *cursor_node = NULL;
6696
6697 nir_foreach_block(block, f->impl) {
6698 if (block == top)
6699 continue;
6700
6701 nir_foreach_instr_safe(instr, block) {
6702 if (instr->type != nir_instr_type_intrinsic)
6703 continue;
6704
6705 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6706 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6707 continue;
6708 nir_intrinsic_instr *bary_intrinsic =
6709 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6710 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6711
6712 /* Leave interpolateAtSample/Offset() where they are. */
6713 if (op == nir_intrinsic_load_barycentric_at_sample ||
6714 op == nir_intrinsic_load_barycentric_at_offset)
6715 continue;
6716
6717 nir_instr *move[3] = {
6718 &bary_intrinsic->instr,
6719 intrin->src[1].ssa->parent_instr,
6720 instr
6721 };
6722
6723 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6724 if (move[i]->block != top) {
6725 move[i]->block = top;
6726 exec_node_remove(&move[i]->node);
6727 if (cursor_node) {
6728 exec_node_insert_after(cursor_node, &move[i]->node);
6729 } else {
6730 exec_list_push_head(&top->instr_list, &move[i]->node);
6731 }
6732 cursor_node = &move[i]->node;
6733 progress = true;
6734 }
6735 }
6736 }
6737 }
6738 nir_metadata_preserve(f->impl, (nir_metadata)
6739 ((unsigned) nir_metadata_block_index |
6740 (unsigned) nir_metadata_dominance));
6741 }
6742
6743 return progress;
6744 }
6745
6746 /**
6747 * Demote per-sample barycentric intrinsics to centroid.
6748 *
6749 * Useful when rendering to a non-multisampled buffer.
6750 */
6751 static bool
6752 demote_sample_qualifiers(nir_shader *nir)
6753 {
6754 bool progress = true;
6755
6756 nir_foreach_function(f, nir) {
6757 if (!f->impl)
6758 continue;
6759
6760 nir_builder b;
6761 nir_builder_init(&b, f->impl);
6762
6763 nir_foreach_block(block, f->impl) {
6764 nir_foreach_instr_safe(instr, block) {
6765 if (instr->type != nir_instr_type_intrinsic)
6766 continue;
6767
6768 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6769 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6770 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6771 continue;
6772
6773 b.cursor = nir_before_instr(instr);
6774 nir_ssa_def *centroid =
6775 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6776 nir_intrinsic_interp_mode(intrin));
6777 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6778 nir_src_for_ssa(centroid));
6779 nir_instr_remove(instr);
6780 progress = true;
6781 }
6782 }
6783
6784 nir_metadata_preserve(f->impl, (nir_metadata)
6785 ((unsigned) nir_metadata_block_index |
6786 (unsigned) nir_metadata_dominance));
6787 }
6788
6789 return progress;
6790 }
6791
6792 /**
6793 * Pre-gen6, the register file of the EUs was shared between threads,
6794 * and each thread used some subset allocated on a 16-register block
6795 * granularity. The unit states wanted these block counts.
6796 */
6797 static inline int
6798 brw_register_blocks(int reg_count)
6799 {
6800 return ALIGN(reg_count, 16) / 16 - 1;
6801 }
6802
6803 const unsigned *
6804 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6805 void *mem_ctx,
6806 const struct brw_wm_prog_key *key,
6807 struct brw_wm_prog_data *prog_data,
6808 const nir_shader *src_shader,
6809 struct gl_program *prog,
6810 int shader_time_index8, int shader_time_index16,
6811 bool allow_spilling,
6812 bool use_rep_send, struct brw_vue_map *vue_map,
6813 char **error_str)
6814 {
6815 const struct gen_device_info *devinfo = compiler->devinfo;
6816
6817 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6818 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6819 brw_nir_lower_fs_inputs(shader, devinfo, key);
6820 brw_nir_lower_fs_outputs(shader);
6821
6822 if (devinfo->gen < 6) {
6823 brw_setup_vue_interpolation(vue_map, shader, prog_data, devinfo);
6824 }
6825
6826 if (!key->multisample_fbo)
6827 NIR_PASS_V(shader, demote_sample_qualifiers);
6828 NIR_PASS_V(shader, move_interpolation_to_top);
6829 shader = brw_postprocess_nir(shader, compiler, true);
6830
6831 /* key->alpha_test_func means simulating alpha testing via discards,
6832 * so the shader definitely kills pixels.
6833 */
6834 prog_data->uses_kill = shader->info.fs.uses_discard ||
6835 key->alpha_test_func;
6836 prog_data->uses_omask = key->multisample_fbo &&
6837 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6838 prog_data->computed_depth_mode = computed_depth_mode(shader);
6839 prog_data->computed_stencil =
6840 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6841
6842 prog_data->persample_dispatch =
6843 key->multisample_fbo &&
6844 (key->persample_interp ||
6845 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6846 SYSTEM_BIT_SAMPLE_POS)) ||
6847 shader->info.fs.uses_sample_qualifier ||
6848 shader->info.outputs_read);
6849
6850 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
6851
6852 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6853 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
6854 prog_data->inner_coverage = shader->info.fs.inner_coverage;
6855
6856 prog_data->barycentric_interp_modes =
6857 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6858
6859 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6860 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6861 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6862
6863 fs_visitor v8(compiler, log_data, mem_ctx, key,
6864 &prog_data->base, prog, shader, 8,
6865 shader_time_index8);
6866 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6867 if (error_str)
6868 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6869
6870 return NULL;
6871 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6872 simd8_cfg = v8.cfg;
6873 simd8_grf_start = v8.payload.num_regs;
6874 simd8_grf_used = v8.grf_used;
6875 }
6876
6877 if (v8.max_dispatch_width >= 16 &&
6878 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6879 /* Try a SIMD16 compile */
6880 fs_visitor v16(compiler, log_data, mem_ctx, key,
6881 &prog_data->base, prog, shader, 16,
6882 shader_time_index16);
6883 v16.import_uniforms(&v8);
6884 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6885 compiler->shader_perf_log(log_data,
6886 "SIMD16 shader failed to compile: %s",
6887 v16.fail_msg);
6888 } else {
6889 simd16_cfg = v16.cfg;
6890 simd16_grf_start = v16.payload.num_regs;
6891 simd16_grf_used = v16.grf_used;
6892 }
6893 }
6894
6895 /* When the caller requests a repclear shader, they want SIMD16-only */
6896 if (use_rep_send)
6897 simd8_cfg = NULL;
6898
6899 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6900 * at the top to select the shader. We've never implemented that.
6901 * Instead, we just give them exactly one shader and we pick the widest one
6902 * available.
6903 */
6904 if (compiler->devinfo->gen < 5 && simd16_cfg)
6905 simd8_cfg = NULL;
6906
6907 if (prog_data->persample_dispatch) {
6908 /* Starting with SandyBridge (where we first get MSAA), the different
6909 * pixel dispatch combinations are grouped into classifications A
6910 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6911 * generations, the only configurations supporting persample dispatch
6912 * are are this in which only one dispatch width is enabled.
6913 *
6914 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6915 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6916 */
6917 if (compiler->devinfo->gen == 6 &&
6918 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6919 simd16_cfg = NULL;
6920 } else if (simd16_cfg) {
6921 simd8_cfg = NULL;
6922 }
6923 }
6924
6925 /* We have to compute the flat inputs after the visitor is finished running
6926 * because it relies on prog_data->urb_setup which is computed in
6927 * fs_visitor::calculate_urb_setup().
6928 */
6929 brw_compute_flat_inputs(prog_data, shader);
6930
6931 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6932 v8.promoted_constants, v8.runtime_check_aads_emit,
6933 MESA_SHADER_FRAGMENT);
6934
6935 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6936 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6937 shader->info.label ?
6938 shader->info.label : "unnamed",
6939 shader->info.name));
6940 }
6941
6942 if (simd8_cfg) {
6943 prog_data->dispatch_8 = true;
6944 g.generate_code(simd8_cfg, 8);
6945 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6946 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6947
6948 if (simd16_cfg) {
6949 prog_data->dispatch_16 = true;
6950 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6951 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6952 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6953 }
6954 } else if (simd16_cfg) {
6955 prog_data->dispatch_16 = true;
6956 g.generate_code(simd16_cfg, 16);
6957 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6958 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6959 }
6960
6961 return g.get_assembly(&prog_data->base.program_size);
6962 }
6963
6964 fs_reg *
6965 fs_visitor::emit_cs_work_group_id_setup()
6966 {
6967 assert(stage == MESA_SHADER_COMPUTE);
6968
6969 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6970
6971 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6972 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6973 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6974
6975 bld.MOV(*reg, r0_1);
6976 bld.MOV(offset(*reg, bld, 1), r0_6);
6977 bld.MOV(offset(*reg, bld, 2), r0_7);
6978
6979 return reg;
6980 }
6981
6982 static void
6983 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6984 {
6985 block->dwords = dwords;
6986 block->regs = DIV_ROUND_UP(dwords, 8);
6987 block->size = block->regs * 32;
6988 }
6989
6990 static void
6991 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6992 struct brw_cs_prog_data *cs_prog_data)
6993 {
6994 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6995 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
6996 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6997
6998 /* The thread ID should be stored in the last param dword */
6999 assert(subgroup_id_index == -1 ||
7000 subgroup_id_index == (int)prog_data->nr_params - 1);
7001
7002 unsigned cross_thread_dwords, per_thread_dwords;
7003 if (!cross_thread_supported) {
7004 cross_thread_dwords = 0u;
7005 per_thread_dwords = prog_data->nr_params;
7006 } else if (subgroup_id_index >= 0) {
7007 /* Fill all but the last register with cross-thread payload */
7008 cross_thread_dwords = 8 * (subgroup_id_index / 8);
7009 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
7010 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
7011 } else {
7012 /* Fill all data using cross-thread payload */
7013 cross_thread_dwords = prog_data->nr_params;
7014 per_thread_dwords = 0u;
7015 }
7016
7017 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
7018 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
7019
7020 unsigned total_dwords =
7021 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
7022 cs_prog_data->push.cross_thread.size) / 4;
7023 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
7024
7025 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
7026 cs_prog_data->push.per_thread.size == 0);
7027 assert(cs_prog_data->push.cross_thread.dwords +
7028 cs_prog_data->push.per_thread.dwords ==
7029 prog_data->nr_params);
7030 }
7031
7032 static void
7033 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
7034 {
7035 cs_prog_data->simd_size = size;
7036 unsigned group_size = cs_prog_data->local_size[0] *
7037 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
7038 cs_prog_data->threads = (group_size + size - 1) / size;
7039 }
7040
7041 static nir_shader *
7042 compile_cs_to_nir(const struct brw_compiler *compiler,
7043 void *mem_ctx,
7044 const struct brw_cs_prog_key *key,
7045 struct brw_cs_prog_data *prog_data,
7046 const nir_shader *src_shader,
7047 unsigned dispatch_width)
7048 {
7049 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
7050 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
7051 brw_nir_lower_cs_intrinsics(shader, dispatch_width);
7052 return brw_postprocess_nir(shader, compiler, true);
7053 }
7054
7055 const unsigned *
7056 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
7057 void *mem_ctx,
7058 const struct brw_cs_prog_key *key,
7059 struct brw_cs_prog_data *prog_data,
7060 const nir_shader *src_shader,
7061 int shader_time_index,
7062 char **error_str)
7063 {
7064 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
7065 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
7066 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
7067 unsigned local_workgroup_size =
7068 src_shader->info.cs.local_size[0] * src_shader->info.cs.local_size[1] *
7069 src_shader->info.cs.local_size[2];
7070
7071 unsigned min_dispatch_width =
7072 DIV_ROUND_UP(local_workgroup_size, compiler->devinfo->max_cs_threads);
7073 min_dispatch_width = MAX2(8, min_dispatch_width);
7074 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
7075 assert(min_dispatch_width <= 32);
7076
7077 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
7078 cfg_t *cfg = NULL;
7079 const char *fail_msg = NULL;
7080 unsigned promoted_constants;
7081
7082 /* Now the main event: Visit the shader IR and generate our CS IR for it.
7083 */
7084 if (min_dispatch_width <= 8) {
7085 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
7086 prog_data, src_shader, 8);
7087 v8 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7088 NULL, /* Never used in core profile */
7089 nir8, 8, shader_time_index);
7090 if (!v8->run_cs(min_dispatch_width)) {
7091 fail_msg = v8->fail_msg;
7092 } else {
7093 /* We should always be able to do SIMD32 for compute shaders */
7094 assert(v8->max_dispatch_width >= 32);
7095
7096 cfg = v8->cfg;
7097 cs_set_simd_size(prog_data, 8);
7098 cs_fill_push_const_info(compiler->devinfo, prog_data);
7099 promoted_constants = v8->promoted_constants;
7100 }
7101 }
7102
7103 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
7104 !fail_msg && min_dispatch_width <= 16) {
7105 /* Try a SIMD16 compile */
7106 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
7107 prog_data, src_shader, 16);
7108 v16 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7109 NULL, /* Never used in core profile */
7110 nir16, 16, shader_time_index);
7111 if (v8)
7112 v16->import_uniforms(v8);
7113
7114 if (!v16->run_cs(min_dispatch_width)) {
7115 compiler->shader_perf_log(log_data,
7116 "SIMD16 shader failed to compile: %s",
7117 v16->fail_msg);
7118 if (!cfg) {
7119 fail_msg =
7120 "Couldn't generate SIMD16 program and not "
7121 "enough threads for SIMD8";
7122 }
7123 } else {
7124 /* We should always be able to do SIMD32 for compute shaders */
7125 assert(v16->max_dispatch_width >= 32);
7126
7127 cfg = v16->cfg;
7128 cs_set_simd_size(prog_data, 16);
7129 cs_fill_push_const_info(compiler->devinfo, prog_data);
7130 promoted_constants = v16->promoted_constants;
7131 }
7132 }
7133
7134 /* We should always be able to do SIMD32 for compute shaders */
7135 assert(!v16 || v16->max_dispatch_width >= 32);
7136
7137 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
7138 /* Try a SIMD32 compile */
7139 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
7140 prog_data, src_shader, 32);
7141 v32 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
7142 NULL, /* Never used in core profile */
7143 nir32, 32, shader_time_index);
7144 if (v8)
7145 v32->import_uniforms(v8);
7146 else if (v16)
7147 v32->import_uniforms(v16);
7148
7149 if (!v32->run_cs(min_dispatch_width)) {
7150 compiler->shader_perf_log(log_data,
7151 "SIMD32 shader failed to compile: %s",
7152 v16->fail_msg);
7153 if (!cfg) {
7154 fail_msg =
7155 "Couldn't generate SIMD32 program and not "
7156 "enough threads for SIMD16";
7157 }
7158 } else {
7159 cfg = v32->cfg;
7160 cs_set_simd_size(prog_data, 32);
7161 cs_fill_push_const_info(compiler->devinfo, prog_data);
7162 promoted_constants = v32->promoted_constants;
7163 }
7164 }
7165
7166 const unsigned *ret = NULL;
7167 if (unlikely(cfg == NULL)) {
7168 assert(fail_msg);
7169 if (error_str)
7170 *error_str = ralloc_strdup(mem_ctx, fail_msg);
7171 } else {
7172 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
7173 promoted_constants, false, MESA_SHADER_COMPUTE);
7174 if (INTEL_DEBUG & DEBUG_CS) {
7175 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
7176 src_shader->info.label ?
7177 src_shader->info.label : "unnamed",
7178 src_shader->info.name);
7179 g.enable_debug(name);
7180 }
7181
7182 g.generate_code(cfg, prog_data->simd_size);
7183
7184 ret = g.get_assembly(&prog_data->base.program_size);
7185 }
7186
7187 delete v8;
7188 delete v16;
7189 delete v32;
7190
7191 return ret;
7192 }
7193
7194 /**
7195 * Test the dispatch mask packing assumptions of
7196 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
7197 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
7198 * executed with an unexpected dispatch mask.
7199 */
7200 static UNUSED void
7201 brw_fs_test_dispatch_packing(const fs_builder &bld)
7202 {
7203 const gl_shader_stage stage = bld.shader->stage;
7204
7205 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
7206 bld.shader->stage_prog_data)) {
7207 const fs_builder ubld = bld.exec_all().group(1, 0);
7208 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
7209 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
7210 brw_dmask_reg());
7211
7212 ubld.ADD(tmp, mask, brw_imm_ud(1));
7213 ubld.AND(tmp, mask, tmp);
7214
7215 /* This will loop forever if the dispatch mask doesn't have the expected
7216 * form '2^n-1', in which case tmp will be non-zero.
7217 */
7218 bld.emit(BRW_OPCODE_DO);
7219 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
7220 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
7221 }
7222 }